
Biogeosciences, 21, 5027–5043, 2024
https://doi.org/10.5194/bg-21-5027-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Distinct impacts of the El Niño–Southern Oscillation and Indian
Ocean Dipole on China’s gross primary production
Ran Yan1,2, Jun Wang1,2, Weimin Ju1,2, Xiuli Xing3, Miao Yu4, Meirong Wang4,5, Jingye Tan1,2, Xunmei Wang1,2,
Hengmao Wang1,2, and Fei Jiang1,2

1Frontiers Science Center for Critical Earth Material Cycling, International Institute for Earth System Science,
Nanjing University, Nanjing, Jiangsu 210023, China
2Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Key Laboratory for Land Satellite
Remote Sensing Applications of Ministry of Natural Resources, School of Geography and Ocean Science,
Nanjing University, Nanjing, Jiangsu 210023, China
3Department of Environmental Science and Engineering, Fudan University, No. 2005, Songhu Road,
Yangpu District, Shanghai 200438, China
4Joint Center for Data Assimilation Research and Applications/Key Laboratory of Meteorological Disaster, Ministry of
Education/Joint International Research Laboratory of Climate and Environment Change (ILCEC)/Collaborative Innovation
Center ON Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology,
Nanjing 210044, China
5Tibet field station for scientific observation and research on atmospheric water cycle in Mêdog/Xigazê and Mêdog National
Climate Observatory, Tibet Meteorological Service, Lhasa 850000, China

Correspondence: Jun Wang (wangjun@nju.edu.cn) and Weimin Ju (juweimin@nju.edu.cn)

Received: 26 April 2024 – Discussion started: 10 June 2024
Revised: 15 September 2024 – Accepted: 18 September 2024 – Published: 15 November 2024

Abstract. Gross primary production (GPP), a crucial com-
ponent in the terrestrial carbon cycle, is strongly influenced
by large-scale circulation patterns. This study explores the
influence of the El Niño–Southern Oscillation (ENSO) and
Indian Ocean Dipole (IOD) on China’s GPP, utilizing long-
term GPP data generated by the Boreal Ecosystem Produc-
tivity Simulator (BEPS). Partial correlation coefficients be-
tween GPP and ENSO reveal substantial negative associa-
tions in most parts of western and northern China during the
September–October–November (SON) period of ENSO de-
velopment. These correlations shift to strongly positive over
southern China in December–January–February (DJF) and
then weaken in March–April–May (MAM) in the following
year, eventually turning generally negative over southwestern
and northeastern China in June–July–August (JJA). In con-
trast, the relationship between GPP and IOD basically ex-
hibits opposite seasonal patterns. Composite analysis further
confirms these seasonal GPP anomalous patterns. Mechanis-
tically, these variations are predominantly controlled by soil
moisture during ENSO events (except MAM) and by tem-

perature during IOD events (except SON). Quantitatively,
China’s annual GPP demonstrates modest positive anoma-
lies in La Niña and negative IOD years, in contrast to mi-
nor negative anomalies in El Niño and positive IOD years.
This outcome is due to counterbalancing effects, with signif-
icantly larger GPP anomalies occurring in DJF and JJA. Ad-
ditionally, the relative changes in total GPP anomalies at the
provincial scale display an east–west pattern in annual vari-
ation, while the influence of IOD events on GPP presents an
opposing north–south pattern. We believe that this study can
significantly enhance our understanding of specific processes
by which large-scale circulation influences climate condi-
tions and, in turn, affects China’s GPP.

1 Introduction

Vegetation photosynthesis, a pivotal physiological process
affecting the terrestrial carbon cycle, predominantly governs
variations in the net biome productivity (NBP), surpassing
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the impact of total ecosystem respiration (Piao et al., 2020;
Wang et al., 2022, 2018). Gross primary production (GPP)
represents the total amount of carbon dioxide assimilated by
plants per unit time through the photosynthetic processes,
acting as a crucial carbon flux in mitigating anthropogenic
CO2 emissions (Gough, 2011; Houghton, 2007). However,
despite evident long-term increasing trends in GPP, primar-
ily attributed to CO2 fertilization (Ryu et al., 2019; Schimel
et al., 2015; Yang et al., 2022), it also shows regional and
global interannual variations. These variations are largely
linked to climate fluctuations driven by ocean–atmosphere
interactions and the teleconnections (Wang et al., 2021b;
Ying et al., 2022). To date, the impact of such teleconnec-
tions on China’s GPP remains insufficiently documented.

The El Niño–Southern Oscillation (ENSO) exerts a signif-
icant influence on the global terrestrial carbon cycle, which is
the dominant mode of interannual climate variability (Bauch,
2020; Kim et al., 2017; Wang et al., 2016, 2018; Zeng
et al., 2005). Within this context, GPP typically assumes
a leading role in shaping the response of terrestrial carbon
sinks to ENSO events (Ahlstrom et al., 2015; Wang et al.,
2018; Zhang et al., 2018). Global patterns reveal a nega-
tive GPP anomaly of approximately −1.08 PgCyr−1 during
El Niño years, contrasting a positive GPP anomaly of about
1.63 PgCyr−1 in La Niña years (Zhang et al., 2019). How-
ever, the impact of ENSO on GPP exhibits significant re-
gional differences. At present, while existing research studies
have predominantly focused on the response of tropical GPP
to ENSO, studies specific to China are relatively limited. Liu
et al. (2014) highlighted the effects of ENSO on crop growth
in North China, and Li et al. (2021) demonstrated that the re-
sponse of GPP to El Niño varies with the phase of the Pacific
Decadal Oscillation (PDO) in the eastern China.

ENSO is not the sole global climatic oscillation influenc-
ing the terrestrial carbon cycle. Another significant player is
the Indian Ocean Dipole (IOD), a tropical coupled ocean–
atmosphere mode (Saji et al., 1999), which also affects the
terrestrial carbon cycling by modulating the climate circu-
lations (Wang et al., 2022, 2020, 2021b; Yan et al., 2023).
Research indicates that IOD events can influence precipita-
tion in China, with effects lasting from the year of the event
through the subsequent summer (Zhang et al., 2022a). Zhang
et al. (2022b) also proved that extreme positive IOD (pIOD)
events in 2019 affected the precipitation in summer 2020 in
eastern China and proposed that the summer precipitation in
the following year was mainly affected by IOD in northern
China, while it was affected by ENSO in the Yangtze River
basin. Additionally, a prior study explored the influence of
the extreme pIOD event in 2019 on GPP anomalies across
the Indian Ocean rim countries. It suggested a conspicuous
negative GPP anomaly occurred in eastern China during the
September–October–November (SON) (Wang et al., 2021b).

The primary objective of this study was to comprehen-
sively assess the impact of ENSO and IOD events on GPP in
China. To this end, we initially employed partial correlation

analysis to elucidate the relationship between GPP and cli-
mate anomalies, specifically soil moisture and temperature,
induced by ENSO and IOD events across various seasons.
The analysis utilized historical long-term GPP data spanning
from 1981 to 2021, simulated by the Boreal Ecosystem Pro-
ductivity Simulator (BEPS) model. The aim was to get a pre-
liminary understanding of the influence exerted by ENSO
and IOD. Furthermore, composite analysis was adopted to il-
lustrate the actual responses during distinct events, including
individual ENSO and IOD occurrences. The ensuing discus-
sion will delve into the analysis results on national, regional,
and provincial scales.

2 Datasets and methods

2.1 Datasets used

The sea surface temperature (SST) dataset was derived from
the NOAA’s monthly Extended Reconstructed Sea Surface
Temperature version 5 (ERSSTv5) (Huang et al., 2017). It is
generated on a 2°× 2° grid, using statistical methods to en-
hance spatial completeness. Commencing from January 1854
to the present, the monthly SST data include anomalies com-
puted with respect to a 1971–2000 monthly climatology.

Meteorological data were adopted from ECMWF Re-
analysis v5 (ERA5)-Land monthly averaged data with
0.1°× 0.1° grids, including 2 m surface air temperature
(TAS) and volumetric soil moisture (SM) during the period
from 1981 to 2021 (Muñoz, 2019). ERA5-Land was created
by replaying the land component of the ECMWF ERA5 cli-
mate reanalysis at a higher resolution compared to ERA5.
The reanalysis combines model data with global observa-
tions into a consistent dataset based on the laws of physics.
The original soil moisture data were divided into four layers
based on different surface depths. These layers were depth-
weighted and then aggregated into the average soil moisture
to a depth of 289 cm (m3 m−3).

GPP spanning from 1981 to 2021 was simulated by
the BEPS model, featuring a horizontal resolution of
0.0727°× 0.0727°. The BEPS model, originally developed
for Canadian boreal ecosystems, has been reconstructed for
GPP simulations on the global scale (Chen et al., 1999; Chen
et al., 2012). BEPS is a process-based model driven by the
satellite-observed leaf area index (LAI) and foliage clump-
ing index (�), meteorological data, land cover types, soil
texture, and CO2 concentration to simulate the daily carbon
flux of terrestrial ecosystems (Chen et al., 2019; Liu et al.,
1997). The input data used to drive GPP in this study in-
clude the ERA5 meteorological data (Hersbach et al., 2023),
GLOBMAP LAI product (Liu et al., 2012), Land Cover Clas-
sification System (LCCS) generated by the Food and Agri-
culture Organization (FAO) of the United Nations (Friedl
and Sulla-Menashe, 2019), Harmonized World Soil Database
v1.2 from FAO (Fischer et al., 2008), and CO2 concentra-
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tion based on the Global Monitoring Laboratory from NASA
(Lan et al., 2022).

Notably, BEPS distinguishes itself from other models
through the organic combination of remote sensing data and
mechanistic modeling. It produces simulation datasets for
GPP, net primary productivity (NPP), and evapotranspira-
tion (ET). Key features of BEPS include the incorporation of
a sunlit–shaded leaf stratification strategy (Norman, 1982).
The model calculates canopy-level photosynthesis by sum-
ming the GPP of sunlit and shaded leaves (Chen et al., 1999).

GPP= AsunLAIsun+AshadeLAIshade, (1)

LAIsun = 2cosθ
[

1− exp
(
−

0.5�LAI
cosθ

)]
, (2)

LAIshade = 1−LAIsun, (3)

where Asun and Ashade represent the amount of photosynthe-
sis at per sunlit and shaded leaf, respectively; LAIsun and
LAIshade represent the canopy-level sunlit and shaded LAI,
respectively; � is the foliage clumping index indicating the
influence of foliage clustering on radiation transmission; and
θ is the solar zenith angle.

The accuracy of carbon flux products simulated by BEPS
has been validated in previous studies (Chen et al., 2019; He
et al., 2021). We also used the measured site data from Chi-
naFLUX (https://chinaflux.org/, last access: October 2022;
Yu et al., 2016) and the National Tibetan Plateau/Third Pole
Environment Data Center (Li et al., 2013) (Table S1 in the
Supplement) to assess the performance of BEPS-simulated
GPP (Fig. S1 in the Supplement). Our analysis reveals a high
consistency between simulated and observed GPP, with an
average R2 of 0.77 (p< 0.05) and an average root mean
square error (RMSE) of 1.70 gCm−2 d−1. In addition, the
global terrestrial GPP from FluxSat product version 2.2
(Joiner et al., 2018) was also used to assess the reliability of
BEPS GPP. FluxSat GPP is obtained by using the light-use
efficiency (LUE) framework based on Moderate Resolution
Imaging Spectroradiometer (MODIS) satellite data, elimi-
nating the dependency on other meteorological input data.
The comparison between BEPS GPP and FluxSat GPP data
revealed a robust agreement, with a correlation coefficient (r)
of 0.63 (p< 0.05) and a RMSE of 1.1 PgCyr−1 (Fig. S2).
These consistencies underscore the reliability of the BEPS
GPP data in capturing terrestrial carbon flux dynamics.

2.2 Anomaly calculation

To calculate anomalies, we first removed the long-term cli-
matology to eliminate the seasonal cycle. Subsequently, we
subtracted the 7-year running average for each grid to elim-
inate the decadal oscillation and long-term trends for all the
variables. Further, refinement involved smoothing the de-
rived GPP and climate anomalies using a 3-month running
average to remove the intra-seasonal variability. For con-
sistency, the BEPS-simulated GPP data were resampled to

0.1°× 0.1°. To align with this, non-vegetated areas in the cli-
mate data were masked according to the resampled BEPS
GPP, ensuring uniformity in spatial representation.

2.3 Definition of climate events

The Oceanic Niño Index (ONI) is used to define ENSO
events (Fig. 1a) and represents the 3-month running mean
SST anomaly in the Niño 3.4 region (5° N–5° S, 120–
170° W; https://www.cpc.ncep.noaa.gov/products/analysis_
monitoring/ensostuff/nino_regions.shtml, last access: Octo-
ber 2022). The positive phase of an ENSO event (El Niño) is
characterized by the ONI exceeding +0.5 K for five consec-
utive overlapping 3-month periods. Conversely, the negative
phase of an ENSO event (La Niña) occurs when the ONI is
below−0.5 K for five consecutive overlapping 3-month peri-
ods. The severity of the event can be further categorized into
weak (0.5–0.99), moderate (1.00–1.49), strong (1.50–1.99),
and extremely strong (≥ 2.00) based on the absolute value
of the ONI. To qualify for a specific rating, an event should
meet or exceed a threshold for at least three consecutive over-
lapping 3-month periods.

Moreover, the Dipole Mode Index (DMI) is employed to
identify IOD events (Saji et al., 1999). The DMI is calculated
from SST differences between the western equatorial Indian
Ocean (10° S–10° N, 50–70° E) and the southeastern equato-
rial Indian Ocean (10° S–0° N, 90–110° E) (Fig. 1b). Given
the short duration of IOD events with a tendency to peak
during SON, the standard deviation of SON DMI (0.52 K
from 1981 to 2021) is used as the criterion for identifying
IOD events. A positive phase IOD (pIOD) event is defined
when the absolute value of DMI is greater than or equal to
1 standard deviation (0.52 K) for three consecutive 3-month
periods. Additionally, a strong pIOD event is identified if the
DMI value exceeds 2 standard deviations (1.04 K).

2.4 Partial correlation analysis

To comprehensively assess the impacts of ENSO and IOD
on GPP, while accounting for the influence of other events,
partial correlation analysis (pcor) was employed, following
the previous studies (Saji and Yamagata, 2003; Wang et al.,
2021b). The definition of pcor for x and y, controlling for z,
is given by

pcoryx.z =
ryx − ryzrxz√

1− r2
yz

√
1− r2

xz

, (4)

where ryx is the correlation of the dependent variable y and
the explanatory variable x (e.g., DMI), and the same is true
for ryz and ryx . The two-tailed Student t test was used to
calculate the statistical significance of each pixel result:

t = pcoryx.z

√
n− 2− k

1− pcor2
yx.z

, (5)
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Figure 1. Time series of the Oceanic Niño Index (ONI) (a) and the Dipole Mode Index (DMI) (b) from 1980 to 2022. The positive phase
events (El Niño and positive Indian Ocean Dipole, pIOD) are filled in green, and the negative phase events (La Niña and negative IOD, nIOD)
are filled in yellow, and the events are also labeled with a two-digit year. The dashed green and dashed yellow lines represent the positive
and negative thresholds for the El Niño–Southern Oscillation (ENSO) and IOD, respectively. The gray background indicates years with the
simultaneous ENSO and IOD events.

where n and k are the number of samples and conditioned
variables, respectively.

2.5 Composite analysis

When enumerating the years of ENSO and IOD events,
we retained all the years of IOD events and ENSO events
above the moderate intensity. Individual events and com-
pound events were categorized and summarized in Table 1.
In this study, a compound event refers to the simultane-
ous occurrence of ENSO and IOD, primarily El Niño and
pIOD and La Niña and negative IOD (nIOD). IOD typically
peaked in September–October–November (SON, year 0),
while ENSO peaked in December(year 0)–January(year 1)–
February(year 1) (DJF), and the influence of the two events
could extend until the summer of the following year. There-
fore, we selected four seasons from SON to June–July–
August (JJA) in the following year for composite analysis in
this study. In addition, the year 1991 was excluded due to the
strong eruption of Mount Pinatubo, which had a large impact
on the global carbon cycle (Mercado et al., 2009).

Table 1. Occurrences of ENSO and IOD events from 1981 to 2021.

Events Years

El Niño 1982, 1986, 1987, 2002, 2009
La Niña 1984, 1988, 1999, 2007, 2011, 2020
pIOD 2019
nIOD 1992, 1996, 2016
El Niño and pIOD 1994,1997, 2015
El Niño and nIOD –
La Niña and pIOD –
La Niña and nIOD 1998, 2010

3 Results

3.1 Historical relationship between GPP and ENSO

We analyzed the pcor patterns between GPP and climate
anomalies across different events using long time series data
(Figs. 2 and 3). Following this, we calculated pattern cor-
relation coefficients between the GPP and climate pcor pat-

Biogeosciences, 21, 5027–5043, 2024 https://doi.org/10.5194/bg-21-5027-2024



R. Yan et al.: Distinct impacts of the El Niño–Southern Oscillation 5031

Figure 2. Spatial patterns of partial correlation coefficients (pcor) between ONI and gross primary productivity (GPP) (a–d), surface air
temperature (TAS) (e–h), and soil moisture (SM) (i–l) in different seasons, controlling for the effect of DMI. Hatched areas represent
significance at p ≤ 0.05 based on the two-tailed Student t test. (m–p) Heatmaps represent the relationships of the pcor patterns among GPP,
TAS, and SM, and bar charts illustrate the pattern correlations of these pcor values between GPP and TAS and SM on the national scale for
each season. We here use seasonal average temperature as a mask to exclude regions with temperatures below zero, thereby minimizing the
influence of phenology on GPP. Notably, asterisks (∗) in the bar charts denote significance at p< 0.05.

terns, aiming to investigate the varying impacts of key cli-
mate drivers (TAS and SM) on photosynthesis across differ-
ent seasons (Figs. 2m–p and 3m–p).

Figure 2 reveals notable seasonal variations in the pcor
patterns between GPP, related climate anomalies, and ONI
in December–January–February (DJF) when ENSO peaked,
controlling for the effect of DMI in September–October–
November (SON) when IOD peaked. During SON, signif-
icant negative pcor between GPP and ONI is observed in
regions including the Tibetan Plateau, southwestern China,
the Loess Plateau, and Liaoning province (Fig. 2a). Clearly,
this pattern aligns closely with the pcor pattern between soil
moisture and ONI (Fig. 2a and i). The pattern correlation
analysis between GPP and both TAS and SM underscores the
dominance of SM in influencing GPP anomalies, indicated
by a correlation coefficient of 0.31 (p< 0.05). This finding
suggests that the soil moisture deficit induced by El Niño
largely inhibits vegetation photosynthesis during this season
(Fig. 2m).

Along with the peak of ENSO events in DJF, the pcor pat-
tern between GPP and ONI exhibits a distinct shift from the
pattern in SON. Notably, DJF showcases significant positive
pcor values over large areas in southern China and weak posi-
tive pcor in North and Northeast China (Fig. 2b). During this
period, soil moisture still serves as a more influential fac-
tor in driving GPP changes, reflected in a nationwide pattern
correlation coefficient of 0.45 (p< 0.05) (Fig. 2n). Specifi-
cally, sufficient soil moisture during El Niño, coupled with
higher winter temperatures, contributes to a substantial en-
hancement in GPP across southern China. In contrast, the
impact is weaker in North and Northeast China due to the
vegetation being in the non-growing season and localized soil
water deficits (Fig. 2b, f, and j). In addition, GPP experiences
inhibition in some areas of southwestern China due to low
temperatures and soil drought.

Subsequently, the positive pcor of GPP decreases or
even turns slightly negative from DJF to March–April–May
(MAM) in southern China, primarily attributed to shifts in
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Figure 3. Same as Fig. 2 but for DMI, controlling for the effect of ONI.

temperature (Fig. 2c and g). On a nationwide scale, temper-
ature becomes the dominant factor in this period, but it ex-
hibits a negative correlation with GPP, with a spatial correla-
tion coefficient of −0.18 (p< 0.5). This negative correlation
is mainly due to negative GPP and positive temperature in the
southwest region and due to positive GPP and negative tem-
perature in the northern region (Fig. 2c and g). Specifically,
the negative pcor of GPP in southwest China is due to soil
moisture shortages (Fig. 2k). In the northern region, where
a large area of croplands exists (Fig. S11), human manage-
ment practices may have a greater impact on GPP, particu-
larly in the spring when the growing season begins. However,
these human management practices (e.g., irrigation, fertiliza-
tion, pesticide use) are not considered in the BEPS model,
which could introduce significant uncertainties in simulated
GPP over cropland areas. Additionally, in some grasslands
of northern Hebei and parts of neighboring Inner Mongolia,
GPP shows positive pcor during El Niño events, possibly due
to the strong legacy effects of climatic conditions in the DJF
period.

Moving into JJA, the pcor of GPP exhibits widespread
negative values again (Fig. 2d). In general, during El Niño,
increased soil moisture and lower temperatures greatly con-
tribute to enhanced GPP, while drier soil moisture and higher

temperatures inhibit the increase in GPP (Fig. 2p). Region-
ally, higher temperatures and lower soil moisture both con-
tribute to the negative GPP anomalies over southwestern
China. However, lower soil moisture predominantly curtails
GPP over the Tibetan Plateau, the Yellow River basin, and
northeastern Inner Mongolia. Overall, the correlation coeffi-
cients between GPP and TAS and SM in summer are compa-
rable, with soil moisture exhibiting a slightly higher effect,
represented by a correlation coefficient of 0.47 (p< 0.05),
compared to a correlation coefficient of−0.37 (p< 0.05) for
temperature.

3.2 Historical relationship between GPP and IOD

In comparison, the pcor patterns between GPP and DMI in
SON, controlling for the effect of ONI, are nearly oppo-
site to those between GPP and ONI (Figs. 2 and 3). In de-
tail, GPP demonstrates significant positive pcor values with
DMI in southwestern China and eastern Inner Mongolia but
displays significant negative pcor with DMI in southeastern
China during SON (Fig. 3a). In terms of climate drivers, dur-
ing the pIOD events, for instance, wetter soil and lower tem-
peratures both benefit the significant enhancement in GPP in
southwestern China, while higher temperatures largely con-
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Figure 4. Spatial distributions of seasonal composite GPP anomalies for ENSO events, (a–d) for El Niño and (e–h) for La Niña. The black
slashes indicate areas where El Niño events differ significantly from La Niña events (p ≤ 0.05) based on the Student two-sample t test. The
two-digit year in the first column denotes the years used for composite analysis. Additionally, China is divided into four regions: Northwest
China, the Tibetan Plateau, Northern China, and Southern China, as shown in panel (e), which is used in the following context.

tribute to the enhancement in GPP over eastern Inner Mongo-
lia. Conversely, GPP is largely inhibited by the dry conditions
in southeastern China (Fig. 3e and i). Overall, soil moisture
dominates the GPP anomaly in China, with a correlation co-
efficient of 0.33 (p< 0.05) (Fig. 3m).

In DJF, GPP exhibits widespread significant negative pcor
with DMI (Fig. 3b), primarily due to the widespread nega-
tive pcor of temperature, characterized by a correlation co-
efficient of 0.32 (p< 0.05) (Fig. 3f and n). Moving into
MAM, the significant negative pcor between GPP and DMI
carried on from those in DJF but shifts to weak positive
pcor in southeastern China, driven by the significant positive
pcor of temperature (Fig. 3c and g). However, the signifi-
cant negative pcor of soil moisture in the Jianghuai basin and
North China still negates the positive effect of temperature
(Fig. 3k). During this period, temperature remains the domi-
nant factor, with a nationwide pattern correlation coefficient
of 0.16 (p< 0.05) with GPP (Fig. 3o).

In JJA, the situation undergoes a change, showing the sig-
nificant positive pcor of GPP over southwestern, north, and
northeast China and the weak negative pcor over southeast-
ern China (Fig. 3d). In other words, lower temperatures and
gradually wetter soil are conducive to the increase in vege-
tation photosynthesis, but heat and dry conditions cause the
weak inhibition of photosynthesis in southeastern China dur-
ing the pIOD (Fig. 3p). However, unlike the ENSO event, the
role of temperature is slightly higher than that of SM in the
IOD event, and the correlations between GPP and TAS and
SM are −0.39 and 0.36 (p< 0.05), respectively.

3.3 GPP anomalies caused by specific ENSO and IOD
events

While we have elucidated the historical relationship between
GPP and ENSO and IOD events through partial correlation
coefficients and discussed the underlying climate drivers, we

here specifically selected actual events to conduct a compos-
ite analysis. This approach aims at further comprehensive un-
derstanding of the effects of ENSO and IOD events on GPP
variations in China.

3.3.1 ENSO-induced GPP anomalous patterns

The impacts of El Niño and La Niña events exhibit op-
posite influences on GPP with obvious seasonal variations
(Fig. 4). Specifically, during SON, GPP anomalies are rel-
atively weak, indicating some suppressions over southwest-
ern China and north China during El Niño events, primar-
ily attributed to dry conditions there (Figs. 4a and S4a). As
ENSO peaks in DJF, GPP is significantly strengthened dur-
ing El Niño events and suppressed during La Niña events,
especially over southern China (Fig. 4b and f), aligning well
with the patterns of pcor between GPP and ONI, controlling
for the effect of DMI (Fig. 2b). Concurrently, the widespread
higher temperatures and wetter soil moisture both contribute
to enhanced GPP over southern China during El Niño events
(Figs. S3b and S4b), while colder temperatures and drier
soil moisture lead to GPP suppression there during La Niña
(Figs. 2f and 3f). In MAM as ENSO weakens and vegeta-
tion starts to grow in the extratropics, the enhanced GPP
over southern China in DJF during El Niño events dimin-
ishes, even transitioning into a notable GPP reduction over
southwestern China, north China, and northeastern China
(Fig. 4c). This transition is caused by phenological and cli-
mate changes including colder temperatures and prolonged
dry conditions (Figs. S3c and S4c). The GPP pattern exhibits
the opposite transition in La Niña (Fig. 4g). Moving to JJA,
dry and hot conditions (Fig. S3d and S4d) lead to signifi-
cant negative GPP anomalies in southeastern and southwest-
ern China in El Niño (Fig. 4d), whereas cool and wet con-
ditions result in positive GPP anomalies in La Niña events
(Fig. 4h). Overall, GPP anomalies induced by ENSO events
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Figure 5. Similar to Fig. 4 but for spatial distributions of seasonal composite GPP anomalies for IOD events, (a–d) for pIOD and (e–h) for
nIOD. We did not conduct the significance test here owing to the limited samples.

in DJF and JJA are more pronounced than those in SON and
MAM, corresponding to the life cycle of event and vegetation
growth periods, respectively. Crucially, they demonstrate dis-
tinct GPP patterns, with significant enhancements in DJF and
reductions in JJA during El Niño events and reverse during
La Niña events, aligning well with the pcor pattern between
GPP and ONI, controlling for the effect of DMI (Fig. 4). In
addition, the effect of ENSO on vegetation in southern China
appears more substantial.

3.3.2 IOD-induced GPP anomalous patterns

During the period from 1981 to 2021, we only find one inde-
pendent but extreme pIOD event occurred in 2019 according
to our criterion (Table 1). This extreme pIOD event extended
from June to December, a longer duration compared to other
IOD events. Different from ENSO, IOD basically peaks in
SON. GPP anomalies induced by this extreme event align
closely with the long-term pcor patterns between GPP and
DMI, controlling for the effect of ONI (Fig. 3). Specifically,
significant reductions in GPP occur in southeastern China
in SON (Fig. 5a), predominantly due to heat stress and se-
vere drought conditions (Figs. S5a and S6a), consistent with
the findings revealed by Wang et al. (2021b). In DJF, the
seasonal legacy of vegetation state (Yan et al., 2023) and
prolonged droughts lead to the widespread GPP reductions
(Figs. 5b and S6b), outweighing the potential positive effect
of higher temperatures (Fig. S5b). Of course, the decline of
GPP in southwestern China appears linked to lower tempera-
tures (Figs. 5b and S5b). During MAM, the mitigation of soil
moisture deficit and favorable higher temperatures in south-
ern China facilitate a shift in GPP from decline to increase
(Fig. 5c). In the north, persistent drought conditions notwith-
standing (Fig. S6c), higher temperatures and the onset of the
growing season contribute to the enhanced GPP (Fig. 5c).
In JJA, increased precipitation over the Yangtze and Yellow
River basins (Zhang et al., 2022) alleviates the soil moisture
deficits (Fig. S6d). Coupled with the relatively lower temper-

atures, this leads to widespread GPP increases. Conversely,
GPP suppressions in provinces south of 25° N and around
the Bohai Sea are attributed to higher temperatures and soil
water deficits (Figs. 5d, S5d, and S6d).

In contrast to the intense 2019 pIOD event, our composite
analysis incorporates three weak nIOD events, resulting in
comparatively milder anomalies. In SON, different from the
pIOD event, negative GPP anomalies in nIOD mainly appear
in the provinces of Guizhou, Hunan, and Guangxi (Fig. 5e),
associated well with concurrent dry conditions (Fig. S6e).
In DJF, although the spatial pattern of soil moisture remains
largely consistent with SON (Fig. S6f), a shift from negative
to positive temperature anomalies mitigates the evident GPP
reductions (Fig. 5f). The ongoing soil wetting and the onset
of the growing season in the Northern Hemisphere in MAM
result in the increased GPP over the Yellow River basin and
southwestern China (Figs. 5g, S5g, and S6g). Subsequently,
in JJA, the combination of wetter soil and lower temperatures
facilitates vegetation photosynthesis in southern China, while
drier soil largely contributes to the reduction in GPP in north
and northeastern China (Figs. 5h, S5h, and S6h).

3.3.3 National and regional total GPP anomalies

We calculated the total GPP anomaly in China and various
geographic regions for each classified event on both seasonal
and annual scales (Fig. 6). Regionally, the geographical di-
visions include Northern China, Southern China, Northwest
China, and the Tibetan Plateau (Fig. 4e). Notably, the North-
ern China–Southern China boundary aligns closely with the
0° isotherm in January and the annual precipitation line of
800 mm. The division between the north and the northwest is
determined by the annual precipitation line of 400 mm, and
the Tibetan Plateau is segmented based on topographic fac-
tors.

In general, the GPP anomalies exhibit noticeable differ-
ences on the seasonal scale, while the total annual anomalies
do not show a significant magnitude due to the mutual off-
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Figure 6. The seasonal and annual mean anomaly of GPP in different classified events for China (a), for Northern China (b), for Southern
China (c), for Northwest China (d), and for the Tibetan Plateau (e). The error bars show the standard deviation of different events in the
composite analysis.

set of positive and negative anomalies in different seasons.
However, it is worth noting that our annual totals are calcu-
lated from SON in the developing year of the event to JJA in
the following year. This method deviates from the traditional
calendar year, and according to the conventional definition
of a year, the annual anomalies induced by these events can
indeed be substantial.

Specifically, taking a national perspective (Fig. 6a), GPP
anomalies during the El Niño and La Niña events exhibit op-
posite signs in DJF and JJA, with greater magnitudes dur-
ing these peak periods of the events and the most vigor-

ous growth period of vegetation, respectively. In terms of
the development process of the event, the annual anomaly
of GPP is negative during El Niño, with a magnitude of
−0.04± 0.19 PgCyr−1, but positive during La Niña events,
with a magnitude of 0.01± 0.37 PgCyr−1. The asymmetry
of the positive and negative phases of IOD is also evident in
the total anomaly. For the pIOD event in 2019, GPP shows
strong negative anomalies with values of −0.41 PgCyr−1 in
SON and −0.75 PgCyr−1 in DJF. Conversely, it exhibits a
marked positive anomaly in the following JJA, with a value
of 0.85 PgCyr−1. The annual total of the GPP anomaly is
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opposite for pIOD and nIOD events, showing −0.10 and
0.01± 0.33 PgCyr−1, respectively. Moreover, a large stan-
dard deviation indicated that there are large uncertainties in
the impact of different events, and each event has its unique-
ness (Capotondi et al., 2015).

Additionally, the variation of the GPP anomaly in each re-
gion is basically consistent with that at the national scale,
especially in the Southern China region. But regional dif-
ferences indeed exist in the total amount of GPP anomalies,
demonstrating the difference in the impact of events on dif-
ferent regions’ GPP. Taking the 2019 extreme pIOD event as
an example, the GPP showed a significant negative anomaly
in the Southern China region during SON (Fig. 6c), resulting
in negative anomalies in GPP at the national scale (Fig. 6a)
but weak positive anomalies in the Northern China and Ti-
betan Plateau (TP) regions (Fig. 6b and e). Then, the GPP
anomaly was close to zero in the Northern China and South-
ern China regions in MAM (Fig. 6b and c), while it was still
a significant negative anomaly in the Northwest China and
TP regions (Fig. 6d and e). Moreover, the negative annual
GPP anomalies in the Southern China and Northwest China
regions offset the positive anomalies of the TP and Northern
China regions, resulting in a negative annual GPP anomaly
at the national scale for this event.

In terms of the magnitude of GPP anomalies, they are
more pronounced in the Northern China and Southern China
regions, characterized by more lush vegetation, mostly less
than 0.5 PgCyr−1. Meanwhile, GPP anomalies are relatively
weaker in the Northwest China and TP regions, primarily
covered by grassland, generally less than 0.1 PgCyr−1. Fur-
ther, we calculate the contributions of different regions to
the national total GPP anomaly in each event (Table S3),
referencing an index described in the article by Ahlstrom
et al. (2015), as detailed in the supplementary method. Over-
all, the GPP anomaly in the Southern China region domi-
nates the national GPP variation, contributing approximately
68 % to ENSO events and 46 % to IOD events, respectively.
The Northern China GPP anomaly contributes approximately
28 % to the national GPP variation in ENSO events and 39 %
in IOD events. In addition, the contribution of GPP anomaly
in the Northwest China and TP regions to the national GPP
variation is within 10 %.

3.3.4 Relative changes in total GPP anomalies at
provincial scale

We presented the spatial patterns of mean GPP anomalies
from SON in the developing year to JJA in the decaying year
(Fig. S7) and further calculated provincial total GPP anoma-
lies (Fig. S8 and Table S3). Provinces with more extensive
forest coverage such as Yunnan, central provinces housing
the Qinling Mountains, and northeast provinces where the
Greater and Lesser Khingan Mountains are situated exhibit
relatively larger provincial GPP anomalies. However, differ-
ences are apparent among different events (Fig. S8). Con-

sidering differences in area and vegetation coverage across
provinces, our focus centers on the relative change of GPP
anomalies (Fig. 7). It is important to note that, due to dif-
ferent years used in composite analysis, our quantitative
comparisons are limited to the same event within different
provinces, while qualitative descriptions are extended to dif-
ferent events.

El Niño events generally induce substantial GPP changes
in two main regions with a relative change of over 10 %
(Fig. 7a). One region encompasses the northern coastal
provinces, including Tianjin, Hebei, Shandong, and Jiangsu,
while the other is situated in the western part, including Xin-
jiang, Tibet, and Yunnan provinces. Yunnan, rich in forest
resources, bears the brunt of El Niño’s impact, exhibiting a
total negative GPP anomaly of −22.55 TgCyr−1 (Table S4)
and a relative change of approximately 16 %. Despite com-
parable relative changes in GPP for other provinces, their
GPP anomalies are relatively smaller, within −5 TgCyr−1.
Notably, Xinjiang, characterized by a fragile forest steppe
in the Altai and Tianshan Mountains regions, consistently
demonstrates substantial relative changes in GPP during
both ENSO and other events. Quantitatively, during the
El Niño episode, Xinjiang witnesses a remarkable 24 % rela-
tive change in GPP, accompanied by a positive GPP anomaly
of −3.82 TgCyr−1. In contrast, during the La Niña episode,
provinces with notable relative changes are mainly concen-
trated in the northern regions, such as Xinjiang, Inner Mon-
golia, Ningxia, Shanxi, and Liaoning provinces (Fig. 7b).
In addition, although the influence of ENSO on GPP in the
southern China is significant (Fig. 4), the total relative change
through the year remains small due to the cancellation of pos-
itive and negative anomalies in different seasons.

In the pIOD classification, only the 2019 extreme event is
considered, resulting in the relative change in GPP anomalies
exceeding 10 % in approximately half of the provinces. No-
tably, Jiangxi, Fujian, Guangxi, Guangdong, and Hainan ex-
perience reductions of more than 25 % in GPP, with Jiangxi
exhibiting the largest GPP anomaly of −31.50 TgCyr−1,
Conversely, Shandong, Shanxi, and Henan witness an in-
crease of over 25 % in GPP (Fig. 7c). During nIOD
events, northern provinces generally exhibit negative relative
changes, while southern provinces display positive relative
changes.

In summary, the relative changes in total GPP anomalies
at the provincial scale exhibit an east–west pattern in annual
variation. Meanwhile, the influence of IOD events on GPP
presents an opposing north–south pattern.
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Figure 7. Spatial distributions of relative changes of total composite anomalies of GPP at the provincial scale for different classified events.

Figure 8. Spatial distributions of seasonal composite GPP anomalies for compound events, (a–d) for El Niño and pIOD events and (e–h) for
La Niña and nIOD events. The two-digit year in the first column denotes the years used for composite analysis.

4 Discussion

4.1 The effect of compound ENSO and IOD events on
China’s GPP

Indeed, despite IOD events being generally considered an in-
dependent coupled ocean–atmosphere interaction (Saji et al.,

1999), historical IOD events can occur in conjunction with
ENSO (Ham et al., 2017; Yang et al., 2015). These combined
phenomena are most notably represented by El Niño and
pIOD and La Niña and nIOD events. Williams and Hanan
(2011) researched the interactive effects of ENSO and IOD
on African GPP, relying on an offline terrestrial biosphere
model simulation. Their findings suggested that IOD could
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cause obvious anomalous GPP over much of Africa, capa-
ble of suppressing or even reversing ENSO signals in GPP
anomalies. In addition, Yan et al. (2023) explored the inter-
active effects of ENSO and IOD on seasonal anomalies of
tropical net land carbon flux using the TRENDYv9 multi-
model simulations, revealing diverse effects in different sub-
continents and seasons. We explore the anomalies of GPP in
compound events based on composite analysis (Fig. 8), and
the spatial patterns of soil moisture and temperature anoma-
lies are shown in the appendix (Figs. S9 and S10).

The spatial patterns of the GPP anomalies during con-
current ENSO and IOD events differ from those in single
events, although some similarities are evident. We observed
that GPP anomalies during El Niño and pIOD events are gen-
erally opposite to those during La Niña and nIOD events.
Here, we focus on the impacts of El Niño and pIOD events.
In El Niño and pIOD events, GPP anomalies exhibit a general
opposition, with enhanced vegetation photosynthesis in the
southern regions and inhibited vegetation photosynthesis in
the northern regions during SON. During El Niño and pIOD
events, photosynthesis generally increased in the southern re-
gions and decreased in the northern regions during SON, in-
dicating opposing GPP anomalies across these areas. This
spatial characteristic of GPP anomalies bears some resem-
blance to that induced by El Niño alone (Figs. 4a and 8a).
Weak GPP anomalies are generally observed in DJF, with
noticeable negative GPP anomalies in Guizhou and Hunan
and some positive GPP anomalies in regions south of 25° N
(Fig. 8b). Notably, during DJF, while significant positive
GPP anomalies occur in El Niño events (Fig. 4b), simulta-
neous pIOD events induce significant negative GPP anoma-
lies (Fig. 5b). When both events coincide, their impacts seem
to largely counterbalance each other, resulting in a more neu-
tral GPP anomaly. In MAM, GPP increases in northern China
(Fig. 8c). Subsequently, in JJA, vegetation photosynthesis ex-
periences a significant increase in the northern and Yunnan
provinces (Fig. 8d).

It is worth noting that the impacts of compound events
on China’s GPP may not follow a straightforward linear su-
perposition of the effects of two individual events. While
their effects are nearly opposite when occurring separately,
the positive and negative effects on GPP may not simply
cancel each other out when they coincide. This complex-
ity arises from the simultaneous occurrence of two tropical
air–sea interaction modes, leading to intricate effects on mid-
latitude circulations. Given the limited number of compound
events, further exploration is necessary to unravel the effects
of ENSO and IOD on GPP in China.

4.2 Modulation of large-scale circulations on China’s
GPP

China’s GPP is intricately influenced by atmospheric circula-
tions and sea surface temperature (Li et al., 2021; Ying et al.,
2022). Ying et al. (2022) showed significant correlations be-

tween seasonal GPP variation in China and climate phenom-
ena such as ENSO, Pacific Decadal Oscillation (PDO), and
Arctic Oscillation (AO), based on the residual principal com-
ponent analysis. Their research indicated that these identified
SST and circulation factors could account for 13 %, 23 %,
and 19 % of the seasonal GPP variations in spring, summer,
and autumn, respectively. And Li et al. (2021) proved that
the GPP response to El Niño varied with PDO phases during
the growing seasons of typical El Niño years. Although both
studies emphasized the impact of ENSO on China’s GPP and
explored the roles of PDO and AO, the IOD was notably ab-
sent from their analyses. Contrastingly, our study sheds light
on the significant influence of the extreme positive phase of
IOD in 2019, showing a substantial negative GPP anomaly
in southeastern China during SON, aligning with findings
by Wang et al. (2021b). Moreover, the integration of partial
correlation and composite analysis in our study elucidates
the considerable impact of IOD on China’s GPP within this
context. Importantly, our research underscores the temporal
and spatial variability in the effects of IOD and ENSO on
GPP across different seasons and regions. This complexity
in ocean–atmosphere teleconnections implies that other cli-
mate oscillations, such as Polar/Eurasia and Atlantic Multi-
decadal Oscillation (AMO), might also contribute to influ-
encing China’s GPP (Zhu et al., 2017).

4.3 Uncertainties in BEPS simulations

The simulation of China’s GPP by BEPS is subject to sev-
eral sources of uncertainty inherent in the model’s structure,
parameterizations, processes, and input data (Chen et al.,
2012, 2017; He et al., 2021a; Liu et al., 2018; Wang et al.,
2021a). The leaf area index (LAI), a crucial input for the
BEPS model, is derived from global remote sensing data
that inherently possess uncertainties in spatial distribution
and trend changes. Previous studies have highlighted signif-
icant uncertainties in simulating the carbon budget of global
terrestrial ecosystems when employing different LAI remote
sensing data (Chen et al., 2019; Liu et al., 2018). The foliage
clumping index, which is used to separate sunlit and shaded
LAI, can also cause some uncertainties in simulating GPP,
because the current version of BEPS used the time-invariant
satellite-derived clumping index (Chen et al., 2012). Biases
in meteorological drivers, such as precipitation, can further
result in considerable uncertainties in simulating the terres-
trial carbon cycle. The choice of precipitation products, for
instance, has been shown to yield considerable differences in
simulated net land–atmosphere carbon flux (M. Wang et al.,
2021). Moreover, the BEPS model, like other terrestrial bio-
sphere models, lacks consideration for vegetation adaptabil-
ity to rising CO2 concentration, potentially leading to an
overestimation of the fertilization effect on GPP. In addition,
the accuracy of simulations over agricultural areas is com-
promised in BEPS, as it only considers crops with a C3 pho-
tosynthetic pathway and overlooks C4 crops (He et al., 2017;
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He et al., 2021b; Ju et al., 2006). Although BEPS-simulated
GPP demonstrates relatively high consistency with the mea-
sured GPP of Yingke station (CRO), located in the north-
west of China, its accuracy lacks validation over the exten-
sive farmlands in north and northeastern China where vari-
ous crops are grown (Fig. S11). Agricultural operations, par-
ticularly irrigation, which can significantly impact GPP, are
not considered in BEPS. He et al. (2021a) revealed extensive
wetting signals over croplands in arid and semi-arid areas
which exerted strong impacts on GPP and evapotranspira-
tion simulations in BEPS after assimilating the Soil Mois-
ture Active Passive (SMAP) soil moisture product. Further-
more, photosynthetic key parameters, such as carboxylation
capacity at 25 °C (Vcmax,25), can largely determine the per-
formance in simulating GPP. After assimilating the solar-
induced chlorophyll fluorescence (SIF) from the Orbiting
Carbon Observatory-2 (OCO-2) satellite to optimize Vcmax,25
of different plant functional types (PFTs) in BEPS, previ-
ous studies suggested the improvements in simulating GPP
at regional and global scales to some extent (He et al., 2019;
Wang et al., 2021a).

4.4 Limitations and future work

While the seasonal legacy effects of climate on subsequent
vegetation have been widely confirmed (Bastos et al., 2020;
Bastos et al., 2021), they were not fully accounted for in
this study. During ENSO and IOD events, temperature and
soil moisture vary with seasons, resulting in diverse condi-
tions such as high temperature and drought, high temper-
ature and wet, low temperature and drought, and low tem-
perature and wet across different regions and seasons. Vege-
tation does not immediately respond to changes in climatic
condition changes due to its environmental resistance and
self-regulation. These legacy effects are complex and vary
by region as ENSO or IOD events progress through different
seasons.

Spring serves as a transitional period between the peak
of the climatic event and the peak of the growing season,
making it challenging to fully explain the spatial patterns of
GPP anomalies in parts of northern China based on tempera-
ture and soil moisture. Higher temperatures during DJF in
El Niño events (Fig. 2f) can advance the growing season,
subsequently impacting vegetation in the following spring.
Sanders-DeMott et al. (2020) have proved that a warm win-
ter can enhance the photosynthetic capacity of vegetation in
the subsequent spring. Additionally, Yan et al. (2023) quan-
tified the influence of the preceding and contemporaneous
climatic conditions on net ecosystem production (NEP) dur-
ing the 1997/98 El Niño and pIOD compound event, showing
that legacy effects can counteract or even reverse the effects
of contemporaneous climatic conditions.

Additionally, temperature and water (precipitation or soil
moisture) have long been regarded as the main climate fac-
tors driving interannual fluctuations of GPP or NEP (Zeng

et al., 2005; Piao et al., 2013; Ahlstrom et al., 2015; Wang
et al., 2016; Jung et al., 2017; Humphrey et al., 2018). How-
ever, other factors, such as vapor pressure deficit (VPD) and
radiation, also play important roles. This may explain the
occasional mismatch between GPP patterns and TAS/SM in
certain regions in Figs. 2 and 3. Overall, although the dom-
inant driving factors vary seasonally, TAS and SM capture
GPP variations more effectively on a national scale.

Finally, it is worth noting that climate factors often inter-
act closely with one another. For example, soil moisture can
influence changes in surface air temperature, and vice versa.
As a result, in addition to direct effects, climate drivers may
also impact vegetation through indirect pathways. Humphrey
et al. (2021) discussed the direct and indirect effects of
soil moisture on variations in terrestrial interannual carbon
sinks – specifically, through its influence on temperature and
VPD – using simulations from four Earth system models.
This area of interaction warrants further investigation in fu-
ture research.

5 Conclusion

In this paper, we used partial correlation coefficients and
composite analysis to investigate the impacts of ENSO and
IOD events on China’s GPP during 1981–2021. The partial
correlation results reveal that the effects of ENSO and IOD
on GPP and related climate in China exhibit distinct sea-
sonal variations and are basically opposite. Specifically, dur-
ing SON, significant negative pcor between GPP and ENSO
is observed over the Tibetan Plateau, southwestern China, the
Loess Plateau, and Liaoning. In DJF, strongly positive pcor
occurs over southern China, weakening in the subsequent
MAM, albeit with some enhancements in northern Hebei
and neighboring Inner Mongolia. The pcor then turns gen-
erally negative in JJA. In contrast, significant positive pcor
between GPP and IOD is noted in southwestern and northeast
China during SON. Subsequently, widespread negative pcor
appears during DJF, persisting significantly in most western
and northern regions during MAM. In JJA, the pcor becomes
significantly positive in southwestern, north, and northeast
China. Moreover, the correlation coefficients between GPP
and climate show that GPP anomalies are primarily domi-
nated by SM during ENSO events except for MAM, while
temperature generally plays a more important role during
IOD events except for SON.

The composite analysis results validate the patterns of
GPP anomalies observed in the partial correlation. Gener-
ally, China’s annual total GPP demonstrates modest pos-
itive anomalies in La Niña and nIOD years, contrasting
with minor negative anomalies in El Niño and pIOD years.
This results from the counterbalancing effects, with signifi-
cantly greater GPP anomalous magnitudes in DJF and JJA.
Regionally, GPP anomalies fluctuate more in the Southern
China and Northern China regions. The GPP anomaly in the
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Southern China region dominates the national GPP varia-
tion, with the contribution of 68 % to ENSO events and 46 %
to IOD events, respectively. On the provincial scale, west-
ern and northern provinces experience larger relative annual
variations during ENSO events, with magnitudes exceed-
ing 10 %, exhibiting a general east–west pattern. Conversely,
provinces in southern and northern China witness larger rela-
tive changes during IOD events, showing an opposing north–
south pattern. For instance, the 2019 extreme pIOD led to rel-
ative changes of over 25 % in certain provinces in the south
and north.
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