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Abstract. Terrestrial biomes and their biogeographic pat-
terns have been derived from a large variety of variables in-
cluding species distributions and bioclimate or remote sens-
ing products. However, classifying the biosphere into biomes
from a functional perspective using biophysical traits has
rarely been tested. Such a trait-based biome classification
has been limited by data availability. Here, we aimed to ex-
ploit crowd-sourced plant observations and trait databases
to systematically assess which traits are most suitable for
biome classification. We derived global patterns of 33 bio-
physical traits covering around 50 % of the land surface by
combining crowd-sourced species distribution data from the
Global Biodiversity Information Facility (GBIF) and trait ob-
servations from the TRY database. Using these trait maps
as predictors for supervised cluster analyses, we tested to
what extent we can reconstruct 31 published biome maps.
A sensitivity analysis with randomly sampled combinations
of traits was performed to identify the traits that are most
appropriate for biome classification. Performance was quan-
tified by comparing modeled biome maps and the respec-
tive observation-based biome maps. Finally, spatial gaps in
the resulting biome maps were filled using species distribu-
tion models to obtain continuous global biome maps. We
showed that traits can be used for biome classification and
that the most appropriate traits are conduit density; rooting
depth; height; and different leaf traits, including specific leaf
area and leaf nitrogen content. The best performance of the
biome classification was obtained for biome maps based on
biogeographic zonation and species distributions, in contrast
to biome maps derived from optical reflectance. The avail-
ability of crowd-sourced plant observations is heterogeneous,

and, despite its exponential growth, large data gaps are preva-
lent. Nonetheless, it was possible to derive biome classifica-
tion schemes from these data to predict global biome pat-
terns with good agreement. Therefore, our analysis is a valu-
able approach towards understanding biome patterns based
on biophysical traits and associated ecological strategies.

1 Introduction

Biomes are commonly used to represent major vegetation
formations based on functional and structural attributes and
to map their biogeographic distributions (Moncrieff et al.,
2016; Higgins et al., 2016). They have been widely used
to study past, present, and future vegetation change and
attribute the effects of respective drivers such as climate
change or land use (e.g., Allen et al., 2020; Martens et al.,
2020; Scheiter and Savadogo, 2016). Due to the high level
of aggregation of vegetation features, biomes are useful to
illustrate vegetation change in the context of climate mitiga-
tion, conservation, and management. Multiple biome maps
were developed based on a variety of different data sources
(Beierkuhnlein and Fischer, 2021). These include biogeo-
graphic zonation based on species distributions; bioclimatic
and edaphic variables; or a variety of remote sensing prod-
ucts such as vegetation indices, optical reflectance, or vegeta-
tion height. Depending on the variables used for biome clas-
sification, biomes reflect specific ecological functions associ-
ated with those variables (Mucina, 2019). Recently, Fischer
et al. (2022a) aggregated 31 different biome and land cover

Published by Copernicus Publications on behalf of the European Geosciences Union.



4910 S. Scheiter et al.: Trait-based biome classification

maps, showing considerable differences between classifica-
tion methods, the biome types represented in the maps, and
the biomes’ spatial distributions. In addition to species distri-
bution data or remote sensing data, plant traits provide a de-
tailed representation of vegetation at the site level. Plant traits
are attributes of plants, describing for example their mor-
phology, phenology, or physiology, that determine the func-
tioning of plants in their environment (Kattge et al., 2020).
Traits are coordinated along trade-off axes, defining the spec-
trum of plant form and function (Díaz et al., 2016), and eco-
logical strategies characterized by combinations of differ-
ent traits vary between biomes and climatic zones (Pierce
et al., 2017). It has been argued that traits should be in-
cluded in biome classification (Mucina, 2019; Hunter et al.,
2021), and previous studies have shown that trait data are
suitable for delineating plant functional types (PFTs; Ver-
heijen et al., 2016) and biomes (van Bodegom et al., 2014;
Boonman et al., 2022; Scheiter et al., 2024a). Despite the in-
creasing availability of trait data in databases such as TRY
(Kattge et al., 2020) and extrapolated global trait maps (Wolf
et al., 2022; Boonman et al., 2020), a systematic assessment
of the performance of traits for biome classification and an
identification of the most appropriate traits remain elusive.
A functional-trait perspective can provide novel biome maps
with a more plant-oriented characterization of biomes and
provide insights into the functional strategies and ecophysi-
ology characterizing biomes.

In a recent study, Boonman et al. (2022) used height, spe-
cific leaf area (SLA), and wood density to reproduce the Ol-
son et al. (2001) biome map by applying a supervised cluster
analysis. Global maps for these traits were empirically de-
rived by extrapolating trait data from the TRY database us-
ing statistical and machine learning approaches (Boonman
et al., 2020). This modeling approach allowed for the repro-
duction of current biome patterns and projections of future
biome patterns under various climate change scenarios based
on traits. Scheiter et al. (2024a) used traits simulated by a
dynamic vegetation model, aDGVM2 (Langan et al., 2017;
Kumar et al., 2021), and 31 different biome maps provided
by Fischer et al. (2022a, hereafter F31 maps) for biome clas-
sification. Similarly to Boonman et al. (2022), biome cluster-
ing was conducted by applying supervised cluster analyses,
and a trait ranking revealed that traits related to size were
most important for biome classification. While both studies
showed that traits can be used for biome classification, both
approaches have caveats.

Boonman et al. (2022) used only a set of three different
traits – height, wood density, and SLA – even though data
on more traits are available in TRY (Kattge et al., 2020). The
selection of traits was mainly driven by methodological cri-
teria rather than by ecological knowledge and ensured that
traits could be extrapolated to the global scale with sufficient
predictive accuracy using the authors’ statistical method. Ex-
trapolation of geographically sparse TRY data to the global
scale is uncertain (Ludwig et al., 2023), and Dechant et al.

(2024) showed significant discrepancies between global trait
maps created using different extrapolation methods. Such un-
certainties in empirical trait maps may propagate to uncer-
tainties in biome classification.

Trait maps simulated by aDGVM2 are provided as con-
tinuous maps for the simulated study region (Scheiter et al.,
2024a). Limitations of using model results are model un-
certainties in aDGVM2; mismatches between observed and
simulated trait patterns; and, accordingly, uncertainties in
biome classification. Further, some of the traits simulated by
aDGVM2 are difficult to observe in reality (e.g., the amount
of carbon allocated to different plant compartments), while
other traits are not represented in the model (e.g., conduit
density or seed length). Therefore, classification schemes de-
rived from aDGVM2 cannot be directly applied to real-world
situations. These limitations may bias the suitability of dif-
ferent traits modeled in Scheiter et al. (2024a) for biome clas-
sification.

A further caveat of both studies is that trait values of all
species in plant communities were averaged, while differ-
ent PFTs or species groups were not considered separately
in the classification. Given that trait expressions or trait dis-
tributions of grasses and trees, for example, differ substan-
tially, we expect that such averaging reduces the performance
of biome classification compared to a classification where
traits of different PFTs are considered separately. In sum-
mary, the caveats of previous studies suggest that trait-based
biome clustering should be conducted with a large number of
observation-based traits, ideally interpolated to global spatial
scale with high accuracy.

Recently, Wolf et al. (2022) presented a novel approach to
creating global maps for a series of traits of vascular plants by
merging crowd-sourced species distribution data from iNat-
uralist (https://inaturalist.org, last access: January 2022) with
trait data from the TRY database (Kattge et al., 2020). iNat-
uralist is a citizen science project for plant species identifi-
cation that builds on smartphone apps. To enhance the spa-
tial extent of trait data, this approach has now been extended
by integrating species distribution data from the Global Bio-
diversity Information Facility (GBIF). Moreover, trait pat-
terns have been derived separately for non-woody species
(grasses and herbs), woody species (trees and shrubs), and
all species combined. We used these trait maps and super-
vised cluster analyses to create trait-based biome maps in-
formed by each of the F31 observation-based biome maps
compiled by Fischer et al. (2022a). We asked the following
questions: (1) are trait patterns derived by combining het-
erogeneous crowd-sourced species distribution data with the
TRY trait data appropriate to delimit global biomes despite
substantial data gaps? (2) Which and how many traits are
appropriate and required to delimit global biomes? (3) Does
considering traits of different species groups improve biome
classification? (4) Which trait values are characteristic of dif-
ferent biomes across all F31 biome maps? The trait data were
not available for the entire global land surface but covered
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Figure 1. Modeling workflow of the study. Green numbers provide the section where the different steps are described, and “full” and “gap”
indicate whether the data cover the entire land surface or only ca. 50 % of the land surface where trait data are available.

only around 50 % of the land surface. Accordingly, the biome
maps from the cluster analyses had the same spatial gaps. To
obtain continuous global trait-based biome maps, we applied
species distribution models for extrapolation.

2 Materials and methods

2.1 Data

We used trait patterns of vascular plants derived from com-
bining GBIF species observation data and trait data from
the TRY database (version 5; Kattge et al., 2020; Katten-
born et al., 2024; Fig. 1). GBIF is a free and open-access
database containing biodiversity data such as species occur-
rence records. The TRY database contains > 15 million trait
records for more than 300 000 plant taxa. The methodol-
ogy follows Wolf et al. (2022), but instead of using iNat-
uralist data, a repository of crowd-sourced species distri-
bution data, we used the entire GBIF archive to increase
geographic and taxonomic coverage. Species observations
(n= 257 357 303) were downloaded from GBIF on 2 June
2023 (GBIF.Org User, 2023). This download already in-
cluded filtering for “Observation”, “Human observation”, or
“Occurrence” records with no geospatial issues; no related
records; a minimum distance of 1500 m to a country cen-
troid; and the occurrence status set to “present”, since GBIF
contains true absence data. Additional filtering using the
R package “CoordinateCleaner” (Zizka et al., 2019) removed
records with a coordinate uncertainty > 10 km and preci-
sion > 0.1°; those located in the ocean; and those that match
common issues, such as records that are falsely given coordi-

nates along the Equator or central meridian, and made sure to
only include records identified to the species level. The ob-
servations were then linked to the TRY gap-filled data set via
species names (Schrodt et al., 2015), which resulted in a total
of n= 192 667 225 observations. Of the filtered observations
and species in GBIF, 90 % and 24 %, respectively, matched
70 % of species in TRY (numbers based on map products
using all plant functional types). We spatially sub-sampled
the data to limit both computational load and data redun-
dancy: the matched observations were binned into equal-area
hexagons of 2591 km2 using the package “dggridR” (Barnes
et al., 2023), which corresponds to about 0.5° at the Equator.
From each hexagon, we then sampled 10 000 observations. If
a hexagon contained fewer than 10 000 observations, all ob-
servations were kept. After this sub-sampling, 31 808 221 ob-
servations remained. These trait observations were then ag-
gregated using a mean function to a global raster grid with
0.5° spatial resolution. We created three different maps for
each trait in this manner, each for different combinations of
plant species: (1) grasses and herbs (hereafter non-woody
plants), (2) trees and shrubs (hereafter woody plants), and
(3) all species (i.e., non-woody and woody plants). Trait dis-
tributions of non-woody and woody plant species differ sub-
stantially, for example in height. Calculating trait means for
different species groups therefore allows for the considera-
tion of understory versus overstory and community compo-
sition in our analysis. Therefore, we filtered the observations
according to plant functional types (PFTs) before spatially
aggregating the trait values, where the association of a plant
species with non-woody or woody plant PFTs was based
on a majority vote of the PFT information contained in the
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TRY database (trait ID 197). Filtering traits before aggrega-
tion and not afterward keeps as much trait information from
the TRY data in the mean trait values as possible. All traits
included in the analysis are provided in Table S1 in the Sup-
plement. The trait data created by this method do not cover
the entire land surface, and the spatial coverage is shown in
Fig. S1 in the Supplement. Excluding Antarctica, coverage
of the trait data was 49.6 % (32 238 grid cells with trait data,
65 023 in total at 0.5° spatial resolution).

Fischer et al. (2022a) compiled 31 different biome and
land cover maps (Fig. 1). We aggregated the maps from the
10 km× 10 km spatial resolution to the 0.5° resolution of the
trait data using the “raster” R package (Hijmans, 2023). As
the biome maps are categorical, we used the nearest-neighbor
method for aggregation. We removed biomes that occurred in
fewer than 40 grid cells and grid cells not covered by vegeta-
tion such as water and built-up areas.

2.2 Biome clustering

Following an approach previously applied by Boonman et al.
(2022) and Scheiter et al. (2024a), we used a supervised clus-
ter analysis to assign a biome type to each grid cell using
trait information in the grid cell. Specifically, we used Gaus-
sian mixture models (“MclustDA” function in the “mclust”
R package; Scrucca et al., 2016) and fitted models for each
of the F31 biome maps separately (Fig. 1). Clustering was
only conducted for subsets of the 33 available traits (up
to 12 traits; see the next sections for the selection of sub-
sets). Analyses including all 33 traits simultaneously were
not conducted due to the low performance and failure of
the clustering algorithm. As described above, the trait data
had large gaps and covered only around 50 % of the land
surface. Accordingly, the biome maps created by the clus-
ter analysis only covered the spatial extent of the trait data
(Figs. S1 and 1). The clustering of biomes was tested with
different species-specific trait maps (see Sect. 2.1) consid-
ering (1) only non-woody species, (2) only woody species,
and (3) all species (i.e., non-woody and woody species). We
expect that clustering using all species (case 3) shows the
best performance because it considers the entire plant com-
munity in a grid cell. In contrast, we expect that using only
traits of non-woody plants shows the lowest performance be-
cause these traits do not reflect wood-dominated communi-
ties such as forests adequately. In addition, we (4) combined
traits of non-woody and woody plants (i.e., combining traits
of non-woody plants in case 1 and traits of woody plants in
case 2). In case 4, the number of traits in the cluster analysis
was twice the number of traits in cases 1, 2, and 3. We ex-
pect that the performance of the clustering is maximized in
case 4 because it considers the non-woody and woody plant
communities separately by their respective traits, rather than
averaging traits of all species in the plant community. In ad-
dition, doubling the number of variables increases the level

of information in the cluster analysis and should therefore
improve the performance.

To assess the performance of the biome clustering, we
used κ statistics (Monserud and Leemans, 1992) to compare
the biome maps derived from the cluster analysis and the re-
spective F31 map used to inform the clustering. As we did
not use the results from the clustering for spatial extrapola-
tion, we used all available data for both the cluster analysis
and the calculation of κ without splitting the data into train-
ing and testing data sets. The κ value quantifies the agree-
ment between categorical data sets. It considers the likeli-
hood that agreement can occur by chance and is more ro-
bust than calculating overlap. Values < 0 indicate no agree-
ment, values between 0 and 0.2 slight agreement, values be-
tween 0.2 and 0.4 fair agreement, values between 0.4 and 0.6
moderate agreement, values between 0.6 and 0.8 substan-
tial agreement, and values between 0.8 and 1 almost perfect
agreement. All analyses were conducted using R (R Core
Team, 2024); figures were created using “ggplot2” (Wick-
ham, 2016).

2.3 Trait ranking for classification

To test which of the 33 traits obtained by combining TRY and
GBIF data (Sect. 2.2) are most suitable for biome classifica-
tion, we used a randomized approach with a variable number
of traits and randomly sampled sets of traits (Fig. 1). Using
all possible combinations of 33 traits for the cluster analy-
sis was computationally not feasible. For each set of traits,
cluster analyses were conducted for all of the F31 maps indi-
vidually and for four combinations of species (see Sect. 2.1).
The number of traits in the clustering ranged between 3
and 12. The upper limit of 12 traits was selected as the per-
formance of the clustering was saturated when increasing the
number of traits (see Results). Hence, cluster analyses for
non-woody, woody plants, and all species (cases 1, 2, and 3
in Sect. 2.1) included 3 to 12 variables, whereas analyses
with non-woody and woody plant traits combined (case 4 in
Sect. 2.1) included 4, 6, . . ., 24 variables. We repeated the
clustering until at least 600 models were available for each
F31 biome map (21 867 models in total, Table S2 in the Sup-
plement). For each cluster analysis, the κ value was calcu-
lated to quantify the performance of the clustering and its
response to the number of traits included.

To identify the traits that are most suitable for biome clas-
sification, we ranked the traits following an approach previ-
ously used by Scheiter et al. (2024a). We selected all mod-
els with substantial agreement (i.e., κ > 0.6) from the 21 867
models of the randomized sensitivity analysis with sepa-
rate trait values for non-woody and woody plants (case 4 in
Sect. 2.1). We used only models with separate trait values
for non-woody and woody plants because we expected the
highest performance of the cluster analyses. For the subset
of models, we counted how often each trait was included and
expressed this number as a percent value relative to the num-
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ber of models with substantial agreement. We interpreted this
value as a measure of the suitability of traits for biome clas-
sification and ranked traits according to this measure.

We used a similar approach to rank the traits separately
for each number of traits considered in the clustering while
aggregating models for all F31 maps. This analysis revealed
whether the set of suitable traits was related to the number
of traits in the clustering or whether the same set of traits
had a high rank irrespective of the number of traits included.
The κ values did not exceed 0.6 for low numbers of traits
(see Results). We therefore calculated the 90th percentile of
the κ values for each number of traits, and used only models
with κ greater than the 90th percentile to derive the ranking.

2.4 Performance of specific trait subsets

We assessed how the performance of the clustering was re-
lated (1) to the F31 biome maps used to inform the cluster-
ing, (2) to the set of traits used for the clustering, and (3) to
the method for aggregating non-woody and woody plants to
calculate trait means. Therefore, the cluster analyses were
repeated for selected subsets of traits and for each of the
F31 biome maps separately. Using subsets of traits was nec-
essary and reasonable because using the full set of 33 traits
for the cluster analysis was computationally not feasible. In
addition, the sensitivity analysis showed that the importance
of traits differs and that performance of the cluster analy-
ses becomes saturated with an increasing number of traits
included (see Results). These findings suggest that a sub-
set of traits is sufficient to obtain cluster analyses with high
performance. A lower number of traits simplifies the inter-
pretation of our results, e.g., on trait co-variation or specific
trait combinations in biomes. Finally, the accuracy and spa-
tial coverage of trait observations differ such that the selec-
tion of high-quality traits is reasonable. Therefore, we sys-
tematically selected three different subsets based on the trait
ranking in Sect. 2.3, hereafter denoted clusters. For clus-
ter 1, as the trait ranking in Sect. 2.3 was conducted for
up to 12 traits, we selected the 12 traits with the highest
rank in this analysis (see the Results section). This selection
ensured substantial data–model agreement for some of the
F31 biome maps and κ > 0.6 while constraining the num-
ber of traits included. For cluster 2, to constrain the number
of traits, we selected 6 traits from the 12 traits in cluster 1.
To account for traits describing different components of the
plant economic spectrum (Díaz et al., 2016) and those com-
monly used in the literature and to avoid inclusion of similar
or redundant traits (e.g., several traits describing leaf nitro-
gen), we selected wood density, rooting depth, SLA, height,
isotopic leaf nitrogen, and conduit density (also see the Re-
sults section). For cluster 3, the number of traits was further
constrained and included only three traits. Specifically, clus-
tering was conducted for wood density, height, and SLA as
these traits are commonly included in trait-based studies and
in a previous biome classification by Boonman et al. (2022).

Using the same set of traits allows comparisons of different
approaches. While our selection of traits was mainly based
on the sensitivity analysis and trait ranking, the analysis can
be conducted for any selection of traits relevant in specific
case studies.

For a selected biome map and trait cluster, we created a
confusion matrix and calculated biome-specific κ values. The
confusion matrix represents the overlap between all different
combinations of modeled and observation-based biomes. For
each biome, those count values were normalized by the total
number of grid cells covered by a biome in the observation-
based map. The confusion matrix identified biomes that are
well represented or misclassified by the cluster analysis. For
each biome, the κ values were calculated individually. Here,
we selected results from the cluster analysis with trait clus-
ter 1, including 12 traits informed by the Nature Conservancy
(2009) biome map, as this map had a high κ value (see Re-
sults).

2.5 Biome-specific traits and model performance

Biome types used in different F31 biome maps differ sub-
stantially between maps. Therefore, biome-specific mean
trait values and κ values cannot be compared directly across
all biome maps. In our study, the F31 biome maps were not
aggregated into a consensus biome map. Instead, we calcu-
lated biome-specific mean trait values by selecting all biomes
across the F31 maps that share similarity in their names.
Specifically, we merged all biome names of the F31 biome
maps as provided in the supplementary materials of Fischer
et al. (2022a) into one text string. Then we counted the occur-
rences of all words in this string. After removing unnecessary
words such as “and” or “with”, we obtained a list of attributes
defining different biomes such as “forest”, “evergreen”, or
“boreal”. For the most frequent attributes (Table S3 in the
Supplement), we selected all biomes from all F31 maps that
contained this attribute in its name and calculated the mean
trait values and κ for each of those biomes. We first con-
ducted the analyses for the three trait clusters with 12, 6, and
3 traits (Sect. 2.4) and for models including non-woody and
woody plant traits separately (case 4 in Sect. 2.2). However,
this analysis included up to 24 traits (12 traits each for both
non-woody and woody plants), and we simplified the anal-
ysis using trait values of all species (case 3 in Sect. 2.2).
To calculate biome-specific κ values, we transformed the
observation-based and the modeled biome maps into a bi-
nary map where 1 represents the target biome and zero all
other biomes. Then we calculated κ for these binary maps.

This analysis showed that “forest”, “tropical”, and “tem-
perate” were used most frequently in the biome names with
179, 99, and 84 occurrences, respectively. Attributes such
as “forest” included all forests from the boreal to the trop-
ical zone, so we expected large variation in the traits. We
repeated the counting procedure separately for biomes con-
taining each of those three attributes. This procedure pro-
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vided combinations such as “evergreen forest” or “tropical
savanna”. For the most frequent combinations of attributes
(Table S4 in the Supplement), we calculated the biome-
specific mean trait values and κ values. Note that this ap-
proach ignores biome maps that do not use any of these at-
tributes to denote biomes such as the Higgins et al. (2016)
map or the Netzel and Stepinski (2016) map that denotes dif-
ferent biomes as numbered clusters. This analysis was con-
ducted only for trait cluster 1, as it showed the highest data–
model agreement when κ values for all F31 biomes were av-
eraged.

To assess associations between traits and biome attributes
described in the previous paragraphs, we conducted principal
component analyses (PCAs). For the PCAs, we used traits of
the three trait clusters in Sect. 2.4 (i.e., 12, 6, and 3 traits)
and, to reduce the number of traits included in the analy-
sis, mean trait values of all species (non-woody and woody
plants, case 3 in Sect. 2.2). For each biome attribute, we
first identified all biomes in all of the 31 biome maps that
contained the attribute in the biome names. Then, for each
of those maps, trait means for all grid cells covered by the
target biome were calculated. With this procedure, we ob-
tained, for example 179, 53, and 37 trait means for the at-
tributes “forest”, “desert”, and “savanna”, respectively, or 99
and 84 values for the attributes “tropical” and “temperate”,
respectively (Table S3). These trait means were then used for
the PCAs. We created PCAs for different sets of biome at-
tributes, defining for example the climate zone, biome type,
or different forest types (Tables S3 and S4). We used the “gg-
biplot” package (Vu and Friendly, 2024) to create biplots of
the PCA results. To illustrate the location of biomes accord-
ing to the biome attributes used to calculate mean trait values,
we color-coded points with the attributes in the biplots.

2.6 Continuous global biome maps from traits

The trait data derived from combining GBIF and TRY and
accordingly the biome maps obtained from the cluster analy-
ses did not cover the entire global land surface (Fig. S1). To
obtain a global biome map with full coverage and to assess
if heterogeneous and sparse trait data can be used to pre-
dict global biomes, we extrapolated the biome maps from
the cluster analyses to the full global coverage using species
distribution models (SDMs; Franklin, 2009; Fig. 1) and bio-
climatic variables (Booth et al., 2014) from WorldClim (Fick
and Hijmans, 2017). Here, only the biome map obtained from
12 non-woody and woody plant traits (case 4, cluster 1) in-
formed by the Nature Conservancy (2009) biome map was
used to create an SDM. However, this extrapolation can be
conducted for any of the F31 biome maps and trait clusters.
For the SDMs, we selected a subset of the bioclimatic vari-
ables: mean annual temperature (bio1), mean annual precip-
itation (bio12), and further uncorrelated variables (correla-
tion < 0.6, variables bio2, bio7, bio10, bio14, bio15, bio18).
For each biome of the considered biome map, an ensem-

ble of 36 models was fitted using generalized linear mod-
els (GLMs), classification tree analyses (CTAs), artificial
neural networks (ANNs), surface range envelopes (SREs),
functional discriminant analyses (FDAs), and random forest
(RF); three different sets of 3500 randomly selected pseudo-
absences; and two replicates. Then an ensemble was derived
by including all models with the true skill statistic (TSS)
> 0.5 and by combining models calculating the mean suit-
ability value. By conducting predictions with the ensemble
model and the 10 min WorldClim data, we derived global
suitability maps for the different biomes. Finally, suitability
maps with continuous suitability values per biome were ag-
gregated to a categorical biome map by identifying, for each
grid cell, the biome with the highest suitability value.

The extrapolated global biome map with full coverage de-
rived from the SDM was validated. Thereby, it was compared
to the corresponding observation-based biome map used to
create the SDM using the κ statistics and TSS, and a confu-
sion matrix was constructed to quantify the overlap between
modeled and observation-based biomes (see Sect. 2.4). Niche
models were fitted using the “biomod2” R package (Thuiller
et al., 2023).

3 Results

3.1 Trait ranking for biome classification

The randomized sensitivity analysis showed that both the
median and the maximum κ value increased when the num-
ber of traits included in the cluster analysis increased (Fig. 2).
The maximum κ value was 0.64 for clustering with 11 traits
for non-woody and woody plants (22 traits in total). The me-
dian κ values were saturated for higher numbers of traits,
although the maximum value increased further. For a given
number of traits, maps based on non-woody plant traits
(case 1 in Sect. 2.2) showed the lowest predictive perfor-
mance. Higher model performance was obtained with trait
maps derived from woody species, all species, and non-
woody and woody species combined (cases 2, 3, and 4, re-
spectively, Figs. 2 and S2).

When selecting cluster analyses with substantial agree-
ment (κ > 0.6), leaf carbon, isotopic leaf nitrogen, and SLA
had the highest rank; i.e., they were included in most mod-
els (in 41.1 %, 40.3 %, and 40.3 % of the models, Fig. 3).
Traits related to seeds, leaf area, and leaf mass had the low-
est rank and were included in fewer than 30 % of the models,
with seed number in only 12.6 %. Despite the considerable
variation among the relevance of the traits, we did not ob-
serve traits to be overly suitable or unsuitable for predicting
biomes. The set of suitable and unsuitable traits for biome
classification was robust for different numbers of traits in-
cluded in the clustering, and similar sets of traits had high
or low rank irrespective of the number of traits (Fig. S3 in
the Supplement). Conduit density, isotopic leaf nitrogen, leaf
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Figure 2. Relation between data–model agreement and the number of traits included in the cluster analysis. For each number of traits, the
traits were randomly selected, and clustering was conducted for all F31 biome maps. At least 600 cluster analyses were conducted for each
F31 map. Traits were sampled from those provided in Table S1 for different combinations of PFTs. Data–model agreement is represented by
the κ statistics. Note that “Combined” indicates clustering with traits of both non-woody and woody plants, such that the number of traits is
twice the number provided in the figure. See also Fig. S2 in the Supplement.

nitrogen per area, and SLA were among the highest-ranked
traits for each number of traits in the sensitivity analysis,
while seed number had the lowest rank for all cases.

3.2 Specific trait clusters

Data–model agreement varied considerably for different
biome maps and trait clusters used for the clustering (Fig. S4
in the Supplement). When averaged for all maps (averages
of columns in Fig. S4), cluster analyses using traits of non-
woody and woody plants separately showed higher κ values
than cluster analyses using trait means of only non-woody
plants, only woody plants, or all species. Using traits of only
non-woody plants showed the lowest performance for all trait
clusters. The highest average performance was obtained for
cluster 1 (12 traits with the highest rank in Fig. 3) with traits
of non-woody and woody plants combined (κ = 0.50). When
averaging all trait clusters for each biome map (averages of
rows in Fig. S4), the highest performance was achieved for
the Nature Conservancy (2009) biome map (κ = 0.48) and
the lowest performance for the Tateishi et al. (2011, 2014)
map (κ = 0.21). We therefore selected the Nature Conser-
vancy (2009) biome map for analyses focusing on a single
biome map (Sect. 2.4 and 2.6).

When considering different trait clusters and biome maps
individually, the κ value was maximized when clustering was
performed for the Zhang and Yan (2014) biome map with
non-woody and woody plant traits of cluster 1 (κ = 0.64),
followed by the Nature Conservancy (2009) and the Ol-
son et al. (2001) maps (κ = 0.63). Observation-based biomes

were best predicted in Europe, North America, parts of the
Sahel region, and Australia (Fig. 4). The biome types dis-
agreed primarily in the subtropics. This result is also reflected
in the biome-specific κ values of the clustering across the
F31 maps (Figs. 5 and S5–S8 in the Supplement), where
κ values were on average lower in tropical forests than in
temperate or boreal forests. It is also reflected in the confu-
sion matrix for the Nature Conservancy (2009) map, where
κ values and the percent overlap were highest for Mediter-
ranean forest, woodland, and scrub; temperate broadleaf and
mixed forest; and boreal forest/taiga (Table 1). κ values and
overlap were low for mangrove, (sub)tropical dry broadleaf
forest, and flooded grassland and savanna, and large propor-
tions of these biomes were wrongly classified as (sub)tropical
moist broadleaf forest.

For cluster 2 (wood density, rooting depth, SLA, height,
isotopic leaf nitrogen, and conduit density) and cluster 3
(SLA, wood density, and height), performance was maxi-
mized when using traits of non-woody and woody plants sep-
arately and the Nature Conservancy (2009) biome map. The
κ values were 0.57 and 0.47, respectively.

3.3 Biome-specific traits

When selecting all biomes from the F31 maps that share sim-
ilar attributes in their names, we found that mean trait val-
ues differ between biome types (Figs. S9–S13 in the Supple-
ment). For example, tundra vegetation was characterized by
shallow roots, low wood density, and high conduit density,
whereas savannas had deep roots and lower conduit density.
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Table 1. Confusion matrix for biomes derived from the cluster analysis. Rows represent observation-based biomes and columns modeled
biomes. Numbers represent the percentage of grid cells where the data and model overlap relative to the total number of grid cells of the
observed biome (i.e., counts were divided by the total number of grid cells covered by a biome in the observation-based biome map). κ values
were calculated individually for each biome. Here, results from the cluster analysis informed by the Nature Conservancy (2009) biome map
are used as an example. Diagonal elements with correctly classified biomes are highlighted in bold font.

Biome κ 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 (sub)tropical moist broadleaf forest 0.56 63.6 0.7 13.5 9.3 1.8 0.3 3.1 1.4 0.4 2.8 1.8 0.7 0.4 0.1
2 mangrove 0.39 43.8 32.9 11 9.6 0 0 1.4 1.4 0 0 0 0 0 0
3 (sub)tropical grassland savanna and shrub 0.64 15.2 0.1 69.1 3.4 0.2 0.7 5.9 1.9 0.1 1.2 1.8 0.3 0.1 0
4 (sub)tropical dry broadleaf forest 0.35 30.1 0 12.9 39.5 5.1 0 7.5 2.3 0 0.8 1.3 0.5 0 0
5 (sub)tropical coniferous forest 0.56 15.2 0 4.1 6.9 66.8 0 3.7 0 0 0.9 0.9 0.9 0.5 0
6 flooded grassland and savanna 0.25 21.6 0 24 4.8 0.8 22.4 4.8 2.4 0.8 8 8.8 0 1.6 0
7 desert and xeric shrub 0.63 6.3 0 9 5.8 1.3 0.2 64.2 1.7 2 1.2 6 1.6 0.7 0
8 montane grassland and shrub 0.36 6.8 0 10.9 3.1 2 0.2 10.3 38.1 2 5.5 9.9 4.6 5.5 0.9
9 mediterranean forest woodland and scrub 0.79 0.9 0 0.9 0.5 0 0 6.7 1.7 81.7 3.4 3.6 0.6 0 0
10 temperate broadleaf and mixed forest 0.72 2.2 0 0.5 0.1 0.1 0.3 0.6 1.5 2.4 74.5 6.8 3.2 7.4 0.4
11 temperate grassland savanna and shrub 0.63 3.1 0 1.9 0.8 0 0.4 7.3 2 0.9 8.6 68.0 2.4 3.9 0.5
12 temperate conifer forest 0.58 1.7 0 0.3 0.2 0 0.3 6.9 1.4 1.9 11.1 5.9 56.0 12.2 2.2
13 boreal forest/taiga 0.70 0.5 0 0 0 0 0 0.2 0.7 0 8.2 3.5 3.5 76.3 7.1
14 tundra 0.67 0 0 0 0 0 0 0 1.2 0 1.6 1.1 0.5 23.3 72.4

The attribute “forest” was included in the names of 179
biomes in the F31 maps, and traits showed large variation
across different forest types (Fig. S9). Splitting forests ac-
cording to additional attributes revealed differences in mean
trait values between forest types (Fig. S11). For example,
tropical and subtropical forest showed the deepest roots,
whereas needleleaf forest and boreal forest showed shallow
roots. Deep or shallow roots co-occurred with lower or higher
SLA and conduit density, respectively. Similarly, splitting
tropical and temperate biomes according to additional at-
tributes revealed differences (Figs. S12 and S13).

The PCA with 12 traits that had a high rank and with trait
means calculated for biomes that share attributes describing
the climatic zone explained 47.5 % and 27.2 % of the vari-
ation on the first two axes (Fig. 6). For example, biomes in
boreal areas showed higher conduit density but lower root-
ing depth, wood density, and isotopic leaf N in comparison
to tropical regions. A PCA with trait means calculated for
biomes that share attributes describing biome types (e.g., for-
est, savanna, grassland) explained 48.1 % and 27.2 % of the
variation on the first two axes (Fig. S14). The first axis was
mainly associated with conduit density, isotopic leaf N , and
rooting depth and the second axis with leaf N , LCN, and
leaf thickness. The distribution of biomes in trait space over-
lapped substantially because attributes such as “forest” in-
cluded the entire range from boreal to tropical forests. Split-
ting forest by additional attributes showed a separation be-
tween boreal and temperate forests but large overlap of, for
example, the attribute “evergreen forest”, as it occurs in dif-
ferent climate zones (Figs. S15–S17). The patterns were sim-
ilar when only six or three traits were used for the PCA (not
shown).

3.4 Predicting global biome patterns

Using SDMs, global biome maps with full spatial cover-
age can be predicted based on biome patterns derived from
cluster analyses using trait data (Fig. 7). The extrapolation
step was evaluated by comparing modeled and underlying
observation-based biome maps using the κ statistics. Simi-
larly to biome patterns modeled for the spatial extent of the
trait data, data–model agreement between the global maps
and the corresponding F31 map strongly differed. For exam-
ple, for the Nature Conservancy (2009) map, κ = 0.70, and
for the Tateishi et al. (2011, 2014) map, κ = 0.25. The confu-
sion matrix for the biome map based on the Nature Conser-
vancy (2009) biome map revealed the highest κ values and
overlap for tundra with 97.1 % correctly modeled grid cells
and the lowest values for mangrove and flooded grassland
and savanna (Table 2).

4 Discussion

We used trait maps derived from combining crowd-sourced
species distribution data and plant trait data from the TRY
database to test whether trait distribution maps can be used
to delineate global biomes. Although the coverage of trait
data was heterogeneous and sparse in the tropics and sub-
tropics and in the high northern latitudes of Canada and
Siberia, the analyses showed that such a biome classifica-
tion is promising. Using traits for biome classification rep-
resents a valuable approach as it is based directly on bio-
physical and biochemical properties of the biomes, expressed
by plant traits. Assessing biome distributions based on these
traits provides better understanding of the ecological strate-
gies that characterize biomes, as well as trait co-variation
and functional diversity within biomes. However, the agree-
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Table 2. Confusion matrix for biomes derived from the species distribution model at full global coverage. Rows represent observation-based
biomes and columns modeled biomes. Numbers represent the percentage of grid cells where data and model overlap relative to the total
number of grid cells of the observed biome (i.e., counts were divided by the total number of grid cells covered by a biome in the observation-
based biome map). κ values were calculated individually for each biome. Here, results from the species distribution modeling informed by
the Nature Conservancy (2009) biome map are used as an example. Diagonal elements with correctly classified biomes are highlighted in
bold font.

Biome κ 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 (sub)tropical moist broadleaf forest 0.71 76.5 8.2 3.7 3.7 1 2 0 2.1 0 2.8 0 0 0 0
2 mangrove 0.09 50.4 35.3 11.2 1.3 0 0.6 1.1 0 0 0 0 0 0 0
3 (sub)tropical grassland savanna and shrub 0.68 20.1 0.7 69.9 0.3 0.3 4 3.6 0.5 0 0.2 0.3 0 0 0
4 (sub)tropical dry broadleaf forest 0.30 23.2 8 32 23.5 3.8 4.7 2.9 1.8 0 0 0 0 0 0
5 (sub)tropical coniferous forest 0.36 31.3 3.1 6.8 1.1 49.9 1.3 1.5 3.5 0 1.1 0.4 0 0 0
6 flooded grassland and savanna 0.05 15.8 0.2 38.8 0.1 0 9.3 12.5 0 0.4 1.6 21 0 0.2 0
7 desert and xeric shrub 0.75 0.3 0 7.4 1 0.4 0.3 71.5 1 2.4 0.1 14.5 0.6 0.5 0.1
8 montane grassland and shrub 0.57 1.1 0 2.5 0.1 3.9 0.1 6.7 53.5 1.8 0.6 6.4 2.4 9.4 11.5
9 mediterranean forest woodland and scrub 0.65 0 0 0 0 0 0 10.5 0.9 83.1 4.6 0.2 0.7 0 0
10 temperate broadleaf and mixed forest 0.71 2.1 0 0 0 0.1 3.6 1.7 0.7 4.1 68.6 9.1 2.2 6.9 0.8
11 temperate grassland savanna and shrub 0.51 0.3 0 0 0.2 0 2.7 9 2.7 6.2 9.7 58.2 1.7 9 0.3
12 temperate conifer forest 0.52 0.3 0 0 0.2 0.4 2.4 2.9 4.8 4.8 9.5 4.6 42.1 20.6 7.5
13 boreal forest/taiga 0.74 0 0 0 0 0 0 0 0 0 1.4 0.3 0.2 74.4 23.8
14 tundra 0.84 0 0 0 0 0 0 0 0 0 0 0 0 2.9 97.1

ment between modeled and observation-based biome maps
strongly depends on the traits and the biome map used to de-
velop biome classification schemes.

4.1 Suitability of traits for biome classification

The performance of biome classification using traits was
strongly related to the number and the selection of traits
used for the clustering. Previous studies on trait relationships
(Wright et al., 2004; Díaz et al., 2016; Bruelheide et al.,
2018) and biome classification using traits (van Bodegom
et al., 2014; Boonman et al., 2022) have focused on a lim-
ited number of traits and have had a strong focus on leaf
traits. Our results indicate that data–model agreement in-
creases with the number of traits included in the analysis.
This is not surprising given that additional traits add infor-
mation to the clustering and represent additional trade-off
axes in the trait space. Saturation of the performance for an
increasing number of traits included indicates that the ma-
jor trade-off axes between traits that characterize biomes can
be captured with around 10 traits or more. Saturation oc-
curs because the traits included in the analysis are correlated
(Fig. S18 in the Supplement) and hence contain redundant
information: when removing a trait from the analyses, its in-
formation may still be represented by another correlated trait.
However, some traits and trait combinations were selected
more often in the best-performing cluster analyses and the
selection of a lower number of suitable traits can lead to high
performance. In contrast, selecting unsuitable traits can lead
to poor performance even if a high number of traits is used.

According to our analysis, height and leaf traits such as
SLA, leaf carbon, and leaf nitrogen were included in a high
proportion of the models with the highest performance and
can be considered most suitable for biome classification.

This finding confirms the existence of generic plant strate-
gies (Grime, 1988; Pierce et al., 2017) and the spectrum
of plant form and function, where size and leaf economic
traits have been identified as the two major axes of the trait
space (Díaz et al., 2016). The results highlight the impor-
tance of wood and root traits, particularly conduit density and
rooting depth. Higher conduit density has been associated
with higher hydraulic conductivity, a higher risk of embolism
(Martínez-Vilalta et al., 2012), and gymnosperm species that
invest more carbon into hydraulic safety (Yang et al., 2022).
Root traits have gained more attention recently (Chave et al.,
2009). They are often linked to plant hydraulics and water
availability (Anderegg et al., 2018), which makes them par-
ticularly important in understanding how the projected in-
crease in droughts under future climate change (IPCC, 2021)
may influence ecosystem dynamics and resilience. However,
measuring rooting traits is generally more difficult than mea-
suring aboveground traits, which constrains the geographic
coverage and taxonomic representativeness of root observa-
tions. According to our ranking, reproductive traits, particu-
larly seed number, were least appropriate for biome classi-
fication. We attribute this result to the low coverage of seed
traits in the TRY database, resulting in lower agreement be-
tween trait data derived by merging TRY and GBIF data with
independent sPlot trait data (Wolf et al., 2022; Sabatini et al.,
2021). Seed number may also be determined by the dispersal
mechanism of plants, a trait not considered in our analysis.
Dispersal mechanisms are influenced, for example, by small-
scale heterogeneity of landscapes, microclimate, or biotic in-
teraction networks (Schleuning et al., 2016).

We conducted a similar sensitivity analysis with traits sim-
ulated by the dynamic vegetation model aDGVM2 (Scheiter
et al., 2024a). This previous study showed that traits related
to plant size were included in most models with high per-
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Figure 3. Ranking of different traits in cluster analyses. The rank-
ing is based on the percent of models that include the trait in a ran-
domized sensitivity analysis with a variable number of randomly
selected traits. Analyses were conducted including all traits and all
F31 biome maps. The traits above the horizontal black line are the
12 traits with the highest rank used in trait cluster 1; see Sect. 2.4.

formance, while leaf economic traits including SLA were
less relevant. This contrasts the results of the study using
observation-based trait data. Verheijen et al. (2016) used ker-
nel density estimation to represent PFTs in trait space and
found that four to five traits are sufficient to classify a large
proportion of PFTs correctly. A trait ranking revealed that
specific rooting length was the most important, yet it was not
among the most suitable traits according to our study. Other
traits, including height, leaf nitrogen, or SLA had a high suit-
ability rank in both studies, showing that similar traits are
relevant to both PFT and biome classification.

4.2 Selection of biome map for clustering influences
model performance

Using different trait clusters for biome classification revealed
consistent differences in data–model agreement for differ-
ent biome maps used to inform the clustering. When av-
eraging all trait clusters considered in the cluster analyses,

the Nature Conservancy (2009) map was best reproduced by
the cluster analyses, while the Tateishi et al. (2011, 2014)
map showed the lowest performance. The maps assembled
by Fischer et al. (2022a) were derived from different data
sources, such as biogeographic zonation, species distribu-
tions, bioclimatic variables, or remote sensing products in-
cluding optical reflectance or the normalized difference veg-
etation index (NDVI). The performance of the clustering
was high for biome maps based on biogeographic zona-
tion and species distribution data (e.g., Nature Conservancy,
2009; Olson et al., 2001; Dinerstein et al., 2017) and lowest
for biome maps based on optical reflectance (e.g., Tateishi
et al., 2011, 2014). This can be explained by data sources
in our study: we used species distribution data provided by
the GBIF database and trait information from TRY. These
sources resemble those of biome maps using species distri-
bution data in contrast to biome maps based on reflectance.
Cluster analyses including only traits with a direct imprint on
Earth observation signals, such as optical reflectance (Cherif
et al., 2023; Kothari et al., 2023; Aguirre-Gutiérrez et al.,
2021), may show higher agreement with such biome maps.
Further, the remote sensing perspective from optical Earth
observation satellites primarily informs us about the top
canopy, while a representative biome characterization may
require information on entire plant communities, including
the understory (Dechant et al., 2024). Cluster analyses in-
cluding 12 traits with the highest rank informed by the Zhang
and Yan (2014) biome map showed high performance. This
map was created by a cluster analysis of bioclimatic data, and
the high agreement underscores the relation between climate,
traits, and biomes (van Bodegom et al., 2014). However, the
biome patterns on the Zhang and Yan (2014) map show sub-
stantial caveats. For example, the expansion of the central
African tropical forest is heavily underestimated and other
forests such as the southern African Miombo are not rep-
resented. Therefore, “tropical grassland” and “tropical Sa-
hel and semidesert grassland” expand from the Equator to
the north and south (following biome names used in Fischer
et al., 2022a).

The maximum κ value in the randomized sensitivity anal-
ysis was 0.64, indicating substantial agreement. However,
κ values higher than this maximum were not achieved. We
attribute this upper limit to the heterogeneity of trait data
available for different biomes, large differences in area cov-
ered by different biomes, and differences in the accuracy of
different traits by merging TRY and GBIF data. When calcu-
lating κ individually for different biomes, higher values were
possible. For example, in the analysis for the Nature Con-
servancy (2009) map, κ values for different biomes ranged
between 0.25 and 0.79 in the cluster analysis, and some of
the biomes with low data coverage (mangrove and flooded
grassland and savanna) had low κ values. The κ value for
the biome map with global coverage created by the SDMs
increased to 0.7 when considering all biomes and was maxi-
mized for tundra (κ = 0.84). The high performance for tundra
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Figure 4. Agreement between an observation-based biome map and a map derived from clustering. As an example, the cluster analysis
with 12 highly ranked traits of both non-woody and woody plants (see Fig. 3), informed by the Nature Conservancy (2009) biome map (see
Fig. S4), was used. The κ value for this model was 0.63. Publisher’s remark: please note that the above figure contains disputed territories.

Figure 5. Model performance (κ values) in different biomes selected by biome type. For this analysis, all biomes that contain the attributes
provided in the figure in their names were identified in the F31 biome maps. Then the κ value was calculated for each biome (represented by
the points in the figure).

is surprising, given that data coverage was low for this biome
type. This finding indicates that trait diversity in this biome
is lower than in other biomes and is captured by the trait data
used in our study.

4.3 Relation of biome attributes and traits

According to our analysis, different biomes can be distin-
guished across the F31 maps based on trait values and the

expression of biome-specific trait combinations. Our results
show co-variation in different traits across biomes in the trait
space. For example, tropical forests were characterized by
the tallest vegetation, low SLA, high leaf nitrogen content,
and deep roots. These traits represent the dominance of tall
trees with evergreen phenology (typically associated with
low SLA). Low SLA has been associated with conservative
leaf strategies (Díaz et al., 2016). Tall vegetation indicates
intense light competition in tropical forests. Deep roots can
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Figure 6. Principal component analysis of traits in climatic zones. For the analysis, all biome names in the F31 biome maps (Fischer
et al., 2022a) containing attributes defining the climatic zone were selected and mean traits were calculated. The PCA was calculated for
these trait means. Attributes are represented by different colors. Each point represents one biome type containing the attributes “boreal”,
“mediterranean”, “subtropical”, “temperate”, or “tropical” in one of the F31 biome maps. Results for other biome attributes are provided in
Figs. S14–S17 in the Supplement. Trait abbreviations are as follows: LC – leaf carbon, LNi – isotopic leaf nitrogen, SLA – specific leaf area,
LNa – leaf nitrogen per area, RD – rooting depth, CD – conduit density, H – height, LT – leaf thickness, LN – leaf nitrogen, SL – seed length,
WD – wood density, and LCN – leaf carbon-to-nitrogen ratio.

indicate drought avoidance (Oliveira et al., 2021) and rooting
niche separation between tall trees with deep roots and un-
derstory vegetation with shallow roots (Walter, 1971; Lud-
wig et al., 2004). In the tropics and subtropics, substantial
amounts of water may percolate into deeper soil layers and
enhance rooting-zone water storage (Stocker et al., 2023).
Deep roots ensure access to these water reservoirs. Deep
roots and height were correlated and had the highest loadings
on the same PCA axis because deep roots support the me-
chanic stability of tall trees. Shallow roots in boreal forests
indicate that those ecosystems are less limited by water or
nutrients and more by light (Jonard et al., 2022). However,
for other forest types, biome-specific trait means overlapped
such that the classification for these biomes was ambigu-
ous. These results suggest that the separation between differ-
ent forest types is essential for an accurate classification of
global biomes. To delineate biomes, we cannot rely on a few
traits but need to consider the co-variation in a multivariate
trait space and trait optimization towards multiple ecological
functions.

Our approach to analyzing biome-specific trait values by
selecting biomes across all F31 biome maps that share sim-
ilar attributes has caveats. Specifically, when selecting, for
example, all biomes that share the attribute “forest”, then all

forests from the boreal to the tropical zone are included. This
explains the large variation in traits within this biome in our
analysis and the large overlap of different biomes in the PCA.
Selecting another set of attributes such as the climatic zone or
selecting biomes based on multiple attributes such as “trop-
ical forest” or “boreal forest” allows better separation. For
example, it clearly showed higher conduit density in boreal
biomes than in tropical biomes. Despite this caveat, our ap-
proach allows for an integrated analysis of traits in multiple
biome maps without aggregating all biome maps into a con-
sensus map or reclassifying biomes into a lower number of
mega-biomes (Champreux et al., 2024). Such approaches are
often not objective because reclassification is not necessar-
ily unique and because reclassification removes information
from the biome maps.

4.4 Recommendations for trait-based biome
classification

We showed that using trait data for biome classification is
feasible but that several decisions regarding data and meth-
ods are necessary. These decisions are related to the trait data,
the traits included in the analysis, the biome map used to de-
velop a classification, and the method used for clustering.
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Figure 7. Global biomes derived from traits. Using species distribution models and bioclimatic data, biome patterns derived from the spatial
coverage of the trait data were extrapolated to the global scale. Here, results from trait cluster 1 and the Nature Conservancy (2009) biome map
were used. Biomes: 1, tropical subtropical moist broadleaf forest; 3, tropical subtropical grassland savanna and shrub; 4, tropical subtropical
dry broadleaf forest; 5, tropical subtropical coniferous forest; 6, flooded grassland and savanna; 7, desert and xeric shrub; 8, montane
grassland and shrub; 9, mediterranean forest woodland and scrub; 10, temperate broadleaf and mixed forest; 11, temperate grassland savanna
and shrub; 12, temperate conifer forest; 13, boreal forest/taiga; 14, tundra. Publisher’s remark: please note that the above figure contains
disputed territories.
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Multiple methods such as machine learning algorithms or
niche models considering bioclimatic variables have been ap-
plied to extrapolate traits from the site level to the global
scale. The resulting trait maps can differ substantially as
each data set is affected by different biases and uncertain-
ties (Dechant et al., 2024; Wolf et al., 2022; Schiller et al.,
2021). Accordingly, biome maps derived from different trait
maps can differ. We therefore recommend selecting trait data
with high accuracy for biome classification and developing
biome classification schemes for specific applications or re-
gions using available and appropriate trait data.

In this study, trait information from TRY was extrapolated
to larger areas by linking observed traits from TRY and ob-
served species distributions from GBIF. This method was
presented previously (Wolf et al., 2022; Schiller et al., 2021)
and showed unprecedented agreement with independent ob-
servational data on community-weighted traits (sPlot, Saba-
tini et al., 2021). The advantage of using these trait maps is
that they include gridded trait data for 33 different traits at a
much larger spatial scale than the original site data of these
traits in TRY (possibly aggregated to 0.5° resolution), and
all traits are available for the same spatial extent. Conduct-
ing our analyses with the original TRY site data, instead of
gap-filled TRY data, would require sites or grid cells where
all 33 traits are available. Further, TRY only represents trait
observations obtained from single plants, and these observa-
tions are known to be not representative of species distribu-
tions and plant communities and to have a large spatial bias
(Kattge et al., 2020). The trait maps obtained from coupling
TRY and GBIF represent mean trait values of entire plant
communities (Wolf et al., 2022) and mirror the abundances
of plant species in the communities.

Both the number of traits and the selection of traits in-
fluenced performance. Performance became saturated as the
number of traits increased. However, the selection of traits
matters, and including many unsuitable traits can result in
low performance. Our results suggest that traits in biome
classification should include leaf, stem, and root traits as well
as traits related to size to reflect different trade-off axes in the
trait space. Here, we identified wood density, rooting depth,
SLA, height, isotopic leaf nitrogen, and conduit density as
suitable traits. Ideally, the selected traits are only weakly cor-
related to avoid redundancy of information in the clustering.
However, focusing only on weakly correlated traits can lead
to poor performance if they do not reflect the global spectrum
of plant form and function (result not shown).

When using traits for biome classification, data–model
agreement was better when clustering was informed by
biome maps based on vegetation data and biogeographic
zonation compared to maps based on remote sensing data.
We therefore recommend using vegetation-based biome
maps in the context of trait-based biome classification, such
as Olson et al. (2001), Nature Conservancy (2009), or Diner-
stein et al. (2017).

Here, we used Gaussian mixture models for the cluster
analysis. Multiple alternative approaches are available, for
both supervised and unsupervised classification. A system-
atic assessment of alternative approaches has not been per-
formed but may be valuable to identify the most appropri-
ate method. Unsupervised classification can be used to create
novel biome maps that are only defined by trait information
and not by existing biome or land cover maps. Alternatively,
dimensionality reduction methods such as principal compo-
nent analysis or isometric feature mapping could be applied
to explore a trait-based, continuous representation of biome
patterns.

5 Conclusions

The crowd-sourced trait data utilized for the analysis were
spatially heterogeneous with large gaps in parts of the trop-
ics, subtropics, and high northern latitudes. Nonetheless, the
data were suitable for delimiting global biomes using cluster
analyses and for predicting global biome maps. This result
highlights the value of crowd-sourced trait and species distri-
bution data in the biogeography of biomes, despite the data
gaps. We argue that filling gaps in the trait data would not
only yield a more comprehensive understanding of the spec-
trum of plant form and function, but also allow for more ac-
curate biome classification. We also showed that increasing
the number of traits in the cluster analysis improved model
performance, highlighting the need to fill data gaps with re-
spect to traits available for specific species or sites. While we
assessed the mean trait values of different biomes, this study
focuses on methodological aspects. There is, however, large
potential to further analyze the trait data generated by com-
bining TRY and GBIF, for example to elucidate patterns of
functional-trait diversity and trait co-variation within biomes.
The trait data generated by combining TRY and GBIF data
include ranges of traits per grid cell and are suitable for such
studies. Finally, our results can inform the development of
dynamic vegetation models as they have shown which traits
are important for biome classification and which trait values
are characteristic of different biomes. While leaf economic
traits are already well captured in such models, we argue
that the representation of wood and root traits should be im-
proved.

Code and data availability. Code and data that support
the findings of this study are openly available: (1) trait
data, https://doi.org/10.5281/zenodo.10617814 (Kattenborn
et al., 2024); (2) bioclimatic data for species distribution
models, https://www.worldclim.org/data/worldclim21.html
(Fick and Hijmans, 2017); (3) Fischer et al. (2022a)
biome maps, https://doi.org/10.5061/dryad.hqbzkh1jm (Fis-
cher et al., 2022a); and (4) all R scripts required to con-
duct the analyses and generate plots available via Zenodo,
https://doi.org/10.5281/zenodo.10526277 (Scheiter et al., 2024b).
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