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Abstract. Land-use and land-cover change (LUCC) is a
key factor in determining regional vegetation greenness, im-
pacting terrestrial carbon, water, and energy budgets. As
a global LUCC hot spot, Southeast Asia has experienced
intensive cropland and plantation expansion over the past
50 years; however, the impacts of these changes on the re-
gional greenness have not been elucidated. Here, we har-
monized multiple land-cover datasets, and used the satellite-
derived leaf area index (LAI) in combination with a machine
learning approach to quantify the impacts of LUCC on veg-
etation greenness in insular Southeast Asia (i.e. Peninsular
Malaysia, Sumatra, and Borneo). We found that the regional
LAI shows almost no trend (0.04× 10−2 m2 m−2 yr−1)
from 2000 to 2016: the net effect of an increased LAI
(+5.71× 10−2 m2 m−2 yr−1) due to CO2 fertilization is off-
set by a decreased LAI mainly due to cropland expan-
sion (−4.46× 10−2 m2 m−2 yr−1). The impact of croplands
on greenness in Southeast Asia contrasts with that in In-
dia and China. Meanwhile, oil palm expansion and climate
change induced only small decreases in the LAI in South-
east Asia (−0.41× 10−2 and−0.38× 10−2 m2 m−2 yr−1, re-
spectively). Our research unveils how the LAI changes with
different LUCC processes in Southeast Asia and offers a
quantitative framework to assess vegetation greenness under
different land-use scenarios.

1 Introduction

Terrestrial vegetation plays a pivotal role in regulating
ecosystem services, conserving biodiversity, and mitigat-
ing climate change impacts. Over recent decades, long-term
satellite records of the leaf area index (LAI) have disclosed
a notable increase in vegetation greenness on Earth (Chen et
al., 2019; Zhu et al., 2016). While elevated atmospheric CO2
concentrations and climate change are regarded as the driv-
ing factors for vegetation greening at the global scale (Zhu et
al., 2016), land-use and land-cover change (LUCC) can also
substantially impact greenness at the regional scale. Previ-
ous studies have found that cropland intensification and af-
forestation are the primary drivers of greening in India and
China (Chen et al., 2019; Kuttippurath and Kashyap, 2023).
Meanwhile, other studies have reported that deforestation for
croplands or pastures serves as a key driver of decreasing
greenness in the Amazon (Chen et al., 2019; Querino et al.,
2016). Thus, LUCC can either increase or decrease vegeta-
tion greenness, depending on the prior land use (e.g. forests
and pastures), the subsequent land use (e.g. croplands, pas-
tures, and plantations), and the intensity of these land uses
(Wang and Friedl, 2019).

Southeast Asia harbours diverse biodiversity and ecosys-
tems. However, the trends and drivers of regional greenness
remain largely underexplored. Previous studies have revealed
that CO2 fertilization is a primary driver of the greening
trend in Southeast Asia within a global context (Chen et al.,
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2022; Chen and Guestrin, 2016). Thus, climate change, es-
pecially temperature rise, could reduce vegetation growth in
the tropics (Piao et al., 2020a) or drive “green-up” in mar-
itime Southeast Asia during El Niño (Satriawan et al., 2024).
More importantly, land-use change, particularly deforesta-
tion, is the predominant factor causing the decline in green-
ness in tropical countries like Indonesia (Chen et al., 2019;
Piao et al., 2020a). However, these prior studies have primar-
ily focused on a global scale and, thus, likely oversimplified
regional dynamics, such as complex land-use processes.

Since the 1950s, Southeast Asia has been a global LUCC
hot spot (Houghton and Nassikas, 2017), with maritime
countries such as Indonesia and Malaysia having the great-
est deforestation rates in the world (Harris et al., 2012).
An increase in food crops and export-oriented crop pro-
duction has driven a significant transformation of tropical
forests into commodity plantations like oil palms or crop-
lands for food (Fagan et al., 2022; Zeng et al., 2018). In-
donesia and Malaysia are the largest producers of palm fruit,
with 250× 106 and 97× 106 t of palm fruit produced in
2020 (FAOSTAT, 2022), respectively. Meanwhile, Indonesia
and Malaysia have experienced tree cover losses of approx-
imately 29.4× 106 and 8.92× 106 ha, respectively, over the
past 2 decades, equivalent to 18 % and 30 % of their respec-
tive tree cover in 2000 (Global Forest Watch, https://www.
globalforestwatch.org/, last access: 28 November 2024).

Despite the substantial LUCC in the past years, we lack
a clear understanding of the impacts of LUCC on vegeta-
tion greenness in Southeast Asia. This is partly due to the
complexity of the recent land-use history of the region. For
example, in Indonesia, the dominant LUCC types in the
2000s were the conversion of forests to oil palm planta-
tions and cropland in lowland regions; however, in the 2010s,
the conversion of forests to oil palm slowed down, shifting
more towards highland croplands and the rotation of plan-
tations (Descals et al., 2021; Xu et al., 2020; Zeng et al.,
2018). These LUCC processes can differentially affect vege-
tation greenness and biogeochemical cycles (Ito and Hajima,
2020), with further feedback on vegetation greenness (Wang
and Friedl, 2019). However, current studies on the assess-
ment of LUCC impacts do not often distinguish these indi-
vidual land-use processes; instead, they categorize the loss of
forests under one “deforestation” category (Sitch et al., 2015)
or regard plantation as similar to natural forests (Hansen et
al., 2013).

In this study, we aim to assess the impact of LUCC on
vegetation greenness in Southeast Asia and quantify the con-
tributions of the different LUCC processes to the changes
in greenness. We collected and harmonized various types of
land-cover datasets (Chini et al., 2021; Hansen et al., 2013;
Sulla-Menashe et al., 2019; Xu et al., 2020) to build a de-
tailed land-use history for Southeast Asia from 2000 to 2016.
We further used a machine learning approach to quantify the
impacts of land uses on the LAI, along with the impacts
from climate, CO2 concentrations, stand age, etc. Our ma-

chine learning approach, combined with hypothetical scenar-
ios that simulate vegetation greenness without LUCC pro-
cesses, enables us to isolate the impacts of different land-
use changes on the LAI by estimating the difference between
scenario-based LAI values.

2 Materials and methods

2.1 Study areas

Depending on the availability of various land-use data, we fo-
cused our study on a region including Peninsular Malaysia,
Sumatra, and Borneo (Fig. 1) in Southeast Asia, which ex-
perience rapid LUCC (Geist and F, 2001; Mao et al., 2023).
Since the 1980s, insular Southeast Asia has lost at least 1.0 %
of its forests annually (Felbab-Brown, 2013; Miettinen et al.,
2011), primarily due to cropland and plantation expansion
(Wang et al., 2023; Wicke et al., 2011; Xu et al., 2020).
Particularly notable is the expansion of oil palm plantations
in Indonesia and Malaysia (Chen et al., 2024; Euler et al.,
2016). From the 1990s to the 2010s, the extent of oil palm
plantations increased from 1.3× 106 to 7.7× 106 ha in In-
donesia and from 2.1× 106 to 5.2× 106 ha in Malaysia (Xu
et al., 2022). A nation-wide study reported that around 55 %–
59 % of oil palm plantation expansion in Malaysia and at
least 56 % in Indonesia occurred on lands previously cov-
ered by forests during the period from 1990 to 2005 (Koh and
Wilcove, 2008; Vijay et al., 2016). In parallel, cropland ex-
pansion also drives deforestation in our study area, with ap-
proximately 15 % of forest loss in Indonesia attributed to this
cause (Austin et al., 2019). Rubber, timber, and other plan-
tations have also resulted in deforestation. A recent study re-
vealed that, between 2001 and 2016, approximately 20 % of
rubber plantations in Indonesia and 33 % in Malaysia were
established on land previously covered by forests, resulting
in a loss of about 1×106 and 0.32×106 ha of forest in these
countries, respectively (Wang et al., 2023).

2.2 Identification of the greening trend

The LAI indicates the total amount of one-sided leaf area
per unit of ground surface area (Chen and Black, 1992; Wat-
son, 1947) and often serves as a measure of vegetation green-
ness (Zhu et al., 2016). In this study, we use the GLOBMAP
LAI dataset, which provides a global record of vegetation
cover with a 500 m resolution and is one of the main LAI
datasets used for global greenness studies (Piao et al., 2020b;
Zhu et al., 2016). We used the GLOBMAP LAI (version 3)
dataset post-2001, which was generated based on the Moder-
ate Resolution Imaging Spectroradiometer (MODIS) surface
reflectance (Liu et al., 2012), with an advanced algorithm
to consider canopy clumping, making it particularly suitable
for dense canopies in the tropics (Fang et al., 2019). To as-
sess the trend in the LAI for individual pixels, we utilized
the Mann–Kendall test, a non-parametric statistical method
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Figure 1. Workflow of the study: steps 1 to 4 outline the processes for harmonizing multiple land-cover datasets; steps 5 to 6 show the
establishment and interpretation of the LAI prediction and the scenario simulation process.

that can effectively identify consistent upward or downward
trends over time (Mann, 1945). This test provides the pixel-
by-pixel magnitude (β) and statistical significance (p values)
of the greening trends.

2.3 Mapping different land-use transitions

In our study area, we considered natural forests, oil palms,
and croplands as the major land-use types, as they together
accounted for over 90 % of the land cover. To delineate the
annual changes in all of these land-use types from 2001 to
2016, we harmonized various land-use datasets, which were
provided at different spatial resolutions (Table S1), into a uni-
fied dataset on a 500 m grid. This harmonization was essen-
tial to make land-use changes across various datasets com-
patible with each other and to match the spatial resolution
of the land-use data to the LAI dataset. As shown in Figs. 1
and S1, the workflow for harmonizing multiple land-cover
datasets involved the following steps:

1. We first determined the annual percentages of forested
(A %) and non-forested areas (B %) within each 500 m
grid cell by aggregating the mean of the annual 30 m
resolution Global Forest Change (GFC; v1.11) maps
(Hansen et al., 2013), using the “reduceResolution()”
function in Google Earth Engine (https://developers.

google.com/earth-engine/guides/resample, last access:
28 November 2024).

2. Within the forested fraction of each grid cell, we es-
timated the proportion of oil palm (OP) plantations
(A1 %) using an openly available dataset that covers
the OP distribution across Malaysia and Indonesia from
2001 to 2016 (Xu et al., 2020). To estimate the propor-
tion of OP, we calculated the frequency of oil palm pix-
els in each 500 m× 500 m window.

3. After accounting for the OP area, the remaining forested
area in each grid was further categorized into the ever-
green broadleaf forest (EBF) (A2 %) and other forest
types (i.e. deciduous broadleaf forest, coniferous forest,
mixed forest, etc.), based on the ratio of EBF to the total
forested area provided by the MODIS Land Cover Type
Product (MCD12Q1 v6.1) (Sulla-Menashe and Friedl,
2018).

4. Within the non-forested fraction of each grid cell, we
used the latest version of the Land-Use Harmonization
(LUH2) dataset (Hurtt et al., 2020) to estimate the per-
centage of cropland (CRO) (B1 %) and other non-forest
land uses (i.e. pasture, grass, etc.). In this analysis, we
assumed that the fraction of each land-use type in the
LUH2 dataset on a 0.25° grid is applicable to the 500 m
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grid cells within each 0.25° grid cell. To avoid biases
when downscaling land-cover data from a coarse to fine
resolution, we also tested our results by upscaling all
datasets to 0.25° (Figs. S2, S3).

In the end, we obtained detailed information for the EBF,
OP, CRO, and Other (including other forests and non-forest
vegetated areas) land-use types, at a 500 m spatial resolution.
We grouped other forests and other non-forest vegetated ar-
eas together, as they represented a minor proportion (less
than 5 %) of the land surface (Table S2) and exhibited mini-
mal changes during the study period.

2.4 Extreme gradient boosting model

Tree-based machine learning models, such as extreme gradi-
ent boosting (XGBoost), have been widely used in predicting
and analysing ecosystem dynamics (Green et al., 2022; Yuan
et al., 2019). Compared with neural networks, which often
function like “black boxes”, tree-based models offer greater
interpretability and are particularly effective on tabular-style
datasets (Lundberg et al., 2020). XGBoost is an ensemble
learning algorithm that iteratively constructs multiple deci-
sion trees and has proven to be effective for both classifica-
tion and regression tasks (Chen and Guestrin, 2016; Yan et
al., 2020). This algorithm employs shrinkage techniques and
performs multithreaded calculations to minimize overfitting
(Meng et al., 2021).

In our study, we applied the XGBoost algorithm (Chen and
Guestrin, 2016) to model the spatiotemporal variations in the
mean annual LAI using climatic and LUCC factors as inputs.
These factors include the fractions of EBF, OP, CRO, and
Other land uses; EBF-stand and OP-stand ages (Besnard et
al., 2021; Danylo et al., 2021); CO2 concentrations (https://
gml.noaa.gov/ccgg/trends/, last access: 28 November 2024);
and climatic variables (Table S3). The climatic variables
in our study include the mean annual temperature (MAT),
mean annual precipitation (MAP), wind speed (WS), short-
wave radiation (RAD), and relative humidity (RH). These
gridded climatic variables were obtained from the European
Centre for Medium-Range Weather Forecasts (ECMWF) re-
analysis product v5 – Land (https://cds.climate.copernicus.
eu/datasets/reanalysis-era5-land?tab=overview, last access:
28 November 2024). We aggregated the original hourly data
to the annual time step using an annual average.

To fine-tune the parameters of our XGBoost model for LAI
prediction, we randomly split the data into training and test-
ing sets using an 80 % : 20 % ratio. We then utilized the Grid-
SearchCV method to test different parameter combinations
(i.e. varying numbers of trees from 150 to 400, tree depths
from 5 to 15, and learning rates between 0.01 and 0.1) and
determined the best parameter combinations through cross-
validation (Pedregosa et al., 2011).

2.5 Shapley additive explanations

We utilized the TreeExplainer-based SHapley Additive ex-
Planations (SHAP) framework to interpret the individual and
interactive contributions of LUCC and other factors (includ-
ing climate variables, CO2 concentration, and stand ages)
to the LAI variations in our XGBoost model. The SHAP
methodology, which is based on the concept of Shapley val-
ues in cooperative game theory, offers an insightful interpre-
tation of factor importance (Lundberg and Lee, 2017). It pro-
vides detailed, instance-specific explanations, termed SHAP
values, to quantify the impact of each factor on the model
predictions (Lundberg et al., 2020; Yang et al., 2021).

In the SHAP framework, the value for a given factor i in
a particular sample x is computed as the average marginal
contribution of that factor across all possible combinations.
This is mathematically represented as follows:

φi (x)=
∑

S⊆N{i}

|S| !(|N | − |S| − 1) !
|N | !

[
f (S ∪ {i})− f (S)

]
, (1)

whereN is the set of all factors, S is a subset of factors, and f
is the prediction model. This formula quantifies the contribu-
tion of factor i by comparing the prediction with and without
the factor, averaging over all possible subsets of factors.

The SHAP value indicates the magnitude and direction of
the impact of a factor on prediction in the specific sample.
To be specific, the magnitude (absolute value) of a SHAP
value indicates the importance of a factor. Larger absolute
SHAP values mean that the factor has a greater impact on the
model’s output. The sign of a SHAP value (positive or neg-
ative) shows the direction of the impact. A positive SHAP
value indicates that the factor positively affects the model’s
output (e.g. increases LAI), whereas a negative SHAP value
suggests a negative impact (e.g. decreases LAI). By aggre-
gating the mean SHAP values of all samples, we can also
derive global factor importance, which offers a holistic view
of variables affecting annual LAI variations.

Furthermore, SHAP values aid in the interpretation of the
interactive effects of two or more factors in machine learning
models (Lundberg and Lee, 2017). The interactive effect is
defined as the change in prediction when the joint contribu-
tion of two or more factors is considered, by subtracting the
individual contributions made by each factor. The interactive
effects of ith and j th factors are expressed as follows:

φij (x)=
∑

S⊆N{i}

|S| !(|N | − |S| − 2) !
|N | !

[
f (S ∪ {i,j})

− f (S ∪ {i})− f (S ∪ {j})+ f (S)

]
. (2)

We utilized the XGBoost and scikit-learn packages in
Python 3.11.0 to develop and train the XGBoost model (Chen
and Guestrin, 2016; Pedregosa et al., 2011). Then, we em-
ployed the TreeExplainer function from the shap package
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(Lundberg and Lee, 2017) to interpret the impact of factors
on LAI predictions.

2.6 Simulation scenarios

To quantify and compare the impacts of specific LUCC pro-
cesses, climate change, and elevated CO2 concentrations on
vegetation greenness changes, we adopted the scenario sim-
ulation framework from several factorial attribution analyses
(Sitch et al., 2015). Specifically, we first estimated the LAI
trend under five hypothetical scenarios (S1–S5) using the es-
tablished XGBoost model. The equations utilized are as fol-
lows:

LAIi,t,Sn = XGBoost
(

CO2i,t,Sn,CLIi,t,Sn,

f _EBFi,t,Sn, f_CROi,t,Sn,

f_OPi,t,Sn, f_Otheri,t,Sn

)
, (3)

βLAIi,Sn = slope
(
LAIi,Sn

)
. (4)

Here, LAIi, t,Sn represents the simulated LAI for the ith grid
at year of t under scenario Sn; βLAIi,Sn indicates the LAI
trend over the study period; and XGBoost stands for the es-
tablished model for LAI prediction using the CO2 concen-
tration (CO2), climate variable (CLI), and land-cover types,
such as the fraction of evergreen broadleaf forest (f_EBF),
cropland (f_CRO), oil palm (f_OP), other land uses (f_Other)
(see Sect. 2.4).

For different scenarios, we adjusted the input variables ac-
cording to specific assumptions to progressively incorporate
different factors. For S1, we assumed that only the CO2 con-
centration varied from 2001 to 2016, while climate and land-
use variables (i.e. CLI, f_EBF, f_CRO, f_OP, and f_Other)
remained constant at their 2001 values. For S2, CO2 and cli-
mate change over time, with land uses remaining unchanged
at their 2001 values. S3 to S5 sequentially considered dif-
ferent land-use processes: S3 involved changes from EBF to
CRO using time-varying CO2, climate, and CRO fractions,
while keeping OP and other land-use types constant post-
2001; S4 included conversions from EBF to both CRO and
OP using time-varying CO2, climate, CRO and OP fractions,
while other land uses remained unchanged post-2001; and S5
encompassed all LUCC changes, with all variables including
CO2, climate, and all LUCC types varying over time.

We then quantified the impacts of each factor on vegeta-
tion greening based on differences in LAI trends between
scenarios as follows:

Drivern = δLAI trend= βLAIi,Sn−βLAIi,S(n−1). (5)

Here, Drivern measures the impact of the nth driver on LAI
trends. The drivers include CO2, climate change, CRO ex-
pansion, OP expansion, and Other LUCC. Notably, Driver1
quantifies the impact of CO2, equal to βLAIi,S1. In addition,

our estimation of CRO or OP expansion assumed that the
increased areas of CRO or OP since 2001 came from EBF,
given that CRO and OP expansion mostly resulted from de-
forestation in Indonesia and Malaysia (Numata et al., 2022;
Wagner et al., 2022).

3 Results

3.1 Land-use changes and greening trends

From 2001 to 2016, the extent of forest in our study area
decreased annually by 1.29 %, leading to an EBF reduction
from 73.41 % to 53.09 % of the study area. Notably, approx-
imately 25.54 % of the region experienced rapid deforesta-
tion, with a forest loss rate exceeding 2 % of the land surface
per year. This deforestation rate was especially pronounced
in the eastern parts of Sumatra and along the western and
southern edges of Borneo (Fig. 2b).

In the deforested areas, we observed the widespread ex-
pansion of CRO and OP plantations. The CRO area increased
at a rate of 0.63 % yr−1, resulting in an increase in CRO area
from 14.45 % to 24.56 % of the region (i.e. 20.76× 104 to
35.28× 104 km2) between 2000 and 2016. Meanwhile, the
expansion of OP proceeded at a pace of 0.48 % yr−1, result-
ing in a nearly tripled extent of oil plantations over the past
decade (i.e. from 3.91 % in 2001 to 12.05 % in 2016; Fig. 2a).
In central Sumatra, the southern edge of Borneo, and the
southern part of Peninsula Malaysia, OP showed the largest
increase, partly at the expense of decreases in CRO (Fig. 2c).

The regional average LAI exhibited a non-significant
upward trend over the study period, with a slope of
0.04× 10−2 m2 m−2 yr−1 (Fig. 3a). Using another LAI
dataset (MODIS LAI), we also captured an increasing trend
(Fig. S4). According to Galán-Acedo et al. (2021), areas with
over 70 % forest loss are categorized as having high to severe
deforestation, whereas areas with less than 70 % forest loss
are classified as undergoing low to intermediate deforesta-
tion. We found that, for our study area, the non-significant
upward trend in the LAI was due to the net effect of a rapid
LAI increase (β =+1.07× 10−2 m2 m−2 yr−1, p<0.05) in
areas with low to intermediate deforestation and a significant
LAI decline (β =−3.08× 10−2 m2 m−2 yr−1, p<0.001) in
areas with high to severe deforestation (Fig. 3a). Across the
study area, 58.50 % of the region showed a significant de-
creasing LAI trend; these areas were mostly regions with
pronounced forest loss (Figs. 2b, 3b).

3.2 Drivers of changes in the LAI

To understand the variations in vegetation greenness in
Southeast Asia, we established an XGBoost model to quan-
tify the relationship between vegetation greenness and land
uses, climate variables, CO2 concentrations, and stand ages.
The XGBoost model showed high explanatory power (i.e.
98 % accuracy for calibration and 93 % accuracy for valida-
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Figure 2. Land-use composition and its changes in the study area from 2001 to 2016: (a) the changes in the fractions of main land uses, in-
cluding evergreen broadleaf forest (EBF), oil palm (OP), cropland (CRO), and Other land uses over the study period; (b–d) spatial distribution
of the trend in EBF, CRO, and OP as a fraction of land area.

Figure 3. Trends in the LAI in the study area from 2001 to 2016. Panel (a) shows the regional average LAI trend, the LAI trends in regions
with high to severe deforestation, and the LAI trends in regions with low to intermediate deforestation. The classification of the deforestation
level is taken from Galán-Acedo et al. (2021): areas experiencing more than 70 % forest loss are classified as high or severe deforestation,
whereas those with less than 70 % loss are classified as low or intermediate deforestation. Panel (b) presents the spatial pattern in the LAI
trend, with the inset histogram showing the frequency (%) of the pixel-wise LAI trend in the study area.

Biogeosciences, 21, 5393–5406, 2024 https://doi.org/10.5194/bg-21-5393-2024
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tion), underscoring the model’s reliability for analysing the
determinants of LAI variability (Fig. 4). Using different split-
ting ratios for calibration and validation dataset, we obtained
similar model performance (Fig. S5).

Based on the built XGBoost model, we evaluated the con-
tributions of each factor to the LAI in the SHAP framework
(Fig. 5; see Sect. 2). Our results reveal that the fraction of
EBF (f_EBF) in each grid holds the greatest mean absolute
SHAP value (1.28), indicating that f_EBF had the largest im-
pact on the LAI (Fig. 5b) and that this impact was positive
(Figs. 5a, S6a).

The average impact of the fraction of OP (f_OP) on the
LAI ranked the second largest (0.21) and had a similar pos-
itive impact on the LAI to f_EBF (Figs. 5a, b; S6b). In con-
trast, the impact of CRO and other land uses on the LAI was
found to be negative (Figs. 5a; S6c, d). A higher fraction
of CRO (f_CRO) led to a larger negative SHAP value. We
further explored the impacts of the interactions of land-use
types (i.e. f_CRO, f_OP, and f_EBF) on the LAI. The results
demonstrated that, in areas with low f_EBF, an increase in
f_OP enhanced the LAI, whereas f_CRO induced LAI de-
creases. Meanwhile, in areas with high f_EBF, the impacts
of both f_OP and f_CRO on the LAI were markedly reduced,
suggesting a dominant role of f_EBF in greenness in the re-
gion (Fig. 5c, d).

Apart from the impacts of land uses on the LAI, we also
found that an elevated CO2 concentration substantially in-
creased the LAI, with a mean SHAP value of 0.18. In con-
trast to an elevated CO2 concentration, the MAT was nega-
tively related to the LAI, with a smaller mean SHAP value of
0.08 (Figs. 5b, S6e). Other climate variables have limited im-
pacts on the LAI. It is noteworthy that the stand ages of both
EBF (Age_EBF) and OP (Age_OP) positively impact the
LAI. Specifically, Age_EBF has a greater impact than that
of Age_OP, as indicated by a higher absolute mean SHAP
value for Age_EBF (0.11) compared with Age_OP (0.08).
While we found that Age_EBF continuously contributed to
LAI increases (Fig. S6k), Age_OP increased the LAI at a
younger age (less than 12 years) and then decreased the LAI
afterward (Fig. S6l).

3.3 Impacts of LUCC on greening

Through scenario-based prediction, we quantified the im-
pacts of LUCC, elevated CO2 concentration, and climate
change on the greening trend (Figs. 6f, S8). Compared
with the observed greening trend for the study area (i.e.
0.04× 10−2 m2 m−2 yr−1), we found that the greening trend
increased to 5.71× 10−2 m2 m−2 yr−1 under scenario S1,
which simulated the effect of elevated CO2 alone, with the
climate and LUCC values remaining constant. This result
suggests that elevated CO2 had a clear positive impact on the
LAI in Southeast Asia. Climate change showed a small nega-
tive impact (i.e. mostly due to rising temperature) on the LAI.
We found that both CRO expansion and OP expansion de-

creased the LAI trend, with the trend dramatically dropping
by −4.46× 10−2 m2 m−2 yr−1 under the impact of CRO ex-
pansion and by−0.41× 10−2 m2 m−2 yr−1 under the impact
of OP expansion. These results highlight that CRO expan-
sion was the primary reason for the decrease in vegetation
greenness, counteracting the greening trend caused by ele-
vated CO2 in our study area. In contrast, OP expansion only
contributed to a small decline in greenness.

We further examined the spatial variations in the impacts
of each factor on greening by quantifying the differences in
greening trends under different scenarios at the pixel level.
Across the study area, LUCC imposed a negative impact on
LAI trends (Fig. 6c, d, e). Consistent with regional average
values, we found that the changes from EBF to CRO had
a more pronounced negative impact on the greening trend
than the conversion of EBF to OP (Fig. 6c, d). In some re-
gions, such as the southern edges of Sumatra and Borneo,
OP enhanced regional greening (Fig. 6d). Meanwhile, ele-
vated CO2 concentrations consistently had a positive impact
on greening across the region (Fig. 6a), and climate change
showed an overall negative but highly heterogeneous impact
on LAI trends (Fig. 6b). From a spatial perspective, we found
that elevated CO2 dominated the increase in the LAI in most
areas, accounting for 62.10 % of the study area, while CRO
expansion was the primary driver of LAI decreases in other
regions (26.33 %), especially coastal areas (Fig. S7).

4 Discussion

In this study, we analysed the typical LUCC processes
in Peninsular Malaysia, Sumatra, and Borneo as well as
their impacts on greenness over the past 2 decades. We
found a significant decline in EBF coverage, from 73.41 %
to 53.09 %, predominantly due to CRO and OP planta-
tion expansion. Meanwhile, we did not find a significant
trend in the LAI in our study area, as the increases in
regional greenness due to elevated CO2 were offset by
the decreases in regional greenness caused by CRO and
OP expansion. Notably, the negative effect of CRO ex-
pansion (−4.46× 10−2 m2 m−2 yr−1) was more pronounced
than that of OP expansion (−0.41× 10−2 m2 m−2 yr−1), in-
dicating a dominant role of CRO expansion on greenness de-
cline in our study area.

4.1 Strong negative impact of cropland expansion on
greenness in Southeast Asia

Our results demonstrate that CRO expansion in Southeast
Asia contributed negatively to vegetation greenness. This
is the opposite of existing reports on the greening trend in
China and India, where CRO expansion is suggested to be
the main reason for the net increase in the LAI (Chen et al.,
2019; Kuttippurath and Kashyap, 2023). This disparity may
be partly attributed to the original land-use types before CRO
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Figure 4. Comparison of observed and predicted LAI values with the XGBoost model for the (a) calibration and (b) validation datasets.

Figure 5. The impact of factors on LAI. In panel (a), beeswarm plots show the SHAP values of each LAI factor for each sample. The SHAP
value indicates the magnitude and direction of the impact on LAI (see Sect. 2). Each dot represents an individual sample, with the colour
indicating the relative values of the specific factor. Panel (b) presents a bar plot of the mean absolute SHAP values of each LAI factor.
Panel (c) shows the interaction of f_OP and f_EBF on the LAI, whereas panel (d) presents the interaction of f_CRO and f_EBF on the LAI.
The definitions of the abbreviations used for each factor are available in Table S3.

expansion. In Southeast Asia, CRO expansion mainly occurs
at the expense of natural forests (Potapov et al., 2022; Zeng
et al., 2018), and crops often have less-dense canopies than
natural forests (Asner et al., 2005; Foley et al., 2005; Pocock

et al., 2010). In contrast, the increase in the LAI in China and
India primarily resulted from the intensification of croplands,
rather than their expansion; moreover, where expansion did
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Figure 6. The spatial distribution of the pixel-wise impacts of each factor on the greening trends (δLAI trend). Positive values mean that the
factors considered increase the LAI trend, whereas negative values mean the inverse. We show the spatial patterns of contribution from (a)
elevated CO2 concentrations, (b) climate change, (c) expansion of cropland (CRO), (d) expansion of oil palm (OP), and (e) Other land-use
changes. Panel (f) shows the average impact of each factor, with the error bars indicating 1 standard deviation. The symbol “∗∗∗” denotes a
statistically significant difference in LAI trends at the p<0.001 level.

occur, it predominantly took place on lands that were previ-
ously bare or sparsely vegetated (Chen et al., 2019).

We also note that agricultural practices in Indonesia and
Malaysia are generally less intensive compared with those in
India and China, partly due to the less-advanced agricultural
technologies deployed in the region (X. Liu et al., 2021).
For example, in China and India, intensive agricultural prac-
tices, including precision fertilization and advanced irriga-
tion systems, such as drip irrigation in China and spray irri-
gation in India, are widely adopted to enhance crop growth
(Cui et al., 2022; Wang et al., 2013). In addition, the devel-
opment of specialized crop varieties, such as hybrid rice in
China and climate-smart drought-tolerant rice varieties in In-
dia (Panda et al., 2021; Zhang et al., 2022), also facilitated
plant growth and, consequently, regional greening (Zhao et
al., 2021; J. Zhao et al., 2023). In contrast, Indonesia and
Malaysia predominantly depend on rainfed irrigation and tra-
ditional farming methods, such as the “subak” terraced rice
fields in Indonesia, leading to lower crop intensity. Less-
intensive practices are less likely to create a dense canopy
and high biomass in croplands (Takeshima, 2019).

4.2 Minor contribution of oil palm to regional
greenness

Our study observed a small negative impact of OP expan-
sion on greenness. This aligns with studies reporting that OP
has LAI values comparable to, or only slightly lower than,

native forests (Propastin, 2009; Rusli and Majid, 2014; Vern-
immen et al., 2007). Therefore, OP expansion, although a
major driver of land-use change in Southeast Asia, was not a
main driver of greenness decline in the study region.

Meanwhile, we also found that the OP stand age influ-
ences the LAI, as the LAI of OP increases with stand age
when OP is young but then decreases after a threshold stand
age is reached. This observation agrees with previous studies
that reported a plateau and decrease in the oil palm LAI after
the age of 10 (Xu et al., 2021) and a plateau and decrease
in the oil palm yield after the age of 8–9 (Park et al., 2023).
The stand age of most OP plantations in Southeast Asia is
approaching maturity (over half were planted before 2009)
(Danylo et al., 2021). In response, industrial and smallholder
plantations have undergone or are starting to undergo the pro-
cess of replanting (Danylo et al., 2021; Numata et al., 2022),
although replanting in smallholder plantations is often de-
layed as farmers face more financial constraints (J. Zhao et
al., 2023). Hence, we expect to see a more complex influ-
ence of OP on the LAI trend depending on the management
practices of different types of plantations.

In comparison with CRO, our findings indicate that the
impact of OP expansion on vegetation greenness decline is
relatively minor (Fig. 6). This can be attributed to the gen-
erally higher biomass of OP compared with typical crops,
like rice and maize, in Indonesia and Malaysia. In addition,
we assumed that the CRO or OP expansion since 2001 came
from EBF in our study. While CRO and OP expansion indeed
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mostly resulted from deforestation in Indonesia and Malaysia
(Numata et al., 2022; Wagner et al., 2022), the expansion of
CRO and OP can also come from other land uses (i.e. grass-
lands or pastures). We suspect that transitions from these land
uses to CRO and OP might result in a smaller negative im-
pact on vegetation greenness, considering that grasslands and
shrubs have a lower LAI than EBF.

4.3 Other LUCC impacts on greenness in Southeast
Asia

While our study examined the two most prominent processes
of LUCC in Southeast Asia (EBF to OP and EBF to CRO),
there are other types of land-use change that we analysed
together under the category of “Other” land-use types. The
changes in these land-use types are also relevant to defor-
estation, and they include other plantations, such as rubber
(Wang et al., 2023); agroforestry plantations, such as cocoa
and coffee (Panda et al., 2021); and grasslands or pastures
(Austin et al., 2019). In total, the Other category accounted
for 4.70 % of the study area in 2016, much less than the
three main land-use types that we studied (51.06 % for EBF,
25.01 % for CRO, and 12.09 % for OP in 2016), and has ex-
perienced minor changes since 2001.

Meanwhile, we found that the overall impact of these other
LUCC types on greenness was likely small (Fig. 6f). The
small impact is contingent on their smaller extent compared
with EBF, CRO, and OP (see above). It may also result from
the offset of positive and negative impacts from individual
other LUCC processes on greenness. For example, rubber
plantations exhibit a higher LAI than natural forests (Wang et
al., 2022), whereas agroforestry and other plantations gener-
ally have a lower LAI than natural forests, therefore leading
to different trends in the LAI after deforestation.

4.4 Impact of climate change and CO2 concentrations
on regional greenness

CO2 fertilization effects appear to be the primary drivers of
greening trends observed in global studies (Chen et al., 2022;
Ewert, 2004; Zhu et al., 2016). Our research also confirmed
the substantial contribution of rising CO2 levels to the green-
ing of vegetation in Southeast Asia. The impact of temper-
ature on greenness in Southeast Asia was negative, in con-
trast to the positive effects noted in cold climate zones, such
as the Qinghai–Tibet Plateau (Yang et al., 2024; R. Zhao et
al., 2023; Zhong et al., 2019) and Arctic areas (Forbes et al.,
2010). We suspect that the negative effect of temperature im-
plies that temperature may have exceeded the optimal point
for plant growth in parts of Southeast Asia. This aligns with
several studies suggesting that ecosystem functions in the
tropics are approaching a temperature tipping point (Doughty
et al., 2023; Meir et al., 2015; Wu et al., 2019). Addition-
ally, temperature rise might exacerbate the incidence of pests
and diseases in tropical forests, negatively impacting plant

health and productivity (Ghini et al., 2011). These factors
might jointly contribute to the observed decline in greenness
with increasing temperatures in Southeast Asia.

5 Conclusions

Our study closely examined the impacts of LUCC on veg-
etation greenness in part of Southeast Asia. We found that
there was no significant trend in vegetation greenness in the
study area, which is attributed to the net effect of negative
impacts of LUCC on LAI and positive influence of elevated
CO2 on the LAI. Among various LUCC processes, we found
that cropland expansion was the primary reason for LAI de-
crease, whereas oil palm expansion had a small impact on the
LAI trends. These results shed light on the interplay between
greenness and land-use changes and provide valuable insight
into our future studies on terrestrial carbon, water, and energy
budgets in the land-use-change-intensive region of Southeast
Asia.
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