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1 Supplementary Figures and Table 

 

Figure S1. The R2 of the relationship between observed and true values of ecological metrics increases strongly with 

the number of peaks (i.e., peak richness). (A-C) The same error applied to a given peak between samples, referred to as 

within-sample error in the main manuscript. (D-F) Different errors applied to a given peak between samples, referred to as 

between-sample error in the main manuscript. Blue lines track the simulation model data points and are added to facilitate 

visual interpretation. 



 

 

Figure S2. Variation in observed intensity explained by true abundance. Kernel density functions are shown for different 

relationships and types of error. Density functions were fit using R2 values collated from across simulation iterations. Higher 

R2 values indicate a stronger link (i.e., lower uncertainty) between observed intensities and true abundances. Black is for the 

relationship shown in Figure S4. Blue is for between-peak within-sample differences (example relationships shown in Figures 

S6A,B). Gray is for within-peak between-sample differences when the same peak-level error was used for both synthetic 

samples within a given simulation iteration (example relationship shown in Figure S6C). Red is for within-peak between-

sample differences when different peak-level error was used across the synthetic samples within a given simulation iteration 

(example relationship shown in Figure S6D). While there are central tendencies in all four distributions, there is also 

significant variation in the degree to which observed intensities reflect true abundances. 

 

 



 

Figure S3. Equivalent to Figure S2, but with a simulated error distribution with a range from 0 to 8. Variation in 

observed intensity explained by true abundance. Kernel density functions are shown for different relationships and types of 

error. Density functions were fit using R2 values collated from across simulation iterations. Higher R2 values indicate a 

stronger link (i.e., lower uncertainty) between observed intensities and true abundances. Black is for the relationship shown in 

Figure S5. Blue is for between-peak within-sample differences (example relationships shown in Figures S7A,B). Gray is for 

within-peak between-sample differences when the same peak-level error was used for both synthetic samples within a given 

simulation iteration (example relationship shown in Figure S7C). Red is for within-peak between-sample differences when 

different peak-level error was used across the synthetic samples within a given simulation iteration (example relationship 

shown in Figure S7D). While there are central tendencies in all four distributions, there is also significant variation in the 

degree to which observed intensities reflect true abundances. 

  



 

 

 

Figure S4. Representative example of simulation model-generated estimates of observed peak intensity as a function of 

true abundance. Values are derived from one synthetic sample with 1000 peaks. The blue line is the linear regression model, 

and the associated R2 value is near the median R2 value for this relationship across simulations (see black line in Figure S2). 

The R2 value near 0.5 indicates that error introduced in the simulation model significantly diminished the link between 

observed intensity and true abundance, though different simulation configurations will lead to different amounts of 

uncertainty. 

 

 

 



Figure S5. Equivalent to Figure S4, but with a simulated error distribution with a range from 0 to 8. Representative 

example of simulation model-generated estimates of observed peak intensity as a function of true abundance. Values are 

derived from one synthetic sample with 1000 peaks. The blue line is the linear regression model, and the associated R2 value is 

near the median R2 value for this relationship across simulations (see black line in  Figure S3). The R2 value near 0.5 indicates 

that error introduced in the simulation model significantly diminished the link between observed intensity and true abundance, 

though different simulation configurations will lead to different amounts of uncertainty. 

 

 

Figure S6. Observed differences in peak intensity as a function of true differences in peak intensity across both within-

peak and between-peak comparisons and across both kinds of error. (A) Between-peak differences with the same error 

applied to a given peak between samples. (B) Between-peak differences with different errors applied to a given peak between 

samples. (C) Within-peak differences with the same error applied to a given peak between samples. (D) Within-peak 

differences with different errors applied to a given peak between samples. On all panels the red line represents the linear 

regression model, and the associated R2 value is provided. On panel C the R2 value should be interpreted with caution as the 

residuals are clearly heteroscedastic.  

  



 

 

Figure S7. Equivalent to Figure S6, but with a simulated error distribution with a range from 0 to 8. Observed 

differences in peak intensity as a function of true differences in peak intensity across both within-peak and between-

peak comparisons and across both kinds of error. (A) Between-peak differences with the same error applied to a given 

peak between samples. (B) Between-peak differences with different errors applied to a given peak between samples. (C) 

Within-peak differences with the same error applied to a given peak between samples. (D) Within-peak differences with 

different errors applied to a given peak between samples. On all panels the red line represents the linear regression model, and 

the associated R2 value is provided. On panel C the R2 value should be interpreted with caution as the residuals are clearly 

heteroscedastic. 

  



 

 

Figure S8. Equivalent to Figure 7, but with a simulated error distribution with a range from 0 to 8. Shannon α-

diversity that includes simulated error regressed against true Shannon, across different scenarios. (A) The same error 

applied to a given peak between samples, and 100 peaks per sample. (B) Different errors applied to a given peak between 

samples, and 100 peaks per sample. (C) The same error applied to a given peak between samples, and 1000 peaks per sample. 

(D) Different errors applied to a given peak between samples, and 1000 peaks per sample. On all panels the red line represents 

the one-to-one line and the dashed line is a spline fit to the data. All data are from the simulation model. 

  



 

Figure S9. Equivalent to Figure 8, but with a simulated error distribution with a range from 0 to 8.  Bray-Curtis 

dissimilarity as a measure of β-diversity that includes simulated error regressed against true Bray-Curtis, across 

different scenarios. (A) The same error applied to a given peak between samples, and 100 peaks per sample. (B) Different 

errors applied to a given peak between samples, and 100 peaks per sample. (C) The same error applied to a given peak 

between samples, and 1000 peaks per sample. (D) Different errors applied to a given peak between samples, and 1000 peaks 

per sample. On all panels the red line represents the one-to-one line and the dashed line is a spline fit to the data. All data are 

from the simulation model. 

  



 

 

Figure S10. Equivalent to Figure 9, but with a simulated error distribution with a range from 0 to 8. Mean peak-

intensity-weighted trait values that include simulated error regressed against true mean peak-intensity-weighted trait 

values, across different scenarios. (A) The same error applied to a given peak between samples, and 100 peaks per sample. 

(B) Different errors applied to a given peak between samples, and 100 peaks per sample. (C) The same error applied to a given 

peak between samples, and 1000 peaks per sample. (D) Different errors applied to a given peak between samples, and 1000 

peaks per sample. On all panels the red line represents the one-to-one line and the dashed line is a spline fit to the data. All 

data are from the simulation model. 

 



 

Table S1. Statistics associated with analyses shown across panels in Figure 4. 

r 

 (pearson correlation coefficient) 

p-value chemical panel matrix 

0.970 0.00000000014 Chicoric acid A MeOH 

0.936 0.00000000015 Sinapic acid A MeOH 

0.945 0.00000000001 Trehalose A MeOH 

0.978 0.00000004219 Chlorogenic acid B MeOH 

0.992 0.00000012489 Neochlorogenic acid B MeOH 

0.995 0.00000002368 Cryptochlorogenic acid B MeOH 

-0.749 0.00053452823 Aesculin C MeOH 

-0.840 0.00000682398 Chlorogenic acid C MeOH 

-0.833 0.00000966086 Enterodiol C MeOH 

-0.834 0.00001673756 Ginkgolide C C MeOH 

-0.540 0.02061742806 Mangiferin C MeOH 

-0.771 0.00011116595 Phloridzin C MeOH 

-0.775 0.00025727111 Aesculin D BondElut 

-0.922 0.00000005397 Chlorogenic acid D BondElut 

-0.739 0.00046310152 Enterodiol D BondElut 

0.770 0.00018366257 Ginkgolide C D BondElut 

-0.655 0.00428291933 Mangiferin D BondElut 

0.748 0.00035792179 Phloridzin D BondElut 

-0.868 0.00000300891 Aesculin E BondElut-ARW 

-0.679 0.00195476557 Chlorogenic acid E BondElut-ARW 

-0.940 0.00000000220 Enterodiol E BondElut-ARW 

0.850 0.00001556556 Ginkgolide C E BondElut-ARW 

-0.404 0.10788543404 Mangiferin E BondElut-ARW 

0.703 0.01074785364 Phloridzin E BondElut-ARW 



 

 

2 Supplementary Materials and Methods 

2.1 Chemicals and Sample Preparation 

Individual chemical standards (purity >95%) were acquired from IROA Technologies through the Phytochemical 

Metabolite Library of Standards (PHYTOMLS) and Mass Spectrometry Metabolite Library of Standards (MSMLS). 

Standards were initially dissolved per IROA protocol as follows: Chlorogenic acid, Cryptochlorogenic acid, 

Neochlorogenic acid and Ginkgolide C were all dissolved in ethanol (LCMS-grade, Optima, Thermo Scientific), 

Mangiferin and trehalose were dissolved in 95/5 water/methanol (v/v) (LCMS-grade, Optima, Thermo Scientific), 

and Aesculin, Enterodiol, Chicoric acid, Sinapic acid, and Phloridzin were all dissolved in methanol (LCMS-grade, 

Optima, Thermo Scientific), all at concentrations of 50 ppm (mg/l).  These standards were further diluted by a 

stepped dilution ladder, from 5ppm to 100 ppt, into methanol (LCMS-grade, Optima, Thermo Scientific). Suwannee 

River Fulvic Acid (SRFA) (International Humic Substances Society, item 2S101F) was initially dissolved in LCMS 

grade water at a concentration of 1 mg/ml. Serial dilutions of this stock were made using LCMS grade methanol 

concentrations ranging from 40 ppm SRFA to 0 ppm SRFA (pure methanol).  

2.2 Pure Compound Preparation (Figure 4 A-B) 

Standards in methanol were analyzed on the instrument in a randomized sample and concentration order at the 

following concentrations 100 ppt, 200 ppt, 500 ppt, 1 ppb, 2 ppb, 5 ppb, 10 ppb, 20 ppb, 50 ppb, 100 ppb, 200 ppb, 

500 ppb, 1 ppm and 2 ppm. Analyses were performed in triplicate. Two offline blanks were run after every injection. 

These data form main-text Figure 4 A-B. 

 

2.3 Matrix Effect Preparations (Figure 4 C-E) 

Matrix effects included ‘inorganic’ and ‘organic’ interferences. Inorganic interferences were simulated by 

preparation of two solid-phase extraction controls - one being a blank prepared from water (MilliQ), and the other 

prepared from Artificial River Water (ARW), a mineral water synthetic sample. ARW was prepared by dissolving 

the following into 20 liters of deionized water; 0.306 g silicic acid (Sigma Aldrich), 0.164 g potassium chloride 

(Fisher Chemical), 0.26 g magnesium carbonate (Fisher Chemical), 0.3 g sodium chloride (Sigma Aldrich), 1.34 g 

calcium sulfate (EM Science), and 3.00 g calcium carbonate (Fisher Chemical), no nitrate was added.  

 

Both waters were solid-phase extracted as per the protocol of Dittmar et al. (2008), which includes the use of 

BondElut PPL (Agilent Technologies) sorbents. SPE cartridges were conditioned and equilibrated with methanol (1 

ml, LCMS grade) and HCl(aq) (10mM, 1 ml), respectively. Samples were pre-acidified to pH 2 with hydrochloric 

acid (1M) prior to loading onto the SPE cartridge. Samples were washed with 3 x 15 ml of HCl(aq) (10mM), then 

dried under N2, before elution with methanol (1 ml, LCMS grade).  

 

Organic interferences were simulated by addition of a complex organic matter standard, SRFA, at various 

concentrations (0 to 40 ppm). Individual standard molecules (aesculin, chlorogenic acid, enterodiol, ginkgolide C, 

mangiferin, phloridzin) were added to these matrices at a fixed concentration of 100 ppb from previous dilution 

ladder preparation.  

 

Thus, the final samples comprise a matrix/solvent of either methanol (LCMS grade) or the product of SPE on water 

or ARW, in addition to a varying level of SRFA, and an individual standard compound. Samples were analyzed in 

triplicate in a randomized order. These samples form main-text Figure 4 C-E. 



2.4 Mass Spectrometry Measurements 

All data for this study was acquired on a 12 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer 

(FTICR MS) Bruker SolariX (Bruker, SolariX, Billerica, MA) located at PNNL in Richland, WA. The instrument 

was equipped with an Infinity cell. Instrument settings were as follows: ESI source voltage +4.2kV, negative 

polarity, dry gas temperature 180°C, dry gas flow rate 4 l/min, ion accumulation time 50 ms, time of flight 0.65 ms. 

For each measurement, 144 transients of 1.67 s duration were co-added with a mass range of m/z 147 to 900 in a 

4MW time domain, yielding a resolving power of ~400k at m/z 400. Samples were infused directly into the ESI 

source using a custom automated direct infusion cart that performed two offline blanks between each sample (Orton 

et al., 2018). 

2.5 MS Data Analysis 

Data were visually inspected using DataAnalysis (Bruker Daltonics, V5.0). Data processing was performed using 

CoreMS (v2.5b - 2022) (Corilo et al., 2021), a Python mass spectrometry framework, available online - 

https://github.com/EMSL-Computing/CoreMS, using Python v3.8. Briefly, the raw time domain data for each 

spectrum was loaded using the ReadBrukerSolarix function of CoreMS, followed by apodization and Fourier 

transformation. Frequency to mass conversion was performed as per a Ledford calibration using the instrument 

calibration constants. The mass spectra were then peak picked, and detected masses were cross referenced against 

the theoretical masses expected for the standard chemicals, allowing for a range of ion types including deprotonated 

ions, adduct ions (including Cl), and ion dimers and trimers, within an error tolerance of 2 mDa (where z=1). 

Identified signals were tabulated across spectra and samples for visualization and analysis using Pandas (Team, 

2022) and Seaborn (Waskom, 2021) Python libraries. Peak height (apex) was used as the metric for peak intensity. 

Scatterplots including linear regressions were produced with Seaborn’s ‘regplot’ function, using default 

bootstrapping and regression parameters. X-axis jitter was added to panels A and B to aid visualization of 

overlapping points. Pearson R correlation coefficients were calculated using the ‘scipy’ stats module and reported in 

Supplementary Information file “PaperFigure_AllEmpiricial_CorrelationCoefficients.xlsx”.  

2.6 Simulation Model 

To generate synthetic data, we randomly assigned abundances to either 100 or 1000 peaks to study how the 

influences of errors change with the number of peaks; going above 1000 peaks did not change the outcomes (Fig. 

S1) and going below 100 peaks is unlikely to be relevant to many FTMS studies. Abundances were sampled with 

replacement from a Gaussian distribution that varied in mean and standard deviation across synthetic samples and 

across simulation iterations. Abundances were drawn twice to generate two independent samples per simulation, and 

the simulation was run 100 times for each number-of-peaks (100 or 1000 peaks per sample; referred to below as 

‘peak richness’). We varied the Gaussian distributions to generate synthetic samples varying in composition within 

and across simulations to ensure that the ecological metrics (see below) would vary across simulations. This step 

was necessary to evaluate metric performance across a broad range of metric values. 

 

We simulated two types of error which can both be representative of variation in ionization efficiency. The goal was 

to generate synthetic data that mimicked our empirical and theoretical observations that indicate noise in the 

relationships between observed peak intensities and true abundances. For each type of error and within each iteration 

of the simulation, the error was introduced 100 times (i.e., 100 error iterations were nested within each sample-

generation iteration). The first type of error (referred to as within-sample error) was designed to diminish the 

between-peak relationship between observed peak intensity and true abundance. To introduce this error, we 

multiplied the true abundance of each peak by a random number drawn from a uniform distribution ranging from 0 

to 100. The inclusion of 0 indicates situations in which a given peak (i.e., ion) does not ionize well enough to be 

observed. The results should not be sensitive to the selected range, but as a sensitivity analysis, we also used a 

distribution of errors ranging from 0 to 8. Our empirical data suggest that this narrower range is appropriate (Fig. 

4B), but simulation results were not affected by the selected error range; we present two versions of all figures based 

https://www.zotero.org/google-docs/?mjCdZi
https://www.zotero.org/google-docs/?mjCdZi
https://www.zotero.org/google-docs/?EXlarT
https://github.com/EMSL-Computing/CoreMS
https://www.zotero.org/google-docs/?QRQUOS
https://www.zotero.org/google-docs/?QRQUOS
https://www.zotero.org/google-docs/?C8Eci0


on the simulation model, one version uses an error range of 0-100 and the other version uses an error range of 0-8. 

For each peak we multiplied the same random error by its abundance in each of the two synthetic samples within 

each iteration. This error-modified abundance of each peak in each synthetic sample was considered to be the 

observed peak intensity. We recognize that randomized errors do not perfectly reflect real-world variation in 

ionization efficiency. However, because the true impacts of matrix effects and individual molecular chemistries in 

complex mixtures are currently not known, the errors introduced in the model are simply used to diminish the 

relationship between observed peak intensities and true abundances.   

 

Introducing error resulted in a relatively weak relationship between observed peak intensity and true abundance 

(median R2 = ~0.5; see black lines in Figures S2, S3), with the amount of error increasing with true abundance (Figs. 

S4, S5). This relationship additionally supports our inclusion of error into the model as a means to simulate 

relatively weak relationships between observed peak intensity and true abundance. Between-peak differences in 

observed intensity were also weakly related to between-peak differences in true abundance (Figs. S6A, S7A), with a 

median R2 of ~0.5 (see blue lines in Figures S2, S3). Because the same peak-level error-factor was used across both 

synthetic samples within a given simulation iteration, the within-peak between-sample differences in observed 

intensity were relatively strongly correlated to within-peak between-sample differences in true abundance (Figs. 

S6C, S7C), with a median R2 of ~0.75 (see the gray line in Figures S2, S3). However, we suggest caution when 

interpreting the R2 values associated with Figure S6C and S7C as the differences collapse when near zero, leading to 

heteroscedastic residuals that likely bias the R2. This phenomenon can be explained by the fact that when two 

samples have essentially the same peak intensity for a given peak, introducing the same error to that peak in both 

samples has little influence on the between-sample difference in peak intensity. 

 

The second type of error we introduced represents situations in which ionization efficiency varies across molecules 

– as in the first type of error – as well as across samples (referred to as between-sample error). Molecules may 

exhibit variations in ionization efficiency across samples due to changes in the composition of organic molecules 

and/or changes in inorganic solutes in the matrix (see above). To account for these effects, we multiplied the true 

abundance of each peak by a random number drawn from a uniform distribution ranging from 0 to 100; for 

sensitivity analysis, we also used an error distribution ranging from 0 to 8, which did not have meaningful influences 

on the results. For each iteration of the simulation, we introduced errors independently for the two synthetic 

samples. In this way, the simulated ionization efficiency for a given peak in a given synthetic sample was 

independent of its ionization efficiency in the other synthetic sample. The error-modified abundance of each peak in 

each synthetic sample was considered to be the observed peak intensity. 

 

We observed a relatively large influence on observed peak intensities when allowing ionization efficiency to vary 

across samples. That is, the within-peak between-sample differences in observed intensity were weakly correlated to 

within-peak between-sample differences in true abundance (Figs. S6D, S7D), with a median R2 of ~0.5 (see the red 

lines in Figures S2, S3). Compared to the same relationship that emerged under the first type of error, our results 

show a much weaker relationship between peak intensity and true abundance when ionization efficiency varies 

between samples (compare the gray and red lines in Figures S2 and S3). This result is expected, as variations in 

ionization efficiency add random noise to the within-peak between-sample differences in observed peak intensity. 

We note that the variation in ionization efficiency is independent between peaks for both the first and second types 

of error. The between-peak relationship summarized in Figures S2 and S3 (blue line) is, therefore, equivalent for 

both types of error, which is further supported by the strong similarity between Figures S6A and S6B (also true for 

Figures S7A and S7B).  

 

To examine how both types of error influence ecological metrics, we used the initial true abundances and the error-

modified abundances (i.e., observed peak intensity values) to calculate true and ‘observed’ values of within-sample 

Shannon diversity and between-sample Bray-Curtis. We also assigned an arbitrary trait value to each peak and 

calculated true and observed sample-level mean trait values; the mean values for each sample were weighted by true 



abundance (true mean) or observed peak intensity (observed mean). We regressed observed values for Shannon 

diversity, Bray-Curtis, and mean traits against their true values, and performed this process independently for each 

level of peak richness. The resulting patterns for the case with error range from 0-100 are presented and discussed in 

the main text (Figs. 7-9). The patterns resulting from the case with error range from 0-8 showed the same patterns 

(Figs. S8-S10). This indicates no meaningful influence of the chosen error range within the simulation model. 
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