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Abstract. Earth’s biogeochemical cycles are intimately tied
to the biotic and abiotic processing of organic matter (OM).
Spatial and temporal variations in OM chemistry are often
studied using direct infusion, high-resolution Fourier trans-
form mass spectrometry (FTMS). An increasingly common
approach is to use ecological metrics (e.g., within-sample di-
versity) to summarize high-dimensional FTMS data, notably
Fourier transform ion cyclotron resonance mass spectrome-
try (FT-ICR MS). However, problems can arise when FTMS
peak-intensity data are used in a way that is analogous to
abundances in ecological analyses (e.g., species abundance
distributions). Using peak-intensity data in this way requires
the assumption that intensities act as direct proxies for con-
centrations. Here, we show that comparisons of the same
peak across samples (within-peak) may carry information
regarding variations in relative concentration, but compar-
ing different peaks (between-peak) within or between sam-
ples does not. We further developed a simulation model to
study the quantitative implications of using peak intensities
to compute ecological metrics (e.g., intensity-weighted mean
properties and diversity) that rely on information about both
within-peak and between-peak shifts in relative abundance.
We found that, despite analytical limitations in linking con-
centration to intensity, ecological metrics often perform well
in terms of providing robust qualitative inferences and some-
times quantitatively accurate estimates of diversity and mean

molecular characteristics. We conclude with recommenda-
tions for the robust use of peak intensities for natural or-
ganic matter studies. A primary recommendation is the use
and extension of the simulation model to provide objective
guidance on the degree to which conceptual and quantita-
tive inferences can be made for a given analysis of a given
dataset. Broad use of this approach can help ensure rigorous
scientific outcomes from the use of FTMS peak intensities in
environmental applications.

1 Introduction

Organic matter (OM) plays a central role in Earth’s biogeo-
chemical cycles and is both a resource for and product of
metabolism. The detailed chemistry of OM (e.g., nominal ox-
idation state) can modulate and reflect biogeochemical rates
and fluxes within and across ecosystems (e.g., Boye et al.,
2017; Garayburu-Caruso et al., 2020; LaRowe and Van Cap-
pellen, 2011), yet our understanding of this complexity is
limited by our analytical abilities to view it (Hawkes and
Kew, 2020; Hedges et al., 2000; Steen et al., 2020). Given
the importance of OM chemistry in biogeochemical cycling,
there is a need to understand how and why that chemistry
varies through space and time. To help meet this need, there
has been growing interest in using concepts and methods
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Figure 1. Ecological concepts of « diversity and § diversity. Each
gray box represents a sample of an ecological community or col-
lection of organic molecules (i.e., a NOM assemblage). Symbols
represent individual organisms or molecules. Different biological
or molecular species are represented by a combination of shapes
and colors. (a) Each sample has one biological species (red cir-
cles) or one chemical species (red bar), and the species are the same
within and between the samples. This reflects minimal « diversity
because there is a single species. This also reflects minimal 8 di-
versity because there is no difference in terms of which species are
present in each sample. (b) Each sample has five species (biological
or chemical) represented by different colors and symbols. There are
no shared species between samples. This reflects maximum « diver-
sity because every individual is a different species within each sam-
ple and maximum S diversity because there are no species shared
between samples. In real ecological and NOM samples, o diversity
and B diversity fall between these extremes.

from ecology to study the chemo-geography and chemo-
diversity of OM in a variety of ecosystems (e.g., Danczak
et al., 2021; Kellerman et al., 2014; Kujawinski et al., 2009;
Tanentzap et al., 2019). This is a promising approach as there
are many conceptual parallels between the chemical species
that comprise OM and the biological species that comprise
ecological communities (Danczak et al., 2020).

The most fundamental ecological data type is the species-
by-site matrix. This matrix indicates how many individuals
of each species occur in each sampled community. Ecolo-
gists use species-by-site matrices to ask a myriad of ques-
tions related to biological diversity and often complement
these data with information on the properties or “functional
traits” of species (e.g., body size) (McGill et al., 2006; Vil-
léger et al., 2017; Violle et al., 2007). Two common anal-
yses are known as « diversity and g diversity, each with
numerous metrics (Anderson et al., 2011; Whittaker, 1972),
including versions that include functional trait information
(Laliberté and Legendre, 2010). « diversity measures the di-
versity within a given community. 8 diversity has been var-
iously defined but essentially measures variations in compo-
sition across communities. Both « diversity and 8 diversity
can be quantified using presence-absence data or they can
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include estimates of each species’ relative abundance within
and between communities (Fig. 1). In addition to being in-
corporated into these diversity metrics, functional trait data
can be used to estimate community-level mean trait values
(Lavorel et al., 2008). As with diversity, mean trait values
can be estimated using presence—absence or relative abun-
dance data. Estimates of diversity and mean trait values are
examples of ecological metrics often applied to OM chem-
istry (Bahureksa et al., 2021; Cooper et al., 2022; Sakas et al.,
2024; Tanentzap et al., 2019).

The chemistry of OM is commonly studied using high-
resolution Fourier transform mass spectrometry (FTMS)
techniques (e.g., Hawkes and Kew, 2020), such as Orbitrap
or ion cyclotron resonance (ICR) MS, via direct infusion
of samples. At present, the highest-resolution approach for
un-targeted analysis of OM is via a 21 Tesla FT-ICR MS
(Bahureksa et al., 2021; Marshall et al., 1998; Shaw et al.,
2016; Smith et al., 2018). The output data produced con-
stitute a spectrum containing peaks represented by a signal
intensity (Fig. 2, y axis) and a mass-to-charge ratio (m/z)
(Fig. 2, x axis), which is equivalent to the mass for singly
charged ions as routinely detected in natural organic mat-
ter (NOM) measurements. In turn, regardless of the type of
MS instrument used, the MS data inherently lead to an OM
peak-by-sample data matrix akin to an ecological species-
by-site data matrix. The high-resolution data from MS of-
ten result in a large matrix, wherein a single sample may
contain thousands to tens of thousands of peaks. It is of-
ten possible to assign molecular formulas to a large frac-
tion of observed peaks, which enables the calculation of sev-
eral properties such as stoichiometric ratios (Bahureksa et al.,
2021; Cooper et al., 2022) that are akin to organismal func-
tional traits. To take advantage of these rich data, FTMS
data have been analyzed using the same « diversity, 8 di-
versity, and mean trait metrics that are commonly used by
ecologists to study biological communities (e.g., Kellerman
et al., 2014). Such analyses are exciting as they enable the
same conceptual questions and quantitative frameworks to
be applied to biological (e.g., microbial communities) and
chemical (i.e., NOM) components that directly interact with
each other within ecosystems (Danczak et al., 2020, 2021;
Li et al., 2018; Lucas et al., 2016; Osterholz et al., 2016;
Tanentzap et al., 2019).

The use of ecological metrics with MS data is particu-
larly common with FTMS datasets, and there is great po-
tential to continue leveraging concepts from ecology in high-
resolution NOM analyses. Care is required, however, in using
FTMS peak-intensity data to estimate « diversity, 8 diver-
sity, mean trait values, and related ecological analyses (e.g.,
“species” abundance distributions). Key to these ecological
analyses is the assumption that, within complex NOM sam-
ples, differences in peak intensity are proportional to the dif-
ferences in the concentrations of the associated molecules.
Studies using FTMS often avoid using peak intensities due to
uncertainties regarding whether it is valid to assume propor-
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Figure 2. Summary of within-peak and between-peak comparisons
of peak intensity. Two idealized mass spectra (i.e., from two sam-
ples) are shown, with each peak defined by a mass-to-charge ratio
(m/z) and represented by a different color. The intensity of each
peak in each sample is represented by the height of each colored
bar. Within-peak comparisons of intensity are based on comparing
intensities at the same m/z across two or more samples. Between-
peak comparisons of intensity are based on comparing intensities at
two or more m/z values. Between-peak comparisons can be done
within a sample (as shown) or between samples (not shown).

tionality between peak intensities and concentrations within
and across NOM samples (Bhatia et al., 2010; Danczak et al.,
2020; Kujawinski, 2002). These studies may be discarding
useful information, though it is unclear what biases and un-
certainties are introduced into ecological metrics when us-
ing FTMS peak intensities. To help advance robust use of
FTMS datasets for NOM studies, we review the theoreti-
cal reasons why peak intensities may not reflect true con-
centrations, provide empirical evaluation of this theory, and
invoke in silico simulations to quantify the associated im-
pacts on ecology-inspired analyses. While theory and empir-
ical analyses demonstrate disconnects between peak intensi-
ties and concentrations in FTMS data, the simulations show
that intensity-weighted ecological metrics often provide ro-
bust estimates of NOM diversity and mean trait values. We
end with practical recommendations and propose a path for-
ward for increasing the robust use of FTMS peak intensities
for NOM studies.

2 Theoretical foundations

Here, we provide a review of the theoretical foundations be-
hind why assuming proportionality between peak intensities
and concentrations in FTMS can be challenging. This sec-
tion will be of most value to FTMS data users that are not
formally trained in mass spectrometry and serves as a review
of mass spectrometry principles (Bahureksa et al., 2021; see
also Kujawinski, 2002; Urban, 2016). We focus on FTMS
(i.e., FT-ICR and Orbitrap), but many of the principles are ap-
plicable across all MS platforms. We highlight three consid-
erations: ionization, ion transfer, and ion signal detection in
the context of commercial FTMS instruments. These consid-
erations have practical implications tied to within-peak and
between-peak comparisons (Fig. 2). Here, we define “within-
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peak” comparisons as comparisons of peak intensities of the
same feature (i.e., m/z or molecular formula) across dif-
ferent sample spectra and “between-peak” comparisons as
comparisons peak intensities across different features. Both
within-peak and between-peak comparisons are fundamen-
tally based on the m /z observed within a mass spectrum, and
neither addresses comparisons across isomers. Further, we
suggest the consistent use of the term “intensity” in FTMS
NOM studies to describe how much signal is observed for
a given peak as opposed to “height”, “magnitude”, or other
alternatives. While terminology is not our central focus, it
is useful to pursue consistency across studies. As discussed
below, within-peak comparisons can be robust under certain
situations, but there are limitations with between-peak com-
parisons that may be unavoidable. The following discussion
is not an exhaustive treatment of all decisions associated
with a complete FTMS experiment, and we do not deeply
address factors such as sample preparation, choice of ion-
ization mode, and instrument-specific parameter optimiza-
tion. These topics have been discussed in a recent review
(Bahureksa et al., 2021).

2.1 Ionization efficiency and isomers

Electrospray ionization (ESI) is the most common technique
for generating ions from NOM samples. When using ESI,
the peak intensity for any given molecular mass (or molec-
ular formula) will depend on both concentration and ioniza-
tion efficiency, the latter of which is dependent on structure,
the acid dissociation constant (pKa), and the other molecules
in the sample (Kruve et al., 2014). In NOM samples, one
detected mass or peak combines signals from multiple iso-
mers which all have the same molecular formula but differ-
ent structures. The different structures impact ionization ef-
ficiency, but FTMS data contain no information about this
structural variation. Unfortunately, to date, no liquid chro-
matography (Han et al., 2021; Kim et al., 2019) or ion mobil-
ity separation (Leyva et al., 2020; Tose et al., 2018) technique
has yet demonstrated sufficient resolution to completely infer
structural variations among isomers within complex NOM
samples. Unknown variations in structure can, therefore, lead
to unknown variations in peak intensities. This challenge
can be compounded by ionization suppression that occurs
when the ionization efficiency of one type of molecule (i.e.,
peak) is altered by the presence of other types of molecules
(Ruddy et al., 2018). Ionization suppression can be mit-
igated by online separation, whereby non-targeted liquid
chromatography—-mass spectrometry (LC-MS) approaches
may yield more quantitative data (Kruve, 2020), but matrix
effects remain a significant issue even for LC-MS (Trufelli
et al., 2011). In NOM samples with thousands of types of
organic molecules, the molecular interactions are likely to
have complex influences over realized ionization efficiencies.
While it is possible to control for some of these challenges
(e.g., using consistent sample concentrations and prepara-
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tions), many additional factors (e.g., molecular structures,
pKa’s, and interactions among molecules in NOM samples)
cannot yet be accounted for. The interpretation of peak in-
tensities as proxies for concentrations in FTMS data streams
may, therefore, be prone to uncertainty.

2.2 Ton transmission and collection

In FTMS, packets of ions are accumulated in a trap prior to
their transmission to the analyzer cell (Makarov et al., 2006;
Fig. 3i, section d; Senko et al., 1997). The duration of time
in which ions are accumulated is often varied to yield an op-
timal ion population for the analyzer cell. The duration of
this event can change the relative abundance and, thus, the
observed peak intensities of different ions (Cao et al., 2016).
Increases in the true abundance of other ions can decrease
the measured peak intensity of a given ion due to a dilu-
tion effect resulting from a finite number of ions that can fit
within the ion trap. Additional challenges arise due to varia-
tions in the speed at which different ions move from the ac-
cumulation trap and into the analysis cell. Smaller ions move
more quickly and therefore reach the analysis cell sooner
than larger ions. Variations in the accumulation time across
samples and FTMS instruments, combined with among-ion
variations in transmission speed, can introduce additional un-
certainty in the relationship between peak intensities and true
concentrations.

2.3 Ion signal detection

The final step in data collection via FTMS is signal detec-
tion. The intensity of the signal is proportional to the abun-
dance of a given ion in the analysis cell, the proximity of
ions to the detector (Kaiser et al., 2013), and the ion charge
state (Worner et al., 2020). Similarly to molecular inter-
actions impacting ionization efficiencies, different types of
ions can interact to affect each others’ signal intensities. The
Fourier transform applied to the data also complicates ex-
tremely accurate relative quantification of ion abundance be-
tween peaks (Makarov et al., 2019). These challenges at the
detection stage can add more uncertainty to the relationship
between peak intensity and concentrations, particularly for
complex NOM samples.

3 Empirical evaluations

In this section, we move beyond theoretical considerations to
empirical evaluations of the real-world relationships between
peak intensities and concentrations. Similarly to above, this
section will be of primary value to those without formal train-
ing as mass spectrometrists but who use FTMS data to study
NOM. The experimental methods used are described in detail
in the Supplement.
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Figure 3. Illustrative example of a generic FT-ICR mass spectrom-
eter (i), showing common and key biases between FT-ICR signal
intensity and m/z of ions (ii-v). Panel (i) shows the major ele-
ments of a generic FT-ICR mass spectrometer (based loosely on
a Bruker solariX FT-ICR MS geometry). Panel (i) elements include
the following: a — atmospheric pressure ionization source (i.e., ESI
source), b — source ion optics (i.e., dual ion funnels), ¢ — mass-
selecting quadrupole, d — collision cell, e — transfer multi-poles to
ICR cell, f — ICR cell. The dashed line indicates the magnetic field.
Note that the diagram is deliberately simplified and not to scale.
Panel (ii) demonstrates the time-of-flight bias along the transfer
multi-poles (e) in the “flight tube” from the collision cell (d) to
the ICR cell (f). Lower m/z ions travel faster, as indicated by the
smaller ions reaching the ICR cell first. Ions are shaded to aid vi-
sualization. Panel (iii) visualizes the effect of a variable excitation
radii for ions of different masses, as may happen with a CHIRP ex-
citation pulse. Lower m /z ions are closer to the detection electrodes
(shaded in gray) and therefore will induce a larger image current.
Note also that the ion populations have been adjusted from (ii) to
indicate biases from the time-of-flight effect. Panel (iv) shows the
time domain recorded signal intensity against time, with the ions
having an initial intensity roughly proportional to the number of
ions in that cloud. However, as time progresses, the less abundant
ion clouds lose coherence and destabilize more rapidly, resulting in
an attenuation of their signal. Note that the real signal would fol-
low a damped sinusoidal function; here, an absolute-value approxi-
mation is shown for simplicity. Panel (v) shows the mass spectrum
post-Fourier transform, demonstrating that the impact is not only on
peak intensity (shown as height) but also on peak resolution (shown
as width). In all cases, effects are deliberately exaggerated and not
to scale to aid interpretation.

3.1 Direct comparison of peak intensities in idealized
samples

As discussed above, different organic compounds ionize with
different efficiencies. In theory, this may lead to variations
in observed peak intensities even when all organic com-
pounds have the same true concentration. To evaluate this
theoretical expectation, we analyzed several different types
of organic compounds in different conditions via FT-ICR
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Figure 4. (a) Scatterplot visualization of the relationship between signal intensity (relative intensity) and concentration of analyte for three
chemically distinct molecules analyzed contemporaneously but independently in pure methanol solvent. Relative intensity indicates that
data were scaled to the largest signal in any replicate from the associated series of spectra. Linear regression and confidence intervals were
calculated by the Seaborn plotting library with default settings. The x-axis jitter was added to aid visualization of overlapping points. (b) As
with (a) but for three structural isomers of chlorogenic acid. The x-axis jitter was added to aid visualization of overlapping points. (c—
e) Compounds spiked into three different solvent matrices (methanol; Bond Elut methanol; and Bond Elut artificial river water, ARW) at a
fixed concentration (100 ppb) but with the addition of SRFA at varying concentrations from O to 40 ppm. In all cases, only the [M—H]— ion
is shown, but other ions (i.e., [M+Cl]—) were detected. Relative intensities have been scaled per plot for (a) and (b) and are on the same
scale for (c—e). Pearson’s r correlation coefficients and p values are reported in Table S1 in the Supplement.

MS. We selected chemical standards (see Supplement for de- were required to compensate for lower isomeric diversity.
tails) which are natural products with molecular formulae These three compounds gave rise to different peak intensi-
and chemistries typical of compounds commonly observed ties under otherwise identical conditions (Fig. 4a). Trehalose,
in organic matter and were amenable to negative-mode ESI for example, had a much lower peak intensity than Sinapic
analysis. First, we analyzed three separate dilution ladders acid at the same actual concentration. The difference in sig-
of individual pure compounds dissolved in pure methanol. nal intensity was also apparent amongst compounds that ion-
These standards were analyzed at higher concentrations than ize well under negative-mode ESI; for example, two dif-
typically observed for NOM because they were single com- ferent structures containing the same number of carboxylic
pounds rather than formula-summed features (with multi- acid units exhibited differences in signal intensity. We also
ple isomers) within a NOM spectrum; higher concentrations observed differences in peak intensities amongst structural
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isomers (i.e., same molecular formula and mass) (Fig. 4b).
Each peak observed via direct-infusion FT-ICR MS may be
several isomers. These isomers may be observable through
chromatographic separation (Kim et al., 2019), ion mobil-
ity separations (Leyva et al., 2019), or statistical inference
of tandem mass spectrometry (Zark et al., 2017) but not via
direct-infusion FI-ICR MS. We note that absolute differ-
ences in signal intensity may be smaller between molecules
at lower concentrations, but this does not necessarily mean
that low-intensity signals consistently indicate low concen-
trations, and this does not aid in quantitatively interpreting
higher-intensity signals. In summary, differences in peak in-
tensities across organic compounds do not necessarily equate
to differences in concentration unless assessed via a calibra-
tion curve for each compound.

3.2 Comparison of peak intensities in real-world
samples

Routine NOM samples contain a diverse range of thousands
of molecules of unknown structures and relative concentra-
tions and often contain inorganic interferences, such as salts.
Sample clean-up that focuses on pre-concentration and de-
salting is imperfect (Li et al., 2017; Raeke et al., 2016) but is
commonly used to minimize inorganic interferences. How-
ever, interactions among molecules remain a challenge, as
discussed above. The collection of molecules in a sample is
referred to here as the “matrix”. To explore matrix effects
on peak intensities, we prepared solutions of six different
pure compounds at a fixed concentration (100 ppb) in three
different solvent systems: pure methanol, methanol eluted
from a Bond Elut solid-phase extraction (SPE) cartridge,
and methanol from elution off of a Bond Elut SPE cartridge
which had been loaded with artificial river water (ARW). Ad-
ditionally, we added to each sample a complex mixture that is
often used as a NOM standard, Suwannee River fulvic acid
(SRFA), at six different concentrations. Samples were ana-
lyzed independently but contemporaneously on the same in-
strument to mirror a real study.

In methanol-only solvent, with no added SRFA, the six
compounds yielded different peak intensities (Fig. 4c), which
is consistent with results from the previous subsection. As
the concentration of SRFA was increased to 2 ppm, the rela-
tive signal intensity increased for some of the six compounds
but decreased for others. Above 2 ppm of SRFA, peak in-
tensities for all six compounds were substantially decreased.
Use of an “impure” methanol solvent, i.e., the eluent from an
SPE blank (Fig. 4d) or from an SPE of artificial river water
(Fig. 4e), resulted in further decreases in peak intensities. In
both cases, the maximum peak intensity was ~ 20 % of what
was seen in pure methanol (Fig. 4c), and some of the six com-
pounds were no longer observed. Addition of SRFA to these
samples with “impure” solvents, again, generally, decreased
peak intensities. A “real-world” sample set would have even
greater diversity and heterogeneity than presented here, and,
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thus, the issues with the use of peak intensities for quantita-
tive interpretation would likely be exacerbated.

Combining the empirical results from this subsection and
from the previous subsection with the instrument theory dis-
cussed above suggests significant uncertainty in the relation-
ships between true concentrations and peak intensities from
direct-infusion FT-ICR MS. Calibration curves can be used
in the simplest of situations but will be challenging when
there are unknown variations in structural isomer and matrix
compositions. Modeling of constrained systems may, how-
ever, allow for data-driven and mechanistic data normaliza-
tion strategies for the enhanced use of peak-intensity data.

3.3 Data normalization strategies

In the previous section, we use the peak intensities for each
analyte without any normalization, only scaling to the base
peak or between spectra to make comparison easier. How-
ever, more sophisticated or comprehensive normalization
strategies may be useful when trying to make quantitative
inferences regarding the data. Considerations may include
whether to use the total intensity within a spectrum (includ-
ing noise, isotopologues, and unannotated features) or to use
just the peak intensity apportioned to annotated features. Ad-
ditionally, non-linear or more sophisticated functions may
have benefits. Such post hoc statistical approaches have util-
ity for some applications but do not resolve the fundamental,
underlying physical origins of the weak connection between
peak intensities and true concentrations. We refer readers to
the work of Thompson et al. (2021) for more insights into the
theory and for an application of the normalization of FTMS
for complex mixtures.

4 Conceptual implications for the use of ecological
metrics

The preceding sections indicate challenges when using
FTMS peak intensities as proxies for relative changes in the
concentrations of organic molecules. The implication is that
some ecologically inspired analyses (e.g., Fig. 1) may be
challenging to use with FTMS peak-intensity data. To un-
derstand which analyses could be impacted, we differentiate
analyses into two classes: those based on within-peak inten-
sity comparisons and those based on between-peak intensity
comparisons (Fig. 2). As noted above, within-peak is based
on comparing the same feature (m/z or molecular formula)
across spectra or samples, whereas between-peak compares
different features (m/z or molecular formulas) across and
within spectra or samples.

We posit that analyses using FTMS between-peak inten-
sity comparisons could have the greatest uncertainty. Con-
sider an ecological setting in which a researcher aims to
quantify within-sample diversity (o diversity) and among-
sample diversity (8 diversity) (Fig. 1) of tree communities

https://doi.org/10.5194/bg-21-4665-2024



W. Kew et al.: Opportunities for robust use of peak intensities from high-resolution mass spectrometry

(a)

4671

(b)
li

Figure 5. Graphical summary of how FTMS peak-intensity data are often treated (a), which is distinct from the reality of those data (b).
When surveying the number of individuals of each species within a tree community, there is good confidence that the measured abundances
are close to real abundances. This is because there is relatively little variation across species in terms of the ability to detect individuals.
FTMS peak-intensity data are often used as though they are like tree community data. However, FTMS data are more like bird community
data. That is, the ability to detect different species varies due to intrinsic factors (e.g., activity patterns, how loud and often birds call) and
extrinsic factors (e.g., habitat structural complexity, predator-induced behavioral changes). Similarly, the intrinsic physics of a given molecule
will impact its ability to ionize and thus its observed peak intensity, and in environmental samples there are thousands of molecular species
that impact each others’ ionization “behaviors”. FTMS data being more bird-like than tree-like needs to be accounted for when performing

ecological analyses using FTMS data.

(Fig. 5a). The researcher will likely set up a plot of a given
size and then directly count the number of each tree species
in each plot, thus generating the species-by-site matrix filled
with directly observed abundance counts for each species.
The ability of the researcher to observe individuals of each
species does not vary appreciably across species because
each tree is not moving, and our ability to see a static object
is not influenced by environmental factors. Thus, the number
of individuals observed for a given tree species is quantita-
tively comparable to the number of individuals observed for
all other tree species in the plot. The assumption that differ-
ences in observed abundances carry robust information about
differences in actual abundances is thus supported in this ex-
ample. In turn, it is valid to use relative abundances to com-
pute « diversity, such as via Shannon evenness (Elliott et al.,
1997; Mouillot and Leprétre, 1999; Redowan, 2015). Fur-
thermore, because the ability to observe each tree species is
the same across communities, it is valid to use relative abun-
dances to compute g diversity (e.g., via Bray—Curtis; Ander-
son et al., 2011) or to conduct other ecological analyses that
use abundance data (e.g., species abundance distributions;
McGill et al., 2007).

We contrast this tree community example with another
ecological setting. Consider a researcher studying bird com-
munities (Fig. 5b) that estimated species abundances solely
based on the number of times an observer hears the call of a
given species. In this case, those species that call more fre-
quently and/or more loudly will be more likely to be heard,
and, thus, an observer will infer a higher abundance even if
all species in the community have the same abundance. That
is, such a method generates data that may indicate which

https://doi.org/10.5194/bg-21-4665-2024

species are present, but the “call counts” do not carry reli-
able information regarding absolute or between-species rel-
ative abundances. Follow-on analyses of o diversity and S
diversity should, therefore, be limited to approaches that use
presence—absence data, and species abundance distributions
cannot be quantified.

If we continue with the bird community example and as-
sume that the detectability of a given bird species is con-
sistent across sampled locations or times, then it would
be appropriate to examine variations in within-species call
counts. This within-species analysis is directly analogous to
the FTMS within-peak time series analysis in Merder et al.
(2021), discussed below. However, if call counts of a given
species are suppressed by the presence or abundance of other
species then call counts of a given species may not indi-
cate changes in its abundance. The call count example is di-
rectly analogous to the influences of the NOM matrix: if the
presence or abundance of a given organic molecule modifies
the ionization of other molecules, then within-peak changes
in intensity may not indicate changes in concentration. In
turn, analyses based on within-peak intensity comparisons
could lead to error and uncertainty in the values of computed
ecological metrics, especially if there are significant cross-
sample changes in the NOM matrix.

As described in the previous sections, the unique chem-
istry of every molecule in a NOM sample can influence ion-
ization properties for other molecules in the sample. Thus,
FTMS data align with the bird community example rather
than the tree community example, with the differing physics
of each molecule influencing between-peak differences in
peak intensity. Molecules that more readily ionize will pro-
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duce higher peak intensities, which is akin to bird species
with noisier or more numerous calls producing a larger num-
ber of call counts that do not accurately represent the under-
lying population distribution. Similarly, between-peak differ-
ences in intensity as observed via FTMS cannot be directly
used as a proxy to indicate between-peak differences in con-
centration.

In contrast to between-peak comparisons, within-peak
comparisons examine changes in the relative intensity of a
single peak across samples. Such within-peak comparisons
may be repeated independently for each peak of interest in a
given dataset. For example, Merder et al. (2021) quantified
the temporal dynamics of individual FTMS peaks and then
binned peaks into different groups with characteristic tempo-
ral fluctuations. In those analyses, peak intensities were not
compared between peaks. Instead, the temporal dynamics of
each peak were compared to the temporal dynamics of other
peaks. The underlying assumption of this type of analysis
is that a between-sample increase in the intensity of a given
peak can be used as a robust proxy of a between-sample in-
crease in the concentration of that peak. Materials presented
in the previous sections indicate that this assumption can be
met in some instances when using FTMS data. However,
great care is required, with strong attention being paid to
the assumptions of the analysis methods. For example, using
Pearson correlation makes the assumption that the concentra-
tion of a given peak is a linear function of the changes in its
peak intensity. We showed above (Fig. 4) that this assumption
is not always valid, even in ideal conditions. Using a Spear-
man correlation avoids this assumption because it is based on
ranks. That is, Spearman correlations (e.g., Kellerman et al.,
2014) make the more realistic assumption (for FTMS data)
that an increase in the concentration of a given peak is re-
flected as an increase in its peak intensity without assuming
any statistical or mathematical form of that relationship.

5 Ecological metrics using peak intensities are often
robust

The previous sections highlight challenges in connecting
between-peak changes in observed intensity to between-peak
changes in true abundance (Fig. 4). These challenges vi-
olate an assumption of abundance-based ecological analy-
ses: proxies for abundance (e.g., peak intensity) should be
proportional to true abundances. However, the quantitative
impacts of this situation likely vary across ecological met-
rics and with study details. There may be certain metrics or
conditions in which robust inferences can be made despite
poor linkages between peak intensities and true abundances.
These cases are important to understand for robust use of
abundance-based ecological metrics in FTMS NOM studies.

To provide initial guidance on best practices for using
FTMS peak intensities with ecological metrics, we devel-
oped an in silico simulation model (full details are in the
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Supplement). This model generates synthetic data and in-
troduces errors that degrade the linkage between peak inten-
sity and true abundance. Simulated values that are influenced
by introduced errors are conceptually analogous to intensi-
ties from real-world FTMS NOM studies. This allows us to
probe how errors inherent to FTMS may impact the relation-
ship between true and observed values of ecological metrics.
To generate synthetic data, the simulation model produced
samples with either 100 or 1000 peaks. This was done to
study how the influences of errors change with the number
of peaks; going above 1000 peaks did not change the out-
comes, and going below 100 peaks is unlikely to be relevant
to many FTMS studies. For each run of the model, the true
abundances of each peak within each of the two indepen-
dent samples were randomly assigned from Gaussian dis-
tributions that differed across samples and simulation iter-
ations. We simulated two types of errors that modified the
true abundances: within-sample error reflects variations in
ionization efficiency across molecules (but not across sam-
ples), and between-sample error reflects variations in ioniza-
tion efficiency across molecules and samples.

To examine how both types of error influence ecological
metrics, we used the initial true abundances and the error-
modified abundances (analogous to observed peak intensi-
ties) to calculate within-sample « diversity via the Shan-
non diversity metric, the between-sample g diversity via the
Bray—Curtis dissimilarity metric, and a generic intensity-
weighted sample-level mean trait value based on assigning
an arbitrary trait value to each peak (Fig. 6). The mean trait
analysis is analogous to the approach commonly used in eco-
logical studies for computing community-level abundance-
weighted trait values, such as plant leaf area index or animal
body size (Muscarella and Uriarte, 2016). This mean trait ap-
proach is also commonly used with FTMS data, such as for
sample-level peak-intensity-weighted values of stoichiomet-
ric ratios (e.g., H : C) and several other metrics derived from
molecular formulae (Roth et al., 2019; Wen et al., 2021).

Relating the error-influenced “observed” values of each
ecological metric to their true values revealed that peak-
intensity-based ecological metrics are likely to be quali-
tatively robust despite quantitative biases (Figs. 7-9). All
three ecological metrics showed monotonic relationships be-
tween observed and true values for both types of error; in
Figs. 7-9, all a/c and b/d panels have within-sample and
between-sample errors, respectively. Uncertainty was lower
when samples had 1000 peaks relative to samples with 100
peaks; in Figs. 7-9, all a/b and c/d panels have 100 and 1000
peaks, respectively. For Shannon diversity, observed values
were consistently lower than true values, but all observed
vs. true relationships were linear (Fig. 7). For Bray—Curtis,
inclusion of between-sample errors resulted in an overesti-
mation of values and non-linear monotonic relationships be-
tween observed and true values (Fig. 8). For mean trait val-
ues, we found no systematic quantitative biases, and the rela-
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Figure 6. Flow diagram for the in silico simulation model. The model was used to evaluate how ecological metrics are impacted by variations
in ionization across organic molecules (i.e., peaks). The true peak intensities are what is expected if intensity is connected linearly to
concentration, and all peaks fall along the same linear function. Variation in ionization adds error around this idealized linear relationship.
The error is modeled in two ways: the error applied to a given peak is either the same between samples (i.e., there are no variable matrix
effects on ionization) or varies randomly between samples (i.e., there are variable matrix effects on ionization). In the lower tables, the
proportional error applied to each peak is provided parenthetically. The tables are for demonstration and show only three peaks per sample.

The number of peaks per sample was set to either 100 or 1000.

tionships between observed and true values were consistently
linear (Fig. 9).

The variation in observed values explained by true val-
ues (via a linear model) increases rapidly with the number of
peaks and asymptotes beyond ~ 500-1000 peaks per sample
(Fig. S1 in the Supplement). The number of peaks needed
to reach the asymptote and to minimize uncertainty is likely
to be dataset dependent, and 500-1000 peaks should not be
taken as a general rule for real-world datasets. Nonetheless,
we propose that qualitative gradients based on sample-to-
sample changes in the value of ecological metrics can gen-
erally be interpreted with increasing confidence as the num-
ber of peaks increases. Quantitative comparisons from one
dataset to another may, however, require further simulation-
based evaluation as the absolute magnitudes of some ecologi-
cal metrics are shifted away from their true magnitudes even
when there are large numbers of peaks (e.g., Fig. 8d). We
encourage researchers to use the simulation model with the
numbers of peaks present in their real-world datasets to bet-
ter understand their ability to make statistical and conceptual
inferences.

6 Conclusions and recommendations

There is significant value in using FTMS data to study
NOM chemistry (Bahureksa et al., 2021; Cooper et al., 2022;
Spencer et al., 2015; Stubbins et al., 2010), and it is vital that
this be done based on rigorous use of the data. When using
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ecological metrics with FTMS NOM data, it is important to
understand how the assumptions and limitations of the met-
rics relate to limitations of the data. We suggest that studies
using FTMS peak intensities need to include material that di-
rectly discusses the data limitations, what peak intensities do
and do not represent (e.g., tree-like vs. bird-like data; Fig. 5),
and how knowledge of those limitations was used to select
specific metrics.

We have provided both theoretical reasoning and empirical
observations showing that peak intensities do not necessarily
map to concentrations of the associated organic molecules
within NOM-like complex mixtures of organic molecules.
This is particularly true for between-peak comparisons, and
statistical post hoc normalizations of peak-intensity data do
not solve this challenge. We caution against using between-
peak differences in intensity from FTMS data to make direct
inferences related to between-peak differences in abundance
or concentration. This has implications for some ecological
analyses based directly on variations in species abundances.
For example, estimation of “species abundance distributions”
are likely to be problematic. Analyses that bin peaks into
high- and low-abundance groups based on between-peak dif-
ferences in concentration are also likely to be problematic.
We did not directly evaluate these types of analyses, and we
suggest that future work should expand upon the ecological
metrics examined here via simulation.

While there are challenges and limitations in the use of
ecological metrics with FTMS data, we show that there is
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Figure 7. Shannon « diversity that includes simulated error re-
gressed against true Shannon across different scenarios. (a) The
same error applied to a given peak between samples and 100 peaks
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samples and 100 peaks per sample. (¢) The same error applied to a
given peak between samples and 1000 peaks per sample. (d) Differ-
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and the dashed line is a spline fit to the data. All data are from the
simulation model.

a tangible path forward. In particular, our simulation model
revealed good performance in terms of some common eco-
logical metrics of « diversity, 8 diversity, and mean trait val-
ues. We infer that conceptual and mechanistic inferences are
likely to be valid when based on analyses such as comparing
peak-intensity-based ecological metrics across experimental
treatments or variations along environmental gradients. The
performance of intensity-weighted mean trait values was par-
ticularly good, both qualitatively and quantitatively. This in-
dicates that using peak intensities to estimate sample-level
mean traits or properties likely provides quantitatively robust
estimates, such as for stoichiometric ratios (e.g., H/C, O/C)
and many other commonly calculated quantitative properties
related to molecular formulas (e.g., nominal oxidation state
of carbon, aromaticity index, double bond equivalent).

As general guidance, we suggest avoiding analyses that
make direct use of between-peak comparisons of peak in-
tensity and relying instead on derived metrics that use in-
tensities from large numbers of peaks. For example, while
peak-intensity-weighted mean trait values appear to be ro-
bust, our physical experiments indicate caution against using
direct comparison of peak intensities to infer between-peak
differences in concentration. This is relevant to analyses such
as comparing peak intensities within a Van Krevelen analy-
sis or across classes of elemental composition (e.g., CHO,
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CHON). Such analyses could be problematic as quantitative
variation in peak intensities across the Van Krevelen space
or across classes of elemental composition is likely to be in-
fluenced by variations in ionization efficiencies with unclear
connections to true concentrations. It is, therefore, not rec-
ommended that one use peak intensities to identify parts of
Van Krevelen space (e.g., protein-like compounds) or com-
positional classes that have the highest concentrations in a
given sample. It is preferable to report the fractions of peaks
contained within different parts of Van Krevelen space or
within different compositional classes and avoid quantitative
estimates based on peak intensities (e.g., percentage of total
sample-level intensity found within a given class). An alter-
native approach for robust and direct use of peak intensities,
based on our physical experiments, is the use of Spearman-
based correlations for within-peak comparisons across sam-
ples. Such correlations could be done across spatial environ-
mental gradients, through time, and/or with respect to other
sample-level quantitative measurements (e.g., organic carbon
concentration). This implies that other types of correlation-
based analyses are likely to be robust, such as peak-intensity-
based network analyses. We further suggest that paramet-
ric statistics can often be used to relate the ecological met-
rics studied here to other quantitative variables, both directly
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Figure 9. Mean peak-intensity-weighted trait values that in-
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weighted trait values across different scenarios. (a) The same error
applied to a given peak between samples and 100 peaks per sample.
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between samples and 1000 peaks per sample. (d) Different errors
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ple. In all panels, the red line represents the one-to-one line, and the
dashed line is a spline fit to the data. All data are from the simulation
model.

(e.g., via Pearson-based correlation) and indirectly (e.g., via
Bray—Curtis-based non-metric multi-dimensional scaling).
There are many other kinds of analyses currently done
with FTMS data, and more will be imagined in the future. To
develop further guidance on how to best use peak intensities
for a broader range of analyses, we recommend the use and
further development of the simulation model developed here.
Fortunately, it is straightforward to extend the simulation
model to additional metrics (e.g., Hill numbers; Hill, 1973)
and analyses (e.g., species abundance distributions; McGill
et al., 2007). We suggest that users of FTMS data do this
before applying abundance-based ecological metrics to real-
world datasets. This will provide objective guidance on how
to use (and whether to avoid) specific metrics for specific
FTMS datasets. The simulation model is the only tool we are
aware of that can provide objective evaluations of uncertainty
and potential biases associated with using FTMS peak inten-
sities to compute ecological metrics. The model should not
be taken as a static or mature tool, however. We encourage
future work to expand it to include additional ecological met-
rics and/or analyses, situations with more than two samples,
sample-to-sample variation in peak richness, links between
peak richness and peak intensity, explicit molecular proper-
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ties or traits, non-random errors, and measured levels of error
between concentrations and peak intensities. It can be further
extended to directly add error into peak intensities from real-
world FTMS data and to re-calculate ecological metrics of
interest across a range of introduced errors. This would help
gauge the robustness of conceptual inferences derived from
peak-intensity-based analyses.

Further evaluations are outside of the scope of this work
but will be straightforward to include in future versions of
the simulation model. We envision future studies customiz-
ing the model for their specific applications. For any real-
world study, the model can be modified to include the ac-
tual number of samples, the number of peaks in each sample,
the peak-intensity distributions, the number of replicates, and
the specific ecological analyses that will be applied. In turn,
simulation model outcomes can provide objective guidance
tailored to each study. One may think of the resulting guid-
ance as being akin to a power analysis, whereby the sim-
ulation can indicate what can and cannot be inferred from
a given dataset. For example, the model indicates that ob-
served Bray—Curtis values have little to no correspondence
to true values when the Bray—Curtis value is below ~ 0.2
(Fig. 8b and d). Bray—Curtis values near and below ~ 0.2
are commonly observed in FTMS studies (Bao et al., 2018;
Derrien et al., 2018; e.g., Hawkes et al., 2016), and this dis-
connect between observations and truth is maintained even
with 1000 peaks per sample (Fig. 8d). In turn, FTMS stud-
ies that observe Bray—Curtis values below ~ 0.2 may not be
able to use those observations to make valid conceptual in-
ferences. However, quantitative guidance must be developed
for each study, and we recommend that a version of the sim-
ulation model should be used by future studies using peak
intensities to conduct ecological analyses of FTMS data. It
may be that, in time, we will understand the general rules
well enough to leave the simulation behind, but, for now, we
suggest that its use is warranted to ensure robust inferences.

In addition to further use and development of the simu-
lation model, we recommend the translation of other mod-
eling approaches for use with FTMS data. Two potential
approaches are based on machine learning and hierarchical
modeling. Machine learning could be used to model the in-
strument response for a diverse chemical space in typical en-
vironmental samples to learn how measured signal intensities
may relate to true concentrations. Even if such a model does
not yield high-accuracy results, it may, nonetheless, help us
understand error and/or biases and may provide additional
guidance for the robust use of peak-intensity data. Poten-
tially in concert with machine learning, hierarchical mod-
eling could be translated from its application in ecological
analyses (Iknayan et al., 2014) for use with FTMS. This ap-
proach has been used to model sources of error that lead
to variations in detectability across biological species, such
as variations in species visibility (e.g., Dorazio and Royle,
2005). In turn, data can essentially be corrected by account-
ing for the modeled sources of error (Roth et al., 2018), even
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revealing “hidden diversity” (Richter et al., 2021). There are
likely to be direct analogs to FTMS data in terms of varia-
tions among molecules in terms of detectability due to vari-
ations in terms of ionization and molecular interactions dis-
cussed in previous sections. Machine learning could be used
to understand sources of error and, in turn, to inform hier-
archical models aimed at improving the mapping between
peak intensity and concentration. If successful, this would
increase the quality of information provided by peak intensi-
ties in both existing and future datasets.

In summary, FTMS has many strengths and weaknesses,
just like any analytical platform. Other types of composi-
tional data also contain biases and uncertainties, such as the
lack of true quantitation in sequence-based microbiome data
(Gloor et al., 2017). Careful use of FTMS peak-intensity data
informed by objective, model-based guidance can overcome
some of its weaknesses. We encourage further development
of the model presented here and the inclusion of additional
methods developed to address issues that arise in similar data
types (e.g., Gloor et al., 2017; Hardwick et al., 2018; Vieira-
Silva et al., 2019). While these are important directions, we
emphasize that despite peak intensities not necessarily re-
flecting concentrations, overall, ecological metrics appear to
perform well. This is likely due to the law of large numbers as
FTMS, especially FT-ICR MS, datasets often contain 1000 or
more peaks per sample. Our simulation results indicate that
large numbers of identified peaks allow ecological metrics
to essentially track towards their true values. We are encour-
aged by this outcome and look forward to further applica-
tions of ecological metrics, concepts, and theories to NOM
chemistry. Such advances could be greatly facilitated by a
public database of standardized FT-ICR MS datasets paired
with push-button execution of the simulation model for user-
defined metrics and subsets of the database.

Code availability. The R code for running the simulation models
is available on GitHub: https://github.com/stegen/Peak_Intensity_
Sims (Stegen, 2024). Python code used to process the empirical
data and to generate the associated figures is available in Kew et
al. (2024, https://doi.org/10.5281/zenodo.13887250).
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