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Abstract. Continental shelf sediments contain some of the
largest stocks of organic carbon (OC) on Earth and play a
vital role in influencing the global carbon cycle. Quantifying
how much OC is stored in shelf sediments and determining
its residence time is key to assessing how the ocean carbon
cycle will be altered by climate change and possibly human
activities. Spatial variations in terrestrial carbon stocks are
well studied and mapped at high resolutions, but our knowl-
edge of the distribution of marine OC in different seafloor
settings is still very limited, particularly in dynamic and spa-
tially variable shelf environments. This lack of knowledge
reduces our ability to understand and predict how much and
for how long the ocean sequesters CO2. In this study, we use
high-resolution multibeam echosounder (MBES) data from
the Eastern Shore Islands offshore Nova Scotia (Canada),
combined with OC measurements from discrete samples, to
assess the distribution of OC content in seafloor sediments.
We derive four different spatial estimates of organic carbon
stock: (i) OC density estimates scaled to the entire study
region assuming a homogenous seafloor, (ii) interpolation
of OC density estimates using empirical Bayesian kriging,
(iii) OC density estimates scaled to areas of soft substrate
estimated using a high-resolution classified substrate map,
and (iv) empirical Bayesian regression kriging of OC density
within areas of estimated soft sediment only. These four dis-
tinct spatial models yielded dramatically different estimates
of standing stock of OC in our study area of 223 km2: 80 901,

58 406, 16 437 and 6475 t of OC, respectively. Our study
demonstrates that high-resolution mapping is critically im-
portant for improved estimates of OC stocks on continental
shelves and for the identification of carbon hotspots that need
to be considered in seabed management and climate mitiga-
tion strategies.

1 Introduction

1.1 Blue carbon

Blue carbon has received tremendous interest as a natural
option for climate change mitigation due to the fact that
some marine habitats can store disproportionate amounts of
organic carbon (OC) on an area-by-area basis compared to
terrestrial habitats (Hilmi et al., 2021). The Intergovernmen-
tal Panel on Climate Change (IPCC) defines blue carbon as
“all biologically driven carbon fluxes and storage in marine
systems that are amenable to management” (2019). By this
definition, blue carbon is therefore associated with vegeta-
tion in coastal zones, such as tidal marshes, mangroves, and
seagrasses (McLeod et al., 2011). OC in marine sediments
is often not included in blue carbon calculations and def-
initions, since these environments do not sequester carbon
via photosynthesis (Lovelock and Duarte, 2019). However,
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marine sediments are essential carbon reservoirs and regu-
late climate change by effectively burying OC over thou-
sands to millions of years if left undisturbed (Berner, 2003;
Burdige, 2007). Studies are therefore beginning to acknowl-
edge marine sediments as an emerging blue carbon ecosys-
tem (Howard et al., 2023).

The fate and flux of OC in benthic systems is influenced by
a range of factors acting over different timescales (Middel-
burg, 2018), including natural and anthropogenic processes
(Bianchi et al., 2021, 2023). Recent studies have concluded
that, on a global scale, all bottom trawling and dredging dis-
turbs the seafloor with an estimated 1.47 Pg of aqueous CO2
emissions (Sala et al., 2021). However, these estimates have
substantial errors (Epstein et al., 2022) and often ignore that
the mineralization of benthic carbon stores comes from nat-
ural processes (Hilborn et al., 2023). Combined, these stud-
ies emphasize that further understanding of sediment ocean
carbon processes is urgently required to determine if bottom
trawling and dredging could cause the semi-permanent OC
stocks in surficial marine sediments to remineralize back to
CO2 (Bianchi et al., 2023). Also, future studies into new ap-
proaches to determining the distribution of OC are essential
to locate areas of carbon-rich seabed. Furthermore, this re-
search could expand the definition of marine protected areas
(MPAs) to include areas of high OC stock (Oceans North,
2024).

1.2 Seafloor substrate

Sediment characteristics, such as mud content, are known to
influence the distribution of OC in marine ecosystems (Bur-
dige, 2007; Serrano et al., 2016), with recent studies high-
lighting the importance of sediment properties as predictors
of organic carbon storage in blue carbon ecosystems (Dahl et
al., 2016; Krause et al., 2022). In shelf environments, where
sediment heterogeneity can be high, sediment classification
maps may therefore offer a mechanism to determine areas of
low and high OC content (Bianchi et al., 2021). Multibeam
echosounder (MBES) systems provide information about the
environmental characteristics of the seafloor, such as depth,
substrate hardness, and sediment characteristics, by collect-
ing bathymetry and backscatter information, which can be
used to determine seafloor morphology and as a proxy for
seafloor substrate type (Brown et al., 2011). Advancements
in MBES systems have allowed us to create spatially con-
tinuous high-resolution maps of the ocean floor (Brown et
al., 2011; Buhl-Mortensen et al., 2021; Misiuk and Brown,
2024) at horizontal resolutions down to sub-meter scales (de-
pending on water depth and sonar specifications; Mayer et
al., 2018). Seafloor sediment mapping describes the use of
geophysical and physical sampling systems to determine the
character of the surface sediments, and includes mapping
quantities of clay/silt, sand, gravel, cobble, and boulders us-
ing the Wentworth scale (e.g., Misiuk et al., 2019). Recent
methods for producing seabed sediment maps combine high-

resolution MBES measurements with ground-truth sampling
data using machine learning algorithms (Misiuk et al., 2019).
Statistical techniques include k-nearest neighbors (Lucieer et
al., 2013; Stephens and Diesing, 2014), artificial neural net-
works (ANNs; Huang et al., 2012; Stephens and Diesing,
2014), and the Bayes decision rule (Simons and Snellen,
2009; Stephens and Diesing, 2014). The most widely used
statistical model for substrate classification and regression
maps is random forests, due to its ease of implementation and
its robust capacity for handling complex, non-linear relation-
ships between environmental variables and ground truthing
while avoiding overfitting (Stephens and Diesing, 2015; Mi-
siuk and Brown, 2024).

1.3 Benthic carbon mapping

Early marine carbon mapping studies have applied interpola-
tion methods comprising semi-variogram analyses and krig-
ing to spatially predict OC in surficial sediments (Mollen-
hauer et al., 2004; Acharya and Panigrahi, 2016). More re-
cently, soil OC has been modeled using multiple methods in
terrestrial ecosystems. Mallik et al. (2022) compared artifi-
cial neural networks (ANNs); empirical Bayesian regression
kriging (EBRK); and hybrid approaches combining the two,
including ANN-OK (ordinary kriging) and ANN-CK (co-
kriging). They found that the EBRK method outperformed
all other models, yielding the highest values of R2 (0.936)
(Mallik et al., 2022). The EBRK method has been widely
used in terrestrial soil carbon models but has still not been
explored for marine sediment carbon models. More recent
studies have utilized machine learning algorithms to model
and map OC at broad spatial scales at the seafloor (Atwood
et al., 2020; Diesing et al., 2017; Smeaton and Austin, 2019).
Diesing et al. (2017) used random forests to model partic-
ulate OC (POC) at the seafloor using measurements from
physical seafloor samples and spatially continuous seafloor
environmental variables (500 m grid resolution) covering the
northwest European continental shelf. Similarly, Smeaton
and Austin (2019) generated a map of seafloor substrate us-
ing the Folk classification and calculated the OC stock per
substrate class (100 m grid resolution). This latter study was
the only one amongst those listed to utilize MBES data to
predict OC stock. Epstein et al. (2024) also applied random
forests to model OC stocks and accumulation rates in surfi-
cial sediments of the Canadian continental margin at a coarse
resolution (200 m grid resolution) and emphasize that ignor-
ing the geographic extent of hard substrate (i.e., bedrock)
at such broad spatial scales could inflate carbon stock es-
timates. These studies have been critical to understanding
the carbon hotspots at broad spatial scales, as the traditional
lower-resolution maps often lead to oversimplification and
inconsistency in carbon averaging. However, understanding
distributions of sedimentary OC at higher spatial resolutions
may be required for effective seabed management strategies
(Legge et al., 2020).
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High-resolution maps of OC have been produced at a lo-
cal scale using 48 m resolution backscatter from MBES sur-
veys as a predictor (Hunt et al., 2020, 2021). Backscatter
can be predictive of seabed sediment properties and was hy-
pothesized to be a proxy for OC based on observed empiri-
cal relationships between grain size and OC and also poten-
tially other additional sedimentary properties that influence
backscatter reflectance (Hunt et al., 2020). Backscatter data
may thus be valuable where sediment data are scarce. Hunt
et al. (2020) indicated that backscatter reliably captured in-
formation regarding the spatial heterogeneity of the seabed
and that OC correlated strongly with the MBES backscat-
ter signal as a function of sediment composition. However,
a more recent study suggested that backscatter distinguishes
between coarse and fine sediments (low and high OC) but
struggled to differentiate fine-scale variability within finer-
grained sediments (Hunt et al., 2021). Differences in results
between these studies could be due to the different geograph-
ical setting of the studies, limited and asynchronous data,
sediment mobility over time, or complex environmental pro-
cessing of OC in shelf sediments (Hunt et al., 2021).

The studies on the northwest European continental margin
(Diesing et al., 2017, 2021; Wilson et al., 2018; Hunt et al.,
2020, 2021; Legge et al., 2020; Smeaton et al., 2021) have
shown promising early results. Other studies of carbon stocks
have been conducted in the North American coastal region
but, with the exception of Epstein et al. (2024), took place
without spatially explicit estimates (Fennel et al., 2019; Naj-
jar et al., 2018). Overall, spatially mapping OC at the seabed
has only been attempted at a few locations globally, and there
is an urgent need to establish robust approaches to obtaining
spatial estimates of OC at the seafloor. High-resolution OC
mapping may additionally help to improve current estimates
of seafloor OC stocks and provide insight on marine sedi-
ments as an emerging blue carbon ecosystem. As a conser-
vation area of interest (AOI) for the Canadian government,
the Eastern Shore Islands (ESI) is an ideal location to test
emergent OC mapping methods; it comprises a heterogenous
seabed that may provide insight on the effectiveness of vari-
ous baseline sediment OC estimation and mapping method-
ologies.

This study addresses three key questions:

1. What is the spatial distribution of seafloor sediment
types in the ESI area?

2. Are seafloor sediments a good high-resolution proxy
that enable accurate estimation of OC stock?

3. Does the spatial heterogeneity of substrate type and car-
bon content influence estimates of OC stock?

2 Study area

The study region is located within the ESI, approximately
60 km northeast of Halifax (Nova Scotia, Canada; Fig. 1).

The site stretches from Lower West Jeddore to Fern Hill and
extends approximately 25 km from the mainland with an area
of approximately 223 km2 (Fisheries and Oceans Canada,
2019) (Fig. 1). The ESI is a conservation AOI for the Cana-
dian government due to its unique coastal habitat and sig-
nificant quantities of kelp beds and eelgrass. The estuaries
and rivers that drain into the site are regarded as important
habitats for endangered species such as Atlantic salmon and
juvenile Atlantic cod. Furthermore, the hundreds of islands
have been identified as an Ecologically and Biologically Sig-
nificant Area (EBSA), which provides essential nesting and
foraging ground for many colonial seabirds and shorebirds,
including purple sandpiper and roseate tern, which are en-
dangered according to the Species at Risk Act (Fisheries and
Oceans Canada, 2019).

The study area has a water depth between 31 and 63 m.
The surficial geology of the ESI is spatially heterogeneous,
with bedrock overlaid by mud, sand, gravel, cobble, and
boulder substrates (King, 2018). The bedrock topography
is an extension of the terrestrial geomorphology and heav-
ily influences the type and distribution of the surficial de-
posits. The glacial imprint is substantial in the area, having
deposited a sequence of till and glaciomarine mud, which
lie directly on the bedrock (King, 2018). There is also a
thin layer of wave-modified sand and gravel and of more re-
cent deposits of estuarine mud derived from coastal erosion
(Fisheries and Oceans Canada, 2019). Ocean surface temper-
atures in the ESI are around 1 °C in winter for the 0–100 m
depth range and increase in the summer with some stratifica-
tion leading to surface temperatures exceeding 15 °C (Fish-
eries and Oceans Canada, 2019). By the fall, mixing deepens
this warm layer. Ocean currents run predominantly south-
westwards, with some fluctuation around the coast (Feng
et al., 2022). The combination of upwelling, currents, and
wind allows the mixing of nutrients, acting as an essential
component of the marine food web in the region (Fisheries
and Oceans Canada, 2019). Nutrients are derived from the
river, coastal runoff, and mixing. They are depleted in the
spring due to phytoplankton blooms and replenished in the
fall when upwelling is predominant (Fisheries and Oceans
Canada, 2019). Major human activities in this area include
lobster fishing, recreational fishing, and boating, but the hu-
man impact is low due to low population density and reduced
coastal development compared to Halifax and St. Margarets
Bay nearby (Fisheries and Oceans Canada, 2019).

3 Materials and methods

To quantify OC stock in the ESI, sediment samples were col-
lected and OC content and sediment grain size were mea-
sured. OC density was calculated for each sample, and four
OC stock estimations were generated. The first assumed a
homogenous seafloor by scaling up the average OC density
to the entire study area. The second also assumed a homoge-
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Figure 1. Seafloor MBES bathymetry and sample locations for the survey area at the Eastern Shore Islands, Nova Scotia, Canada (inset).

neous seafloor but used empirical Bayesian kriging (EBK) to
derive the spatial variability in OC density for the study area.
Both scenarios 1 and 2 were conducted to evaluate OC esti-
mates when no high-resolution mapping data are available.
To further refine the OC stock estimates, a substrate clas-
sification map was developed by combining high-resolution
seafloor predictor variables (derived from multibeam sonar
data; see below) and subsea camera imagery of the seabed.
The substrate classification map partitioned the study area
into hard and soft substrates. The third OC stock estimate
utilized the sediment classification and scaled the average
OC density to the area of the soft substrate. The final OC
stock estimate also utilized the sediment classification map
but used empirical Bayesian regression kriging (EBRK) pre-
diction to incorporate the spatial variability in the OC den-
sity within the soft substrate only. Scenarios 3 and 4 deter-
mine OC estimates when sediment information and high-
resolution mapping data are available. An overview of the
analysis workflow is shown in Fig. 2.

3.1 Hydrographic datasets

MBES data were collected by the Canadian Hydrographic
Service over two separate surveys (20 June–29 July 2019
and 17 August–5 September 2020) (Bondt, 2019, 2020).
Three launches were used to complete this survey: the CSL
Kestrel, CSL Tern, and CSL Pelican. The survey launch
CSL Kestrel was equipped with an R2Sonic 2022 multibeam
echosounder. The survey launches CSL Tern and CSL Peli-

can were outfitted with Kongsberg EM2040C and EM2040C
dual head echosounders, respectively. All surveys were con-
ducted at MBES operating frequencies of 200–400 kHz. Ves-
sel position and orientation were corrected in real time by
Trimble/Applanix POS MV V5 motion compensation sys-
tems. Echosounder data were corrected for sound velocity
in real time using Applied Microsystems Limited sound ve-
locity sensors. The vessel position was recorded in real-time
using the Can-Net RTK NTRIP connected directly through
the POS MV. Raw position and orientation data from the
POS MV were logged throughout the survey for further post-
processing where required. Bathymetry and backscatter data
were processed using the QPS software suite. Bathymetry
data were processed in Qimera 2.5.3 to generate a bathy-
metric digital elevation model (DEM) for the survey area.
Backscatter data were processed in FMGT 7.10.2 to gener-
ate backscatter mosaics for each of the data sets. Backscatter
data were not calibrated; the different survey data sets were
harmonized using bulk shift methods (Misiuk et al., 2020,
2021; Haar et al., 2023) from areas of overlap between the
survey data sets to generate a corrected backscatter mosaic
for the entire study area.

Seafloor morphology features were derived from the pri-
mary bathymetric datasets to provide additional predictor
variables for sediment classification modeling. These were
selected based on literature reviews, expert suggestions, and
access to data and were calculated using the Benthic Ter-
rain Modeler (BTM) 3.0 Toolbox in ArcGIS Pro 3.1.2. The
terrain features included slope, bathymetric position index
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Figure 2. General analysis steps used to estimate organic carbon in four scenarios.

(BPI), and vector ruggedness measure (VRM), which are re-
garded as useful predictors for seabed substrate classifica-
tion (Stephens and Diesing, 2015; Misiuk et al., 2019) (Ta-
ble 1) (Fig. 3). The Focal Statistics tool was used to obtain
the mean value for each predictor variable over a 20-by-20-
pixel neighborhood to reduce noise. The variables were then
used in both the substrate map and the OC model.

3.2 Seabed sediment sampling

Sampling surveys for OC and grain size were conducted be-
tween 9–27 May 2022 from the MV Island Venture. Sam-
pling locations were randomly placed in regions of low
MBES backscatter, which indicate softer, unconsolidated
sediments where grab sampling should be successful (Fig. 3).
Acoustic backscatter was used as a proxy for sediment grain
size to determine areas of soft sediment, and grab sampling
locations were randomly selected within this area (Goff et
al., 2000; Sutherland et al., 2007; Collier and Brown, 2005;
Hunt et al., 2020). A 0.1 m2 Van Veen grab fitted with a Go-
Pro camera was operated to collect sediment samples and
drop camera imagery at each sample location, with the grab
penetrating up to ∼ 10 cm depth into the substrate. The GPS
position of the research vessel was recorded at the point of
contact at the seabed at each grab station. A total of 17 grabs
were successful in areas of soft substrate. Generally, it is dif-
ficult to sample a coarser sediment matrix successfully, and
these sediment types are often under-represented in sedimen-
tary carbon studies (Hunt et al., 2020). After thoroughly mix-
ing the sediment in the Van Veen grab, 0.907 kg subsamples
of sediment were taken from the grabs and each placed in a

plastic container for OC analysis. Following collection, these
samples were stored in a cooler during the day and put into a
freezer in the evening.

3.3 Processing of sediment grab samples

Prior to sediment grain size and OC analysis, the samples
were dried from frozen in the oven at 60 °C overnight and
kept in a dark dry cabinet. Sedimentary OC from the grab
samples was quantified using an elemental analyzer (EA; El-
ementar MICRO cube) with a detection limit of 0.03 mg.
Based on the method of Verardo et al. (1990), a section of
the grab samples (5 g) was ground using a mortar and pestle
to form a homogenous powder. Two samples (ES-31 and ES-
35) contained significant concentrations of sediment grains
coarser than 2 mm (around 30 % of sample). These sand
grains were removed using mesh sieves prior to grinding and
EA analysis, but final sedimentary OC concentrations were
adjusted to total sample weight following EA analysis. Silver
capsules were used to weigh the initial mass (0.5–0.7 mg),
and acid fumigation was performed by exposing the samples
to 37 % hydrochloric acid (HCl) to remove any inorganic car-
bon. These capsules were then placed in an oven overnight at
60 °C before analysis.

The remaining section of the grab samples was used
for sediment grain size analysis, following the protocol of
Mason (2011). The sediment was first split into pebble/-
cobble (> 4000 µm), gravel (> 2000 µm), and fine-sediment
(< 2000 µm) material using mesh sieves. The fraction <

2000 µm was evaluated using a Beckman Coulter LS 13 320
particle size analyzer at the Bedford Institute of Oceanogra-

https://doi.org/10.5194/bg-21-4569-2024 Biogeosciences, 21, 4569–4586, 2024



4574 C. Brenan et al.: Improving spatial estimates of seafloor organic carbon stocks

Table 1. Description of predictor variables used to model sediment type.

Environmental variables Description Resolution Units

Bathymetry Depth of the seafloor 2 m m

Backscatter Measure of intensity of acoustic signal from MBES 2 m Relative dB
and indicator of bottom hardness

Slope Measures maximum change in elevation (steepness) 2 m °

Vector ruggedness Measures terrain ruggedness of grid cells within a neighborhood unitless unitless
measure (VRM)

Bathymetric position Differences in values of center cell to mean of surrounding cells. 2 m m
index (BPI)

Figure 3. Backscatter, slope, VRM, and BPI data mapped in the Eastern Shore Islands study area.

phy. Following the guidance of Mason (2011), the samples
were not treated with acid or hydrogen peroxide because the
samples had relatively low organic content. The results from
the coarse- and fine-scale fractions were combined into a full
particle size distribution to determine the percentage of mass
of the total for each sample (Supplement). It should be noted
that dry bulk density was not measured directly in this study
but was instead calculated (see Sect. 3.6).

3.4 Subsea video surveys

A total of 174 drop camera videos were collected by Fish-
eries and Oceans Canada (DFO) over 13 d during Septem-
ber and October 2017 on board RV Sigma-T (Fisheries and
Oceans Canada et al., 2019) (Fig. 1). An HD subsea video
camera (SV-HD SDI) was used with camera time and posi-
tion recorded using a video overlay streamed from the chart

Biogeosciences, 21, 4569–4586, 2024 https://doi.org/10.5194/bg-21-4569-2024



C. Brenan et al.: Improving spatial estimates of seafloor organic carbon stocks 4575

plotter (Vandermeulen, 2018). The video feed with overlay
outputted to a direct-to-disk HD recorder and a standard low-
power LED TV. The GPS antenna for the navigation sys-
tem was mounted on the roof of the wheelhouse approxi-
mately 10 m from the drop camera when deployed off the
stern gallows. In this manner, all positional information in
the video overlay was offset by∼ 10 m and was adjusted dur-
ing post-processing. Approximately 3 min of moving video
was recorded at each drop camera location. The center of
each video drift was recorded as the station location. All drop
camera sites occurred at depths > 10 m. The GoPro camera
imagery collected with the grab sampler during OC sampling
in 2022 (see section on sediment sampling above) was addi-
tionally incorporated with the drop camera imagery for sub-
sequent analysis (Fig. 1).

From each video station, a presence (1) and absence (0) of
different sediment types were recorded in post-processing.
The data were classified into two sediment types: hard sub-
strate (rock, boulder, cobbles, pebbles, and gravel), and soft
substrate (mud and sand) (Fig. 4) (Supplement).

3.5 Sediment classification model

Random forests has been used in previous carbon mapping
studies due to its high predictive accuracy, capacity to man-
age many predictor variables, and unbiased internal valida-
tion (Diesing et al., 2017). In our study, random forests was
used to model the sediment grain size class to inform OC
content estimation using the randomForest package in R ver-
sion 4.3.1 (Liaw and Wiener, 2002). The model was initially
trained with default hyperparameters (ntree= 500, mtry= 2,
and nodesize = 1) using the substrate classification obser-
vations and all predictor variables (bathymetry, backscat-
ter, BPI, VRM, and slope). Random forests is an ensemble
modeling approach comprising many individual classifica-
tion trees, each grown on a bootstrapped version of the data
set. The observations not selected for a given tree are termed
the “out-of-bag” (OOB) observations. Given enough trees,
each response observation will be represented in the OOB
sample multiple times. By predicting the OOB values for
each individual tree during model training, the results can be
aggregated over all trees to provide a useful set of validation
predictions that were not used to inform training. The OOB
observations were used here to estimate predictor variable
importance by permuting the predictor values and measur-
ing the resulting increase in OOB error (Liaw and Wiener,
2002). Random forests is generally regarded as robust when
using correlated predictors, and estimates of importance ad-
ditionally suggested contribution to the model by all vari-
ables, which were thus retained. Informal trials suggested
that a model of 100 trees (i.e., ntree = 100) provided suffi-
cient predictive capacity but improved computational speed.
After training the final model with these parameters, a confu-
sion matrix was generated using the OOB observations and
predictions to evaluate the map accuracy, and the model was

then predicted across the full map extent using the predic-
tor variable rasters. The true skill statistic (TSS) was used to
evaluate the model predictions, indicating how well predic-
tions agree with observations beyond the level of agreement
that could be expected by chance:

TSS= sensitivity+ specificity− 1, (1)

where sensitivity is the proportion of observed presences that
are predicted as such, and therefore quantifies omission er-
rors, and specificity is the proportion of observed absences
that are predicted as such and therefore quantifies commis-
sion errors (see Allouche et al., 2006, for an evaluation of
this statistic).

3.6 Estimation of standing stock of organic carbon

The elemental analyzer reports OC value as a proportion
(weight %). Dry bulk density was not measured directly in
this study but was calculated from estimated porosity and
grain density. Porosity (φ) was calculated from predicted
mud content (dimensionless fraction), which is a combina-
tion of clay and silt from the grain size distribution measure-
ments using Eq. (2) derived from Jenkins (2005).

φ = 0.3805×Cmud+ 0.42071, (2)

where φ and Cmud (mud content) are dimensionless frac-
tions. The equation was derived based on data from the
Mississippi–Alabama–Florida shelf, and it is assumed that
the equation is not site-specific (Diesing et al., 2017).

Dry bulk density (ρd) of the sediment was estimated using
the porosity and grain density (φs = 2650 kg m−3) (Diesing
et al., 2017; Hunt et al., 2020):

ρd = (1−φ)ρs. (3)

The organic carbon density (kg m−3) was calculated by mul-
tiplying the %OC (Y ) (expressed as a decimal proportion)
by the sediment dry bulk density (ρd). Following prior stud-
ies that quantified marine sedimentary OC (e.g., Diesing et
al., 2017; Hunt et al., 2021), the standing stock of organic
carbon per grid cell (moc) was estimated by multiplying the
average OC density by the sampling depth of the Van Veen
grab (d = 0.1 m) and the area of mapped grid cell (A= 4 m2)
and was converted to metric tonnes (divided by 1000) using
Eq. (4) below:

moc = (Y × ρd× d ×A)/1000. (4)

Finally, the total standing stock was themoc multiplied by the
total pixels in the study site (scenarios 1 and 2) or the total
pixels in the soft substrate (scenarios 3 and 4).

3.7 Spatial interpolation of organic carbon – no
substrate

After themoc was calculated for each sample, EBK was used
to spatially interpolate moc within the entire study site. EBK
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Figure 4. Example of seafloor imagery from each of the two substrate classes: hard substrate (a) and soft substrate (b). Photos from a GoPro
camera mounted on the Van Veen grab. Image width is approximately 0.5 m, with the frame of the grab providing scale for classification of
substrata.

is a geostatistical interpolation method that builds a kriging
model by subsetting the study area, coupled with multiple
simulations to obtain the best fit (Krivoruchko and Gribov,
2019). This process finally creates several simulated semi-
variograms, each of which is an estimate of the true semi-
variogram for the subset (Pellicone et al., 2018). EBK dif-
fers from other kriging methods, since it considers the un-
certainty in the semi-variogram estimation step, providing
an estimate of the prediction standard errors. An exponen-
tial semi-variogram and an empirical transformation were se-
lected, and EBK was executed in the geostatistical wizard in
Esri ArcGIS Pro 3.1.

3.8 Spatial interpolation of organic carbon density –
soft substrate

EBRK was used for the spatial interpolation of OC density
and estimation of values at unknown locations within the ex-
tent of the soft substrate. EBRK is a geostatistical interpola-
tion method that combines ordinary least-squares regression
and kriging to provide accurate predictions of non-stationary
data at a local scale (Giustini et al., 2019). An exponen-
tial semi-variogram model and an empirical transformation
were selected for the EBRK model, which was evaluated us-
ing leave-one-out cross-validation (Mallik et al., 2022). The
EBRK method is different to EBK in that predictor vari-
able information is accommodated by including the principal
components as regression variables prior to the kriging step.
Thus, all the predictor variables from the substrate classifi-
cation map (bathymetry, backscatter, BPI, VRM, and slope)
were masked to the soft-substrate area in Esri ArcGIS Pro
3.1 and included in the EBRK model to improve estimation
of OC density.

3.9 Cross-validation methods

To estimate the accuracy of the EBK and EBRK predic-
tions, the mean error (ME) and the root-mean-square error
(RMSE) were calculated. The ME is the average of the cross-
validation errors, measures model bias, and should have a
value close to zero (Acharya and Panigrahi, 2016).

ME=
1
n

∑n

i=1
{z(xi)− ẑ (xi)} (5)

The RMSE measures the difference between the predicted
and the observed values and estimates the standard deviation
of the residuals (Boumpoulis et al., 2023). A small RMSE
indicates that the model has performed well and can predict
the data accurately.

RMSE=
[

1
n

∑n

i=1
{z(xi) − ẑ(xi)}2

]1/2

(6)

z(xi) is the observed OC, ẑ (xi) is the prediction of OC at lo-
cation xi, and n is the number of observations. These cross-
validation error parameters were calculated within the Geo-
statistical Wizard Tool in Esri ArcGIS Pro 3.1.

4 Results

4.1 Grain size distributions, sediment properties, and
organic carbon content

Van Veen grab samples provided grain size and OC measure-
ments at each station (Table 2). It is important to note that silt
and clay were merged into a single mud class to estimate the
OC stock (Burdige, 2007; Hedges and Keil, 1995).

4.2 Relationship between grain size and organic carbon

A linear regression was performed to examine the relation-
ship between OC content (%) and the percentage grain size
composition of mud. There was a significant positive rela-
tionship between OC content and percent mud (p < 0.001;
R2
= 0.81) (Fig. 5), suggesting that percent mud content

may be useful as a proxy for OC content, as also observed

Biogeosciences, 21, 4569–4586, 2024 https://doi.org/10.5194/bg-21-4569-2024



C. Brenan et al.: Improving spatial estimates of seafloor organic carbon stocks 4577

Table 2. Raw data from grab samples, including grain size and OC measurements.

Station > 4000 > 2000 Sand Silt Clay Porosity Dry bulk Organic
µm (%) µm (%) content content content density carbon

(%) (%) (%) (kg m−3) content
(%)

ES-02 0.27 0.08 54.3 38.4 7.13 0.59 1077.6 1.22
ES-03 0.003 0.06 90.8 7.11 2.03 0.46 1443.0 0.12
ES-04 0.33 0.01 93.7 4.28 1.69 0.44 1475.1 0.13
ES-07 0.00 0.00 24.4 65.2 10.3 0.71 773.0 1.85
ES-15 0.59 0.11 94.6 3.44 1.29 0.44 1487.4 0.06
ES-17 2.07 0.30 63.7 30.5 4.18 0.55 1185.1 0.10
ES-18 0.60 0.04 80.2 17.4 1.93 0.49 1340.5 0.23
ES-19 0.00 0.04 96.7 2.15 1.12 0.43 1502.2 0.08
ES-21 0.14 0.10 91.4 7.23 1.17 0.45 1450.4 0.06
ES-23 0.08 0.21 93.8 4.68 1.27 0.44 1475.1 0.07
ES-25 0.006 0.01 95.4 3.50 1.05 0.44 1489.3 0.05
ES-27 0.04 0.05 85.0 13.3 1.67 0.48 1384.7 0.07
ES-28 0.00 0.05 85.2 13.2 1.63 0.48 1385.8 0.08
ES-29 0.00 0.02 86.7 11.4 1.87 0.48 1401.4 0.08
ES-31 21.42 9.97 45.8 22.2 1.11 0.51 1199.2 0.57
ES-34 2.15 0.71 52.4 39.9 6.15 0.59 1071.1 0.61
ES-35 34.00 0.37 17.3 44.0 4.26 0.61 793.01 0.62

Figure 5. Linear regression indicating the relationship between OC
and percent mud. The gray area represents a 95 % confidence inter-
val for the slope of the regression line.

at many other sites (Burdige, 2007; Hedges and Keil, 1995;
Hunt et al., 2021).

4.3 Substrate classification map

Outputs from random forests indicated that bathymetry,
backscatter, vector ruggedness measure (VRM), and slope
were all important for the sediment classification. Figure 6
shows the relative importance of the five variables in the

Figure 6. The importance of predictor variables as estimated using
random forests.

model. Backscatter was the most important variable for pre-
dicting sediment type, followed by VRM, slope, bathymetry,
and BPI.

The confusion matrix calculated using the OOB observa-
tions is presented in Table 3. A TSS score of 0.67 indicates
substantial agreement between observations and predictions
of each class, suggesting that the model was able to success-
fully differentiate soft and hard substrates within the study
area.
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Table 3. Confusion matrix of substrate type predictions.

Observed

Hard substrate Soft substrate

Predicted Hard substrate 129 16
Soft substrate 9 44

The sediment classification map revealed that the hard
substrate was the most spatially extensive (178 km2),
whereas the soft-substrate class was smaller, covering ap-
proximately 45 km2 of the study area, corresponding with
contiguous patches of relatively low-relief seafloor (Fig. 8).
Sediment grain size from the grab samples from the soft-
sediment areas revealed grain size percentiles d10 = 17,
d50 = 147, and d90 = 1822 µm. This suggests predominantly
sandy sediments, with varying smaller proportions of silt and
clay (Fig. 7). Two samples comprised around 30 % coarse
substrate (> 2000 µm) (Fig. 7).

4.4 Organic carbon density maps

Cross-validation of the EBK model indicated the accuracy of
the OC density predictions was ME =−0.27 and RMSE =
4.21 kg m−3, suggesting low bias but also that the magnitude
of prediction error was substantial compared to the range of
the observed data (e.g., Fig. 9). Predicted OC density was
high on the western part of the study site near Lower West
Jeddore and in the middle of the study area near Owls Head
Harbour (Fig. 9).

Cross-validation of the EBRK model indicated ME =
−0.31 and RMSE = 3.52 kg m−3, suggesting slightly higher
bias than the EBK model yet more accurate predictions. The
EBRK model prediction suggested high OC density in the
west and southwest of the study area. A significant quantity
of OC density was predicted eastward near Owls Head Har-
bour (Fig. 10). The lowest OC density was predicted in the
eastern part of the study area with quantities close to zero.

4.5 Organic carbon estimates

Estimates of average OC density, OC stock per pixel, and to-
tal OC stock were calculated for all four scenarios (Table 4).
For scenario 1, the average OC stock per grid cell was used
to scale up to the full spatial extent of the study site. For sce-
nario 3, the average OC stock per grid cell was used to scale
up to the full spatial extent of only the soft-sediment area. For
scenarios 2 and 4, total standing stocks were calculated by
summing the predicted pixel values for either the full study
extent (scenario 2) or the soft-sediment area (scenario 4).

5 Discussion

Our study explores how high-resolution spatial models can
improve carbon budget estimates. We have described a quan-
titative spatial model of hard and soft substrate in a continen-
tal shelf environment and determined four estimates of OC
stock in the surficial sediments (top 10 cm): scaling to the
entire study area (scenario 1), interpolating OC density using
an EBK model (scenario 2), scaling to only the soft substrate
(scenario 3), and refining moc within the soft substrate esti-
mated from an EBRK model (scenario 4). The results demon-
strate that, as spatial models become more detailed, the OC
stock estimation increases in accuracy but decreases the over-
all predicted OC stock.

5.1 Evaluation of sediment map

The sediment map effectively classified the hard and soft
substrate (TSS = 0.67) and significantly refined our under-
standing of the detailed distribution of the OC. Previous stud-
ies applied similar machine learning modeling approaches
with success (Stephens and Diesing et al., 2015; Misiuk et al.,
2019; Mitchell et al., 2019; Epstein et al., 2024). Our results
further demonstrate that this approach is suitable for mapping
benthic substrates where high-resolution MBES data sets and
suitable sediment ground truthing are available. Other stud-
ies found that the highest POC concentrations are associ-
ated with gravelly mud, mud, and sandy mud (Diesing et al.,
2017). This agrees with our linear regression that areas of in-
creased OC have a high mud content (Fig. 5). The empirical
relationship observed between mud content and OC strongly
suggests the importance of using substrate maps to precisely
estimate the stock of OC.

5.2 Variability in organic carbon stocks

Differences in estimated OC stock suggest that the substrate
map was an essential component to this study. Smeaton et
al. (2021) note that the seafloor is commonly assumed ho-
mogenous in benthic OC studies. Shelf environments are in-
herently heterogeneous, and scaling up OC measurements
where high-resolution mapping data are available offers an
effective way of obtaining accurate estimates of OC in these
areas (Snelgrove et al., 2018). To improve estimates and bet-
ter identify how the ocean carbon cycle will be altered by
climate change and possibly human activities, carbon stud-
ies should embrace the full complexity of the seafloor (Snel-
grove et al., 2018; Epstein et al., 2024). Our study empha-
sizes the benefits of high-resolution MBES data for such ap-
plications and the need for additional coverage and collection
of seafloor mapping data sets in coastal waters where cover-
age is currently limited (Mayer et al., 2018).

The difference in the total mOC calculated based on the
substrate map (16 437 and 6475 t of OC) versus estimates in
the absence of a map (80 901 and 58 406 t of OC) emphasizes
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Figure 7. Sediment classification map indicating predicted soft (orange) and hard (blue) substrates. Pie charts depict ratios of sand (yellow),
silt (orange red), clay (purple), and coarse (green) for each sediment sample collected.

Figure 8. Sediment classification map indicating areas of soft (orange) and hard (blue) substrate. Proportional symbols of OC indicate the
sampled percentage (yellow).
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Figure 9. Spatial interpolation of OC using EBK.

Figure 10. Spatial interpolation of OC using EBRK.
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Table 4. Calculations used to determine the total stock of OC in the mud/sand sediment type and the total stock of OC in the entire study
area.

Maps Average density of Average OC stock Total grid cells Total stock of OC in
OC per grid cell: per grid cell: study area (t)

kg m−3 (standard kg m−2 (standard
deviation: SD) deviation: SD)

Scenario 1: assuming 3.62 (SD: 4.27) 1.45 (SD: 1.71) 5.58× 107 80 901
homogenous seabed
(entire study site)

Scenario 2: 2.62 (SD: 1.06) 1.05 (SD: 0.42) 58 406
EBK method
(entire study site)

Scenario 3: assuming 3.62 (SD: 4.27) 1.45 (SD: 1.71) 1.13× 107 16 437
heterogenous seabed
(soft substrate)

Scenario 4: 1.45 (SD: 0.55) 0.57 (SD: 0.79) 6475
EBRK method
(soft substrate) OC

that a spatial component to OC estimations is essential for
carbon system models. This difference demonstrates the need
to understand the presence of hard substrate at the seabed
when calculating carbon stocks as suggested in recent broad-
scale carbon modeling studies (Epstein et al., 2024). Cur-
rently, global carbon models oversimplify carbon processes
due to a lack of information and data on the complexity of the
marine carbon cycle. For instance, previous studies examined
carbon quantity at the surface of the ocean by analyzing phy-
toplankton activity using satellite imagery, since there is an
assumption that carbon at the surface of the ocean correlates
with areas of high carbon storage at the seafloor (Chase et
al., 2022). This assumption ignores the complexity of car-
bon moving through the pelagic and benthic regions. Spa-
tially continuous seafloor mapping data are a step towards
improving accuracy in our estimation, which will enhance
the ongoing investigations into the marine carbon cycle.

Additionally, the resolution of the seafloor mapping data is
important when modeling OC. For instance, by using a 2 m
by 2 m grid resolution, we can interpolate the carbon within
the soft substrate using EBRK models. Through the EBRK
interpolation of carbon, the carbon stock (6475 Mt of OC)
was less than the estimates that assume a homogenous soft
substrate. The EBRK method indicates that high-resolution
interpolated models of OC can help to further refine standing
stock estimates and provide insight into where the carbon
hotspots are within the study area.

The estimates from our study were compared to the paper
by Epstein et al. (2024), since they evaluated organic car-
bon stock in the entire Canadian continental margin, which
included our study area. To compare these estimates, we
clipped their OC density map to our study site and found
that the mean OC density was 7.12 kg m−3 (SD: 1.93). This

mean OC density is higher than but falls within the standard
deviation of values for scenarios 1 and 3 presented here (Ta-
ble 4). To compare the total OC stock for the study region,
we adjusted the depth used by Epstein et al. (2024) from 0.3
to 0.1 m by dividing their OC stock estimates by 3. The OC
stock was 161 552 t (SD: 43 723), which is higher than any of
the estimates under the four scenarios we present (Table 4).
One reason for the higher estimates in the study by Epstein
et al. (2024) could be that no OC measurements within the
study region were available in Epstein et al. (2024). There-
fore, their model relied on OC data outside this area, which
could lead to error. Furthermore, an underrepresentation of
zero values in the response data could lead to an overestima-
tion of organic carbon standing stocks in their study, as zero
values are unlikely to be predicted from model outputs. The
comparison between both studies highlights the importance
of high-resolution sediment classification maps when esti-
mating sedimentary OC stock; knowing the extent of bedrock
can reduce the overestimation of OC content substantially.

5.3 Organic carbon maps

When comparing the EBK and EBRK carbon maps, there
were some similarities and differences. Both maps indicate
a hotspot near Owls Head Harbour and low OC density on
the eastern side of the study area. However, the EBK map
shows a large area of high OC density on the western side of
the study area, whereas the EBRK model has a smaller area
slightly east of that location. These differences between the
models emphasize that the EBK model could have some in-
accurate interpolation due to the limited sediment samples in
the study area. In contrast, the EBRK model was performed
in the soft substrate, where all the samples were distributed,
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with fewer data gaps. The EBK model indicates that, with-
out high-resolution seafloor mapping data, one can obtain a
general understanding of OC hotspots. However, the EBRK
model can provide a more precise understanding of the spa-
tial variability in OC density in the study site.

Both maps suggest high OC densities associated with loca-
tions further offshore (Figs. 9 and 10) and within sediments
containing increased amounts of silt and sand (Figs. 7 and 8).
Based on previous evaluations of the study area, inshore sed-
iment often comprised bedrock with patchy sand and gravel,
whereas, further offshore, there is thick glacial marine mud
over bedrock (Fisheries and Oceans Canada, 2019). This ge-
omorphology could be the cause of higher OC density fur-
ther offshore. The cause of increased OC content near Owls
Head Harbour remains uncertain, lacking any aquaculture or
substantial runoff from nearby agriculture. However, the ESI
has substantial kelp and eelgrass beds; future research may
explore relationships between these environments and OC.

5.4 Limitations of the study

The lack of dry bulk density measurements for the OC stock
calculations was a major limitation of this study. The use of
a dry bulk density equation derived from a previous study
could introduce error into calculations based on regional
geological differences. Only two seabed sediment classes
were mapped here, which does not represent the actual com-
plexity of substrate types within the ESI. Preliminary ran-
dom forest model runs that incorporated additional sediment
classes showed high error and poor performance, likely due
to the difficulty in accurately determining sediment types
from a small number of subsea video samples. We empha-
size challenges associated with differentiating complex sub-
strate classes that were noted in previous similar studies (e.g.,
Diesing et al., 2020).

We have also assumed here that there is no OC in the
hard substrate. The hard-substrate class included more than
bedrock, with regions of mixed sediment, such as gravelly
mud, visible in the subsea video which could contain some
OC. Thus, improving the sediment classification map to in-
clude more complex substrates could improve the OC stock
estimates further. The limited number of OC samples may
have skewed the interpolation, since the data points were not
uniformly distributed within the areas of soft substrate. We
therefore recommend higher sampling densities for future
OC studies.

These limitations highlight the challenges of carbon mod-
eling on the seafloor and the need for further research into
evaluating the correct procedure for utilizing sediment classi-
fication maps when predicting OC stock. Furthermore, there
is persistent uncertainty surrounding how much sea surface
particulate OC (POC) reaches the seafloor and the spatial
distribution of the sinks of this material. Thus, future carbon
studies should evaluate benthic–pelagic coupling and the im-
pact it has on OC stocks.

5.5 Future implications of organic carbon models

Marine spatial planners are trying to manage the seabed in
a sustainable manner, and high-resolution regional-scale OC
mapping data could be a practical option to help identify vul-
nerable C stores and hotspots and to determine how these ar-
eas may be altered due to environmental change and anthro-
pogenic activities (Hunt et al., 2021). MPAs have been de-
fined as regions that conserve marine resources, ecosystem
services, or cultural heritage (Laffoley et al., 2019). High-
resolution seafloor OC models could help redefine MPAs and
allow them to incorporate areas of high carbon stock. It is im-
portant to recognize sediments as long-term carbon sinks that
provide climate regulation services.

It is challenging to measure how human activities like bot-
tom trawling are impacting the seabed and how they influ-
ence OC without an understanding of the natural processes
of marine carbon cycling. Studies that examine OC spatially
and examine its connections to seafloor composition are a
crucial component to piecing together the natural marine car-
bon cycle, which can help determine if the amount of rem-
ineralization occurring from human activities will have a sub-
stantial impact on climate. Even with a relatively limited
number of OC samples, this study demonstrates that high-
resolution seafloor substrate maps and spatial OC models are
critical to understanding the spatial heterogeneity of OC on
the seafloor.

6 Conclusions

In this study, we generated a high-resolution sediment map
that accurately captured the spatial complexity and distribu-
tion of broad sediment types in the ESI area. Through the
four scenarios for estimating OC stocks, we demonstrated
that seafloor sediments are a good high-resolution proxy that
enable accurate estimation of OC stock in the area and that
information (or lack of information) regarding the spatial het-
erogeneity of the seafloor substrata substantially influences
estimates of OC stock (ranging from 6475–80 901 t of OC).
These results emphasize that further research should explore
high-resolution multibeam echosounder data in determining
OC-rich hotspots to improve our understanding of the role
that benthic systems play as global carbon stores and of how
the management of these systems can contribute towards cli-
mate change management strategies and marine climate pol-
icy.

Data availability. Bathymetry data were obtained from the Cana-
dian Hydrographic Service (CHS) NONNA Portal: https://data.
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