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Abstract. Land surface models represent exchange pro-
cesses between soil and the atmosphere via the land surface
by coupling water, energy and carbon fluxes. As a strong me-
diator between these cycles, vegetation is an important com-
ponent of land surface models. Some land surface models
include modules for vegetation dynamics, which allow for
the adjustment of vegetation biomass, especially leaf area
index, to environmental conditions. Here, we conducted a
model–data comparison to investigate whether and how veg-
etation dynamics in the models improve the representation
of vegetation processes and related surface fluxes in two spe-
cific models, ECLand and Noah-MP, in contrast to using pre-
scribed values from lookup tables or satellite-based products.
We compared model results with observations across a range
of climate and vegetation types from the FLUXNET2015
dataset and the MODIS leaf area product and used on-site-
measured leaf area from an additional site. Yet, switching on
the dynamic vegetation did not enhance representativeness
of leaf area index and net ecosystem exchange in ECLand,
while it improved performance in Noah-MP only for some
sites. The representation of energy fluxes and soil moisture
was almost unaffected for both models. Interestingly, the per-
formance regarding variables of the carbon and water cycles
was unrelated for both models such that the weak perfor-
mance of, e.g., leaf area index did not deteriorate the per-
formance of, e.g., latent heat flux. We show that one poten-
tial reason for this could be that the implemented ecosys-
tem processes diverge from the observations in their seasonal
patterns and variability. Noah-MP includes a seasonal hys-

teresis in the relationship between leaf area index and gross
primary production that is not found in observations. The
same relationship is represented by a strong linear response
in ECLand, which substantially underestimates the observed
variability. For both water and carbon fluxes, the currently
implemented dynamic vegetation modules in these two mod-
els did not result in better model performance compared to
runs with static vegetation and prescribed leaf area climatol-
ogy.

1 Introduction

Land surface models (LSMs) represent the energy, water
and biogeochemical cycles at the land surface. Traditionally,
their main purpose has been to provide a surface compo-
nent in coupled atmosphere–land models. LSMs are applied
in meteorological models, reanalysis products or the Cou-
pled Model Intercomparison Project (CMIP). However, their
scope is widening, and new fields of application, like histor-
ical land cover change simulations (Lawrence et al., 2018)
or flood alert services (Harrigan et al., 2023), are arising.
There is active development within the land surface model-
ing community, with more and more features being added
to existing models to make them more realistic (Blyth et al.,
2021). Given the wide use of these models and the impli-
cations of their results, extensive model validation has been
done already. Model validation covers a wide range of water,
energy and carbon fluxes at global, regional and site scales
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(e.g., Niu et al., 2011; Haverd et al., 2018; Lawrence et al.,
2019; Boussetta et al., 2021). Such works that introduce indi-
vidual evaluation schemes are often accompanied by studies
that perform comparisons between models (e.g., Best et al.,
2015; Krinner et al., 2018). Comparisons like these are con-
ducted for different reasons. For example, one aim is to create
a ranking between models that allows for assessment against
alternative schemes. Using this method, Best et al. (2015)
reported that simple statistical methods achieve a higher per-
formance in energy partitioning at eddy covariance sites than
any single LSM tested. One limitation of their study is that
they did not report metrics of individual model performance
but only normalized ones. This procedure does not allow
model users to judge whether the investigated methods have
achieved a (dis-)satisfactory performance, since all methods
might have a poor individual model performance. Other chal-
lenges in these activities are to maintain a standard proto-
col for model comparison while not creating a superficial
performance contest among them and to minimize human
errors (Menard et al., 2021). Haughton et al. (2016) more
closely explored the cause of poor model performance of
LSMs shown in the PLUMBER study by Best et al. (2015),
which they presented as the bias for the evaporative fraction
(EF) derived from various tower sites exemplarily. From all
investigated aspects they concluded that mismatches between
modeled and observed heat fluxes are most likely caused by
calculations within the models and not related to errors in the
observations. Yet, specific reasons for this mismatch, for ex-
ample, over-parameterization, missing processes or calibra-
tion issues, cannot be identified by benchmarking studies or
model rankings alone but require further investigation of in-
dividual model performance. At the same time, the causes of
poor model performance can be multifaceted, rendering their
identification challenging (Haughton et al., 2018b). Nonethe-
less, further LSM development needs understanding of how
individual process implementation and parameterization af-
fect model performances. A wealth of studies evaluated dif-
ferent LSMs with respect to radiation, heat fluxes or surface
temperature, and carbon fluxes. Carbon fluxes like gross pri-
mary production (GPP) are often validated by using global
gridded fluxes like FLUXCOM (Ma et al., 2017; Jung et al.,
2019; Lawrence et al., 2019). The correct implementation of
ecosystem processes and related variables is crucial for using
LSMs in assessing impacts due to climate change, for ex-
ample in drought evaluation (Ukkola et al., 2016; Dirmeyer
et al., 2021), because plant transpiration directly links the
terrestrial carbon and water cycle. For example, a substan-
tial underestimation of evapotranspiration by eight LSMs
during drought conditions was shown across different plant
communities (Ukkola et al., 2016). De Kauwe et al. (2015)
concluded from their simulations of drought responses for
the European FLUXNET sites with the Community Atmo-
sphere Biosphere Land Exchange (CABLE) model that ac-
counting for differing drought sensitivity of plant communi-
ties in LSMs may be required to correctly capture drought

impacts. Currently, most LSMs are not able to represent di-
rect vegetation control on surface exchange, in part because
they underrepresent biophysical responses to changing water
availability and oversimplify vegetation dynamics, in partic-
ular leaf area index (LAI) (Forzieri et al., 2020). LSMs typ-
ically work with climatological LAI, e.g., seasonality read
from lookup table files, or calculate LAI as a prognostic vari-
able internally. At the same time, LAI has a large impact on
both water and carbon fluxes (e.g., Fisher et al., 2014), and
an understanding of how its parameterization impacts flux
estimates by LSMs would help to shed light on the known
discrepancies in representing vegetation. Here, we investi-
gate model performance for water and carbon fluxes with a
focus on vegetation processes. We additionally check the rea-
sons for model–data mismatch by analysis of the underlying
computer source code of the models (as stated by Dirmeyer
et al., 2018), which can only be done for a limited set of mod-
els due to the large effort that is needed. For this scope, we
chose ECLand and Noah-MP as frequently used and contin-
uously developing LSMs with available modules for vegeta-
tion dynamics. In this paper, we aim to answer the following
research questions. (1) Does the representation of net ecosys-
tem exchange (NEE) and LAI improve if ECLand or Noah-
MP represents vegetation dynamically? (2) How does dy-
namic vegetation in ECLand or Noah-MP impact other vari-
ables like heat fluxes and soil moisture? Do improvements
in model performance for one variable compromise perfor-
mance for other variables? (3) What are the mechanics be-
hind modeled temporal patterns in vegetation dynamics and
occurring misfits to the observations?

2 Methods

2.1 Data basis

2.1.1 Site selection

The FLUXNET2015 dataset (Pastorello et al., 2020) pro-
vides measurements from globally distributed eddy covari-
ance sites. We selected a subset from all available FLUXNET
sites, focusing on sites with long observation periods, cover-
ing different vegetation types and a gradient in aridity within
each vegetation type. Vegetation types within FLUXNET
rely on the International Geosphere–Biosphere Programme
(IGBP) land classification (National Center for Atmospheric
Research, 2022). The aridity index of all sites was re-
trieved from the CGIAR-CSI Global-Aridity and Global-
PET Database (Trabucco and Zomer, 2018) and inverted af-
terwards, bringing it back to the definition as the ratio of the
long-term mean annual potential evapotranspiration to the
long-term mean annual precipitation by Budyko (1974). We
excluded sites with observation periods of less than 6 years
because they might not represent the local climate (Haughton
et al., 2018a), and extreme years could create a systematic

Biogeosciences, 21, 5277–5303, 2024 https://doi.org/10.5194/bg-21-5277-2024



S. A. Westermann et al.: Performance of dynamic vegetation in Noah-MP and ECLand 5279

Figure 1. Selected FLUXNET sites grouped by their vegetation
type. For each group, sites were chosen to cover a gradient in arid-
ity (y axis) if available. The vegetation types are grassland (GRA),
savanna (SAV), woody savanna (WSA), evergreen broadleaf forest
(EBF), cropland (CRO), mixed forest (MF), deciduous broadleaf
forest (DBF) and evergreen needleleaf forest (ENF). The color scale
represents the duration of the available time series in years.

bias. Due to the small number of sites per vegetation type
with long observation periods, the vegetation types savanna
(SAV), woody savanna (WSA) and open shrubland (OSH)
were merged into one savanna group before continuing with
the selection procedure. For each vegetation type or group,
first, we chose the site with the longest observation record.
Next, other sites with similar aridity (±0.1 logarithmic arid-
ity index) were dropped to avoid an overrepresentation of
some vegetation type–aridity combinations due to heteroge-
neous site distribution within FLUXNET. We used logarith-
mic values to create a linear scale of the aridity index so that
a selection of too many dry sites was prevented. Afterwards,
we repeated these steps for the remaining sites and continued
until no more sites were available for selection in this vegeta-
tion type or group. For the selected sites, we double-checked
data availability and quality and replaced a site with an alter-
native site if necessary. The most common reasons for dis-
carding sites were missing or poor-quality soil moisture data
or low-quality gap filling, which reduced the length of the
observation record below the threshold of 6 years. By doing
so, only two sites with mixed forests (MFs) were left, which
is critically low. Thus, we included all MF sites into the de-
ciduous broadleaf forest (DBF) vegetation type and repeated
the selection for this group. We were left with 24 sites, cov-
ering a wide range of site characteristics as recommended by
Haughton et al. (2018a), including aridity, vegetation types
and observation periods (Fig. 1). Additionally, we also used
data of the eddy covariance site Hohes Holz (Rebmann and
Pohl, 2023), which is part of the TERENO Harz/Central Ger-
man Lowland Observatory (Wollschläger et al., 2016) and
has been included in the ICOS network since 2019, because
on-site-measured LAI data were available for that DBF site.

2.1.2 Variables used and data pre-processing

From the FLUXNET (Pastorello et al., 2020) and Hohes
Holz (Rebmann and Pohl, 2023) datasets, air temperature,
downward short- and longwave radiation, wind speed, rel-
ative humidity, air pressure, and precipitation were used for
model forcing. Turbulent fluxes, i.e., latent heat flux (LE) and
sensible heat flux (H ), as well as net ecosystem exchange
(NEE), gross primary production (GPP) and volumetric soil
water content in 10 cm depth, were used for model evalu-
ation. All data were provided and used at half-hourly res-
olution. FLUXNET data were retrieved from their website
(fluxnet.org, 2020). LE and H in FLUXNET2015 are avail-
able in two different variables: one is a product that corrects
the turbulent fluxes for energy balance closure, while the
other one provides a continuous time series filled by marginal
distribution sampling. We decided to use the first one as long
as it was available in the dataset since LSMs also consider
energy balance. Missing data in the Hohes Holz meteorolog-
ical dataset were filled using a Kalman filter (Sayed, 2003)
for short gaps up to 3 h, except for precipitation, which was
set to zero. For longer gaps, the Kalman procedure tends to
overestimate the observations, which resulted in offsets at the
end of the gap-filling periods. Thus, gap-filling data for these
gaps were retrieved from the ERA5 (Hersbach et al., 2020)
data product (Muñoz Sabater, 2019) with 0.1° spatial resolu-
tion and 1 h temporal resolution. For calculation of the evap-
orative fraction LE

LE+H , all time steps with H ≤ 0 were ex-
cluded. The same time steps were left out for LE to focus the
comparison of turbulent fluxes on periods with evaporative
demand. For estimation of model performance, we excluded
gap-filled periods that were longer than 1 month.

2.2 Model description

We investigated how dynamic vegetation affects model out-
puts in two land surface models capable of representing
both static and dynamic vegetation: ECLand (Balsamo et al.,
2009; Dutra et al., 2010; Boussetta et al., 2021) and Noah-
MP (Chen and Dudhia, 2001; Ek et al., 2003; Niu et al.,
2007, 2011).

2.2.1 ECLand

The European Centre for Medium-Range Weather Forecasts
(ECMWF) developed a Carbon-Hydrology Tiled ECMWF
Scheme for Surface Exchanges over Land (CHTESSEL)
(Balsamo et al., 2009; Dutra et al., 2010; Boussetta et al.,
2013), which represents the land component of the Integrated
Forecasting System (IFS). As part of the IFS, CHTESSEL
has evolved into a more flexible system ECLand (Boussetta
et al., 2021), which also allows for several modular exten-
sions. Among these, a dynamic vegetation module simulates
the temporal evolution of vegetation. Therein, LAI, vegeta-
tion biomass and vegetation coverage are calculated from the
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daily carbon budget instead of taking them from the climato-
logical LAI. However, LAI climatology can still be used for
fully static or partly dynamic simulations. In ECLand (IFS
version CY46R1), each of the 19 vegetation types receives its
own parameter values (e.g., for roughness lengths, stomata
resistance, root distribution) from lookup tables (Boussetta
et al., 2012, 2021). These vegetation types are categorized
into high or low vegetation. Each grid cell has one domi-
nant high-vegetation type and one dominant low-vegetation
type, together forming the vegetation of a grid cell (Balsamo
et al., 2009). Surface fluxes are computed for the high- and
low-vegetation tiles separately and are then merged for the
whole grid cell according to their fractional cover. The vege-
tation coverage is calculated from a prescribed climatological
vegetation fraction (part of the input) and a vegetation-type-
dependent density (from a lookup table) and corrected by
current LAI (Boussetta et al., 2021). Net assimilation results
from carbon uptake of atmospheric CO2 by the current leaf
area (defines absorbed radiation) and is restricted by environ-
mental factors such as soil moisture and nitrogen availability
(important equations can be found in Appendix A). Together
with the dark respiration and after scaling with a quantum use
efficiency factor, potential gross assimilation is calculated.
This value is then linearly linked to LAI and the humidity-
corrected air density, resulting in gross primary productiv-
ity (GPP). With activated vegetation dynamics, a potential
net assimilation, together with LAI, forms a damping factor
for biomass senescence. Biomass senescence is determined
from the current biomass, linearly linked to the current LAI,
and the damping factor. The change in biomass results from
this updated biomass and the net assimilation. Then, biomass
is updated again and linearly transferred into updated LAI
by using a specific leaf area from a lookup table (Boussetta
et al., 2021). For static ECLand, the prescribed climatologi-
cal LAI is used. LAI in ECLand determines the canopy resis-
tance for water vapor transport and thus the evapotranspira-
tion and the interception (Boussetta et al., 2012, 2013, 2021).

2.2.2 Noah-MP

Noah-MP is the widely used community Noah land surface
model (Chen and Dudhia, 2001; Ek et al., 2003) with multi-
parameterization options (Niu et al., 2007, 2011). Predicted
LAI in Noah-MP is calculated based on leaf carbon allo-
cation and specific leaf area per vegetation type (Ma et al.,
2017). In contrast to ECLand, Noah-MP can either use pre-
scribed LAI values per vegetation type or depend solely on
dynamic LAI estimates, without the option to mix between
the two. In Noah-MP (version HRLDAS 3.9), parameter
values (e.g., value range of stomatal resistance, number of
rooted soil layers, specific leaf area) of the 27 vegetation
types are taken from lookup tables. The vegetated sub-grid
area of each grid cell is dominated by one vegetation type
forming a one-layer canopy. For the calculation of canopy
interception and transpiration, Noah-MP considers aerody-

namic and stomatal resistances for the water vapor and car-
bon fluxes within the canopy and between the canopy and
the atmosphere (Ma et al., 2017). Among others, stomatal re-
sistance is predominantly controlled by photosynthesis (Niu
et al., 2011), which depends on leaf area, and is limited by
light and root zone soil moisture (important equations can be
found in Appendix A1). Assimilation depends on LAI and
is constrained by physiology and light availability. Assimi-
lated carbon is allocated to different plant tissues (leaf, stem,
wood, root), forming GPP, and reduced by respiration, dy-
ing and turnover processes, such as drought stress and senes-
cence representing leaf dynamics (Dickinson et al., 1998).
The respiration rate is determined by LAI, GPP, temperature
and soil moisture stress. Carbon that is allocated to leaves to-
gether with biomass losses forms an updated leaf biomass,
which converts into the LAI by using a specific leaf area (Ma
et al., 2017). Carbon assimilation and allocation, and thus
also GPP and NEE estimation, are usually deactivated for the
static Noah-MP since a prescribed LAI is given. We adapted
the model code in a way that GPP and NEE for the static
simulations are calculated anyways but resetting all variables
that would be dynamically predicted within the same func-
tion to their prior values. This assured that the model still ran
in a static configuration.

2.3 Model setup and simulations

Simulations with activated modules that predict LAI time se-
ries are referred to as activated vegetation dynamics or dy-
namic ECLand and dynamic Noah-MP hereafter. For both
models, the reference height (level of the forcing input) was
set to the flux tower height of the sites, which depends on
the vegetation type. The models were set up as closely as
possible to the available site information, but there are some
technical differences in the structure of the model input, i.e.,
in the initial files. Forcing and model calculation were done
in 30 min resolution if available; otherwise, hourly resolution
was applied. We used four-layered soil representation, with
the uppermost layer used for the evaluation of soil moisture,
which is 7 and 10 cm deep for ECLand and Noah-MP, re-
spectively. Every simulation started with a 10-year spin-up
phase by recalculating the first year.

2.3.1 ECLand

We used ERA5-based (Hersbach et al., 2020) global initial
data for ECLand and selected the grid cells where the flux
towers are located. These initial files contain information on
albedo, orography, soil type, surface roughness and monthly
LAI, which is not available in the FLUXNET metadata. For
the simulations that use alternative LAI forcing, monthly LAI
in the initial files was replaced by the scenario-specific alter-
native values (see Sect. 2.3.3). We defined the vegetation on
this grid cell to be either high or low vegetation (and not a
mixture) depending on the site information. Forests and sa-

Biogeosciences, 21, 5277–5303, 2024 https://doi.org/10.5194/bg-21-5277-2024



S. A. Westermann et al.: Performance of dynamic vegetation in Noah-MP and ECLand 5281

vannas were treated as high-vegetation types, while grass-
lands and croplands were allocated to low-vegetation types.
The vegetation type that fits best with the FLUXNET char-
acterization was selected (see Table 1). The coverage of that
vegetation type was set to 100%. Meteorological forcing was
taken from the FLUXNET and TERENO datasets mentioned
above (Sect. 2.1.2). The ECLand simulations were done with
van Genuchten’s soil hydrologic parameters (van Genuchten,
1980), activated sub-grid surface runoff and activated snow
parameterization (see Table A1).

2.3.2 Noah-MP

The soil type for Noah-MP was taken from a global soil grid
(Hengl et al., 2014; Poggio et al., 2021; ISRIC, 2024) by se-
lecting the grid cell including the flux tower location. Initial
values for temperatures and soil moisture were taken as the
FLUXNET/TERENO observations on 1 January at 00:00 lo-
cal time in the first year of the simulation period. Vegeta-
tion types were chosen to match the USGS vegetation types
(University Corporation for Atmospheric Research, 2023) as
closely as possible, and the initial LAI values were set ac-
cording to the defaults in the parameter file (see Table 1).
The vegetation cover fraction was set to 100% so that the en-
tire grid cell represents the vegetation type of the observation
site. The minimum green vegetation fraction was set to 1%
to ensure that the whole vegetation cover does not die during
winter, which would hinder temperate short vegetation from
growing in spring. For the simulations with alternative LAI
forcing, the monthly LAI in the lookup table was replaced by
the scenario-specific alternative values (see Sect. 2.3.3). The
Noah-MP simulations were done with soil parameterization
from lookup tables and the Ball–Berry stomatal resistance
approach (Ball et al., 1987; Bonan, 1996) using a matric po-
tential limitation. All other selected options can be found in
Table A2.

2.3.3 Leaf area index data and scenarios

Monthly LAI values are part of the initial input of both mod-
els via lookup tables. These tables contain annual cycles of
LAI for each vegetation type separately. This default clima-
tology is already based on values from MODIS. For ECLand,
the gridded values of LAI were disaggregated to the high-
and low-vegetation type of the grid cell for the time span
2000–2008 (Boussetta et al., 2013). For alternative LAI in-
puts, these values in the lookup tables were replaced man-
ually. LAI values were taken from the MOD15A2H data
product from NASA’s Earthdata portal (Myneni et al., 2015).
One grid cell of 500m× 500m was selected per eddy co-
variance tower according to the site coordinates, and LAI
values with a temporal resolution of 8 d were extracted for
the years 2000 to 2014. To assure reliability of the values,
the MODIS15A2H data product comes with numeric qual-
ity flags. Although Fang et al. (2012) recommend using all

values with quality flags less than 64, we excluded data with
quality flags of 8 because many of these LAI values were
extremely low during the vegetation period, which is unre-
alistic. Then again, due to lacking LAI values during win-
ter or wet seasons, values with quality flags of 73 (empiri-
cally filled with clouds present), 81 (empirically filled with
mixed cloudiness) and 97 (empirically filled for other rea-
sons) were included as a trade-off between excluding as
much poorly flagged data as possible and keeping roughly
the same amount of data values for each month (see MODIS
documentation for more details). Afterwards, we smoothed
the remaining values by using a Savitzky–Golay filter (win-
dow length: 11, polyorder: 2) (as done by, e.g., Xiao et al.,
2011; Huang et al., 2021) from the SciPy package (Savitzky
and Golay, 1964; Luo et al., 2005) and prepared a mean
annual LAI cycle for all available years with monthly res-
olution, further named MODIS climatology. For an addi-
tional experiment, the monthly LAI from MODIS of each
year within the simulation period separately was used as in-
put, called MODIS single year from this point on. Missing
LAI values for a month were filled by the average value of
the adjacent months. If LAI values for at least 2 consecutive
months were not available, the LAI values from the default
lookup table were used for those months. For the Hohes Holz
site, on-site-measured LAI data were available from digital
cover photography (DCP), which was shown to yield com-
parable results to established methods (Piayda et al., 2015).
For each measurement date, we averaged the values from the
whole plot area and, afterwards, calculated monthly means
over a time span covering 2014–2019. This alternative LAI
forcing is called on-site LAI hereafter. The nomenclature of
all LAI scenarios can be found in Table 2.

The MODIS LAI was also applied for model evaluation
but in a high temporal resolution of 8 d. Due to the usage of
single-day values, we solely used data with quality flags 0
(no issues) and 32 (saturated) to lower the uncertainty. Ad-
ditionally, we refrained from smoothing to avoid an offset
of the LAI values and left gaps as they were. For the static
runs, comparison with MODIS LAI on a daily basis provides
information on how well a LAI climatology represents the
local LAI evolution and whether the incorporation of more
site-specific climatology can improve the representativeness.
For the dynamic simulations, comparing modeled LAI with
daily MODIS values is used to examine whether the models
are able to capture inter- and intra-annual LAI dynamics.

2.4 Performance evaluation

Model outputs and observational data from the flux towers
were averaged/summed to daily values for direct comparison.
For LAI, we calculated the 8 d mean of the LAI model out-
put to correspond to the temporal resolution of the MODIS
LAI estimates. As performance criteria we used Pearson’s
correlation coefficient, the normalized standard deviation and
a modified relative bias for the model–observation relation-
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Table 1. Assignment of vegetation types used in ECLand and Noah-MP and referred initial LAI. The values in brackets for Noah-MP initial
LAI refer to sites in the Southern Hemisphere due to shifted seasons.

FLUXNET ECLand vegetation type ECLand Noah-MP USGS Noah-MP Noah-MP initial LAI
vegetation vegetation vegetation
type class class

ENF Evergreen needleleaf trees 3 (high) Evergreen needleleaf forest 14 4.0
MF Mixed forest/woodland 18 (high) Mixed forest 15 2.0 (4.3)
DBF Deciduous broadleaf trees 5 (high) Deciduous broadleaf forest 11 0.0 (4.5)
EBF Evergreen broadleaf trees 6 (high) Evergreen broadleaf forest 13 4.5
SAV Interrupted forest 19 (high) Savanna 10 0.3 (3.8)
WSA Interrupted forest 19 (high) Savanna 10 0.3 (3.8)
CRO Crops, mixed farming 1 (low) Mixed dryland/irrigated 4 0.0 (3.0)

Cropland and pasture
GRA Tall grass 7 (low) Grassland 7 0.4 (3.5)

Table 2. Nomenclature of all model scenarios using LAI data sources.

Term LAI source

Default climatology default monthly LAI for the dominant high- and low-vegetation types on the respective grid cell (ECLand)
or default monthly values per vegetation type from the lookup table (Noah-MP)

MODIS climatology mean annual cycle of monthly LAI values derived from the MODIS dataset from 2000 to 2014
MODIS single year the same as before but without averaging, resulting in an annual cycle for each year separately

within the observation period
On-site LAI mean annual cycle of monthly LAI values based on on-site-measured LAI

ship. Pearson’s correlation coefficient R describes the fit be-
tween model and observation values (Benesty et al., 2009)
and is calculated from the NumPy package. The normalized
standard deviation sn is the ratio of the standard deviation of
the model predictions to the standard deviation of the obser-
vations. It is used to describe the models’ ability to reproduce
the variability of the observations. The relative bias b applied
here was adapted to the domain of the variable to avoid divi-
sion by zero or by values very close to zero (especially im-
portant for NEE). For this purpose, the distribution of the
observed values was shifted by their minimum, resulting in
only positive values with a minimum of zero:

b =
y− x

x− x̌
, (1)

whereby y represents the model predictions, x the observa-
tions, x the mean and x̌ the minimum of the observed val-
ues. To compare the model performance between simula-
tions with static and dynamic vegetation, we determined the
change in relative bias as follows:

1b = |bstatic| − |bdynamic|. (2)

Negative values mean that the relative bias of the dynamic
simulation was greater than that of the static simulation and
thus that the performance was reduced by activating vegeta-
tion dynamics. To investigate the sensitivity of dynamically
modeled vegetation to the model performance, we checked

how strongly the quality of the model simulation of one tar-
get variable (e.g., LE) depends on the model quality of an-
other (e.g., LAI). For this, we used elasticity as a metric.
Elasticity is calculated as the ratio of the change in one sta-
tistical measure (analogous to Eq. 2) for two different target
variables:

E =
1mi

1mj
, (3)

where m is one of the statistical measures mentioned above,
i.e., R, sn or b, while i and j denote different target variables,
e.g., GPP or LE. For variables that are strongly related, like
LAI and GPP, we expect elasticity to be positive. Two vari-
ables are considered independent if −0.1≤ E ≤ 0.1 because
the change in mj would then need to be larger than 1 or-
der of magnitude to cause a change in mi . Changes in model
performances of the target variables were plotted in Taylor
diagrams (Copin, 2021).

3 Results

3.1 Effect of dynamic or prescribed leaf area index on
leaf area and carbon uptake prediction

Figure 2 shows the quality metrics for the model performance
regarding LAI in a Taylor diagram. The location an optimal
model simulation would occupy is indicated with a star. The
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model performance of the dynamic run is shown with the
symbols, while the static runs can be read from the start of
each arrow. The direction and length of each arrow highlight
the difference in the performance metrics between static and
dynamic runs. Shown are simulations started (dynamic) or
run (static) with default vs. MODIS climatology. While in
the Noah-MP simulations with static vegetation the model
performance depended on the LAI forcing applied, the sim-
ulation results were unaffected by the type of LAI forcing
with vegetation dynamics switched on since the symbols in
Fig. 2c and d have the same positions. For ECLand, this was
also the case for many sites but not all, e.g., AT-Neu and AU-
How (Fig. 2a, b). Initializing ECLand with default climatol-
ogy (Fig. 2a) and activating vegetation dynamics generally
increased the variance of simulated LAI compared to static
simulations but also decreased model performance; e.g., the
mean Pearson correlation decreased from 0.72 to 0.62. At the
same time, whether the predicted LAI fit better to MODIS
observations than the default climatology was ambiguous, as
can be seen by the shift in relative bias, which ranged be-
tween −0.5 and 1.3. On the contrary, the results for Noah-
MP showed a different pattern (Fig. 2c) because there was no
clear shift to higher variances or worse correlation when acti-
vating vegetation dynamics. Short- (GRA+CRO) and sparse
(SAV+WSA)-vegetation types in particular had the highest
changes towards decreased performance but also enhanced
model performance for LAI. For other sites (mostly forests),
modeled dynamic LAI correlated well with the observations.
For both models, using MODIS climatology instead of de-
fault climatology in static simulations resulted in the best
performances with regard to the LAI of all simulations (start
of the arrows in Fig. 2b, d); e.g., the mean correlation coef-
ficient increased to 0.83 and 0.84, and the mean relative bias
(Table S1 in the Supplement) improved to −16% and −2%
for ECLand and Noah-MP, respectively. This can be expected
because MODIS was also used as a reference dataset for
LAI evaluation. With activated vegetation dynamics, the per-
formance of both models decreased, as all quality metrics
shifted away from the point indicating the best performance
on the Taylor diagram (Fig. 2b, d). The same applied to the
relative biases of LAI since their shift was predominantly
negative. In other words, switching on vegetation dynamics
did not result in improved LAI representation compared to
just using MODIS climatology.

Forest ecosystems, in general, were better represented by
model predictions with vegetation dynamics than short or
sparse vegetation. Figure 3 shows the results of the forest
site Hohes Holz in more detail. Although the representa-
tion of LAI variability deteriorated when simulating dynamic
vegetation with Noah-MP, those runs resulted in LAI pre-
dictions that closely match MODIS observations (Fig. 3d–
f), represented by a relative bias of −18% and a correla-
tion coefficient of 0.78. ECLand more generally suffered
from larger relative biases in LAI, especially when simulat-
ing with vegetation dynamics (−30% on average, Fig. 3c).

The only scenario where model performance generally in-
creased for ECLand was through switching on vegetation dy-
namics compared to static runs with default climatology.

In contrast to LAI, the model performance of ecosystem
exchange variables in ECLand was less affected by activat-
ing vegetation dynamics. A common feature is that the vari-
ance predominantly increased when using dynamic vegeta-
tion (Fig. 4a, b). Sites with short or sparse vegetation mostly
reacted more sensitively to dynamic vegetation modeling in
their NEE and GPP representation, especially when forcing
with MODIS climatology, which is indicated by the longer
arrows in Fig. 4a and b (for GPP, see Fig. S1 in the Sup-
plement). For forest ecosystems in general, the changes in
the model performance of NEE and GPP were small, as also
shown for the Hohes Holz site (Fig. 3a–c). Nevertheless, the
performance of NEE (and GPP) decreased when activating
vegetation dynamics, mainly driven by lowered correlation
coefficients, on average from 0.41 to 0.37 (0.72 to 0.68).
Only three sites showed improvements in NEE representa-
tion when predicting with dynamic ECLand and just one site
for GPP. Relative bias changed in both directions, towards
lower and higher model performance. Dynamic ECLand
mainly overestimated NEE by 11% on average, indicating
that ecosystems were predicted to be a smaller carbon sink
than observed (Table S2). Instead, dynamic Noah-MP esti-
mated on average 10% lower NEE compared to the observa-
tions for most sites (Figs. 4c, d, 3c, f).

Activating the dynamic vegetation affected the model per-
formance of NEE and GPP for Noah-MP heterogeneously.
Some sites showed very small changes (e.g., IT-Lav and
IT-Ren, Fig 4c, d), while the model performance of NEE
was largely impacted by vegetation dynamics for other sites
(e.g., US-Var and AU-DaS). In contrast to ECLand, no evi-
dence could be found that certain vegetation types or aridity
classes were more sensitive to activated vegetation dynam-
ics in Noah-MP, and even forests showed larger changes in
model performance (Fig. 3e). For GPP on the other hand,
the variance predominantly increased by activating vegeta-
tion dynamics in Noah-MP (Fig. S1c, d), and the normal-
ized standard deviation of NEE changed in opposing direc-
tions, which is another difference compared to ECLand. De-
spite the higher sensitivity of the NEE model performance
to Noah-MP vegetation dynamics, the overall model perfor-
mance was barely affected since relative bias shifted from
−12% to −11% and the correlation coefficient from 0.50
to 0.53 on average. Changes in statistical measures can be
in opposing directions, as can be seen for the normalized
standard deviation and relative bias of the forest site Ho-
hes Holz (Fig. 3e, f), which eliminated trends towards im-
proved or reduced model performance. Only the AU-Stp site
clearly improved regarding NEE representation by activat-
ing vegetation dynamics in Noah-MP by initializing with ei-
ther default or MODIS climatology. The GPP performance
showed small improvements by activating vegetation dynam-
ics in Noah-MP as the mean correlation coefficient shifted
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Figure 2. Change in model quality metrics for LAI when switching on vegetation dynamics for all included sites and when using default
climatology (a, c) or MODIS climatology (b, d). The star (“Observ”) marks the location of perfect correlation between the observation and
model and perfect agreement between the observed and modeled variance. The model performance of the static runs can be read from the
start of each arrow. When no arrow appears, either no correlation could be calculated (e.g., for evergreen forests where default climatological
LAI is constant) or values could not be placed on the logarithmic axis. The symbol colors indicate the site aridity (top-right legend) as
follows: very humid – aridity index (AI) < 0.6, humid – AI< 1.25, sub-humid – AI< 1.54, dry sub-humid – AI< 2, semi-arid – AI< 5
and arid – AI≥ 5 (Ashaolu and Iroye, 2018). Vegetation types are symbolized by different marker types (bottom-right legend).

from 0.68 to 0.74, and the range of the relative bias was
lowered from between −32% and +69% to between −28%
and +42%. In general, Noah-MP seemed to capture NEE
representations better, as the mean deviance from a normal-
ized standard deviation of 1 was 0.33 (ECLand: 0.39) and
showed a higher correlation coefficient on average of 0.51
compared to ECLand (Fig. 4c). Remarkably, the four and
nine best sites regarding NEE correlation and variance were
forests for ECLand and Noah-MP, respectively. At the same
time, all evergreen broadleaf forests suffered from poor per-
formance in both models. GPP representation in both mod-
els was better than for NEE (Fig. S1 and Table S3). Overall,
static and dynamic Noah-MP performed well in representing
NEE and GPP for most forest sites apart from the evergreen
broadleaf forests. In line with the finding that model perfor-
mances of dynamic Noah-MP were independent of the pre-
scribed LAI forcing, the availability of on-site LAI data for

the Hohes Holz site yielded no improvement in the represen-
tation of NEE or GPP compared to other LAI climatologies
(Fig. 3). The same was the case for dynamic ECLand. Forc-
ing static ECLand with on-site LAI data resulted in a NEE
and GPP correlation and relative bias that are comparable to
the forcing with MODIS climatology, with only variability
being lower.

3.2 On the sensitivity of heat fluxes and soil moisture to
vegetation dynamics in LSMs

For both models, activating vegetation dynamics had a
small impact on the representation of turbulent fluxes and
soil moisture. The strongest changes occurred for short- or
sparse-vegetation types or for drier climates, which had the
largest arrows in the Taylor diagrams (Figs. 5, 6). In ECLand,
activating vegetation dynamics enhanced the variance of the
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Figure 3. Statistical measures for the variables LAI, NEE and GPP of the model runs for the Hohes Holz site. The categories on the y axis
mark the different LAI forcings. The statistical measures of the static and dynamic simulations of the same variable are connected by a
horizontal line. The vertical dotted red line marks the optimum of each measure.

latent heat flux for most sites (from 0.80 and 0.84 to 0.94 on
average for default and MODIS climatology, respectively),
but correlation between the simulated and observed val-
ues remained unaffected or even diminished (mean change
smaller than−0.03). For several sites, LE estimates from dy-
namic ECLand better represented the observations, as shown
by the positive shift in relative bias (reduction from −32%
to −21%) (Fig. 5a, Table S4), but no relationship regarding
vegetation type or site aridity can be seen, and changes are
generally small. A major exception appeared for CH-Oe2,
which was caused by its default LAI climatology that did
not fit the vegetation type. Activating vegetation dynamics
in Noah-MP hardly affected model performance of LE (the
mean changes in correlation, standard deviation and rela-
tive bias were 0.02, 0.00 and 0.02, respectively). Sites that
showed some sensitivity predominantly have drier climate
(e.g., AU-Stp, US-Var; see Fig. 5c). Several sites showed less
bias in LE predictions when using dynamic vegetation pre-
dictions in Noah-MP. When using MODIS climatology as the
LAI forcing, activating vegetation dynamics could be advan-
tageous for some sites regarding LE representation (AU-Stp,
CH-Fru, US-GLE), but it would mostly not lead to higher
model performance.

Model performance regarding the evaporative fraction
(EF) was lower compared to LE as the points are further
away from the point of optimal model performance (Fig. 6).
Running ECLand with activated vegetation dynamics low-
ered the representation of the evaporative fraction, which is
demonstrated by many points in the Taylor diagram drifting
away from the star indicating best performance. Thereby, the
mean standard deviation changed from 0.95 to 1.08, and the
correlation coefficient was reduced slightly from 0.48 to 0.46
on average (Fig. 6a, b). Exceptions were BE-Lon, US-SRM
and US-Ton, where model performance improved slightly re-
garding correlation and variability. Again, the relative bias of
EF changed in both directions without any trend regarding
vegetation type or aridity for both models (see also Table S5).
For Noah-MP, eight sites showed an improved representation
of the evaporative fraction when running the model with veg-
etation dynamics. This number was reduced to six when the
model was initialized with MODIS climatology. But changes
were very small on average.

Regarding soil moisture, the model performance was al-
most insensitive to the vegetation dynamic option used or
the type of LAI forcing for both models (Fig. S2). Some sites
showed improvement in soil moisture prediction by activat-
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Figure 4. The same as the Taylor diagram before but with NEE evaluation.

ing vegetation dynamics for both models, although the im-
provement was very weak. Interestingly, no humid site was
among them. However, the simulation of soil moisture re-
sulted in a broad range of model performances, starting from
very well fitting predictions (R > 0.9, b ≈ 0%) up to very
poor fitting predictions (R < 0.2, b <−40% or b > 100%;
see Table S6). To investigate the sensitivity of dynamically
modeled vegetation to the model performance, we checked
how strongly the quality metrics of NEE, GPP, LE and soil
moisture change with the quality metrics of LAI. For this, we
used elasticity (defined in Eq. 3) as a metric, which is sum-
marized for all sites in Fig. 7. Surprisingly, the quality met-
rics of these closely related variables were independent of
each other; i.e., the elasticity was very low (within the grey
band) or randomly distributed around zero. The strongest
connection of all pairs tested could be found for the corre-
lation coefficient between LAI and GPP in ECLand when
using MODIS climatology but without affecting the normal-
ized standard deviation or relative bias. Here, the mean elas-
ticity of the correlation and normalized standard deviation is
positive, meaning that, as expected, an increased model per-

formance in LAI co-occurs with enhanced performance for
GPP of the same order of magnitude. In a similar manner,
NEE and LAI performances were positively related regard-
ing the correlation coefficient in Noah-MP. Other elasticity
values that include LAI were predominantly small. In other
words, changes in the model quality for LAI, for most of
the sites, do not affect the model performance of LE or soil
moisture, and even the model performance of carbon fluxes
remains unaffected.

3.3 Observed and simulated relationships between
ecohydrological variables

One possible explanation for the small contribution of the
model quality of LAI to that of the turbulent fluxes could
be a weak relation between LAI and carbon exchange in the
model. However, this is not the case, as illustrated in Fig. 8.
The figure shows the relation between GPP and LAI for four
exemplary sites: DE-HoH is a deciduous broadleaf forest in
a humid climate, IT-Ren is an evergreen needleleaf forest in
a semi-arid climate, GF-Guy is an evergreen broadleaf forest
in a tropical climate and US-Var is a grassland in a semi-
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Figure 5. Change in statistical measures for LE modeling when switching on dynamic vegetation for all included sites and by using default
climatology (a, c) or MODIS climatology (b, d) as forcing.

arid climate. In general, the relationships between GPP and
LAI are much more scattered in the observations (top row)
compared to the models (other rows), and this is true for both
models, across biomes and vegetation types.

The two European sites (left columns, De-HoH and IT-
Ren) reach maximum LAI and GPP in JJA and minimum
values in DJF, leading to a correlation that is mainly gov-
erned by the seasonal cycle. Similarly, at the US site, with
an overall closer relation, vegetation productivity and LAI
peak together in spring (i.e., MAM). For these three sites,
correlation coefficients range between 0.80 and 0.86, indi-
cating a clear but not perfect relation between LAI and GPP.
However, the scatter of the observed relation is considerable,
with the standard deviation of the residuals (σr) being be-
tween 58 and 102 × 10−6 gCO2 m−2 s−1. The variance is

the highest for the peak of the growing season, when GPP
quickly responds to environmental conditions (e.g., cloudi-
ness, precipitation and soil moisture stress) that LAI re-
sponds much slower to. The tropical site in French Guiana
(GF-Guy) shows, as expected, no seasonal cycle, leading to
an extremely weak relation between LAI and GPP. The latter
is comparatively high all year round (GPP between 250 and
600 × 10−6 gCO2 m−2 s−1), although LAI values from the
MODIS dataset surprisingly varied between 1 and 7 m2 m−2.
For this tropical site, GPP and LAI dynamics seem decou-
pled (Fig. 8c).

Noah-MP shows a non-linear relationship with a pro-
nounced hysteresis effect at all sites except the tropical one
(Fig. 8m–p). Thereby, GPP increases linearly with LAI dur-
ing biomass buildup to a point where allocation to leaves be-
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Figure 6. The same as before but for evaporative fraction, which represents the turbulent flux partitioning.

comes minimal (vegetation type specific), and it drops con-
siderably without any substantial reductions in LAI towards
the end of the growing season (e.g., Fig. 8m). When GPP val-
ues reduce below approximately 100 ×10−6 gCO2 m−2 s−1,
then LAI reduces from values of about three to values of zero.
This hysteresis is shifted in seasons due to local climate, as
for the US-Var site (Fig. 8p). At the tropical site, Noah-MP
shows some variability in GPP but almost no change in LAI,
which is around a value of five.

ECLand, in general, shows a linear relationship with con-
siderably less variability compared to the observations. The
slope and intercept of the linear regression are dependent on
the choice of static or dynamic vegetation. Dynamic ECLand
shows a very close linear relation between LAI and GPP
with much lower scatter compared to the observations (Fig. 8
third row), as R is larger than 0.99, and σr is between 10

and 14 ×10−6 gCO2 m−2 s−1 for all non-tropical sites. With
slope values of 104 to 254 × 10−6 gCO2 m−2 s−1, this rela-
tionship is much steeper than in the observations. Even for
the tropical site, the relationship between LAI and GPP is
clearly and closely linear (Fig. 8k).

4 Discussion

4.1 Using LAI climatology for ECLand and Noah-MP
runs is the best way to reproduce leaf area and
carbon uptake

Comparison between model output and observational data of
LAI, NEE or GPP on a daily basis is rarely done. The abil-
ity of the two models to reproduce these observed ecosys-
tem variables was in line with previous results. For Noah-
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Figure 7. Density plots showing the elasticity of the correlation (left column), normalized standard deviation (middle column) and relative
bias (right column) for different variable relationships in both models when activating dynamic vegetation and using default climatology
(blue) or MODIS climatology (orange) as forcing. For reasons of practicability, elasticity is used reciprocally. Accordingly, the explana-
tory variable is the first one of each relationship shown on the y axis. The grey-shaded area marks the range between the thresholds of
independence.

MP, model quality metrics were in the range of other studies
(Brunsell et al., 2020; Li et al., 2022; Xu et al., 2021; Liang
et al., 2020). However, dynamic LAI modeled by Noah-MP
in our assessment with a mean of +70% was more biased
compared to a mean of +20% for annual LAI values re-
ported by Li et al. (2022). Ma et al. (2017) reported a relative
bias in GPP of 40 % on average, which is higher than the
relative bias found here. For ECLand, we could not find any
comparable study reporting the performance of daily LAI or
NEE/GPP specifically, for both dynamic and static simula-
tions. However, for static ECLand, correlation coefficients
between the modeled and observed NEE and GPP were in
line with those obtained by Boussetta et al. (2013) for 10 d
averages at several FLUXNET sites. Moreover, for the mean
annual cycles of NEE and GPP, Stevens et al. (2020) found
a lower prediction error (RMSD) when using MODIS LAI

forcing compared to default prescribed LAI and, like in our
study, a substantial bias in LAI.

For both models, using MODIS climatology in static sim-
ulations resulted in the best performances concerning LAI.
This agreed with expectations. Since all our simulations were
validated with MODIS data, using static runs with MODIS
climatology itself would likely yield better results than the
default values in either model. For Noah-MP, static simula-
tions with MODIS climatology indeed yielded the best per-
formance regarding LAI in some sites, but, interestingly, us-
ing the default climatology also performed well for others.
LAI deviations with the default climatology occurred specifi-
cally in short vegetation, which was also true for the dynamic
runs (see below). For ECLand, where the default climatology
is already based on MODIS data (Boussetta et al., 2012), the
performance of the static run was generally improved com-
pared to the validation dataset, as the higher spatial resolu-
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Figure 8. Scatter plots of the relationship between LAI on the x axes and GPP on the y axes as 8 d averages for four selected sites (columns).
The rows from the top to the bottom show the observations, static ECLand model output, dynamic ECLand model output and dynamic Noah-
MP model output. Seasons are represented by different dot colors. The arrows represent the range of GPP and LAI values for the individual
seasons. A simple linear regression model was applied (dashed blue line), and its correlation coefficient (R), slope and standard deviation of
the residuals (σr) are given for each relationship.

tion allowed for a better geographical mapping. Addition-
ally, ECLand default climatology was created by disaggre-
gating the total LAI in the MODIS data to the low- and high-
vegetation type on the grid cell. Both points together can ex-
plain the better performance for LAI of static ECLand simu-

lations with MODIS climatology compared to default clima-
tology.

Dynamic vegetation did not yield better LAI results com-
pared to using static runs with MODIS climatology for ei-
ther model. Evergreen broadleaf forests showed the lowest
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correlation coefficients for dynamic LAI predictions, which
was also shown by Yang et al. (2011) for tropical regions
simulated by Noah-MP. Additionally, Brunsell et al. (2020)
reported overestimation of LAI with dynamic Noah-MP for
the eastern Amazonian forest, which we could not find here.
ECLand suffered from overall strong relative biases regard-
ing LAI in dynamic simulations. The underestimation of
prognostic LAI has already been shown by Boussetta et al.
(2021). Substantial biases also occurred in Noah-MP (also
shown by Huang et al., 2022), but particularly for short-
or sparse-vegetation types. The latter could be due to LAI
overestimation in the early growing season as reported by
Cai et al. (2014). Moreover, Liu et al. (2016) found that nei-
ther the lookup table LAI nor the predicted dynamic LAI an-
nual cycles seemed to reproduce LAI observations for short
vegetation. On the other hand, Pilotto et al. (2015) achieved
satisfactory model predictions for crop sites without vegeta-
tion dynamics. Thus, for short vegetation such as grasslands,
the Noah-MP crop module perhaps better represents LAI dy-
namics (Liu et al., 2016), which should be tested in the fu-
ture.

The performance of NEE and GPP in ECLand was not
very sensitive to different vegetation dynamics. Generally,
using static MODIS climatology yielded the best predictions
of GPP and NEE, although the correlation between the mod-
eled and observed NEE was generally low (the mean Pearson
correlation coefficient was 0.44). In many sites, even static
simulations with default climatology resulted in comparable
performances. Interestingly, adding more detailed informa-
tion by using MODIS single-year LAI forcing did not further
improve model performance (not shown), as we would have
expected if LAI dynamics contributed substantially to en-
hancing model performance for the carbon fluxes. However,
other authors found improved model performance of turbu-
lent fluxes, GPP and soil moisture for roughly 50% of their
set of sites by updating the LAI forcing using near-real-time
data assimilation (Boussetta et al., 2015). In other words, a
more frequent reset of LAI to the correct value can improve
the ECLand performance in general but did not have an effect
on the annual resolution applied here.

Assimilation of LAI during model runs instead of fixed
forcing (as in a static case) also improved LAI and GPP
model quality in a study by Xu et al. (2021) using dynamic
Noah-MP. We therefore expected that LAI dynamics poten-
tially improve model quality regarding carbon fluxes, which
was predominantly not the case. However, dynamic Noah-
MP is already known to overestimate GPP (Ma et al., 2017;
Liang et al., 2020; Brunsell et al., 2020). Short- and sparse-
vegetation types in particular suffered from low predictive
power, mainly in NEE correlation (Yang et al., 2021) and in
GPP relative bias (Li et al., 2022), which could also be ob-
served here. None of the parameter sets tested by Yang et al.
(2021) for simulations with dynamic Noah-MP resulted in
well-fitting predictions of daily changes in NEE for three of
the four sites with short vegetation within ChinaFLUX. Note,

however, that LAI, NEE and GPP of short and sparse vege-
tation were also not well-represented in static runs. More-
over, Kumar et al. (2019) could only achieve marginal im-
provements in GPP representation with dynamic Noah-MP
due to LAI assimilation for crops and grasslands, which sug-
gests that LAI dynamics had only a limited effect on simu-
lated NEE there. One possible reason for the lower predictive
power of the models regarding the carbon fluxes of short or
sparse vegetation could be that these vegetation types more
quickly and dynamically respond to fluctuations in the envi-
ronment (e.g., soil moisture limitations). Forest ecosystems
might be able to compensate for restrictions through a larger
intrinsic carbon storage or deeper roots, resulting in less
variability of their productivity within and between years. It
seems that both models investigated here cannot mimic this
differentiation. Nonetheless, it was shown here that corre-
lation coefficients for GPP simulated with dynamic Noah-
MP were high (also found by Liang et al., 2020; Li et al.,
2022), and, at the same time, relative bias was small for all
forests except the evergreen broadleaf forests (see Sect. 3.1
and Fig. S1). Thus, although some previous studies found
substantial uncertainties in modeled GPP for different veg-
etation types (Ma et al., 2017; Liang et al., 2020; Li et al.,
2022), predicting ecosystem variables using dynamic Noah-
MP could be useful, at least for forests in studies where LAI
climatology cannot be used, such as climate change impact
studies.

Considering the opposing biases in NEE (and GPP) indi-
cates that the models differ in their estimates of ecosystem
respiration. One important difference is the sequence of the
calculation of GPP, NEE and respiration. ECLand first es-
timates net assimilation and respiration separately, whereby
respiration is set to be 11% of net assimilation, and then both
are used to calculate GPP. In Noah-MP, the first estimate
is for GPP, which is reduced by respiration to gain a value
for NEE, and, additionally, respiration is scaled by GPP and
available biomass inclusive of LAI. Including our findings,
for dynamic ECLand, the underestimated LAI directly trans-
fers into lower NEE values and thus also to GPP since respi-
ration is a fixed fraction of NEE. Apart from the fraction of
GPP that is directly needed for metabolism, the estimation of
respiration in dynamic Noah-MP also considers leaf mainte-
nance, which is another difference compared to ECLand. As
a result, respiration is slightly overestimated in ECLand and
slightly underestimated in Noah-MP.

4.2 Model performance with respect to turbulent fluxes
and soil moisture was almost unaffected by
vegetation dynamics in both LSMs

The model performance of ECLand and Noah-MP regard-
ing heat fluxes and soil moisture seems almost insensitive to
vegetation dynamics.

Correlation, variability and bias of turbulent fluxes in this
study were comparable to other studies. While evaluating
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static ECLand with FLUXNET data, Stevens et al. (2020)
found correlation coefficients of 0.79 and 0.77 for the an-
nual cycle of latent and sensible heat, respectively, and Bous-
setta et al. (2013) showed a mean correlation coefficient of
0.81 for 10 d averages of latent heat. For Noah-MP, statistical
measures for turbulent fluxes and soil moisture were mostly
in line with other studies (Niu et al., 2011; Ma et al., 2017;
Yang et al., 2018; Xu et al., 2021), although Pilotto et al.
(2015) presented lower correlation coefficients between 0.20
and 0.43. Interestingly, Ma et al. (2017) showed opposing
relative bias for evapotranspiration on an annual timescale
over the continental US of 4% and 22% for static and dy-
namic simulations, respectively.

For ECLand, whether vegetation was simulated dynami-
cally instead of statically had little impact on turbulent fluxes.
Model performance for LE and EF changed only for some
sites and towards lower performance (see Sect. 3.2). The pre-
dominant underestimation of LE agrees with the findings of
Stevens et al. (2020). For dynamic ECLand, the underesti-
mation of GPP and LAI (also in Boussetta et al., 2021) could
also be the reason for the poor correlation of EF between
modeled and observed values because the energy fraction
that is used for transpiration is underestimated. Boussetta
et al. (2021) found that dynamic vegetation in ECLand im-
proved numerical weather predictions. Their main improve-
ments in model performance were achieved through updat-
ing land cover maps and the LAI in the lookup table or by in-
cluding LAI seasonality, which are both comparable with our
experiment using MODIS climatology in static ECLand sim-
ulations. Here, we could not confirm that these findings are
related to improved performance in heat fluxes since model
performance of LE and EF is almost unaffected by the LAI
forcing used, which has already been experienced by oth-
ers (Stevens et al., 2020; Nogueira et al., 2021). The reason
might be that parameters are adapted to the prior vegetation
information (Ruiz-Vásquez et al., 2023), and thus the model
needs a re-calibration.

For Noah-MP, activating vegetation dynamics had pre-
dominantly little impact on LE and EF predictions as well.
A slight improvement in model performance was found for
some sites with short-vegetation types or semi-arid climates.
Ma et al. (2017) found that using LAI climatology resulted
in better model performances for LE than simulations with
activated vegetation dynamics for Noah-MP using monthly
FLUXNET multi-tree ensemble data over the US. However,
here we did not find enhanced biases in LE predictions with
dynamic Noah-MP compared to the static simulations as they
did, which could be due to the differing timescales for model
evaluation. Both overestimation and underestimation of LE
predicted by dynamic Noah-MP are reported in the literature
(Brunsell et al., 2020; Ma et al., 2017; Cai et al., 2014). Brun-
sell et al. (2020) showed a positive bias of monthly evapo-
transpiration in the eastern Amazonian forest simulated with
dynamic Noah-MP, while we found a negative bias of LE for
the FLUXNET site GF-Guy. For short-vegetation types, us-

ing the Noah-MP crop module with activated vegetation dy-
namics might be sufficient in predicting surface fluxes (Liu
et al., 2016). Achieved improvement for LE might not be as
large as for sensible heat flux (Liu et al., 2016), which could
be a reason for the poor performances in EF presented here.

Although vegetation and soil moisture state variables are
directly coupled within land surface models, we found al-
most no impact of different vegetation modeling on soil
moisture predictions for both models. Activating vegetation
dynamics or changing LAI forcing did not improve soil mois-
ture representation on average. The reason might be due to
the implemented interaction of carbon and water processes.
First, the potential photosynthetic activity that depends on
leaf area and radiative conditions is calculated. Then, the lim-
itation factor of extractable water is estimated according to
available soil water and roots. Lastly, the photosynthetic ac-
tivity is adapted to this restriction, and the transpiration rate
is adapted to conductivity and atmospheric conditions. As a
result, the only included sequence is that soil moisture im-
pacts photosynthetic activity and biomass buildup. However,
there is no feedback indicating that more biomass requires
and loses more water, which would be taken from the soil be-
cause photosynthetic activity in the models relates to the car-
bon fluxes only, not the water fluxes. Additionally, modeled
soil moisture suffers from substantial biases in both direc-
tions, which was also found by Liang et al. (2020) for Noah-
MP and by Garrigues et al. (2021) for ECLand, although cor-
relation between the observed and modeled soil moisture can
be satisfactory (Beck et al., 2021; Xu et al., 2021; Pilotto
et al., 2015; Liang et al., 2019). The reason might be under-
lying default values for soil characteristics, such as the field
capacity and permanent wilting point, which possibly devi-
ate from on-site soil conditions, and optimal values for soil
parameters are still uncertain (Li et al., 2020). Alternatively,
it could be an effect of differing scales since the observation
from FLUXNET refers to point measurements. The multi-
scale parameter regionalization (MPR) might provide an im-
proved way to estimate soil parameters by applying a pedo-
transfer function to local soil characteristics and has recently
been applied to Noah-MP as a proof of concept (Schweppe
et al., 2022).

Overall, model performance with respect to soil moisture
and heat fluxes was barely affected by vegetation dynam-
ics or the applied LAI forcing. However, sensitivity to LAI
might be present, as van den Hurk et al. (2003) found ef-
fects of changed LAI values in TESSEL, a predecessor of
ECLand, as did Ma et al. (2017) and Zhang et al. (2016) for
Noah-MP. Xu et al. (2021) showed improved LE and soil
moisture simulations with more realistic LAI, although the
effect not only was site dependent but also differed with sea-
son and year. These authors also highlighted that transpira-
tion is only partly determined by LAI, and other factors con-
trolling the canopy conductance to water vapor might play a
larger role. Therefore, other compensating mechanisms may
explain the low elasticity between LAI and LE or soil mois-
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ture (see Sect. 3.2). Yang et al. (2011) demonstrated that the
applied runoff scheme more strongly determined model per-
formance with respect to soil moisture and evapotranspira-
tion than the schemes for dynamic vegetation, stomatal re-
sistance and soil moisture stress. Still, optimizing parame-
ters can be effective in improving model predictions, which
could be shown by several studies (Bohm et al., 2020; Li
et al., 2021, 2020). Moreover, the sensitivity of soil mois-
ture to vegetation parameters was shown to increase with dy-
namic vegetation representation (Arsenault et al., 2018). Yet,
uncertainty remains regarding the optimal values for soil and
vegetation parameters in particular (Li et al., 2020). Over-
all, the impact of vegetation dynamics and LAI on turbulent
heat fluxes and soil moisture in this investigation was mi-
nor across sites and seasons for both models. Thus, model-
ers who are mainly interested in the performance of carbon
processes should be careful when using performance metrics
for hydrological variables as a proxy (e.g., LE) because the
model formulation for the latter might have controlling pro-
cesses other than LAI or NEE, which could dominate the re-
sults. Whether applying vegetation dynamics in model simu-
lations is advantageous might depend on the target variables.
While using MODIS climatology might be sufficient for heat
flux predictions, activating vegetation dynamics could play a
role in improving carbon flux predictions at seasonal or an-
nual timescales (Jarlan et al., 2008).

4.3 Discrepancy between observed and simulated
GPP–LAI relationship is caused by model structure

The substantial scatter in the observed relation between GPP
and LAI is in close agreement with previous work, showing
that GPP also depends on the short-term availability of re-
sources (e.g., light, soil water) (Hu et al., 2022). Additionally,
Zhang et al. (2021) found that in LSMs the relation between
LAI and GPP was too close. We therefore checked the un-
derlying relations in the models causing this. The GPP–LAI
relationship in Noah-MP showed a clear exponential hystere-
sis (see Sect. 3.3). This hysteresis is related to the partition-
ing of GPP into the carbon pools in the plants and to LAI-
reducing processes such as leaf turnover and leaf dieback.
Noah-MP uses a non-linear function for allocation of GPP to
the leaves that limits the maximum LAI the model can grow,
resulting in the LAI saturation in summer that can be seen in
Fig. 8m–p. On the other hand, leaf turnover due to leaf aging
is implemented as a linear function of leaf mass, while leaf
dieback due to environmental limitations follows exponential
functions. Taken together, leaf dieback dominates in the later
growing season, which results in the hysteresis. The reduc-
tion in LAI (i.e., leaf dieback) is implemented to be depen-
dent on both water and temperature stress, but temperature
stress is the main driver. In the specific implementation used
here, water stress occurs only at a very low soil saturation
exemplarily of 0.11 cm3 cm−3 for silt loam, which is even
below the permanent wilting point of this soil texture type

according to the lookup table value. These values are rarely
reached, and thus water stress is negligible most of the time.
In contrast, temperature stress is implemented as an expo-
nential function, causing the late growing season non-linear
decline in GPP observed throughout the non-tropical sites.
Temperature stress is at maximum at 5 °C for forest ecosys-
tems, resulting in no active biomass below this threshold. For
this reason, LAI values are almost constant at the tropical for-
est site because temperature is never limiting there.

ECLand with static vegetation shows a similar pattern of
seasonal dynamics to Noah-MP with vegetation dynamics
but with a less pronounced exponential relationship. In con-
trast, dynamic ECLand simulates LAI that is strongly cou-
pled to daily meteorological conditions, leading to higher
daily fluctuations in LAI than expected, including strong
drops in LAI in summer. Three processes govern these daily
LAI dynamics: GPP, respiration and senescence. GPP is lin-
early related to LAI and varies with environmental and me-
teorological conditions, causing the variability in static runs.
In dynamic runs, losses in biomass due to high or low daily
GPP linearly affect LAI. In other words, unfavorable GPP
can reduce LAI almost immediately. The second process af-
fecting LAI is senescence. ECLand distinguishes between
growing and senescence phases by comparing active biomass
due to assimilation with the biomass from the previous time
step. If active, then senescence is a linear function of active
biomass and a folding factor. The folding factor reduces part
of the senescent biomass, depending on photosynthesis (re-
duced in the case of high assimilation) and LAI. Overall, the
folding factor changes only slightly with LAI. Additionally,
a reduction in LAI and thus active biomass due to reduced
GPP (as explained before) causes the model to trigger senes-
cence because the active biomass of the previous time step
was higher. The third process is respiration. About 11% of
physiologically possible assimilation is used for dark respira-
tion without considering actual light conditions. This might
cause high values of dark respiration compared with possi-
ble assimilation based on meteorological conditions and can
thus reduce net primary production, even producing nega-
tive values. Notably, no aboveground biomass storage is built
up, and there is no turnover. Most locations show a linear
relationship comparable to ECLand but with a higher vari-
ability (Fig. 8 first and third rows). This might be due to
the fact that leaf growth and leaf fall, in particular for trees,
happen on longer timescales than the daily one as imple-
mented in ECLand, which inhibits immediate effects of GPP
on LAI. Overall, the current implementations of leaf dynam-
ics in both models use very different approaches to represent
LAI dynamics. In Noah-MP it is mainly temperature driven,
and GPP depends minimally on LAI once the canopy is fully
developed. In contrast, in ECLand, LAI and GPP are cou-
pled very closely, and thus the LAI dynamics have almost the
same sensitivities to water limitation and radiation as turbu-
lent fluxes, which is unrealistic. Realistic LAI is less dynamic
and less sensitive to environmental conditions, as also indi-

https://doi.org/10.5194/bg-21-5277-2024 Biogeosciences, 21, 5277–5303, 2024



5294 S. A. Westermann et al.: Performance of dynamic vegetation in Noah-MP and ECLand

cated by the observations. Hence for very different reasons,
in both models the performance regarding LAI and turbulent
and carbon fluxes is disconnected.

4.4 Implications and limitations

For the modeling of LAI and carbon fluxes, using dynamic
vegetation modules in their current implementation in either
model is not yet efficient because they increase model com-
plexity, encompassing more dynamic processes and parame-
ters without improving the predictive skill. As the dynamic
vegetation components in ECLand are still under develop-
ment, findings from this study can help better understand and
represent the processes involved to improve its performance
in modeling carbon and energy fluxes. For Noah-MP, we also
showed that the dynamic vegetation module has potential for
improvement, especially related to the relationship between
GPP (and thus also NEE) and LAI. Underlying processes,
such as carbon allocation, root dynamics, plant hydraulics,
feedbacks on photosynthesis and their parameterization, can
still be worked on (Ma et al., 2017; Li et al., 2021). Overall,
we recommend using MODIS climatology forcing for static
simulations, which yielded the best model performances for
carbon and water fluxes. This might be valid for other remote
sensing LAI products as well but would need to be tested be-
forehand. The value of a model evaluation like in this study
depends on the reliability of the included datasets. Uncer-
tainty in the forcing data might have a larger impact on the
model runs than processes within the models (Zhang et al.,
2016), but Haughton et al. (2016) demonstrated that observa-
tional errors, in general, are unlikely to cause poor model per-
formance. Nonetheless, model evaluations are also restricted
by uncertainty in the reference data (Li et al., 2022), espe-
cially when considering flux measurements (Li et al., 2019).
We tried to address this by carefully inspecting the time se-
ries data from FLUXNET2015 before their usage. However,
as in all measurements, there are still uncertainties, e.g., from
instrumental errors or incomplete energy balance closure.
Moreover, the MODIS dataset harbors uncertainty originat-
ing from cloud coverage, especially in the tropics. We tried
to minimize this uncertainty by excluding all days from the
dataset that were flagged with significant cloudiness. How-
ever, saturation also limits the representativeness of the LAI
measurements. Even when using only data with the highest
possible quality flag, we found suspiciously low LAI values
in summer for temperate forests and grasslands and espe-
cially for tropical forests throughout the year (Fig. 8c).

Noisy and uncertain LAI data from MODIS for tropical
forests have already been reported in the literature (Weiss
et al., 2007; Garrigues et al., 2008; Xiao et al., 2016; Zhang
et al., 2024). As a result, reference data remain a source
of uncertainty, and a deviation in model outputs from these
data is expected. In any case, reference data are essential for
model verification, calibration and validation but should be
treated carefully concerning their reliability and uncertainty.

5 Conclusions

Land surface models often include modules for dynamic veg-
etation processes. Yet, evaluations of the representativeness
of key variables such as leaf area index or net ecosystem ex-
change are rarely done at high temporal resolution. The im-
pact of different parameterizations of vegetation processes
on water and carbon flux estimates by land surface mod-
els is still poorly understood. Therefore, we evaluated the
change in model performance with respect to ecohydrolog-
ical target variables when dynamic vegetation processes are
included for two land surface models and further gained in-
sight into critical process implementations that lead to the
observed patterns. Surprisingly, including modules for dy-
namic vegetation in the model implementation did not im-
prove the model predictions of ecohydrological variables for
both ECLand and Noah-MP. We expected vegetation dynam-
ics in these land surface models to better capture the higher
variability in ecosystem exchange, especially that of highly
dynamic short- or sparse-vegetation types, but this was pre-
dominantly not the case. Using alternative input for leaf area
index to default climatology also had a negligible effect on
the model performance, but this needs to be evaluated in
more detail since our data sources were limited. Moreover,
model performances in modeling carbon and hydrological
fluxes appeared to be weakly coupled. Therefore, the ques-
tion arose whether exchange fluxes themselves in these land
surface models are sensitive to changes in leaf area index es-
timates and not only to changing parameter sets. Indeed, dif-
ferent leaf area index estimates lead to different predictions
in exchange fluxes but without affecting the overall model
performance for these variables. This might be caused by the
mismatch in the seasonal patterns between observations and
models for the relationship between gross primary produc-
tivity and leaf area index. While this relationship in dynamic
Noah-MP showed a logarithmic hysteresis, mainly driven by
temperature, both variables are closely linearly coupled in
dynamic ECLand without allowing for the leaf area index to
remain unchanged in suboptimal conditions for photosynthe-
sis. This deeper analysis of the model performance for eco-
hydrological fluxes that pinpoints the reasons for model be-
havior was only possible with a reduced number of models.
We used specific setups for the two land surface models eval-
uated here. Adapting or changing parameters and investigat-
ing the effect of other processes within the models were be-
yond the scope of this study. At this point, it remains unclear
how representative our model selection is of the performance
and process evaluation of other land surface models, since
their processes are implemented differently. Nonetheless, we
highlighted some crucial relationships in the implementation
of vegetation processes that have the potential for further im-
provement. Additionally, these might be a good starting point
for a similar intensive investigation with other land surface
models or other alternative LAI climatology.
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Appendix A: Dynamic ECLand processes

For more details, see previously published model descrip-
tions (Boussetta et al., 2012, 2013, 2021). The photosynthe-
sis model is based on Calvet et al. (1998). Therein, poten-
tial net assimilation An is estimated from physiological con-
strains as

An = Amax ·

(
1− e−

gmeso·(ci−ccomp)
Amax

)
, (A1)

where Amax is the leaf photosynthetic capacity, gmeso is the
mesophyll conductance, ci is the leaf-internal CO2 concen-
tration and ccomp is the CO2 compensation point. Potential
gross assimilation Ag is then calculated as

Ag = (An+Rd) · ε, (A2)

where Rd is the dark respiration from

Rd = An · fR, (A3)

where fR =
1
9 is the dark respiration factor, and ε is a quan-

tum use efficiency factor, estimated as

ε = 1− e−
ε0·EPAR
An+Rd . (A4)

Here, ε0 is the maximum quantum use efficiency, and EPAR
is the absorbed photosynthetic active radiation. Actual gross
assimilation GPP results from

GPP= Ag ·LAI · ρa, (A5)

where LAI is the leaf area index of the prior time step, and
ρa is the air density corrected for humidity. An is used as the
maximum leaf assimilation for the senescence model (Cal-
vet and Soussana, 2001). To avoid immediate leaf dieback, a
damping factor for senescence fs is introduced as

fs =max
(

τlim · ts

100 ·Nday
,max

(
10−8,

ts

Nday
·

min
(

1,
An

Amax

)
·

max((rmeso · 1000)0.321
·LAI,1)

fLAI

))
(A6)

where τlim is a limiting factor for immediate biomass loss,
ts is the damping time for senescence (which is basically the
number of seconds per year), Nday is the number of seconds
per day, Amax is the maximum photosynthesis rate with op-
timal conditions and fLAI is a LAI correction parameter that
reduces mortality at high LAI values which would occur due
to shadowing. The amount of biomass loss Bloss is then

Bloss =min
(
B −LAImin · fLAI−B ,B ·

(
1− e−

1
fs

))
, (A7)

where B is the biomass of the prior time step, and fLAI−B is
a conversion factor between LAI and B. Biomass B is then

updated by subtracting Bloss. The change in biomass due to
assimilation Bgain results from

Bgain =max(LAImin · fLAI−B −B,An · fCbiom) , (A8)

where fCbiom ≈ 0.68 is a factor converting the amount of
CO2 uptake from assimilation to carbon in dry biomass.
Biomass B is updated again by adding Bgain. In the end, this
updated biomass is transferred to an updated LAI value by

LAI=
B

fLAI−B
. (A9)

LAI determines the interception reservoir W by

W =Wmax · (cB+ cH ·LAIH+ cL ·LAIL), (A10)

where Wmax is the maximum thickness of the water layer on
leaves or bare ground; cB, cH and cL are the fractions for
bare soil, high vegetation and low vegetation on a grid cell,
respectively; and LAIH and LAIL are the LAI values for high
and low vegetation, respectively (Boussetta et al., 2012). Ad-
ditionally, canopy resistance rc depends on LAI via

rc = f1f2f3 ·
rs,min

LAI
, (A11)

where rs,min is the minimum stomatal resistance, and fn is
the restriction factor for low input in shortwave radiation, soil
moisture stress and saturated atmospheric conditions (Bous-
setta et al., 2012).

A1 Dynamic Noah-MP processes

For more details, see previously published model descrip-
tions (Niu et al., 2011; Ma et al., 2017; Oleson et al., 2010).
The model for leaf dynamics within Noah-MP is based on
Dickinson et al. (1998). Leaf biomass Cleaf is balanced over
time with

δCleaf

δt
= fleaf ·Atot−(dstress+dturnover+Rleaf) ·Cleaf, (A12)

where Atot is the total carbon assimilation rate; fleaf is the
fraction of allocation to the leaves; dstress is the dying rate
caused by cold and drought stress; dturnover is the turnover
rate due to senescence, herbivory loss, or mechanical loss
as a vegetation-type-dependent parameter; and Rleaf is the
respiration rate of the leaf biomass. fleaf is determined by
LAI via

fleaf = e
0.01·LAI(1−eχ ·LAI), (A13)

where χ = 0.75 is a parameter defining the partitioning of
carbon allocation between the leaves and stem. Atot is split
up into photosynthesis rates from sunlit and shaded leaves,
respectively:

Atot = 12 · 10−6
· (Asunlit ·LAIsunlit+Ashaded ·LAIshaded),
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(A14)

where the first factor is for unit conversion. The partitioning
of sunlit and shaded LAI results from a two-stream radiation
transfer scheme (Niu et al., 2011). The assimilation rate for
sunlit and shaded leaves is estimated with a bottleneck prin-
ciple as

A= Igmin(AL,AC,AS), (A15)

where Ig is a growing season index according to leaf tem-
perature, and AL, AC and AS are the photosynthesis rates
limited by light, RuBisCO and export, respectively (Bonan,
1996). AL results from

AL =
4.6 · ε ·EPAR(ci − ccomp)

ci + 2ccomp
, (A16)

with ci being the leaf-internal CO2 concentration, ccomp be-
ing the CO2 compensation point, ε being the quantum use
efficiency and EPAR being the absorbed photosynthetic ac-
tive radiation. Additionally, AS = 0.5 ·Vmax and

AC =
Vmax(ci − ccomp)

ci +Kc(1+ co
Ko
)
, (A17)

where co is the atmospheric O2 concentration; Kc and Ko
are the Michaelis–Menton constants for CO2 and O2 (Col-
latz et al., 1992), respectively; and Vmax is the maximum car-
boxylation rate, defined by

Vmax = Vmax,25 ·α
Tv−25

10
max · fNfTvβ, (A18)

where Vmax,25 is the maximum carboxylation rate at 25 °C,
αmax is a temperature conversion factor, Tv is the vegeta-
tion temperature, fN is a factor for nitrogen limitation of
the leaves, fTv is a factor for temperature limitation (Collatz
et al., 1992) and β represents the limitation by available soil
moisture. dstress for the leaf mass balance is estimated from

dstress = dcold ·e
−0.3·max(0,Tv−Tmin)

Cleaf

120
+ddry ·e

−100β , (A19)

where Tmin is a vegetation-type-dependent threshold temper-
ature for leaf survival; β is the soil moisture limitation factor;
and dcold and ddry are vegetation-type-dependent dying rates
(prescribed parameter) for temperature and dryness stress, re-
spectively. Leaf respiration Rleaf is calculated with

Rleaf = fres

(
fleaf−

LAI
χ · fleaf

)
·Atot−Rl, (A20)

where fres is a factor defining the fraction of assimilation
that is used for respiration, and Rl is the respiration for leaf
maintenance from

Rl =min
(
Cleaf−Cleaf,min

1t
,0.5 · 12 · 10−6

· rl(Tv)

·LAI ·β ·
cN

cN,max

)
, (A21)

where Cleaf,min is the minimum leaf biomass, 1t is the time
step duration, 0.5 is a reduction factor for respiration dur-
ing the non-growing season, rl(Tv) is the vegetation-type-
dependent respiration rate for leaf maintenance at Tv and
cN

cN,max
is the nitrogen saturation within the leaves. After-

wards, net primary production (NPP) is estimated as

NPP=
(
fleaf−

LAI
χ · fleaf

)
·Atot−Rleaf−Rl. (A22)

GPP is set to Atot, and LAI is updated with

LAI= Cleaf · fLAI−B, (A23)

where fLAI−B is the leaf area per biomass. Assimilation rate
A determines the stomatal resistance rs by

1
rs
= gmin+

m ·pair ·A

cair

eair

esat(Tv)
, (A24)

where gmin is the minimum stomatal conductance, m is an
empirical parameter for the relationship between transpira-
tion and CO2 flux, pair is the surface air pressure, cair is the
CO2 concentration at the leaf surface, eair is the vapor pres-
sure at the leaf surface, and esat(Tv) is the saturation vapor
pressure inside the leaves (Ball et al., 1987; Bonan, 1996). rs
is then used to estimate latent heat flux and thus evapotran-
spiration.
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A2 Model setup options

Table A1. Options chosen for ECLand processes.

Physical process ECLand option

Sub-grid surface runoff activated
Van Genuchten hydrology activated
Interpolate wind to match temperature activated
and humidity levels
Interactive surface processes activated
Interactive surface radiative properties activated
Vertical diffusion activated
Multi-layer snow deactivated
Snow parameterization activated
LAI monthly climatology activated
Dynamic surface scheme of carbon activated
components
Dynamics for carbon and evaporation activated
components

Table A2. Options chosen for Noah-MP parameterization.

Physical process Noah-MP option

Runoff and groundwater TOPMODEL with groundwater (Niu et al., 2007)
Surface layer roughness Monin–Obukhov
Supercooled water no iteration (Yang and Niu, 2006)
Radiative transfer two stream (vegetated vs. vegetation-free)
Snow albedo fresh snow with aging effects
Rain–snow partitioning threshold temperature at 2.2 °C
Lower boundary for soil temperature temperature at 8 m depth (part of input)
Snow/soil temperature time scheme fully implicit (original Noah)
Surface resistance to evaporation Sakaguchi and Zeng (2009)
Glacier treatment phase change in ice included
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Code and data availability. Observational data from the
FLUXNET2015 dataset were accessed via the FLUXNET
data portal (https://fluxnet.org/data/fluxnet2015-dataset/;
fluxnet.org, 2020). Observational data for the TERENO
observatory Hohes Holz can be found at PANGAEA
(https://doi.org/10.1594/PANGAEA.940760; Rebmann
and Pohl, 2023). The IGBP land classification is pub-
lished by the National Center for Atmospheric Research
(2022) (https://climatedataguide.ucar.edu/climate-data/
ceres-igbp-land-classification). The aridity index was taken
from Trabucco and Zomer (2018). Gap filling of meteorological
data was done using the ERA5 reanalysis product (Hersbach
et al., 2020), accessed through the Climate Data Store API
(https://doi.org/10.24381/cds.e2161bac; Muñoz Sabater, 2019).
USGS vegetation types can be found at the University Corporation
for Atmospheric Research (2023) (https://ral.ucar.edu/model/
noah-multiparameterization-land-surface-model-noah-mp-lsm).
Global gridded soil information (Hengl et al., 2014) is avail-
able at https://soilgrids.org (ISRIC, 2024). The MODIS leaf
area index was retrieved via the Earthdata portal from NASA
(https://doi.org/10.5067/MODIS/MOD15A2H.006; Myneni et al.,
2015).
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