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Abstract. Mapping in situ eddy covariance measurements
of terrestrial land–atmosphere fluxes to the globe is a key
method for diagnosing the Earth system from a data-driven
perspective. We describe the first global products (called
X-BASE) from a newly implemented upscaling framework,
FLUXCOM-X, representing an advancement from the previ-
ous generation of FLUXCOM products in terms of flexibility
and technical capabilities. The X-BASE products are com-
prised of estimates of CO2 net ecosystem exchange (NEE),
gross primary productivity (GPP), evapotranspiration (ET),
and for the first time a novel, fully data-driven global tran-
spiration product (ETT), at high spatial (0.05°) and tempo-
ral (hourly) resolution. X-BASE estimates the global NEE
at −5.75± 0.33 Pg C yr−1 for the period 2001–2020, show-
ing a much higher consistency with independent atmospheric
carbon cycle constraints compared to the previous versions
of FLUXCOM. The improvement of global NEE was likely
only possible thanks to the international effort to increase the
precision and consistency of eddy covariance collection and
processing pipelines, as well as to the extension of the mea-
surements to more site years resulting in a wider coverage of
bioclimatic conditions. However, X-BASE global net ecosys-
tem exchange shows a very low interannual variability, which
is common to state-of-the-art data-driven flux products and
remains a scientific challenge. With 125± 2.1 Pg C yr−1 for
the same period, X-BASE GPP is slightly higher than pre-
vious FLUXCOM estimates, mostly in temperate and bo-
real areas. X-BASE evapotranspiration amounts to 74.7×
103
± 0.9×103 km3 globally for the years 2001–2020 but ex-

ceeds precipitation in many dry areas, likely indicating over-
estimation in these regions. On average 57 % of evapotran-
spiration is estimated to be transpiration, in good agreement
with isotope-based approaches, but higher than estimates
from many land surface models. Despite considerable im-
provements to the previous upscaling products, many further

opportunities for development exist. Pathways of exploration
include methodological choices in the selection and process-
ing of eddy covariance and satellite observations, their inges-
tion into the framework, and the configuration of machine
learning methods. For this, the new FLUXCOM-X frame-
work was specifically designed to have the necessary flexi-
bility to experiment, diagnose, and converge to more accurate
global flux estimates.

1 Introduction

Energy, water, and carbon exchange between terrestrial sur-
faces and the atmosphere are key components of the Earth
system and impact ecosystems, ecosystem services, weather,
climate, and water availability. The exchange (or flux) can
be directly observed using eddy covariance (EC) measure-
ment systems (Baldocchi, 2019), which are installed on tow-
ers overlooking the ecosystem of interest. The EC stations
typically represent an area of a few hundred square meters to
a square kilometer. One key advantage of the EC methodol-
ogy is the ability to provide near-continuous measurements
with some records now exceeding 20 years (Pastorello et al.,
2020), allowing for examination of flux variations from the
order of 30 min to decades. EC systems also provide a unique
perspective on the magnitude, temporal variability, and envi-
ronmental sensitivity of ecosystem CO2 uptake, water use,
and local climate regulation (Baldocchi, 2019; Musavi et al.,
2017; Bao et al., 2022). However, while many of the most
pressing scientific knowledge gaps surrounding the delicate
land carbon balance and the water cycle require spatially
and temporally resolved flux patterns at continental to global
scales, EC observations are confined to individual locations
in space and limited periods in time (Kumar et al., 2016; Pa-
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pale et al., 2015). Methodologies to transcend the gap be-
tween local and global scales are needed to ultimately sup-
port societally relevant activities of building greenhouse gas
monitoring systems, taking informed climate and land man-
agement actions, and verifying the effectiveness of mitiga-
tion strategies (Baldocchi and Penuelas, 2019; Bonan et al.,
2011; Novick et al., 2022).

Coordinated and consolidated data collections from EC
networks are invaluable for the mapping of in situ fluxes to
regional and global scales. For example, EC measurements
aid both the parameterization (Huang et al., 2021) and the
validation (Turner et al., 2006; Heinsch et al., 2006) of mech-
anistic models of ecosystem productivity and land surface
processes. The latter generate widely used reference data sets
for terrestrial carbon cycle applications (Zhao and Running,
2010; Ukkola et al., 2022). A complementary approach to
modeling terrestrial fluxes at continental and global scales
is of empirical nature and links observations of explanatory
variables at the EC stations, particularly meteorological and
remote sensing data, to the EC fluxes via machine learning
models. This upscaling concept does not prescribe any mech-
anistic formulations and assumes that the EC observations
cover all complexities of ecosystem functioning. Based on a
trained machine learning model and globally gridded input
data of the explanatory variables, EC fluxes can be mapped
to the global scale.

First implementations of this flux upscaling concept
emerged in the early 2000s. They focused on net ecosys-
tem exchange (NEE) of CO2 and utilized the growing EC
networks in Europe (Papale and Valentini, 2003) and North
America (Xiao et al., 2008). The release of the FLUXNET
La Thuile Synthesis Dataset of harmonized EC data in 2007,
as well as methodological improvements in the training of
the machine learning models (Jung et al., 2009), led to
the first global products of terrestrial CO2 and water fluxes
at a monthly time step and in 0.5° grids in 2011 (Jung
et al., 2011). While good agreement of flux estimates de-
rived from complementary process-based models with the
upscaled global gross photosynthetic CO2 uptake (gross pri-
mary productivity, GPP) and energy fluxes demonstrated
the potential of the approach, important inconsistencies re-
mained, in particular regarding the globally integrated NEE
and its year-to-year variability (Jung et al., 2020, 2019, 2011;
Zscheischler et al., 2017). A critical component of data-
driven methods, including the flux upscaling methodolo-
gies described here, is understanding the related uncertain-
ties. The multistage process of going from the actual mea-
sured values of high-frequency (10–20 Hz) measurements
of three-dimensional wind components, temperature, water
vapor, and CO2 concentration to the standard half-hourly,
gap-filled, long-term data records from synthesis data sets
such as FLUXNET has multiple associated potential biases
and uncertainties. The well-documented issues of gap fill-
ing (Vekuri et al., 2023; Soloway et al., 2017; Papale et al.,
2006), instrumentation errors (Zhang et al., 2023; Fratini

et al., 2014; Vitale et al., 2020; Rannik et al., 2016), and
energy balance non-closure (Mauder et al., 2020; Leuning
et al., 2012; Stoy et al., 2013; McGloin et al., 2018; Franssen
et al., 2010) will likely have an effect on the resulting gridded
global data sets.

In an effort to better understand the uncertainties associ-
ated with mapping of EC fluxes to larger scales, the FLUX-
COM intercomparison initiative built an ensemble of flux es-
timates as a type of factorial experiment (Tramontana et al.,
2016; Jung et al., 2019, 2020). The ensemble consisted of
multiple machine learning algorithms, meteorological forc-
ing data, and combinations of predictor variables, resulting in
120 individual upscaled estimates per flux. These were sum-
marized in two overall ensemble configurations, which dif-
fered in the set of predictors and spatial–temporal resolution.
Apart from creating a large ensemble, the FLUXCOM eval-
uation included a consistent site-level cross-validation anal-
ysis as well as cross-consistency checks with terrestrial flux
estimates from independent approaches, such as complemen-
tary modeling concepts or observational surrogates. From a
methodological point of view, the key lessons learned from
FLUXCOM were the following:

1. The overall approach seems to be primarily limited by
the input information given to the machine learning al-
gorithms rather than by the ability of the algorithm to
extract the information.

2. The largest qualitative differences among flux products
were related to the set of the predictor variables rather
than to the choice of the machine learning method or
meteorological forcing.

3. The cross-consistency checks with global independent
data are essential for supplementing site-level cross-
validation.

4. The largest qualitative discrepancy with independent
data was a very high (strongly negative) tropical NEE
that was shared among all ensemble members.

In addition to the systematic intercomparisons in FLUX-
COM, the empirical upscaling concept has been imple-
mented for a series of regional- and global-scale applications,
each of them adopting disparate and individual methodolog-
ical choices (e.g., Ichii et al., 2017; Yao et al., 2018; Joiner
and Yoshida, 2020; Virkkala et al., 2021; Dannenberg et al.,
2023; Burton et al., 2023; Zhu et al., 2024). These poten-
tially important choices relate to data treatment (quality con-
trol, gap filling, processing pathways), ingestion (sampling,
as well as matching EC and space-borne observations), and
methodological configurations (machine learning methods
and their training configuration, choice of predictor vari-
ables, resolution). The disparity between the setups and im-
plementations of the empirical upscaling approach impedes
any direct comparisons among products and valid conclu-
sions as to where potential differences originate. Hence, flex-
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ibility to explore the large methodological space, as well as
the ability to diagnose and evaluate global products in par-
allel to site-level cross-validation, is required to understand
the importance of individual methodological choices and to
make progress in empirical upscaling of EC fluxes.

We are developing a modeling framework that allows ex-
perimenting with many of these methodological choices.
We coin this extended upscaling environment FLUXCOM-
X. Compared to the FLUXCOM intercomparison initiative
and the products produced therein, it follows the same over-
all principles. The key innovation of FLUXCOM-X is that
it represents a flexibly adjustable upscaling environment
to systematically explore different methodological avenues.
Lessons learned from FLUXCOM and other upscaling exer-
cises further imply striving for the enhancement of the in-
formation content of the training data with aspects related to
coverage and quality of EC measurements as well as comple-
mentarity, completeness, and quality of predictor variables.
The flexibility of the way FLUXCOM-X is implemented will
considerably reduce the latency with which innovations in
the related fields of machine learning and space-based Earth
observations as well as novel EC data can find their way to
empirical flux upscaling. This in turn allows faster progress
towards more accurate and fit-for-purpose global biogenic
flux estimates. Here, we introduce and evaluate the initial
“basic” set of products from this flexible framework, which
we refer to as FLUXCOM-X-BASE products (or X-BASE
for short; see Appendix A for an overview on the naming
conventions).

X-BASE products were comparably generated to the orig-
inal FLUXCOM ensemble using qualitatively similar pre-
dictor variables, i.e., remotely sensed vegetation indices and
land surface temperatures from the Moderate Resolution
Imaging Spectroradiometer (MODIS) along with meteoro-
logical variables. In contrast to FLUXCOM, the remotely
sensed and the meteorological predictors are combined in the
X-BASE products, and the subdaily variability is resolved.
We furthermore made efforts to provide more and improved
information to the machine learning models by enhancing
coverage and quality of the training data and by further devel-
oping the processing of satellite predictor variables (Walther
and Besnard et al., 2022). In this article, we show results
for X-BASE NEE, GPP, evapotranspiration (ET), and for the
first time transpiration (ETT), for the period 2001–2020 at
0.05° spatial and hourly temporal resolution. We focus here
on the evaluation and cross-consistency checks of X-BASE
with previous FLUXCOM products and independent data
streams. Our specific objectives are the following:

1. to describe the production of X-BASE products

2. to evaluate the X-BASE setup using site-level cross-
validation

3. to assess qualitative differences of global patterns com-
pared to previous FLUXCOM products with reference
to independent flux estimates where possible

4. to synthesize lessons learned from this basic exercise to
guide future FLUXCOM-X developments.

X-BASE products are freely available and serve as a base-
line for future FLUXCOM-X developments (see data avail-
ability statement). Any future product releases originating
from FLUXCOM-X will follow the naming convention X-
[specific name].

2 Data and methods

The following section gives an overview on the essential
methodological implementations and data choices adopted in
the generation of X-BASE products.

2.1 Eddy covariance data

Eddy covariance data consisted of 294 sites from around the
world though skewed towards a higher representation of tem-
perate forests from North America and Europe. All EC data
were collected, processed, and analyzed for quality by the
station teams, before being processed using state-of-the-art
approaches in the ONEFlux data processing pipeline (Pa-
storello et al., 2020). ONEFlux provides consistent quality
checks, gap filling, and carbon flux partitioning. The data in-
cluded were collected between 2001–2020 and available with
a CC BY 4.0 license. Based on this criterion, data for each
site came from one of five different sources based on most
recent availability: FLUXNET 2015 (Pastorello et al., 2020),
ICOS Drought 2018 (Team and Centre, 2020), ICOS Warm
Winter 2020 (Team and Centre, 2022), or the most recent
AmeriFlux or ICOS release as of December 2022. Table 1
lists all sites included as well as the associated digital object
identifier specific to the associated release.

Meteorological data measured at each site consisted of
incoming shortwave radiation, air temperature, and vapor
pressure deficit, of which all data were gap-filled using the
marginal distribution sampling method (Reichstein et al.,
2005), as well as the computed potential shortwave incom-
ing radiation (top-of-atmosphere theoretical maximum radi-
ation) for every hour. Carbon dioxide flux data consisted of
gap-filled net ecosystem exchange (NEE, variable USTAR
threshold 50th percentile i.e., NEE_VUT_50) and the cor-
responding gross primary productivity (GPP, nighttime par-
titioning method after Reichstein et al., 2005). Water flux
data consisted of evapotranspiration (ET, no energy balance
correction), which was converted from the latent energy and
transpiration estimates based on the transpiration estimation
algorithm (TEA; Nelson et al., 2018; Nelson, 2021). The
TEA estimates transpiration based on the relationship be-
tween GPP and ET under conditions where surface evap-
oration and soil evaporation are expected to be minimal,
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accounting for residual non-transpiration evaporation. Note
that estimates of GPP and transpiration are not direct mea-
surements but instead are based on statistical relationships
localized to each station and time period and thus contain
their own assumptions and uncertainties. All data were ag-
gregated to a common hourly time resolution, an overview
of which can be found in Table 2.

Data from the EC data set that ultimately were used for
training the models varied 1214

× 106 site hours depending
on the target variable (i.e., GPP, NEE, ET, or ETT). Training
of the machine learning algorithms was only conducted on
hours where all input variables passed quality control. The
quality control procedure consisted of two levels, with the
first being that each hour must have at least one value of good
quality measured or gap-filled with confidence (i.e., at least
one half hour was either 0 or 1 based on the ONEFlux _QC
flags). Second, a set of consistency tests were performed on
each used variable to check the consistency both among vari-
ables and across sites. As the consistency flags were based
on daily aggregates of the meteorological and flux data, en-
tire days were removed if the test indicated inconsistencies
among related variables. The consistency flag also checked
the relationship between variables across sites, ensuring that
the relationships found across the data are coherent. A de-
tailed explanation of these consistency flags can be found in
Jung et al. (2024).

2.2 Global meteorology

For the generation of global flux maps we used hourly meteo-
rological data from ERA5 global reanalysis products at 0.25°
(Hersbach et al., 2020). Variables included air temperature at
2 m height, incoming shortwave radiation at the surface, and
vapor pressure deficit (computed from relative humidity, air
temperature, and surface pressure). Units were converted to
correspond to the site-level measurements, which were used
for training the machine learning model, and the data were
regridded to a 0.05° resolution using bilinear interpolation
for every hour.

2.3 Satellite Earth observation

The X-BASE products are based on measurements of the
MODerate Imaging Spectroradiometer (MODIS) of surface
reflectance and land surface temperature from collection 006
at daily resolution. Missing records were gap-filled consis-
tently in both the average time series per EC station and
in the global gridded data following the procedures of the
FluxnetEO data version 2 (Walther and Besnard et al., 2022;
Walther, 2023).

2.3.1 Spectral vegetation indices

At site level we used surface reflectance in the first seven
MODIS spectral bands from the MCD43A4 c006 reflectance
data set (500 m and daily, where each daily value is inverted

from all valid observations within a 16 d window; Schaaf
and Wang, 2015b). The spectral vegetation indices computed
from the reflectance data were the enhanced vegetation index
(EVI; Huete et al., 2002), the spectral reflectance of vegeta-
tion in the near-infrared (NIRv; Badgley et al., 2017), and
the normalized difference water index (NDWI) with MODIS
band 7 as reference (Gao, 1996). We followed the procedure
of the FluxnetEO data set version 2 (Walther and Besnard
et al., 2022) for data acquisition from Google Earth Engine
for all pixels in a cutout of 4×4 km2 around each EC station,
as well as for quality checks in terms of cloud, snow, and land
cover; index values outside the defined ranges; and outliers.
An iterative approach then determined both the strictness of
the inversion quality of the bidirectional reflectance distribu-
tion function (BRDF, based on the MCD43A2 data, Schaaf
and Wang, 2015a) and the set of pixels in a cutout that shall
represent a given EC station. Appendix B1 outlines all tech-
nical details of the dynamic procedure.

Global data of BRDF-corrected surface reflectance stem
from the MCD43C4 c006 data (Schaaf and Wang, 2015b),
available in a climate modeling grid of 0.05° with the same
temporal sampling and subject to the same removal of snow
and water pixels and outlier values as at site level. The BRDF
quality control of the global data followed the same dynamic
approach (see Appendix B1), which maximized data avail-
ability especially in tropical regions.

2.3.2 Land surface temperature

Satellite observations of land surface temperature (LST)
were based on the MODIS c006 TERRA observations, which
are available every day at 1 km resolution (Wan et al., 2015).
We selected the 1 km2 pixel containing a specific tower and
treated the two MODIS LST data streams as independent
predictor variables, which represent clear-sky LST at a spe-
cific time of the day (namely around 10:30 and 22:30 lo-
cal time). Quality checks and gap filling followed the proce-
dure described in FluxnetEO version 2 (Walther and Besnard
et al., 2022).

For the global spatialization of the flux estimates, we relied
on climate modeling grid LST from the MODIS TERRA data
sets (Wan et al., 2015) and apply consistent quality control
and imputation of missing values like at site level.

2.3.3 Land cover

Land cover information used the IGBP global vegetation
classification. Site-level classification was as reported by the
principal investigators. Global data were based on the yearly
resolved MODIS MCD12C1 c006 product (Friedl and Sulla-
Menashe, 2015). In order to ease the transition between site
and global land cover classifications, an intermediate classi-
fication scheme was utilized which translated each classifica-
tion into characteristics (e.g., trees, crops, needleleaf, decidu-
ous) based on whether the classification has a specific feature
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Table 2. Fluxes to be predicted and predictor variables used in X-BASE. The units of the fluxes correspond to the native hourly resolution.
Upon temporal aggregation as in some analyses in the presented results, the units may change.

Predicted fluxes

NEE µmol CO2 m−2 s−1 net ecosystem exchange
GPP µmol CO2 m−2 s−1 gross primary productivity
ET mm h−1 evapotranspiration
ETT mm h−1 transpiration

Predictor variables

Air temperature °C
Vapor pressure deficit hPa
Incoming shortwave radiation W m−2

Potential incoming shortwave radiation W m−2

Derivative of daily potential incoming shortwave radiation W m−2 d−1

Derivative of hourly potential incoming shortwave radiation W m−2 h−1

Daytime land surface temperature from MODIS TERRA kelvin
Nighttime land surface temperature from MODIS TERRA kelvin
Enhanced vegetation index –
Near-infrared reflectance of vegetation –
Normalized difference water index –
Plant functional type –

(value= 1.0), might have a specific feature (value= 0.5),
does not have a specific feature (value= 0.0), or is unknown
(value=−1.0). A full description of this intermediate classi-
fication system can be found in Appendix B2.

2.4 Machine learning method

All X-BASE products are based on gradient-boosted regres-
sion trees using the XGBoost library (Chen and Guestrin,
2016). XGBoost is known as a robust algorithm that is able
to handle a variety of variable types (numeric, Boolean, cat-
egorical). Training was conducted using a two-thirds train-
ing subsampling ratio and a 0.05 learning rate. Hyperparam-
eters were chosen based on preliminary testing to predict
eddy covariance data, and a full list of hyperparameters can
be found in Appendix B3. Boosting was stopped when no
model improvement (based on mean squared error of valida-
tion data) was observed for 10 consecutive rounds, and the
best-performing model was stored to generate predictions. In
all cases, the model reached the stopping criteria relatively
quickly, with the final number of boosting rounds between
80–230, depending on the flux.

2.5 Cross-validation

All cross-validation was performed using a 10-fold, leave-
site-fold-out scheme, where each fold was constructed by
randomly assigning each site to a fold. Leave-site-fold-out
is distinct from traditional leave-one-out cross-validation
as each fold is comprised of independent sites rather than
fully randomized individual points. For each round of cross-
validation, eight folds were used for training, one for valida-

tion, and the remaining one as the test fold for which the ac-
tual predictions were made. The leave-site-fold-out scheme
ensures that no data from the sites in the test fold were ever
seen by the algorithm during training and in turn iterated such
that each site was in the test set once. As eddy covariance
sites are sometimes clustered in the same location (e.g., as
different treatments) and can therefore be both physically
closely located and not truly independent, sites are assigned
to the same fold if they are less than 0.05° apart to reduce
overfitting. We evaluate the accuracy of the cross-validation
models by computing the Nash–Sutcliffe modeling efficiency
(NSE, Nash and Sutcliffe, 1970), where a negative NSE indi-
cates a model accuracy that is worse than a mean prediction,
while a value close to 1 indicates high model accuracy. We
compute the NSE for each site and for a range of temporal
scales from hourly to interannual.

2.6 Upscaling

The final step to train a model to use in the final global
prediction step was identical to the training in the cross-
validation, with the exception that, because no test fold was
required, we used 9 of the 10 folds for the training, and val-
idation was done on the remaining fold. The final trained
models (one trained model for each target flux) were then
used to predict fluxes at the global scales using the associ-
ated globally gridded input variables that correspond to those
used at site level, as outlined in Table 2.
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2.7 Previous FLUXCOM and independent global flux
estimates

We compare X-BASE with upscaling results from FLUX-
COM (Jung et al., 2019, 2020). As mentioned earlier, FLUX-
COM comprised an ensemble of upscaling experiments that
differed in the choice of machine learning method and mete-
orological forcing data. The FLUXCOM ensemble was sum-
marized in two groups of setups that shared the same pre-
dictor variables and spatiotemporal resolution: the “remote-
sensing-only” setup (RS) mostly used spaceborne observa-
tions of MODIS as explanatory variables and produced flux
estimates every 8 d at 0.083° resolution, while the “remote
sensing plus meteorology setup” (RS+METEO) produced
daily flux estimates at half-degree resolution from meteoro-
logical predictor variables and an average seasonal cycle of
satellite observations (Tramontana et al., 2016; Jung et al.,
2019, 2020). Comparisons to FLUXCOM RS+METEO
data sets always refer to the ensemble over multiple machine
learning methods for all realizations driven by the ERA5 me-
teorology (Hersbach et al., 2020). RS+METEO uses aver-
age seasonal cycles of MODIS c005 observations. For the
FLUXCOM RS setup we use the ensemble over all machine
learning methods. Please note that both the previous RS runs
and the X-BASE runs presented here are driven by data from
MODIS c006, but the processing has changed in some as-
pects such as quality control and gap filling. For clarifica-
tion, an overview on FLUXCOM(-X) naming conventions is
given in Appendix A.

For evaluating X-BASE NEE globally, in particular its
seasonal cycle and for different regions, we used two dif-
ferent atmospheric inversion model products: the Orbiting
Carbon Observatory-2 (OCO-2) v10 model intercompari-
son project (Byrne et al., 2023) and the CarboScope inver-
sion (Rödenbeck et al., 2018) version s99oc_v2022 (Roeden-
beck and Heimann, 2022). Estimates from the OCO-2 came
from the LNLGIS experiment, which combines satellite-
based column-averaged CO2 (XCO2) retrievals and in situ
CO2 measurements as observational constraints in the as-
similation and consists of 13 different ensemble members
covering the period 2015–2020 with a monthly frequency
and 1° spatial resolution (https://gml.noaa.gov/ccgg/OCO2_
v10mip/index.php, last access: 6 May 2022). The Carbo-
Scope product consisted of a single inversion output at the
same spatial resolution as OCO-2 but with a longer temporal
period from 2001–2020. In each case, as the inversion prod-
ucts estimate net biome exchange, we subtracted from the in-
versions data fire emissions as estimated by the Global Fire
Emissions Database, Version 4.1 (Randerson et al., 2017).

We compared temporal patterns of X-BASE GPP with the
patterns in global retrievals of sun-induced chlorophyll flu-
orescence (SIF) from the Sentinel-5P TROPOMI instrument
(Köhler et al., 2018), which under most conditions approx-
imates the variability in GPP. For the comparison we used
estimates of daily mean SIF applying a correction factor to

instantaneous observations (Zhang et al., 2018) and averaged
both X-BASE GPP and TROPOMI SIF to a temporal reso-
lution of 16 d and 0.5° spatial grids for the common period
April 2018 to December 2020.

X-BASE ET and ETT were cross-compared with transpi-
ration estimates from the Global Land Evaporation Amster-
dam Model (GLEAM) v3.6a (Martens et al., 2017; Miralles
et al., 2011). GLEAM also utilizes satellite and reanalysis
data sets but in a more physically constrained way, relying on
semiempirical models such as the Priestley–Taylor (Priestley
and Taylor, 1972) and Gash models (Gash, 1979). Further
comparisons were made to precipitation data from GPCC
(Schneider et al., 2022).

2.8 Units across scales and conversion

Given the broad range of spatial and temporal scales re-
ported here, we utilized different units depending on each use
case. All base measurements and predictions are at hourly
timescale (in units of µmol CO2 m−2 s−1 for carbon fluxes
and mm h−1 for water fluxes; as reported in Table 2). In the
case of carbon fluxes, all timescales which are not subdaily
are reported in grams of carbon per unit time and area. Glob-
ally integrated values are reported in petagrams of carbon or
square kilometers of water and are aggregated using a com-
mon land area estimate per grid cell.

3 Results

3.1 Cross-validation and data space

One important innovation in FLUXCOM-X compared to the
previous FLUXCOM ensemble was the training database,
which was larger due to an increase in both number of sites
and years. Furthermore, the EC methodology has changed
considerably in many aspects ranging from collection and
processing to quality filtering in the last 15 years. We show
here one illustrative example of the changes in the envi-
ronmental space that is represented in the training samples
for daily NEE: between daily vapor pressure deficit (VPD)
and daily incoming shortwave radiation, the distribution of
training samples was considerably broader in X-BASE com-
pared to the RS+METEO ensemble (Fig. 1). Furthermore,
the number of unique sites contributing to a certain VPD-
radiation bin has increased (Fig. C1); i.e., the number of
ecosystems sampled in each climatic condition has also in-
creased. The increases were seen particularly at the margins
of the distribution, i.e., for days with high VPD along the
full radiation spectrum, and vice versa for days with high-
radiation conditions along the full VPD spectrum. Of par-
ticular note, Figs. 1 and C1 demonstrate improved sampling
across more sites with conditions of high VPD and radi-
ation, i.e., hot and dry conditions, for X-BASE compared
to RS+METEO. Overall for NEE, the number of sampled
site days increased over 3-fold (552 878 to 183 216 for X-
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BASE and RS+METEO, respectively). Note, however, that
X-BASE is modeled at an hourly instead of daily resolution,
and thus the number of sampled site days should not be con-
sidered a metric of how well the feature space is sampled.

The results from the 10-fold cross-validation showed an
overall high performance with most fluxes and scales of vari-
ability having an NSE above 0.6 (Fig. 2). In terms of scales
of variability across all fluxes, the monthly mean diel cy-
cle (“diel”) and the daily median seasonal cycle (“seasonal”)
were very regular patterns that the trained models repro-
duced best. Also, among-site changes (“spatial”, except for
NEE) and monthly aggregated fluxes (“monthly”) were reli-
ably predicted. Deviations from the median daily seasonality
(“anom”) were only moderately reliable with NSE between
0.25 and 0.5. The XGBoost models did not succeed in ac-
curately reproducing interannual variability of all fluxes and
between-site patterns in NEE. Consistently across all scales,
the net fluxes which are directly calculated (i.e., ET and even
more so NEE) showed lower performance than their respec-
tive modeled gross fluxes (i.e., GPP and ETT). Note that the
cross-validation results from Fig. 2 cannot be quantitatively
compared to previous cross-validation results in FLUXCOM
as the training data are not the same. However, qualitatively
the accuracy gradient among fluxes, as well as along scales
of variability, corresponded to patterns identified in FLUX-
COM and in comparable empirical modeling activities (Jung
et al., 2011; Tramontana et al., 2016; Virkkala et al., 2021;
Dannenberg et al., 2023).

3.2 Global flux estimates

One asset of FLUXCOM-X is flexibility in the spatiotem-
poral resolution of the flux estimates. We produce X-BASE
products at 0.05° spatial and hourly temporal resolution glob-
ally. Figure 3 illustrates the increase in spatial and tempo-
ral detail in X-BASE compared to RS (0.083°, 8-daily) and
RS+METEO (0.5°, daily) using the example of NEE.

3.2.1 Net ecosystem exchange (NEE)

The X-BASE product estimates the global terrestrial NEE
to be −5.75± 0.33 Pg C yr−1 (2001–2020), with hotspots
of strong CO2 flux into the ecosystems in the tropical re-
gions and temperate regions of North America and Eu-
rope (Fig. 4). In contrast to both RS and RS+METEO,
India and some regions in central Sahel show prominent
patterns of a mean CO2 flux from the ecosystems to the
atmosphere in X-BASE, corresponding mostly to crop-
designated areas (Fig. C2). However, X-BASE global ter-
restrial NEE (−5.63 Pg C yr−1) agrees well with the inver-
sion estimates of OCO-2 (−4.12 Pg C yr−1) and CarboScope
(−3.46 Pg C yr−1) over the common period (2015–2020).
Here, GFED 4.1 (Randerson et al., 2017) emission estimates
have been used to correct the inversion estimates for fire
emissions.

Comparison with OCO-2 and CarboScope inversions also
indicates a substantial improvement of the global mean sea-
sonal cycle of NEE (Fig. 5) in X-BASE compared to RS
and RS+METEO. The systematic bias present in RS and
RS+METEO has essentially disappeared in X-BASE. The
shape, and in particular the amplitude, of the global NEE
seasonal cycle of X-BASE is more consistent with the in-
versions. The larger and more realistic seasonal cycle am-
plitude of global NEE in X-BASE originates primarily from
improved and increased amplitudes in boreal regions. Inter-
estingly, X-BASE suggests slightly larger NEE seasonal cy-
cle amplitudes in temperate regions compared to the inver-
sions. In seasonally dry regions, the timing of maximum up-
take is consistent between X-BASE and inversions, while the
peak of maximum net release is larger and delayed in the
inversions. In Australia, the peak of CO2 release to the at-
mosphere at the end of the year present in both inversions
is not evident in X-BASE, which instead shows a relatively
consistent CO2 flux to the atmosphere throughout the year. In
tropical regions, the patterns of seasonal variations are qual-
itatively consistent between X-BASE and the previous RS
and RS+METEO products. The seasonal patterns in tropi-
cal regions are relatively weak overall and seem inconsistent
between the inversions and X-BASE as well as among the
inversions.

As shown in Fig. 5, the X-BASE product shows the same
large underestimation of globally integrated NEE interannual
variance as the previous RS and RS+METEO products. In
terms of temporal trends, the X-BASE products show almost
no change in annual NEE in time, which is in contrast to the
RS+METEO (slight positive trend) and RS (slight negative
trend) and more consistent with the CarboScope inversions
(Table C2). However, as interannual variability was poorly
reproduced even in the cross-validation (Fig. 2), trends in the
X-BASE products should be taken with caution and inter-
preted with careful scrutiny.

3.2.2 Gross primary productivity (GPP)

X-BASE estimates the globally integrated GPP at
124.7± 2.1 Pg C yr−1 on average in the time period
2001–2020. Globally integrated GPP over vegetated
areas (RS and RS+METEO do not have estimates
for non-vegetated areas) was approximately equal for
X-BASE (121.9± 2.1 Pg C yr−1) and RS+METEO
(121.6± 0.4 Pg C yr−1) but considerably higher than RS
(113.2± 1.8 Pg C yr−1) over the same period. In terms
of regional patterns, X-BASE GPP consistently exceeds
both RS+METEO and RS in temperate, boreal, and most
subtropical ecosystems but is lower in sparsely vegetated
(semi-)arid regions like southwestern North America as well
as southeastern Asian croplands (Fig. 6). This qualitatively
consistent pattern is only broken in the humid tropics,
where X-BASE GPP is higher than RS but lower than
RS+METEO.
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Figure 1. Cross-validation sampling in meteorological space: number of site days contributing to sampling for NEE for the previous FLUX-
COM RS+METEO ensemble (a) compared to the sampling of FLUXCOM-X-BASE (b) in environmental space of daily aggregated in-
coming shortwave radiation and VPD. Color corresponds to number of site days per bin in log scale. Only bins with at least 20 site days are
shown.

Figure 2. FLUXCOM-X-BASE site-level accuracy of predicted fluxes in 10-fold leave-site-fold-out cross-validation in terms of NSE com-
puted per site for a range of scales of variability. Scales of variability include the hourly timescale (“hourly”), daily (“daily”) and monthly
(“monthly”) aggregated fluxes, between-site changes (“spatial”), monthly mean diel cycle (“diel”), daily median seasonal cycle (“seasonal”),
deviations from the median daily seasonality (“anom.”), and interannual variability (“i.a.v.”). Boxes denote the range from the 25th to the
75th percentile of sites; whiskers extend 1.5 times the interquartile range from the 25th and 75th percentile of NSE across sites.

Comparing the estimated trend over the last 2 decades,
X-BASE GPP has a clear increasing linear trend of
0.34 Pg C yr−1, which is slightly higher than the trend in RS
(0.25 Pg C yr−1; Table C2). In contrast, the RS+METEO
product shows nearly no trend in annual GPP. The increases
in both the X-BASE and RS products may be related to in-
creases in surface greenness coming from variability in the
remote sensing forcing data which are interannually dynamic
in both products, whereas the remote sensing data were not
interannually dynamic in the RS+METEO product, which
instead used only the mean seasonal cycle of the remote sens-
ing data. The magnitude of between-year changes in globally
integrated X-BASE GPP is 0.575 Pg C yr−1 over the years
2001–2020, which is about twice as large as RS+METEO
(0.248 Pg C yr−1) but only half the magnitude estimates in
the RS setup (1.02 Pg C yr−1; Table C2).

We further compared the temporal trajectory in GPP es-
timates against TROPOMI SIF as an independent proxy for
GPP dynamics (Fig. 7) at a temporal resolution of 16 d. The
temporal variability of X-BASE GPP strongly agrees with
that in TROPOMI SIF, with squared Spearman correlation
values (denoted as R2) of the time series above 0.85 across
most of the vegetated land surface (Fig. 7a). The only ex-
ceptions are regions with no or very small variability in both
GPP and SIF, such as in evergreen tropical ecosystems in
South America, Africa, and southeastern Asia; sparsely to
non-vegetated areas due to aridity (e.g., Mexican and African
deserts); or cold conditions (e.g., Canadian and Siberian sub-
polar regions). In inner Australia, despite being sparsely veg-
etated, variability between years is expected in GPP due to
precipitation increases during La Niña years, which is how-
ever not reflected in the squared correlations. R2 values for
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Figure 3. Resolution improvements for the X-BASE products compared to RS and RS+METEO: average NEE for an 8 d period in Europe
in 2010 as estimated from the RS, RS+METEO and X-BASE setups (top panel), as well as snapshots of temporal trajectories of NEE in
pixels closest to selected EC station locations (A: UK-Tad, B: DE-Hai, C: ES-LM1, D: FR-Pue). Negative values of NEE denote a CO2 flux
from the atmosphere to the land.

the deviations from the average seasonality (again computed
with a temporal resolution of 16 d) show the same qualitative
spatial patterns (Fig. 7b) but are overall lower with R2 values
between 0.55 and 0.8. Anomalies of X-BASE GPP and SIF
agree best in eastern European temperate forests as well as in
grassy and shrub ecosystems in eastern South America.

Comparison of the level of agreement of SIF and X-BASE
with that of SIF and RS and RS+METEO, respectively, il-
lustrates that X-BASE and RS GPP estimates have compara-
ble consistency both for the time series (global area weighted
mean R2 values of 0.72 and 0.73, respectively) and anoma-
lies (global mean R2 values of 0.64 and 0.66, respectively).
In contrast, the R2 between RS+METEO and SIF is lower
in both cases (R2 values of 0.66 for the time series and 0.58
for anomalies). X-BASE GPP shows a higher agreement with
SIF than RS both in terms of the actual trajectory and anoma-
lies in evergreen tropical forests with no or only a very short
dry season in the Amazon and Africa, as well as in fully hu-
mid parts of southeastern Asia (Fig. 7c, d). Improvements
in X-BASE GPP compared to RS are also consistent in the
very continental and polar tundra areas in eastern Siberia,
northern Canada, and Alaska. Conversely, in arid steppe cli-
mates globally, X-BASE GPP variability agrees less with
SIF than does RS GPP. X-BASE GPP variability is consis-

tently and widespread much more similar to the variability in
TROPOMI SIF than RS-METEO GPP. Increases in R2 for
X-BASE compared to RS+METEO are most pronounced
in arid to semiarid ecosystems (large parts of the Caatinga
and Gran Chaco regions in South America, steppe regions in
Mexico, southern and eastern Africa, Australia, and central
Siberia) as well as in global crop regions, especially for the
deviations from the seasonality (albeit with the magnitude of
R2 change being quite variable between regions; Fig. 7e, f).

3.2.3 Water vapor fluxes

Globally integrated ET amounts to 74.7× 103
± 0.9×

103 km3 yr−1 for 2001–2020 (Table C1) for X-BASE, with
the highest rates in the tropics (Fig. 8). Comparison of global
totals for vegetated areas only (where all products give out-
puts) shows similar values for X-BASE (68.9× 103

± 0.9×
103 km3 yr−1), GLEAM (70.9× 103

± 0.9× 103 km3 yr−1),
and RS+METEO (68.3×103

± 0.3×103 km3 yr−1) ET es-
timates, while the RS ET is more than 11 % higher (78.5×
103
± 0.5× 103 km3 yr−1; Table C1). Particularly in ever-

green tropical ecosystems, X-BASE estimates a considerably
lower ET than GLEAM, RS+METEO, and RS (Fig. 8). Fur-
thermore, in the temperate and high latitudes of the Northern
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Figure 4. Comparison of annually integrated NEE from X-BASE, RS+METEO with ERA5 forcing, and RS averaged over the period
2001–2020. The difference maps show the difference of the averages over 2001–2020.

Hemisphere, annually integrated X-BASE ET is consistently
lower than the other estimates, though the magnitude of the
bias is smaller than in the tropical regions. The pattern is
only reversed with higher X-BASE ET in the semiarid and
arid ecosystems of the lower and middle latitudes, especially
with respect to annual ET in RS+METEO and GLEAM.

Comparison to precipitation estimates shows that X-BASE
ET greatly exceeds precipitation inputs over large areas, in-
dicating a strong overestimation of X-BASE ET in many
arid regions with sparse vegetation (e.g., the Sahara region;
Fig. C3). While transport of water both laterally (i.e., runoff
from other areas) and from deeper groundwater could cause
ET to exceed precipitation inputs in some areas, the extent
of area where ET exceeds precipitation (e.g., the entire Sa-
hara region) and the magnitude of the excess ET (over 3
times precipitation inputs) indicates a major bias in these ar-
eas and is likely due to a lack of EC data in similar ecosys-
tems. As a rough estimate, constraining the X-BASE esti-
mates with precipitation (see Appendix C5) suggests about
4–6× 103 km3 yr−1 of water is overestimated globally.

The globally integrated ETT amounts to 42.6×103
± 1.0×

103 km3 yr−1 (2001–2020) in X-BASE, resulting in an
average ratio of transpiration to total evaporation of
57.0 %± 0.6 % (Table C1). In contrast to ET, the ETT esti-
mates from X-BASE do not commonly exceed precipitation
estimates (Fig. C3), which could indicate that because the

water vapor flux is more tightly coupled with vegetation, the
model is able to distinguish that no vegetation corresponds
with no transpiration, which is not generally the case for non-
transpiration evaporation. The RS and RS+METEO prod-
ucts did not produce ETT estimates, so the comparison is
limited to GLEAM (50.7×103

± 0.6×103 km3 yr−1), which
estimates ETT on average 17 % higher than X-BASE, with
strong contributions from the evergreen tropics. Only in sin-
gle semiarid regions, such as the northernmost Sahel as well
as large parts of the South American Caatinga and Chaco re-
gions, is this pattern reversed (Fig. 8).

Spatially, X-BASE-estimated ETT / ET exceeds 50 % in
the majority of areas, with the highest values seen in the
higher-latitude regions of Europe and Asia, as well as in sub-
tropical ecosystems (Fig. 8). Arid regions with sparse vegeta-
tion show the lowest ETT / ET overall, with values generally
below 20 %. With 71.4 %± 0.6 % over global vegetated sur-
faces, GLEAM attributes about 10 % more of its ET to ETT
than does X-BASE (Table C1). Regionally, this difference
can even reach up to 40 %, with the only exception being bo-
real forests and very dry ecosystems in the Sahel, the Arabian
Peninsula, and central Asia (Fig. 8).

Trends in ET, ETT, and ETT / ET are positive and exceed
the trends seen in all other estimates over the years 2001–
2020. Conversely, the magnitude of interannual changes in
X-BASE ET, ETT, and ETT / ET is mostly less than half the
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Figure 5. Seasonal and interannual variability of global NEE. Comparison of mean seasonal cycles (calculated over the common time period,
2015–2020) and interannual variability (2001–2020) of NEE estimated from CarboScope and OCO-2 inversions as well as FLUXCOM-X-
BASE, FLUXCOM RS+METEO, and RS outputs. All products were integrated with a common mask that removes sparsely vegetated arid
regions not predicted by RS and RS+METEO.

variability in GLEAM (Table C2). Low interannual changes
are common to the RS and RS+METEO ET as well.

Figure 9 shows the temporal correlation at 16-daily tempo-
ral scale using GLEAM as a reference, showing overall high
values of squared correlation between X-BASE and GLEAM
ET and ETT (top and bottom left). Notable exceptions with
low correlations are areas with low variability in ET such
as the arc of deforestation, very dry areas, and tropical ev-
ergreen ecosystems in Africa. Compared to RS+METEO
and RS (middle panels, left column in Fig. 9), X-BASE ET
temporal patterns are more similar to GLEAM ET in many
areas, especially so in areas north of the arc of deforesta-
tion and parts of tropical evergreen areas in central Africa

and southeastern Asia. Conversely, X-BASE ET agrees less
well with GLEAM than RS or RS+METEO in the arc of
deforestation itself, the eastern parts of the Amazon basin,
and dry areas. The deviations from the mean annual cycle
in ET and ETT (right column) show overall lower correla-
tions than the actual time series, with the highest agreement
between GLEAM and X-BASE in large parts of the Ama-
zon forest and central European ecosystems. X-BASE ET
anomalies are much more strongly correlated with GLEAM
ET than either RS or RS+METEO everywhere except for
most (semi-)arid regions.
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Figure 6. Comparison of annually integrated GPP from X-BASE, RS+METEO with ERA5 forcing, and RS averaged over the period
2001–2020. The difference maps show the difference of the averages over 2001–2020.

4 Discussion

We have presented qualitative and quantitative comparisons
of the X-BASE products with previous FLUXCOM esti-
mates and independent data sets where possible. Statements
on the main causes of (dis-)agreements in the magnitude and
spatiotemporal variability in the flux estimates remain specu-
lative as detailed analyses would require further investigation
in the form of experiments, which is beyond the scope of this
article. In the following we discuss the prominent changes in
NEE compared to FLUXCOM as a key scientific highlight in
X-BASE and outline potential ways forward to tackle persis-
tent challenges in empirical upscaling.

4.1 Higher consistency of NEE with atmospheric
carbon cycle constraints

Although FLUXCOM-X follows the same fundamental ap-
proach as FLUXCOM, we find a substantial improve-
ment of the magnitude of the annually integrated NEE of
FLUXCOM-X-BASE over previous FLUXCOM products
(Jung et al., 2020) when compared to independent esti-
mates from atmospheric inversions. The mean global X-
BASE NEE of −5.75 Pg C yr−1 is slightly smaller than the
inferred NEE of −3.92 Pg C yr−1 (corrected for fire emis-
sions based on GFED 4.1) from CarboScope. The remain-
ing difference could easily be explained by carbon sources

such as aquatic evasion and volatile organic compounds that
are included in the atmospherically based estimate but not
in eddy-covariance-based FLUXCOM (see Jung et al., 2020,
and Zscheischler et al., 2017, for further discussion).

The improved global NEE of FLUXCOM-X-BASE origi-
nates most likely from enhanced quality of eddy covariance
measurements in the training resulting from years of consis-
tent improvements in instrumentation, method development,
and quality assurance from the point of measurement to the
synthesis data sets. Previous upscaling-based NEE products
of Jung et al. (2011, 2020); Bodesheim et al. (2018) – all
based on the La Thuile FLUXNET data set but varying with
respect to machine learning methods, predictor variables,
and temporal resolution – consistently estimated a nearly 3-
fold larger global terrestrial carbon uptake compared to X-
BASE. As discussed and speculated in Jung et al. (2020), La
Thuile likely contained biased NEE measurements, in partic-
ular for some tropical sites (Fu et al., 2018), and together
with the sparsity of data in the tropics, these biases were
propagated to unrealistic tropical and global NEE estimates.
The fact that we can now reconcile bottom-up global eddy-
covariance-based NEE and estimates from top-down atmo-
spheric inversions is a major achievement of the FLUXNET
community. For context, 1 Pg C yr−1 over the global vege-
tated area (145× 106 km2) corresponds to ∼ 7 g C m2 yr−1,
which marks a challenge for achieving such an accuracy of
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Figure 7. Similarity of temporal patterns between GPP estimates and TROPOMI SIF observations: R2 (computed as the square of the
Spearman correlation) between X-BASE GPP and TROPOMI SIF (Köhler et al., 2018) for the actual time series at a temporal resolution
of 16 d (a) and anomalies from the median seasonality in both variables (b). Panels (c), (d), (e), and (f) compare the agreement between
X-BASE GPP and TROPOMI SIF to the agreement between FLUXCOM GPP and TROPOMI SIF, where (c) and (d) refer to TROPOMI
SIF and GPP from the RS+METEO setup, and (e) and (f) refer to the RS setup. All comparisons are done for time series with a resolution
of 16 d for the common time period April 2018 to December 2020. SIF observations have been applied a correction factor to estimate daily
average SIF before aggregation. Semitransparent areas mark pixels in which the correlation of at least one of the data sets is negative.

mean NEE at any one flux tower site. The lesson learned here
emphasizes once more that it is crucial to control for and
minimize systematic biases of in situ eddy covariance mea-
surements (Moncrieff et al., 1996).

The improved seasonality of X-BASE NEE, in particu-
lar for boreal regions, likely also results from enhanced in-
formation in the training data due to the hourly resolution.
Similar improvements were observed by Bodesheim et al.
(2018), who extended RS+METEO by training on half-
hourly flux observations. The hourly resolution improves the
seasonal high-latitude NEE likely due to better capturing the
responses to light when day length varies strongly.

4.2 New opportunities by X-BASE products

The improvements of NEE make X-BASE attractive as a
data-driven biogenic prior for atmospheric inversions (Mu-

nassar et al., 2022). Moreover, its hourly resolution facilitates
better integration in inversion systems due to the accounting
of diurnal flux and atmospheric transport variations, while its
high spatial variations can provide patterns of flux variations
that cannot be resolved by atmospheric constraints alone.

For the first time, X-BASE includes a global data-driven
product of ecosystem transpiration. The estimated global
ETT / ET ratio of 57 % is consistent with independent top-
down assessments from isotope base methods (Good et al.,
2015; Coenders-Gerrits et al., 2014) and past upscaling es-
timates (Wei et al., 2017; Schlesinger and Jasechko, 2014).
The spatially and temporally high-resolution data-driven
X-BASE ETT product provides a valuable complementary
perspective to simulations from process-based land surface
models, which show large disagreements and often indicate
global ETT / ET below 50 % (Berg and Sheffield, 2019; Mi-
ralles et al., 2016). This advancement opens new opportuni-
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Figure 8. Comparison of evaporative flux estimates ET, ETT, and ETT / ET from X-BASE and its difference with RS, RS+METEO, and
GLEAM. ETT is compared in the case of GLEAM but is unavailable in the previous FLUXCOM ensembles.

ties for large-scale studies of carbon–water relations on a di-
urnal timescale. The generation of the X-BASE ETT product
was facilitated by the development of site-level evapotran-
spiration partitioning methods (Nelson et al., 2018, 2020)
underlining once more the importance of advances by the
FLUXNET community for Earth system science.

5 Tackling persistent challenges

In addition to the improvements and opportunities that X-
BASE brings through the enhancement in site-level training
data quality and quantity as well as the higher spatiotemporal
resolution, we find that some key issues previously identified
in FLUXCOM (Tramontana et al., 2016; Jung et al., 2020;
Bodesheim et al., 2018) persist in X-BASE. These include
(1) the insufficient representation of water-related effects, (2)
the limited predictability of the spatial patterns of mean NEE,

and (3) severe limitations with respect to the variability be-
tween years and over decades. In the following, we outline
what we consider the most promising ways forward to tackle
these (partly interrelated) challenges in future developments
beyond X-BASE: novel additional predictor variables, more
in situ observations (especially for some key ecosystems),
and innovative approaches to constraining machine learning
models.

The persistent challenge and importance of capturing wa-
ter effects on land–atmosphere flux variations is illustrated
by the overestimation of mean ET in very dry, sparsely veg-
etated areas (Fig. C3), as well as by the poorer consistency
of NEE seasonality with inversions in water-limited regions
(Fig. 5). For GPP temporal patterns we find that X-BASE
shows improved agreement with SIF in water-limited re-
gions compared to RS+METEO (Fig. 7), which is likely
because X-BASE uses concomitantly changing remote sens-
ing observations opposed to a mean seasonal cycle only in

https://doi.org/10.5194/bg-21-5079-2024 Biogeosciences, 21, 5079–5115, 2024



5096 J. A. Nelson and S. Walther et al.: X-BASE

Figure 9. Similarity of temporal patterns of X-BASE and GLEAM terrestrial water fluxes in comparison to those from FLUXCOM: R2

(computed as the square of the Pearson correlation) between X-BASE ET and GLEAM ET for the actual time series (left column) and
anomalies from the median seasonality (right column). The middle panels compare the agreement between X-BASE ET and GLEAM ET to
the agreement between FLUXCOM ET and GLEAM ET. The bottom panel shows the squared correlations between X-BASE and GLEAM
ETT but no comparisons to FLUXCOM because FLUXCOM did not include ETT. All comparisons are done for time series with a resolution
of 16 d and 0.05° for the years 2001–2020. Semitransparent areas mark pixels in which the correlation of at least one of the data sets is
negative.

RS+METEO. However, X-BASE shows deteriorated agree-
ment with SIF when compared to RS, even though X-BASE
was trained on hourly flux observations with improved cover-
age of dry conditions (Fig. 1). This decrease in performance
indicates clearly the importance and uncertainty related to
the predictor variable set for capturing water-related effects.
Uncertainties due to water limitation effects are also seen in
the divergence of ET and ETT estimates in semiarid regions
such as the Sahel and South American Caatinga (Figs. 8 and
9). Thus, there is considerable potential for advancements by
including remote-sensing-based predictors on soil moisture,
subdaily varying land surface temperature from geostation-
ary satellites, SIF, and vegetation optical depth. Here, key

challenges reside in achieving a sensible integration of flux
observations with footprints that are much smaller than cor-
responding Earth observation products on the one hand and
an integration of disparate Earth observation products with
each other on the other hand. This is one research priority for
further FLUXCOM-X developments.

Missing predictor variables is likely also a main reason
for the limited skill of predicting between-site variability
of mean NEE (Fig. 2), which can depend on legacy ef-
fects of disturbances and management that are not accounted
for. Novel and complementary Earth observation products
that characterize ecosystem structure and states related to
biomass and canopy heights from SAR and lidar should help
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raise the accuracy of FLUXCOM-X-based mean NEE in fu-
ture efforts. Also high-resolution Earth observation products
such as from Landsat may help to better resolve spatial de-
tails. X-BASE shows a prominent pattern of carbon flux to
the atmosphere in subtropical and crop-dominated regions of
India and the Sahel, which emphasizes the need to improve
in situ data coverage for agricultural systems, especially out-
side the temperate zone, and to include important metadata
to better characterize these ecosystems and their site history.
Despite the greatly reduced overall bias of mean NEE, we
emphasize that X-BASE products are premature for diagnos-
ing spatial variations of mean NEE.

The representation of longer-term dynamics remains an
area with opportunity for improvements in X-BASE. Interan-
nual variability is still poorly reproduced in cross-validation
(Fig. 2), particularly for NEE, which is likely not only due to
the complexity of processes shaping interannual variations
but also due to temporal discontinuities in flux tower time
series related to changes in instrumentation and factors like
management (Jung et al., 2024) that are not accounted for.
The complexities of relying on field-deployed instrumenta-
tion, together with the uncertainties related to linking satellite
and flux data, cause poor signal-to-noise ratios and may im-
pede good cross-validation results for interannual variability.
Globally, comparisons of X-BASE with inversions reveal an
underestimated interannual variance and a poor correlation
for global NEE interannual variability (Fig. 5 and Table C2).
Interestingly, X-BASE GPP shows improved correspondence
with SIF anomalies compared to RS+METEO, especially
in water-limited regions (Fig. 7), while no such improvement
is evident for global NEE, which is likely due to the com-
pensatory water effects in the global NEE signal (Jung et al.,
2017). That a comparison of RS+METEO runs with dif-
ferent meteorological forcing data showed the weakest cor-
respondence with inversion interannual variability when us-
ing ERA5 (Jung et al., 2020) explains the substantially better
correlations of RS+METEO with inversions for NEE inter-
annual variability in earlier studies (Jung et al., 2017, 2020),
and it may also explain the poor correlation with X-BASE.
Thus, testing whether alternative meteorological forcing data
can improve global NEE interannual variability for X-BASE
is an important next step. It remains unclear at this point
whether accurate interannual variations at site level and glob-
ally can be achieved by the FLUXCOM approach in the near
future. Additional constraints beyond FLUXNET such as at-
mospheric CO2 measurements (Upton et al., 2023) or theo-
retical considerations in the form of hybrid (Reichstein et al.,
2019) or deep learning models (Camps-Valls et al., 2021) are
promising, and we will foster such endeavors.

6 Conclusions

We presented X-BASE, a new set of global high-resolution
data-driven products of land–atmosphere fluxes from the
FLUXCOM approach. This represents a cornerstone of our
developments of the FLUXCOM-X framework designed to
explore and mitigate current limitations to upscaling from
site to global scale. Improvements of the eddy covariance
data facilitated reconciling estimates of global terrestrial net
carbon exchange from X-BASE with top-down atmospheric
inversions and allowed for the first time the generation of a
global data-driven estimate of ecosystem transpiration. Be-
yond fostering all activities to enhance quality and coverage
of available flux tower observations, most promise for future
advancements by FLUXCOM-X relates to the synergistic ex-
ploitation of complementary satellite data streams to better
capture effects related to water, site history, and management.
This will be challenging as it requires developing strategies
and methodologies to better integrate in situ flux observa-
tions and spaceborne Earth observations with very hetero-
geneous acquisition properties and with spatial resolutions
that are often very coarse compared to flux tower footprints.
The recent de-orbiting of the TERRA spacecraft requires em-
ploying alternative satellite missions where practical issues
of data acquisition and conceptual issues related to tempo-
ral consistency and reduced overlap with FLUXNET records
pose imminent challenges. With FLUXCOM-X we have pre-
pared the ground for tackling these challenges, which can
facilitate up-to-date and accurate flux estimates and thereby
contribute to increased understanding of the Earth system in
the future.
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Appendix A: Naming conventions

Table A1. Names of products and modeling environments may create confusion, especially given the legacy of FLUXCOM. We therefore
will follow the following naming conventions and require potential users of products and collaborators to also follow this convention.

FLUXCOM a data-driven modeling intercomparison initiative creating ensembles of carbon, water, and en-
ergy fluxes by varying the meteorological forcing and the machine learning method. Two sets
of data ensembles were created, and it is important to differentiate these and properly refer to
these as they differed in the predictor variables and the spatiotemporal resolution. The imple-
mentation of FLUXCOM was strongly tailored towards these two ensembles, and the training
data mainly consisted of the La Thuile Fluxnet data release.

FLUXCOM “RS” one of the FLUXCOM ensembles. It is characterized by using only predictors based on remote
sensing (from the MODIS sensors) and has a fixed resolution of 8 d and 0.083°. The ensemble
members are created by varying the machine learning method.

FLUXCOM “RS+METEO” the other one of the FLUXCOM ensembles and is characterized by using only a mean sea-
sonality of satellite observations (also from the MODIS sensors) but additional meteorology as
predictors. The data products have a fixed resolution of 0.5° and daily. The ensemble members
consist of combinations of different machine learning methods and meteorological data sets.

FLUXCOM-X the name of the newly implemented modeling environment that we introduce here. FLUXCOM-
X follows the same overall principles as FLUXCOM, but unlike FLUXCOM, FLUXCOM-X
was not tailored to specific input data (and hence their size, resolution, etc.) but has been built
with the intention of allowing full flexibility in all methodological choices in the empirical
upscaling process while being computationally scalable.

X-BASE the name of the first basic set of data products produced with FLUXCOM-X. X-BASE products
encompass NEE, GPP, ET, and ETT and have a native resolution of 0.05° every hour over the
years 2001–2021. X-BASE products are driven by both meteorological predictors and remotely
sensed observations from the MODIS sensors.

X-[name] FLUXCOM-X is expected to produce a lot of different flux estimates which will differ in de-
cisive methodological choices. All data products produced from FLUXCOM-X shall be named
following the convention X-[specific name].
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Appendix B: Details on processing of Earth observation
data

B1 Dynamic quality control and cutout size

The conditions in the pixels around a given EC station should
best represent the conditions of the land surface in the area
where the actual fluxes originate from. Given that the actual
flux footprints are not generally available or computable for
lack of critical information, we assume that the pixel contain-
ing the actual EC station (the “tower pixel”) is most represen-
tative of the dynamics of the area of influence on a tower.
However, data availability and quality in the tower pixel
are often insufficient. An iterative approach therefore selects
both the cutout size and the strictness of the BRDF inversion
quality from within defined bounds in a way that maximizes
data availability and that ensures representativeness of the
spatially averaged time series for the given site at the same
time. In more detail, we start with a strict criterion for BRDF
inversion quality (BRDF_Albedo_Band_Quality_Bandx flag
in MCD43A2≤ 2, meaning only full inversions). Then, three
options regarding the cutout size are considered:

1. A cutout option only considers the tower pixel, i.e., the
single pixel closest to the tower location.

2. Those 20 % of pixels within 4× 4 km2 around a tower
that are best correlated with the tower pixel are linearly
regressed against the tower pixel and subsequently spa-
tially averaged.

3. The 25 % of pixels within a 4×4 km2 area that are clos-
est to the tower are averaged with the inverse of the dis-
tance to the tower as weight.

Table B1. Land cover intermediary classification encoding for MCD12C1 classifications where the classification has a specific feature
(value= 1.0), might have a specific feature (value= 0.5), does not have a specific feature (value= 0.0), or is unknown (value=−1.0).

ENF EBF DNF DBF MF CSH OSH WSA SAV GRA SNO CRO WET

Trees 1 1 1 1 1 0.5 0 1 0.5 0 −1 0 0
Shrubs 0 0 0 0 0 1 1 0.5 0.5 0 −1 0 0
Grasses 0 0 0 0 0 0 0.5 0.5 1 1 −1 0 0
Crops 0 0 0 0 0 0 0 0 0 0 −1 1 0
Unvegetated 0 0 0 0 0 0 0.5 0 0 0 0 0 0
Water 0 0 0 0 0 0 0 0 0 0 0.5 0 1
Wetland 0 0 0 0 0 0 0 0 0 0 1 0 0
C4 Photosynth 0 0 0 0 0 −1 −1 −1 −1 −1 0 −1 0
Managed −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 1 0
Needleleaf 1 0 1 0 −1 −1 −1 −1 −1 0 −1 0 0
Broadleaf 0 1 0 1 −1 −1 −1 −1 −1 0 −1 0 0
Deciduous 0 0 1 1 −1 −1 −1 −1 −1 0 −1 0 0
Evergreen 1 1 0 0 −1 −1 −1 −1 −1 0 −1 0 0

The criteria for selection between options A–C are based
on the number of available good-quality observations n in the
resulting spatial average time series per site as follows:

if (n_A >= 60 %) and (n_B <= 70 %),
select A;

elif (n_A >= 60 %) and (n_B >= 70 %),
select B;

elif (n_A < 60 %) and (n_A > 15 %),
select B;

else
select C.

If after the previous steps still less than 40 % of good-
quality observations outside of snow-covered times are avail-
able in the resulting average time series for a given site and
index, the BRDF inversion quality threshold is relaxed to
also allow magnitude inversions (MCD43A2 BRDF inver-
sion quality flag ≤ 3), and the procedure to select the pixels
contributing to the average described above is repeated. Con-
sequently, the size of the area that a MODIS reflectance time
series represents varies between sites and so does the BRDF
inversion quality.

For the global gridded MODIS data, the BRDF inversion
quality is consistently selected as ≤ 2 or ≤ 3 based on the
number of available good-quality observations in a pixel.

B2 Details on the treatment of land cover information

Land cover information was passed through an intermedi-
ary classification system both to act as an encoding mecha-
nism and to allow for arbitrary links between classification
schemes. Rather than simple true/false classification for each
category, different attributes are classified based on whether
the classification has a specific feature (value= 1.0), might
have a specific feature (value= 0.5), does not have a spe-
cific feature (value= 0.0), or is unknown (value=−1.0). In
the specific case of the MCD12C1 classification scheme, the
conversion is as shown in Table B1.
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B3 Overview of XGBoost hyperparameters used

Table B2. Hyperparameters used for the XGBoost models.

Hyperparameter Value used

num_boost_round 1000
early_stopping_rounds 10
colsample_bynode 1
learning_rate 0.05
max_depth 10
num_parallel_tree 1
objective reg:squarederror
subsample 0.6666666666666666
tree_method hist
min_child_weight 5
tree_method hist
min_child_weight 5

Appendix C: Additional results

C1 Additional cross-validation results

Figure C1. Cross-validation sampling in meteorological space: number of unique sites contributing to sampling for NEE for FLUXCOM
RS+METEO (a) compared to the sampling in the X-BASE setup (b). Color corresponds to number of unique sites per bin in log scale.
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C2 Large carbon release in tropical croplands

Figure C2. Large carbon release in tropical croplands.

C3 Global magnitude of all fluxes

Figure C3. Potential ET overestimation based on the ratio of estimated ET to precipitation from the Global Precipitation Climatology Centre
(GPCC; Schneider et al., 2022).
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Table C1. Global magnitude of all fluxes. The first column is the globally integrated flux for all areas including sparsely vegetated dry areas
from 2001–2020. The second column includes a common mask, which removes sparsely vegetated areas that are not computed for the RS
and RS+METEO products. Values reported after the ± correspond to the standard deviation across years.

Global total Vegetated areas

NEE Pg C yr−1 Pg C yr−1

X-BASE −5.75± 0.33 −7.12± 0.32
RS+METEO – −21.27± 0.59
RS – −19.08± 0.93
CarboScope −3.88± 0.84 −3.92± 0.84

GPP Pg C yr−1 Pg C yr−1

X-BASE 124.7± 2.1 121.9± 2.0
RS+METEO – 121.6± 0.4
RS – 113.2± 1.8

ET km3 yr−1 km3 yr−1

X-BASE 74.7× 103
± 0.9× 103 68.9× 103

± 0.9× 103

RS+METEO – 68.3× 103
± 0.3× 103

RS – 78.5× 103
± 0.5× 103

GLEAM 72.5× 103
± 1.0× 103 70.9× 103

± 0.9× 103

ETT km3 yr−1 km3 yr−1

X-BASE 42.6× 103
± 1.0× 103 41.8× 1033

± 0.9× 103

GLEAM 50.7× 103
± 0.6× 103 50.7× 103

± 0.6× 103

ETT / ET

X-BASE 57.0 %± 0.6 % 60.7 %± 0.6 %
GLEAM 70.0 %± 0.6 % 71.4 %± 0.6 %
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C4 Linear trends and interannual variability for all
fluxes

Table C2. Long-term variability of fluxes. The first column is the linear slope of annually integrated fluxes over the years 2001–2020. The
second column is computed as the standard deviation of annually integrated fluxes after the trend is removed.

Linear trend Interannual variability

NEE Pg C yr−2 Pg C yr−1

X-BASE 0.017 0.306
RS+METEO 0.095 0.229
RS −0.129 0.557
CarboScope 0.006 0.837

GPP Pg C yr−2 Pg C yr−1

X-BASE 0.340 0.575
RS+METEO −0.053 0.246
RS 0.248 1.023

ET km3 yr−2 km3 yr−1

X-BASE 0.144× 103 0.331× 103

RS+METEO −0.010× 103 0.301× 103

RS 0.053× 103 0.392× 103

GLEAM 0.102× 103 0.730× 103

ETT km3 yr−2 km3 yr−1

X-BASE 0.158× 103 0.277× 103

GLEAM 0.035× 103 0.596× 103

ETT / ET % yr−1 %

X-BASE 0.102 % 0.157 %
GLEAM −0.054 % 0.452 %

C5 Potential overestimation of ET in dryland areas

Maps in Fig. C3 show the extent to which ET and ETT exceed
precipitation as the ratio of the total of each flux to total pre-
cipitation (from GPCC Schneider et al., 2022). Overall, X-
BASE ET largely exceeds precipitation in most dry, sparsely
vegetated areas, indicating overestimation. In contrast, ETT
does not show such extensive overestimation, limited instead
to only smaller regions of the Sahara.

The amount of overestimation of X-BASE ET can be
roughly estimated by replacing areas where annual ET ex-
ceeds precipitation inputs with the corresponding annual pre-
cipitation inputs for each grid cell, i.e., replacing areas where
the ET / precipitation ratio is more than a threshold with
the precipitation rather than the estimated ET. Using thresh-
olds from 1.25 to 2.5 gives an excess of ET (i.e., orig-
inal ET minus precipitation corrected) from 3.9× 103 to
6.1× 103 km3 yr−1.
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Data availability. All FLUXCOM-X-BASE data covering the
years 2001–2021 (this article only shows 2001–2020) are avail-
able as aggregated NetCDF file formats, to ease data han-
dling for common use cases, from the ICOS Carbon Portal
(https://doi.org/10.18160/5NZG-JMJE, Nelson et al., 2023). Fur-
thermore, the full-resolution data are accessible in Zarr format and
in a publicly available object store provided by the German Cli-
mate Computing Center (Deutsches Klimarechenzentrum, DKRZ).
Instructions on how to access all data, as well as the full data set,
can be found at the associated repository (https://gitlab.gwdg.de/
fluxcom/fluxcomxdata, Nelson, 2023).
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