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Abstract. Accurate representation of the turbulent exchange
of carbon, water, and heat between the land surface and
the atmosphere is critical for modelling global energy, wa-
ter, and carbon cycles in both future climate projections and
weather forecasts. Evaluation of models’ ability to do this is
performed in a wide range of simulation environments, of-
ten without explicit consideration of the degree of observa-
tional constraint or uncertainty and typically without quan-
tification of benchmark performance expectations. We de-
scribe a Model Intercomparison Project (MIP) that attempts
to resolve these shortcomings, comparing the surface turbu-
lent heat flux predictions of around 20 different land models
provided with in situ meteorological forcing evaluated with
measured surface fluxes using quality-controlled data from
170 eddy-covariance-based flux tower sites.

Predictions from seven out-of-sample empirical models
are used to quantify the information available to land models
in their forcing data and so the potential for land model per-
formance improvement. Sites with unusual behaviour, com-
plicated processes, poor data quality, or uncommon flux mag-
nitude are more difficult to predict for both mechanistic and
empirical models, providing a means of fairer assessment
of land model performance. When examining observational
uncertainty, model performance does not appear to improve
in low-turbulence periods or with energy-balance-corrected
flux tower data, and indeed some results raise questions about
whether the energy balance correction process itself is ap-
propriate. In all cases the results are broadly consistent, with
simple out-of-sample empirical models, including linear re-
gression, comfortably outperforming mechanistic land mod-
els.

In all but two cases, latent heat flux and net ecosystem
exchange of CO2 are better predicted by land models than
sensible heat flux, despite it seeming to have fewer physical
controlling processes. Land models that are implemented in
Earth system models also appear to perform notably better
than stand-alone ecosystem (including demographic) mod-
els, at least in terms of the fluxes examined here. The ap-
proach we outline enables isolation of the locations and con-
ditions under which model developers can know that a land
model can improve, allowing information pathways and dis-
crete parameterisations in models to be identified and tar-
geted for future model development.

1 Introduction

Land models (LMs) simulate terrestrial water, energy, and
biogeochemical cycles. They simulate the exchange of
heat and moisture between the land and atmosphere inside
weather forecast models (e.g. Boussetta et al., 2013; Bush et
al., 2023), soil moisture and streamflow in hydrological and
agricultural applications (e.g. Clark et al., 2015a, b; Buechel,
2021), ecological dynamics and carbon exchange in ecosys-

tem modelling (e.g. Knauer et al., 2023; Bennet et al., 2024),
and most of these processes combined inside climate mod-
els (e.g. Lawrence et al., 2019; Vuichard et al., 2019; Bi et
al., 2020). The fidelity of LM simulations is therefore conse-
quential economically, socially, and environmentally.

This paper focuses on a relatively simple question: how
should we fairly assess the fidelity of land models? We aim
to develop an evaluation framework that gives us confidence
that LM evaluation is not partial – not dependent upon a
particular metric, observational data choice, over-calibration
or overfitting, a particular location or time, or a subset of
processes – and so it is the closest we can reasonably ex-
pect to a summative understanding of the shortcomings or
strengths of a particular model. This aim is the basis of a
LM comparison experiment, PLUMBER2, and we use re-
sults from PLUMBER2 to illustrate the framework. It fol-
lows the first Protocol for the Analysis of Land Surface Mod-
els (PALS) Land Surface Model Benchmarking Evaluation
Project (PLUMBER; Best et al., 2015; Haughton et al., 2016)
and addresses many of the shortcomings in its first iteration.

Our question is intentionally methodological, since the
consequence of getting the answer wrong is very real – we
rely on LMs for a great deal of scientific inference and soci-
etally relevant predictions. We consider our aim in two parts.
First, what kind of simulation environment allows for the best
observational constraint of LMs, so that poor model perfor-
mance might fairly be attributed to a LM? Second, how do
we best structure an evaluation framework to give us confi-
dence in this kind of attribution? We discuss these two ques-
tions in turn and highlight how the experimental framework
of PLUMBER2 addresses them in a way that the original
PLUMBER experiment could not.

While most LMs are applied on regional or global grids,
diagnostic evaluation of LMs (that is, understanding why
they might be wrong) at these scales is difficult (Warten-
burger et al., 2018; Seiler et al., 2022). First, at this scale
LMs need to be driven by reanalysis-based meteorology
with unquantified uncertainty (Arora et al., 2023), making
the attribution of model–observation mismatch inconclusive.
Next, observationally based flux evaluation products at these
scales, typically also without quantified uncertainty, usually
have a low time resolution (e.g. monthly; Pan et al., 2020),
so an assessment of process representation in LMs can only
be made using emergent outcomes rather than directly.

Site-based LM simulations using observational data col-
lected at flux towers offer a solution to some of these is-
sues, but they come with their own challenges. On the posi-
tive side, meteorological variables that drive LMs are directly
measured at tower sites at a time resolution appropriate for
LM simulation (typically 30 min), and uncertainties are rela-
tively small and quantifiable (Schmidt et al., 2012). Vegeta-
tion properties are often documented at site locations, reduc-
ing parameter uncertainty in LM simulations (Falge et al.,
2017). The fluxes into the atmosphere that LMs are evalu-
ated against are also measured and aggregated to the same
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time step size as the meteorological driving data. For these
reasons, both PLUMBER and PLUMBER2 involve the eval-
uation of LMs at flux tower sites, but PLUMBER2 examines
a much broader range of environments (170 sites instead of
20).

There are however several complicating factors that also
make LM constraint using tower data incomplete. The spatial
scale represented by a flux tower’s fetch – typically not larger
than 1 km2 – is at the very highest resolution of application
scales for most LMs (Chu et al., 2021). However, all LMs
are designed using leaf-scale or canopy-scale theories (Bo-
nan et al., 2021) and do not contain an explicit length scale
that modifies simulation characteristics for the size of a grid
cell, so it is unclear whether this represents a problem. Next,
not all LM parameters are measured at sites, and indeed at
some sites little information is available beyond a broad in-
dication of vegetation type (Falge et al., 2017). The available
information is, however, likely closer to being representative
than parameter values prescribed at the grid scale that can-
not be observed directly. Finally, and most importantly, the
measurement of turbulent fluxes comes with significant un-
certainty. Site measurements regularly do not close the en-
ergy balance (Stoy et al., 2013; Mauder et al., 2020) in a way
that LMs are structurally required to do, and measurements
are likely to have much greater uncertainty in periods of low
turbulence (Goulden et al., 1996; Aubinet et al., 2012). These
issues were both ignored in the first PLUMBER experiment
but are directly addressed in PLUMBER2, with evaluation
involving both raw and energy-balance-corrected site data as
well as filtering to remove periods of low turbulence.

To address our second question, we outline three key as-
pects of an evaluation framework that will allow attribution
of poor model–observation agreement to poor model perfor-
mance. They are (a) an appropriate suite of metrics, (b) a
mechanism to establish threshold values in those metrics that
reasonably define “good” or “poor” performance, and (c) a
summative indicator that can fairly synthesise information
using (a) and (b) to provide a representative overall picture.

For a given variable time series, there are of course many
metrics one might use to assess model performance, and it
is well recognised that using a single metric will generally
not allow for holistic assessment of model performance (Col-
lier et al., 2018; Abramowitz et al., 2019). Both PLUMBER
and PLUMBER2 focused on a broad collection of metrics
that (i) assessed a wide range of aspects of model perfor-
mance and (ii) were independent in the sense that a change
to a model prediction might affect any one of these metrics
without affecting others (Gupta et al., 2009).

Next, establishing a priori performance expectations in the
form of thresholds in these metrics is key to defining good
model performance. Models will never agree with observa-
tions exactly, but if we can understand how well a perfect
model could simulate a given environment given the infor-
mation provided in its driving variables and observational un-
certainty, it would tell us exactly which aspects of observed

site behaviour were predictable and which were not. This
idea can be approximated by using out-of-sample empirical
models to predict site fluxes using the same meteorological
driving variables as the LMs as predictors (e.g. Abramowitz,
2005; Best et al., 2015; Whitley et al., 2017). While the
PLUMBER experiment conducted investigations using sim-
ple out-of-sample empirical models to do this, here we offer
a much more comprehensive range of empirical approaches.
By varying the complexity of empirical models and the num-
ber and types of predictors we provide them with, we create
a hierarchy of benchmark levels of performance in any given
metric that reflects different structural assumptions. For ex-
ample, a LM should provide a more sophisticated prediction
of evapotranspiration than a simple empirical model based on
incoming shortwave radiation alone, since it contains infor-
mation about soil moisture availability, soil temperature, veg-
etation, and evaporative demand. By providing some empir-
ical models with lagged variables or using machine learning
structures that allow internal states, we can begin to quantify
how much predictive ability model states like soil moisture
should provide.

Finally, with many variables, metrics, sites, empirical
benchmarks, and LMs, the importance of a summative indi-
cator that appropriately synthesises information and reduces
the dimensionality of results should be clear. In PLUMBER,
each LM was ranked against benchmark models from best-
to worst-performing, and the ranks were averaged over sites
and metrics. However, it has since become clear that this can
create misleading results. Consider the following example.
A LM and three benchmarks have biases in latent heat flux
at three sites of (32, 30, 31, 29), (48, 47, 45, 46), and (12,
52, 29, 85) W m−2, respectively, translating into ranks of (4,
2, 3, 1), (4, 3, 1, 2), and (1, 3, 2, 4) and an average rank of
(3.3, 2.6, 2.3, 2.3). This summative indicator misleadingly
suggests that the LM is comfortably the worst model of the
four, when the actual site biases suggest that models were
nearly indistinguishable at the first two sites and the LM no-
tably superior at the third. Using results from PLUMBER2,
we examine two alternative summative indicators that re-
solve this issue. A summary of the main differences between
PLUMBER and PLUMBER2 is shown in Table 1.

Before detailing our methodology below, we emphasise
that this experimental description paper does not investigate
process representations or flaws of any particular model –
given the number of models, sites, and benchmarks, doing so
would necessarily present an incomplete picture. We instead
focus on developing a fair, holistic framework for LM evalu-
ation, comparison, and quantification of performance expec-
tations and present a high-level overview of PLUMBER2 re-
sults that will serve as a basis for future detailed process-level
analyses that are already underway.
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Table 1. A summary of the differences between the PLUMBER2 and PLUMBER experiments.

PLUMBER2 PLUMBER

170 (154) sites; 1040 site years; 1- to 21-year record length 20 sites; 105 site years; 1- to 10-year record length
Site data quality control detailed in Ukkola et al. (2022) Ad hoc site data quality control
Sensitivity to energy balance correction or uncorrected fluxes Uncorrected fluxes only
Sensitivity to night or low turbulence None
Land surface, ecological, and hydrological models Land surface models only
Linear regression, three- and six-variable cluster+ regression, random forest
(RF), long short-term memory (LSTM) models

Linear regression or three-variable cluster+ regression

Dependent and independent normalised metric values as summative indicators Rank as the only summative indicator

2 Methodology

2.1 Flux tower data

LMs completed simulations at 170 flux tower sites for
PLUMBER2, forced with in situ half-hourly or hourly me-
teorological variables. The aim was to maximise the num-
ber of sites that met variable availability and quality control
requirements and had open-access data. FLUXNET2015,
FLUXNET La Thuile Free-Fair-Use, and OzFlux collections
were used as the starting point, and after processing with
the FluxnetLSM package (Ukkola et al., 2017) we ensured
that the sites had a reference (measurement) height, canopy
height, and IGBP (International Geosphere–Biosphere Pro-
gramme) vegetation type; had whole years of data; and
were not missing significant periods of key forcing variables
(where gap-filling counted as missing), specifically incoming
solar radiation (SWdown), air temperature (Tair), specific hu-
midity (Qair), or precipitation (Rainf). Discerning thresholds
in these variables was clearly subjective but involved consid-
eration of the proportion of time series with measured data,
length of gaps, coincidence between variables, and ubiquity
of site type – see Ukkola et al. (2022) for details. Gap-
filling (including allowing 100 % synthesised data) of down-
welling longwave radiation (LWdown) used the approach of
Abramowitz et al. (2012). Surface air pressure (PSurf) was
based on elevation and temperature, and ambient CO2 was
based on global values (Ukkola et al., 2022).

Since most sites had no publicly available leaf area in-
dex (LAI) data and none had time-evolving LAI data, we
specified a remotely sensed LAI time series for each site to
try to minimise differences between LMs. LMs that predict
LAI would clearly not utilise this (Table S3 in the Supple-
ment). The LAI time series were derived from either MODIS
(8-daily MCD15A2H product, 2002–2019) or the Coperni-
cus Global Land Service (monthly, 1999–2017), with one
of these chosen for each site based on a site-by-site analy-
sis considering plausibility and some in situ data provided
for each time step of meteorological forcing. Time-varying
LAI was provided for the time period covered by the re-
motely sensed products, and otherwise a climatology was
constructed from all the available years. Some LMs utilised

this LAI estimate for a single vegetation type simulation and
others partitioned it into a mixed vegetation type represen-
tation. LAI estimates remain a key issue for observational
constraint of LMs at the site and global scales.

Energy balance closure in flux tower data is particularly
relevant in the context of this experiment. At a range of
timescales, most sites do not obey the assumed equality of
net radiation with the sum of latent heat flux, sensible heat
flux, and ground heat flux (Wilson et al., 2002; Stoy et al.,
2013; Mauder et al., 2020; Moderow et al., 2021). We there-
fore need to be careful when attributing model–observation
mismatch to model error, since LMs are fundamentally con-
strained to conserve energy. Energy balance closure correc-
tion was part of the FLUXNET2015 release (the bulk of the
sites here), and we replicated this approach for sites from the
other sources. The analyses below consider both uncorrected
and corrected latent and sensible heat fluxes, were only con-
ducted on flux time steps that were not gap-filled, and were
also run separately filtered by time steps with wind speeds
above 2 m s−1 so that potential concerns about measurement
fidelity in low-turbulence periods (typically nighttime) could
be investigated.

Forcing and evaluation files were produced in an updated
version of ALMA NetCDF (Polcher et al., 1998, 2000), with
CF-NetCDF standard name attributes and Coupled Model
Intercomparison Project (CMIP)-equivalent names included
where possible. A complete list of these variables, as well as
those requested in LM output, is shown in Table S1. Table S2
shows a complete site and site property list. Each site has a
page at https://modelevaluation.org (last access: 9 Decem-
ber 2024) with more details, including additional references,
metadata, photographs, and time series plots. The site loca-
tions are shown by Ukkola et al. (2022). The site vegetation
types and distribution in the mean precipitation–temperature
space are shown in Fig. S1 in the Supplement. Their loca-
tion in a Budyko-style dryness index versus (water) evapora-
tive fraction plot (Budyko, 1974; Chen and Sivapalan, 2020)
is shown in Fig. S2a. It is typically assumed that all sites
will lie below 1 on the horizontal axis (i.e. evapotranspira-
tion will be less than precipitation) and to the right of the
1–1 line (potential evapotranspiration > evapotranspiration),
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with drier, water-limited sites close to 1 on the horizontal
axis on the right-hand side and wetter, energy-limited sites
towards the bottom left-hand side close to the 1–1 line.

This is however clearly not true for these site data. To un-
derstand why, we first examined the cumulative precipitation
at each site compared to an in situ based gridded precipita-
tion product – REGEN (Contractor et al., 2020) – and iden-
tified those sites that appeared anomalous. Clearly there are
many good reasons why site-based precipitation might dis-
agree with a gridded product, even if it were perfect. A subset
of the sites was nevertheless identified as having precipitation
data that were a priori not realistic, either because missing
data had not been gap-filled (and were not flagged as miss-
ing so that precipitation flat-lined), units were reported in-
correctly (e.g. US-SP1 appears to use inches rather than mil-
limetres), or winter snowfall was apparently not included in
the precipitation totals (Fig. S3). Sixteen sites were removed
from the analysis as a result. These issues were unfortunately
only identified after all the modelling groups had completed
their 170 site simulations, so the LM analyses below are con-
ducted on the remaining 154 sites.

While removing these sites did lessen the extent of the
problem, it did not by any means solve it (Fig. S2b – the
same as Fig. S2a but with 154 instead of 170 sites). Next,
we examined whether using the entire time series for each
site instead of filtering out gap-filled time steps (Fig. S2a has
gap-filled data removed) resulted in any qualitative change –
it did not (Fig. S2c). Finally, we investigated whether using
energy-balance-corrected fluxes had an impact. Figure S2d
shows that it did indeed have a marked effect – but the pro-
portion of sites where evapotranspiration exceeded precipita-
tion increased.

Figure S2a–d reinforce how complicated the simulation
task is for LMs, with around 30 % of the sites showing an
average evapotranspiration exceeding the average precipita-
tion. Despite posing this as a data quality problem above,
there are many sound, physically plausible reasons for this,
such as hillslope or preferential flow, irrigation, or groundwa-
ter access by vegetation. Needless to say, most LMs will sim-
ply be unable to reproduce this behaviour since these inputs
and processes are usually not included. We discuss this issue,
its influence on results, and implications for LM evaluation
in the “Results” and “Discussion and conclusions” sections.

2.2 Land model simulations

Mechanistic LMs ran offline in single-site mode (as opposed
to gridded simulations), forced by observed meteorology
from the 170 sites. Simulations were requested as “out-of-
the-box”, using default (usually vegetation-type-based) pa-
rameters for each site, as if the LMs were running a global
simulation. Models used the IGBP vegetation type prescribed
in each forcing file where possible, mapped to the plant func-
tional type (PFT) schemes used by each model. In addition,
site canopy height and reference height (measurement height,

assumed to be the lowest atmospheric model layer height)
were provided. No additional parameter information for the
sites was prescribed.

The rationale behind this setup was to understand the
fidelity in flux prediction that LMs provide in a well-
constructed global simulation, noting that different LMs had
to adapt their representation approaches in slightly different
ways to achieve this (e.g. some use mixed vegetation types
to describe a single location). While we might ideally addi-
tionally like to ensure that LMs use an appropriate soil type
for each site, these are not universally measured or available
for all sites, so LMs used their default global soil type grid.

Models were not allowed to calibrate to site fluxes, as we
are primarily interested in the insights LMs provide into the
system rather than their fitting ability, which might leave lit-
tle to distinguish them from machine learning approaches
that we already know will perform better (Abramowitz,
2012; Beaudry and Renner, 2012; Best et al., 2015; Near-
ing et al., 2018). Out-of-sample testing for any model, even
if only partly empirical, is key to understanding its predictive
ability (Abramowitz et al., 2019), especially when it needs to
be applied globally.

Different LMs require different periods of spin-up un-
til model states reach an equilibrium, depending on
whether they include a dynamic carbon (C) and/or nitrogen
(N)/phosphorus (P) cycle(s), vegetation, or stand dynamics.
For models where soil temperature and moisture spin-up is
sufficient (e.g. if LAI is prescribed rather than predicted), we
suggested that model spin-up use the site forcing file and re-
peatedly simulate the entire period, for at least 10 years of
simulation, before beginning a simulation of the first year of
the site data.

For LMs with prognostic LAI and/or soil C, N, and P
pools, the process was more complicated. LM simulations
were initialised with a spin-up routine resulting in equilib-
rium conditions of C stocks (and N and P if available) rep-
resenting the year 1850. Climatic forcing for the spin-up
came from the site’s eddy covariance forcing file, which was
continuously repeated. Atmospheric CO2 and N deposition
levels representing the year 1850 were set to 285 ppm and
0.79 kg N ha−1 yr−1, respectively. The transient phase cov-
ered the period 1851 to the year prior to the first year in the
site data. LMs were forced with historical changes in atmo-
spheric CO2 and N deposition, continually recycling the me-
teorological inputs. The meteorological time series was re-
peated intact rather than in a randomised way to avoid split-
ting of the observed meteorological years at the end of each
calendar year. This of course does not accurately replicate the
land use history of different sites, but in most cases detailed
site-level histories were not available.

All models participating in PLUMBER2 are shown in Ta-
ble S3. While some simulation setup information is included
in the “Notes” column, more detailed information is avail-
able on the “Model Outputs” profile page for each set of
simulations submitted to https://modelevaluation.org. While
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the modelling groups were asked to report as many variables
as possible from Table S1, the breadth of the contributions
was highly variable, so in an attempt to include all the par-
ticipants, the analyses here focus on latent heat flux (Qle),
sensible heat flux (Qh), and net ecosystem exchange (NEE)
of CO2 only.

In addition to the LMs, two “physical benchmarks” were
also included as per Best et al. (2015) – an implementation
of a Manabe bucket model (Manabe, 1969) and a Penman–
Monteith model (Monteith and Unsworth, 1990) with a refer-
ence stomatal resistance and unrestricted water availability.

2.3 Empirical machine-learning-based benchmarks

As suggested above, empirical models are key to quantifying
site predictability and so setting benchmark levels of perfor-
mance for LMs that reflect the varying difficulty or complex-
ity of prediction at different sites, unknown issues with data
quality at some sites, and, more broadly, understanding the
amount of information that LM inputs provide about fluxes.
To do this meaningfully, all empirical models need to pro-
vide out-of-sample predictions. That is, every site simulation
made here by an empirical model has not used that site’s data
to build or train the empirical model and so cannot be over-
fitted to the characteristics or noise of the site. If the site is
unusual or its data are poor, the empirical models will pro-
vide a poor simulation, thus setting a lower benchmark of
performance for the LMs.

A hierarchy of different empirical models was used. From
the simplest, with the lowest performance expectations, to
the most complicated with highest expectations, these are the
following:

– 1lin. A linear regression of each flux against downward
shortwave radiation (SWdown) using half-hourly data,
training on 169 sites and predicting on 1, repeated 170
times as per Abramowitz (2012) and Best et al. (2015).
Two versions were created – one trained to predict raw
fluxes (1lin_raw) and one trained to predict energy-
balance-corrected fluxes (1lin_eb).

– 2lin. A multiple linear regression of each flux using
SWdown and air temperature (Tair) as predictors, us-
ing half-hourly data, and training on 169 sites and pre-
dicting on 1 site, as per Abramowitz (2012) and Best et
al. (2015).

– 3km27. All site time steps of three predictors –
SWdown, Tair, and relative humidity (RH) – from
169 training sites are sorted into 27 clusters using
k means, and all site time steps in each cluster are
used to establish multiple linear regression parameters
against each flux for that cluster. Time steps at the
prediction site are sorted into clusters based on their
proximity to cluster centres, and regression parameters
for each cluster are then used to make predictions at

the test site, as per Abramowitz (2012) and Best et
al. (2015); 27 clusters were chosen to approximately
allow each predictor high, medium, and low clusters:
33
= 27. Two versions were created – one to predict raw

fluxes (3km27_raw) and one to predict energy-balance-
corrected fluxes (3km27_eb).

– 6km729. As per 3km27 but uses six predictors –
SWdown, Tair, RH, Wind, Precip, and LWdown (see
Table S1 for the variable definitions) – and 729 k-
means clusters, training on 169 sites and predicting on
1 site, similar to Haughton et al. (2018). The 729 clus-
ters were chosen to approximately allow each predictor
high, medium, and low clusters: 36

= 729.

– 6km729lag. As per 6km729 but with lagged Precip and
Tair as additional predictors. These took the form of
six additional predictors: mean Precip and Tair from
the previous 1–7, 8–30, and 31–90 d. Training on 169
sites and predicting on 1 site took place similarly to
Haughton et al. (2018).

– RF. A random forest model with Tair, SWdown, LW-
down, Qair, Psurf, Wind, RH, CO2air, vapour pressure
deficit (VPD), and LAI as predictors. These predic-
tor variables are listed in order of variable importance.
While Precip was originally included, it actually offered
negative variable importance – suggesting that includ-
ing Precip reliably degraded the empirical prediction
out-of-sample. Training was on 169 sites and predicting
on 1 out-of-sample site, repeated 170 times. As a nomi-
nally more sophisticated empirical model than the clus-
ter+ regression approaches above, RF offers a lower-
bound estimate of the predictability of fluxes from in-
stantaneous conditions (no lags). Two versions were
created – one to predict raw fluxes (RF_raw) and one
to predict energy-balance-corrected fluxes (RF_eb).

– LSTM. A long short-term memory model given as much
information as the LMs. Two types of input features
were used for training: dynamic features – CO2air, LW-
down, Precip, Psurf, Qair, RH, SWdown, Tair, VPD,
Wind, and LAI – and static site attributes that are con-
stant per site (mean annual temperature MAT, range
of annual MAT, mean annual precipitation MAP, mean
LAI, range of annual LAI, elevation, canopy height, ref-
erence height, latitude, mean SWdown, PET, and IGBP
vegetation type). Training was on 167 sites and predic-
tion was on the 3 remaining sites (randomly chosen), re-
peated to make out-of-sample predictions at all the sites.
A single LSTM was used to predict Qle, Qh, and NEE
simultaneously to account for the fact that the three
fluxes are all components of a highly coupled system.
The LSTM provides a lower-bound estimate of the pre-
dictability of fluxes using both instantaneous and mete-
orological conditions as well as internal states based on
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them – a proxy for LM states. Two versions were cre-
ated – one to predict raw fluxes (LSTM_raw) and one
to predict energy-balance-corrected fluxes (LSTM_eb).

2.4 Analyses

The dimensionality and complexity of the PLUMBER2 data
obviously present many options for interrogating the perfor-
mance of LMs. Our analysis focuses on a relatively high-
level overview without any intention of being comprehen-
sive – we anticipate that analysis of PLUMBER2 simulations
will extend well beyond the scope of this paper and will take
some time. The results below consider mean fluxes, variable
ratios such as the evaporative fraction, and water use effi-
ciency before examining the two summative indicators that
are detailed.

The set of metrics we use, shown in Table S4, is indepen-
dent in the sense that, for a given observational time series, a
change can be made to the model time series that will affect
any one of these metrics without affecting the others. This is
not true, for example, of RMSE and correlation. Metrics are
calculated separately for each model at each site.

Next, we examine our two summative indicators. To do
this, we first set a reference group of benchmark empirical
models and compare all the LMs to this reference group.
Suppose we wish to compare a given LM against 1lin,
3km27, and LSTM, for example. Then, for each metric (m),
at each site, and for each variable, we have metric values for
the LM, 1lin, 3km27, and LSTM. We then define the nor-
malised metric value (NMV) for this LM at this site and for
this variable and metric in one of two ways.

First, as with PLUMBER, we define LM performance rela-
tive to a range of metric values that includes the LM and em-
pirical benchmarks. Instead of using ranks though, we nor-
malise this range to define the dependent normalised metric
value (dNMV) as

dNMVLM =
mLM −min(m1lin, m3km27,mLSTM,mLM)(

max(m1lin, m3km27,mLSTM,mLM)
−min(m1lin, m3km27,mLSTM,mLM)

) . (1)

So, a dependent NMV simply denotes where in the metric
range of these four models the LM was, scaled to be between
0 and 1, with lower values representing better performance.
This allows us to average the NMV over metrics, sites, vari-
ables, vegetation types, or other groupings to get an aggre-
gate indication of the performance.

The second approach, independent NMV (iNMV), defines
the normalised metric range using only the reference bench-
mark models:

iNMVLM =
mLM − min(m1lin, m3km27,mLSTM)(

max(m1lin, m3km27,mLSTM)
−min(m1lin, m3km27,mLSTM)

) . (2)

An iNMV allows us to define lower and upper performance
expectations to be independent of the LM being assessed. We

might expect that 1lin as the simplest model will typically
have a value of 1 and LSTM 0, and the LM, if its perfor-
mance lies between these two, will have a value somewhere
in this interval. It also allows the LM to score a much lower
value than 0 if it performs much better than the empirical
models and, conversely, a value much larger than 1 if it is
much worse.

To illustrate why such a detailed approach to analysis is
necessary, we now briefly show why some common heuristic
measures of performance are inadequate. Figures S4, S5, and
S6 show the performance results of the 1lin model at the US-
Me2 site, examining latent heat flux, sensible heat flux, and
NEE in three different common graphical performance mea-
sures. These are the average diurnal cycle of NEE, shown
for different seasons (Fig. S4); a smoothed time series of Qh
(Fig. S5); and the average monthly values of Qle showing
the evaporative seasonal cycle (Fig. S6). In most contexts,
if these blue curves were plots of a LM’s performance, the
reader would accept this as qualitative or even quantitative
evidence of excellent LM performance. However, these rep-
resent perhaps the simplest possible model – a simple lin-
ear regression against shortwave, out-of-sample (trained on
other sites only). They illustrate just how much site variabil-
ity can simply be driven by instantaneous shortwave radia-
tion and that visual closeness of curves and an ability to cap-
ture seasonal variability, diurnal variability, and even inter-
annual variability should not a priori be accepted as evidence
of good model performance.

As noted above, all the analyses were filtered to ex-
clude time steps at each site where observational flux data
were flagged as missing or gap-filled. Analyses were half-
hourly or hourly, depending on the reported time step size
at each site, except for models that only reported monthly
outputs, which were then analysed with monthly averages.
All data management and analyses were conducted at https:
//modelevaluation.org (Abramowitz, 2012) and can be re-
peated there. The analysis codebase used for PLUMBER2
at https://modelevaluation.org is available from modelevalu-
ation.org (2024).

3 Results

In examining the results from the PLUMBER2 experiment,
we emphasise that our aim here is to demonstrate that we
have created a holistic environment and methodology that
allow us to fairly attribute model–observation mismatch to
LMs where appropriate. We do provide a broad overview of
the many dimensions of the PLUMBER2 results, but we do
not investigate process representations or flaws of any model
– doing so would necessarily present an incomplete picture,
since these kinds of findings are specific to particular models,
environments, and circumstances.

Figure 1 shows Qle versus Qh, averaged across all the
sites for participating models that reported both variables.
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The dashed lines show a proxy for the observed available en-
ergy (around 69 W m−2, defined as Qle+Qh assuming that
the mean ground heat flux on longer timescales is 0) and the
observed Bowen ratio (around 0.7). Perhaps unsurprisingly,
the models differ most in their partitioning of surface en-
ergy (spread along the available energy axis) rather than the
amount of available energy (spread along the Bowen ratio
axis), supporting previous findings (Haughton et al., 2016).
Those LMs that do not operate in a coupled modelling system
(i.e. not coupled to an atmospheric model; EntTBM, LPJ-
GUESS, MuSICA, QUINCY, and STEMMUS-SCOPE) also
appear to have a much broader spread of estimates than those
used in coupled models (they are furthest from the observed
Bowen ratio in Fig. 1), and the unrestricted moisture store of
the Penman–Monteith model makes it a clear outlier.

When averaged across all the sites, the LMs do not appear
to show any clear systematic bias in energy partitioning rel-
ative to observations across the ensemble. Note that in Fig. 1
the observations do not have the FLUXNET2015 energy bal-
ance correction applied (the equivalent figure using energy-
balance-corrected fluxes is shown in Fig. S7a). Aside from
showing a little more available energy (their mean is slightly
offset from the observed available energy line by less than
10 %), the LMs are relatively evenly spread around the ob-
servational Bowen ratio. This lends little support to an argu-
ment of systematic observational bias in the partitioning of
available energy leading to apparent poor LM performance.

The empirical models trained to predict raw fluxes (those
labelled *_raw) are tightly clustered around the observational
crosshairs. While it is not surprising that regression-based
models perform well on the mean, these models are en-
tirely out-of-sample, demonstrating that forcing meteorology
alone provides enough information to predict mean fluxes
accurately out-of-sample. The energy-balance-corrected ob-
servations lie amongst the empirical models trained to pre-
dict energy-balance-corrected fluxes (labelled *_eb; the clus-
ter of grey points with higher available energy in Fig. 1 –
see Fig. S7a). The average Bowen ratio increases slightly
to 0.73 instead of 0.7 with energy balance correction. Per-
haps more interesting is that the corrected version of the
flux observations contains an average of 16 W m−2 addi-
tional energy across these sites, an increase of about 23 %,
and that this value sits much further outside the spread of
the mechanistically modelled estimates of available energy
than the observed value in Fig. 1. So, in this simple metric at
least (and indeed in more below), the LMs’ performance is
not improved with energy-balance-corrected flux data. While
we present results from comparisons with raw fluxes in the
main part of this paper, comparisons against energy-balance-
corrected data, where they qualitatively differ, are discussed
and shown in the Supplement. Similarly, when we filter anal-
yses to only include time steps with a wind speed above
2 m s−1 (Fig. S7b), the scatter of the models in Fig. 1 changes
surprisingly little.

Figure 2 shows boxplots of errors in the average energy
evaporative fraction (EF) across the same sites, shown sep-
arately for each participating model. The energy evapora-
tive fraction is defined using average flux values at each
site: Qle / (Qle+Qh). The equivalent plots using energy-
balance-corrected data and data filtered for wind speed are
almost indistinguishable from Fig. 2 and so have not been in-
cluded. Consistent with what we saw in Fig. 1, the mechanis-
tic benchmarks and ecosystem models show the largest devi-
ation from the site observations, and empirical approaches
are reliably zero-centred despite having no explicit mecha-
nism to constrain the ratio between Qle and Qh. The more
sophisticated empirical models (6km*, RF, and LSTM), as
well as being zero-error-centred, show less spread, meaning
that they have fewer large errors in the energy evaporative
fraction. Once again, there does not appear to be any obvi-
ous reason to suspect a bias in partitioning in observations
– some LMs (6) show a high EF bias and others (11) a low
bias.

An equivalent version of this figure showing the water
evaporative fraction, Qle / Rainf, is shown in Fig. S8a and b
using raw and energy-balance-corrected fluxes, respectively.
Once again, the models are scattered well about the zero error
line when raw fluxes are used, and almost all of them appear
strongly negatively biased when compared to the energy-
balance-corrected fluxes. The equivalent plots using wind-
speed-filtered data are qualitatively the same as Fig. S8a and
b and so are not included here.

Figure 3 is similar to Fig. 1 but shows the average Qle ver-
sus the NEE of CO2 for LMs that reported both variables.
Given the expectation that NEE is likely to be strongly de-
pendent on site history and that we could not reliably include
this information in the modelling protocol or account for it
in this plot, there is no a priori reason to expect a clear re-
lationship across all the sites here, beyond both fluxes being
dependent on stomatal function. While we might broadly ex-
pect increasing carbon uptake with increasing Qle, as shown
by the observed regression line in Fig. 3, the fit is relatively
weak (R2 is 0.19). LM regressions are shown where their fit
has a higher R2 than the observed one, although we note that,
aside from ORCHIDEE2, CABLE-POP, and Noah-MP, only
empirical models meet this criterion (which is unsurprising,
since they effectively act as data smoothers).

With the exception of Noah-MP, STEMMUS-SCOPE, and
some empirical models, all LMs predict less net carbon up-
take than is observed. This may well be because the mod-
els were run without any site history. That is, the simulated
ecosystems were closer to equilibrium than those in the real
world. In equilibrium, vegetation and soil carbon stocks are
high and thus respiration is also higher, as it is generally sim-
ulated as a function of carbon stocks. Ecosystem models pre-
dict the lowest carbon uptake but a large range of Qle val-
ues (MuSICA, LPJ-GUESS, QUINCY, and SDGVM). The
equivalent plot with energy-balance-corrected Qle values
(not shown) simply moves the “observed” black square to the
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Figure 1. Latent heat flux (Qle) versus sensible heat flux (Qh) averaged over 154 sites, shown for models that submitted both quantities. The
dashed lines show observed values of the average available energy (Qle+Qh) and the average Bowen ratio (Qh / Qle) across the sites, using
raw (as opposed to energy-balance-corrected) flux data. The smaller light-grey dots in the background represent the individual site averages.

Figure 2. Boxplots of errors in the site mean energy evaporative fraction Qle / (Qle+Qh) over all the sites, shown separately for each model
using raw flux data across 154 sites.
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Figure 3. Qle versus the NEE of CO2 averaged over 154 sites, shown for models that submitted both quantities. The observed value is shown
in black with crosshairs. The light-grey dots in the background represent individual observed site averages, with the linear fit between them
shown in bold dashed grey. Regression lines are also shown for LMs that have a stronger fit than in the observed case (R2

= 0.19).

right, once again sitting amongst 1lin_eb, 3km27_eb, RF_eb,
and LSTM_eb. Once again, the energy-balance-corrected
data do not appear to match LM simulations better than raw
flux data.

We also note that, while LMs’ spread might well be be-
cause of a lack of site history information, the empirical mod-
els show that missing this information does not actually re-
duce NEE predictability to a large degree (all the empirical
models are within 0.35 µmol m−2 s−1 of the observations).
The empirical models also do not have any site history and
indeed in most cases do not even use any estimate of LAI.
They are trained only at other sites, so they cannot infer
any site history information from the meteorology–flux re-
lationship. Despite this, they cluster quite tightly around the
observations in Fig. 3, whether predicting raw Qle (cluster
of grey points in the crosshairs) or energy-balance-corrected
Qle (cluster of grey points to the right of this). They all sug-
gest a net uptake of C across these sites within a narrow range
spread around the observations.

Figure 4 is similar to Fig. 2 but shows error in water use
efficiency (NEE / Qle), expressed in micro-mol of carbon
gained per gram of water (left vertical axis), and error as a
percentage of observed water use efficiency (WUE) (right
vertical axis), with the heavy pink dashed lines represent-
ing ±100 %. This shows that almost all LMs underestimate
WUE, typically by about 50 %, which is presumably related

to the broad underprediction of NEE by LMs that is evident
in Fig. 3. At the other end of the spectrum, Noah-MP shows
a very high WUE bias, which is consistent with its overpre-
diction of C uptake in Fig. 3 (due to a high dynamically pre-
dicted LAI). The empirical models, without any explicit con-
straint on the ratios of predicted variables (they are predicted
independently), are better spread around the observed val-
ues. Note that this statement applies equally to those empir-
ical models trained on raw flux tower data and those trained
on energy-balance-corrected data. Only the simplest empir-
ical model – 1lin – shows 25th or 75th percentiles (across
the sites) outside the 100 % error in WUE, whereas most (8
out of 14) of the LMs do. The equivalent plot using energy-
balance-corrected Qle data is shown in Fig. S9 and looks
qualitatively similar to Fig. 4. For this metric, there are no
discernible differences in performance across the types of
LMs.

As noted above, a range of alternative versions of the plots
above is available in the Supplement, examining sensitivity
to energy-balance-corrected data and low-turbulence periods.
Additional analyses, such as water evaporative fraction box-
plots (Fig. 8a and b) and variable density estimates for each
model (Fig. S10a and b), are also in the Supplement.

We now investigate a more direct comparison between
LMs and empirical benchmarks by exploring results us-
ing our two summative indicators. Figure 5 shows modified
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Figure 4. Boxplots of errors in the site mean ecosystem water use efficiency (−NEE / Qle) over all the sites, shown separately for each model.
WUE error is expressed in both micro-mol of carbon gained per gram of water lost (left vertical axis, grey and multi-coloured boxplots) and
error percentage of the observed WUE (right vertical axis, pink boxplots), with the heavy pink lines representing ± 100 %.

“PLUMBER plots”, similar to Best et al. (2015), but here us-
ing the average of the dNMVs in the range of metric values
across the four models being compared in each panel (one
LM, 1lin_raw, 3km27_raw, and LSTM_raw). This is as op-
posed to the average rank of metric values used in Best et
al. (2015), which can distort results when metric values are
clustered, as noted in Sect. 1. Each panel in Fig. 5 shows
the model in the panel title in blue, with benchmark em-
pirical models in red (1lin_raw), yellow (3km27_raw), and
green (LSTM_raw). Lower values represent better perfor-
mance. The LMs are shown alphabetically, with the first 10
panels, faded, showing the remaining empirical models and
physical benchmarks against these three benchmark models.

The out-of-sample LSTM_raw on average performs best
across all the fluxes for these sites and metrics. The perfor-
mance of the LMs is highly variable, with half of them being
better than the 3km27_raw model for Qle, 15 of 18 worse
than the out-of-sample simple linear regression (1lin_raw)
for Qh, and NEE typically being between the 1lin_raw and
3km27_raw performance levels (12 of 14 LM variants).
Overall, it is clear that LMs tend to perform better against
the benchmarks for Qle and NEE than Qh, typically falling
within the range of these three benchmarks for Qle and NEE.
CLM5, MATSIRO, and Noah-MP are the only LMs with
Qh metrics within this range. The LMs falling outside the
benchmark dNMV ranges for Qle and NEE are a mixture

of LSMs and ecosystem models. The equivalent plot using
energy-balance-corrected Qle and Qh observations is shown
in Fig. S11a. The performance of the LMs against the bench-
marks remains remarkably similar, with some LMs slightly
better and others slightly worse against corrected data. Fil-
tering for higher wind speed time steps (Fig. S11b, using raw
flux data) also appears to make no qualitative difference, if
anything making the LM performance worse relative to these
empirical benchmarks. While this may appear to be a marked
improvement in LM performance relative to the results in
Best et al. (2015), these results are not directly comparable,
something we explore further in the “Discussion and conclu-
sions” section.

When we look at the same set of figures using an iNMV in-
stead of a dNMV, the picture is very different (Fig. 6). Recall
that an iNMV sets the normalised metric range (0, 1) based
on the three reference out-of-sample empirical models (1lin,
3km27, and LSTM) only rather than these three and the LM,
and it then compares the LM to this range. For example, if the
three reference empirical models have mean biases in Qle of
35, 28, and 25 W m−2 (a range of 10 W m−2) and the LM has
a bias of only 10 W m−2, the iNMVs of the reference models
are 1, 0.3, and 0, respectively, and the LM has an iNMV of
−1.5 (remembering that lower is better). Alternatively, if the
LM has a bias of 50 W m−2, its iNMV will be 2.5. So, iN-
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Figure 5. The average performance across all 154 sites and seven metrics for Qh, Qle, and NEE (lower is better). The average performance
is the mean of the dependent normalised metric values (dNMVs) within the range of metric values across the models being compared in each
panel (four in total: the LM in blue – shown in the plot title – and three reference benchmarks 1lin_raw in red, 3km27_raw in yellow, and
LSTM_raw in green). The first 10 panels (faded) show empirical or physical benchmark models.

MVs are not constrained to be in the unit interval, as they are
for dNMVs.

Figure 6 shows the same data as Fig. 5 but uses iNMVs
instead of dNMVs. The iNMVs for the three reference mod-
els are now identical across all the LM panels, so the iNMVs
for each LM are directly comparable. Note however that the
vertical axis scale is different in each panel, so we can see the
range for each LM. The LM performance in iNMVs clearly
looks a lot worse. This tells us that when LMs perform worse
than the out-of-sample linear response to shortwave 1lin,
they often perform a lot worse (at least a lot worse rela-
tive to the range between 1lin and LSTM_raw). While some
LMs (CABLE, CABLE-POP, CHTESSEL, CLM, JULES,
Noah-MP, and ORCHIDEE) perform within the range of the
three empirical models for some variables, averaged over all
the variables, no LM outperforms the out-of-sample linear
regression against SWdown. This is a sobering result. LM
performance is particularly poor relative to the benchmarks
for Qh, with no models within the range of the benchmarks
(compared to 40 % of them for Qle and 29 % for NEE).

Equivalent plots to Fig. 6 using energy-balance-corrected
fluxes (Fig. S11c) and time steps with wind speed > 2 m s−2

(Fig. S11d) are shown in the Supplement. Again, the LM
performance appears remarkably similar despite the signif-
icant changes made with the target energy-balance-corrected
data (Fig. 1). It remains true that no LMs outperform the
1lin averaged over all the fluxes. Note that, in this compar-
ison, where energy-balance-corrected data are the reference
target, the versions of the empirical models trained for this
target are used for comparison (i.e. 1lin_eb, 3km27_eb, and
LSTM_eb).

We also note that, despite this result, some LMs do per-
form better than the empirical benchmarks for a subset of the
metrics in Table S4, for some variables. Figure S11e–k are
versions of Fig. 6 constructed with only one metric at a time.
LMs tend to perform better in the 5th percentile and prob-
ability density function (PDF) overlap metrics and worst in
temporal correlation and normalised mean error (NME). It is
also apparent that RF, 6km729, and 6km729lag all outper-
form the LSTM in quite a few of these metrics. Despite this,
we did not investigate alternatives to the LSTM as the high-
level empirical benchmark.

We now examine the discrepancy between our best-
performing out-of-sample empirical model and a given
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Figure 6. Like Fig. 5 but using the average of independent normalised metric values (iNMVs) defined by the range of metric values across
the three reference models (1lin_raw, 3km27_raw, and LSTM_raw). Note that the different panels have different y axes.

mechanistic model in more detail. This defines an amount
which we know the mechanistic model can improve by. This
also allows us to define model performance in a way that
accounts for site complexity, peculiarity, and predictability,
together with the observational errors particular to each site,
and it avoids some misleading statistics like large RMSE val-
ues at sites that simply have larger fluxes. For this purpose,
we use one of the best-performing empirical models as the
reference model, LSTM_raw. While it is the best-performing
model in this collection, it provides a lower-bound estimate
of the predictability of fluxes at each site, since we can al-
most certainly produce better empirical models.

In Fig. 7, we look at the discrepancy in iNMVs between
each mechanistic model and LSTM_raw for latent heat flux
predictions. The results are shown in a separate panel for
each IGBP vegetation type and each model as a boxplot
within each panel. Only the interquartile range and median
estimates are shown for each boxplot. The observed vege-
tation types are used for each site, noting that some LMs
with dynamic vegetation might represent these sites differ-
ently. Values below 0 show that the LM performed better
than the three benchmark empirical models (1lin, 3km27,
and LSTM). Values between 0 and 1 mean that the LM per-
formed within the range of the benchmark models (shaded

grey background), and values above 1 mean that the LM was
worse than 1lin. The average of all mechanistic LMs for each
vegetation type is shown by the dark-grey horizontal line,
with the zero line in light grey. Each boxplot represents the
difference in independent normalised metric values across all
the metrics in Table S4.

There are clearly variations in performance across the veg-
etation types, and while the mean LM performance is worst
for open shrubland (OSH), evergreen broadleaf forest (EBF),
and mixed forest (MF), the results across the different LMs
vary significantly. Overall, the LM performance appears bet-
ter for grass-dominated vegetation types (grassland and sa-
vannas) than tree ecosystems. The equivalent plots for Qh
(Fig. S12b), using energy-balance-corrected data (Fig. S12a
for Qle, Fig. S12c for Qh) and NEE (Fig. S12d), suggest that
there is no clear differentiation of performance by vegetation
type – no particular vegetation type is consistently anoma-
lous. While some of the LM means (dark-grey line) appear
to change markedly for Qle after energy balance correction
(most notably for grassland sites), this seems to be at least
partially because of significant changes to outlier LMs rather
than a change in the aggregate behaviour. Some LMs show
improved performance using energy-balance-corrected data,
others show degradation, although more appear to improve.
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Figure 7. Independent normalised metric discrepancy between each model and LSTM_raw for Qle, sorted by vegetation type. The average
of all the LMs for each vegetation type is shown by the bold dark-grey line, and the zero line is in light grey. Lower scores are better.

There is definitely less of a change for Qh as a result of en-
ergy balance correction. Also note that, in all of these fig-
ures, the LM mean is often well above most of the 25th–75th
percentile boxplots. This simply reinforces the point made
above that, when LMs are worse than the reference bench-
marks, they are often much worse (the smallest and largest
25 % of the values obviously do not contribute to these box-
plots). Figure 13a–e show the same information but sorted by
model rather than vegetation type.

Finally, we examine LM performance in the context of the
issue we raised in Sect. 2.2. A significant proportion of the
sites had Qle fluxes larger than incident rainfall, and since
this is something that most LMs will be structurally prohib-
ited from replicating (with the possible exception of wet-
lands), we explore why this might be the case and whether
the issue has biased our overall conclusions about LM per-
formance. Figure 8 once again shows the iNMV improve-
ment offered by the LSTM over LMs on a per-site basis,
with the median difference for all of the LMs plotted (shown
in colours). Each site’s location is shown on axes of ob-
served water evaporative fraction versus dryness index, as in
Fig. S2a–d. Note that the location of the 1–1 line relative
to the sites is very much dependent on our estimate of po-
tential evapotranspiration (PET), which is given here by the
Penman–Monteith model described above, so it is entirely
plausible that a different estimate would see all the sites (with

the exception of US-Bkg) lying to the right of the 1–1 line.
We might also wish to plot a curve in this figure illustrating
the Budyko hypothesis (Budyko, 1974), although there is no
single accepted derivation of an equation that describes the
asymptotic behaviour it suggests (Sposito, 2017; Mianabadi
et al., 2019), but the spread of the sites should make it clear
why this is not particularly useful. Many sites have a water
evaporative fraction above 1. This emphasises that the con-
ceptual idealisation of the Budyko hypothesis only applies at
very large spatial scales and/or under idealised circumstances
of water availability. Irrigation or landscape features like to-
pography or hillslope, sub-surface bedrock bathymetry, or
groundwater can mean that it is entirely physically reason-
able for a location to exhibit a water evaporative fraction
above 1, as around 30 % of these sites do. These factors are
likely to still be relevant at scales of tens of kilometres, so it
seems unreasonable to suggest that these effects are not also
relevant for gridded simulations.

Of the sites in Fig. 8 with a water evaporative fraction
greater than 1, only one is irrigated (ES-ES2) and none are
wetland sites. Hillslope factors are quite plausibly important
in four others (CN-Dan, DK-ZaH, US-SRG, and US-SRM).
One is affected by fire prior to the measurement period,
which might mean that accumulated water was available
(US-Me6). The others are sites from the La Thuile release not
included in FLUXNET2015, which raises the possibility of
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Figure 8. The iNMV improvement offered by LSTM over the median iNMV of all the LMs (excluding empirical and physical benchmarks),
shown in colour for Qle. Each site’s location is shown on the axes of the observed water evaporative fraction versus the dryness index. The
prevalence of particular colour values is shown by the violin plot to the left of the colour legend. Values within [−0.1, 0.1] are shown in grey,
and values above 2 have a constant, dark-blue colour. The dot sizes indicate the length of the site data, ranging from 1 year (smallest) to 21
years (largest) – see Table S2 for the site details.

data quality concerns (BW-Ma1, ES-ES1, RU-Zot, US-Bkg,
and US-SP3). However, for the majority there is no immedi-
ately obvious explanation (AR-SLu, AU-Cpr, AU-Cum, AU-
Gin, AU-Otw, AU-Tum, CN-Cha, CN-Cng, CN-Du2, DE-
Seh, FR-Fon, US-AR1, US-AR2, US-Me2, and ZM-Mon).
While the data used in Fig. 8 are filtered for gap-filled and
other quality control flags, we can confirm that using the en-
tire time series for each site does not result in any qualitative
change to the site locations in this figure (Fig. S2c).

The equivalent plots of Fig. 8 for corrected Qle, Qh, cor-
rected Qh, and NEE are shown in Fig. S14a–d. None of
these show a markedly higher density of poor LM perfor-
mance (green-blue dots) above the 1.0 line, where Qle ex-
ceeds precipitation on average. So, despite there being a
structural impediment to LMs simulating these sites, that
impediment is clearly not the major cause of the LMs’
poor performance. These figures also do not appear to sup-
port the community’s heuristic expectation that LM perfor-
mance will decrease with dryness. While there is a clus-
ter of energy-limited sites where LMs consistently outper-
form LSTM_raw (red–orange–yellow dots), there are also
several water-limited sites where LMs do well, and the sites
worst simulated by LMs, shown in blue, seem evenly spread
throughout the figures.

While it is clear that LSTM_raw broadly outperforms
LMs at most sites, there are clearly some sites (red–orange–
yellow) where LMs on aggregate outperform LSTM. This
does not appear to be the case consistently across all three
fluxes for any particular site, however, nor indeed is there
any clear signal about the types of sites (in terms of vegeta-
tion type, dryness, or available energy) that are better sim-
ulated. This probably suggests that these outcomes may be
more stochastic than the result of any structural advantage
the LMs might have.

4 Discussion and conclusions

In addressing our overall goal of fairly assessing the fidelity
of land models, we aimed to create an evaluation frame-
work that met two criteria: (1) a simulation environment that
offered enough observational constraint to attribute model–
observation mismatch to a model, where appropriate, and
(2) a benchmarking approach within that environment that
could ensure this attribution was fair by quantifying reason-
able performance expectations. Below we discuss the extent
to which this was achieved, what we learned from apply-
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ing the framework to the PLUMBER2 experimental results,
caveats, and implications for future research.

4.1 Simulation environment, observational constraint,
and data quality

There are several important findings in terms of observa-
tional constraint. The first is that we can conclusively say
that this simulation environment does offer enough observa-
tional constraint to diagnose model performance. The fact
that a broad range of empirical models, trained at sites other
than where they are tested, can reliably outperform LMs tells
us that enough information is available to LMs to do bet-
ter. What is less clear is whether the lack of constraint on
LM parameter specification causes poor LM performance –
something we discuss in more detail below.

In terms of observational data quality, despite raw and
energy-balance-corrected fluxes clearly being very different,
our conclusions about model performance are relatively sim-
ilar with or without the correction. This qualitative similar-
ity is only clear because of the ability to define performance
expectations using empirical benchmarks separately in each
case. Similarly, restricting analyses to low-turbulence peri-
ods does not result in a qualitative change to the performance
assessment of LMs, so it is clear that, while there may well
be issues with nighttime flux tower data, they are not the pri-
mary cause of the poor agreement between LMs and tower
fluxes.

Next, the use of empirical benchmarks trained separately
to predict raw and energy-balance-corrected fluxes also gives
us some insight into how appropriate the FLUXNET2015 en-
ergy balance correction process might be. Figure 1 and its
equivalents in the Supplement show that, in general, available
energy in LMs is indeed higher than in raw observations (not-
ing that a priori this is not evidence that the observations are
wrong). However, the energy-balance-corrected versions of
this plot show an even larger discrepancy. Similarly, the dif-
ferences between corrected and uncorrected water evapora-
tive fractions (Fig. S8a and b) show that corrected Qle fluxes
look markedly different to almost all models. The plots based
on iNMVs do seem to show that the correction process helps
improve the overall performance for several LMs. There is,
however, more subtle evidence in the performance of the
empirical models that gives us other, contradictory informa-
tion. LSTM_raw is the best-performing reference model in
Fig. 6 and, as expected, LSTM_eb, trained to match qualita-
tively different (energy-balance-corrected) target data, does
not perform as well against raw flux data as LSTM_raw. This
is what we would expect. However, when we look at the re-
verse situation, using LSTM_eb as the reference model and
energy-balance-corrected fluxes as the target data (shown in
Fig. S11c), the situation is quite different. LSTM_raw per-
forms worse for Qh, as expected, but it performs better than
LSTM_eb for Qle. This tells us that, unlike for Qh, a sophisti-
cated machine learning (ML) model trained on the corrected

Qle flux has no advantage in predicting corrected Qle than
the same ML model trained on raw fluxes – in fact, it has a
disadvantage. A similar result can be seen for 6km729lag. It
is less sophisticated than LSTM_eb and is trained to predict
raw fluxes, yet it outperforms LSTM_eb. This suggests that
the correction to Qle makes these fluxes less predictable and
that the correction to Qle is categorically incorrect, whereas
the correction to Qh may well add some value. This may sug-
gest that the missing energy in uncorrected fluxes might be
more likely to be in Qh fluxes (agreeing with other proposed
correction approaches – see Charuchittipan et al., 2014).

Finally, we discuss the structural assumption in most LMs
that horizontal transport of water between grid cells is negli-
gible. A significant number of sites show a water evaporative
fraction greater than 1, which, despite being entirely physi-
cally plausible, is simply not possible for most current LM
process representations to replicate. This tells us that either
(a) access to groundwater beyond gravity drainage is com-
mon, (b) below-surface bedrock structure has a significant
local hydrological effect, and/or (c) horizontal advection of
moisture in soil (and locally on the surface) plays a signifi-
cant role in moisture availability at the ∼ 1 km2 spatial scale
(i.e. flux tower fetch). Very few global coupled models in-
clude any of these effects. It is very likely that almost all
sites and indeed much larger spatial scales are affected by
this same issue to varying degrees, even if their water evap-
orative fractions do not appear to be anomalously high. This
may well include all spatial scales below river and groundwa-
ter basin scales. Despite this revelation, it is remarkable that
LM performance is apparently not any worse for sites where
evapotranspiration exceeds precipitation (Figs. 8 and S14a–
d). This suggests that, despite the structural assumption being
violated in the LMs here, other aspects of process represen-
tation are more detrimental to overall LM performance.

4.2 Benchmarking methodology

It should be clear that choices made in how we assess model
performance can result in markedly different conclusions.
The difference in apparent LM performance between dN-
MVs and iNMVs as a summative indicator is stark. By ex-
cluding the LM we are evaluating from the criteria that define
good or bad performance (the set of the three empirical mod-
els), we define benchmark levels of performance that are in-
dependent of the LM being evaluated. This means that when
the LM is much better or much worse than a priori expecta-
tions, it will get a score that is proportionally much better or
much worse. Using metric ranks or dNMVs instead limits the
cost of poor performance in the cumulative metrics shown in
PLUMBER-style plots (Best et al., 2015) and so gives an ar-
tificially positive indication of LM performance relative to
the reference benchmark models.

We suggest that the framework we present provides a
way of assessing the significance of proposed improvements
to LM performance that is relatively insensitive to metric
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choice and critically is based on a demonstrated capacity
for improvement. That is, when a LM is worse than an out-
of-sample empirical model given the same predictors, we
know that there is enough information provided to the LM
to do better. We suggest that the summative analysis we
present here using iNMVs is a fairer, more comprehensive
representation of LM performance than either the original
PLUMBER paper or the dNMV versions of the same analy-
ses.

Beyond a lower-bound estimate of potential improvement,
the hierarchy of empirical models we examined also pro-
vides more nuanced information about performance expec-
tations. The difference in performance between 6km729 and
6km729lag, for example, quantifies the improvements in flux
simulation we should expect from adding model states such
as soil moisture and temperature rather than simply having
an instantaneous response to meteorology (Fig. S13a–e). The
same is also true of the RF and LSTM, although they had
slightly different predictor sets and architectures. The sim-
plest model, 1lin, also makes it clear that much of what we
might heuristically regard as high model fidelity is a simple
linear response to shortwave forcing (Figs. S4, S5, and S6
and, perhaps most importantly, Fig. 6). It should be abun-
dantly clear that simple diagnostics can be very mislead-
ing and that defining good model performance is inherently
complicated. Without the empirical model hierarchy detailed
here, judgements about LM performance would almost cer-
tainly be susceptible to confirmation bias.

4.3 PLUMBER, PLUMBER2, and implications for
LMs

It might appear from Fig. 5 that many LMs (CABLE, CHT-
ESSEL, CLM, JULES, MATSIRO, MuSICA, ORCHIDEE,
and Noah-MP) perform better here than the 3km27 model
for Qle, something that could represent progress since the
original PLUMBER experiment (where no models outper-
formed the 3km27 model for standard metrics – see Best
et al., 2015). There are however some differences here that
mean the PLUMBER and PLUMBER2 results are not di-
rectly comparable. First, the single set of metrics we use here
is a combination of the “standard”, “distribution”, and “ex-
tremes” metrics used in PLUMBER, and the worst LM per-
formance in PLUMBER was for the standard metrics alone.
Next, Fig. 5 uses a (dependent) normalised metric range
rather than ranks. We also have fewer models, and differ-
ent models, in each panel that is used to calculate the met-
ric range, and the results are calculated over 154 instead of
20 sites. It nevertheless remains true that Qh is much more
poorly predicted than Qle.

While of a similar performance standard to Qle predic-
tion overall, NEE was notably underpredicted by LMs in a
way that Qle was not. While it seems obvious that a lack of
site history in the LM setup (noting that this information was
not available) is the cause of this, it is intriguing to see that

empirical models (also not given this information) were able
to predict NEE without this bias, in most cases without any
LAI information at all (Figs. 3 and 4). These empirical mod-
els were out-of-sample (they did not use any data from the
sites they predicted in their training). This is an indication
that the importance of site history and leaf area is overstated
in our LMs and is not as important as we may believe for flux
prediction.

These results raise the question of whether LMs are too
complex for the level of fidelity they provide. It is at least
theoretically possible, for example, that a LM is perfect, but
because we are unable to precisely prescribe its parameters
for these site simulations (and global simulations), we ac-
tively hinder its ability to get the right result. What the out-of-
sample empirical models show is that the information avail-
able in LM meteorological variables alone – without any de-
scription of what type of vegetation or soil might be at a given
site, or indeed what the reference height of the measurements
might be – is enough to outperform all of the LMs. This is
not to say that LMs could not perform better if more de-
tailed site-specific information were available, but the way
that they were run here was designed to mimic their applica-
tion at global scales, and for that job they are considerably
more complicated than is justified by their performance. A
more detailed examination of how well LMs perform when
given detailed site information would not simply require us to
show that metric scores for LMs improved when given this
information: it would require that LMs come closer to out-
performing ML approaches also provided with similar site-
specific information.

There are of course other reasons why we might want com-
plexity in a LM beyond improved performance, like the abil-
ity to infer the impacts of particular decisions on a broader
range of processes within the land system. However, it is im-
portant to know the degree of predictability that is possible
with the increasing amount of information that our models
are provided with – what we are missing out on that is cat-
egorically achievable. The fact that increasing model com-
plexity has been found to show little relationship with per-
formance under some circumstances, even when additional
site information is provided, should be concerning (Lipson
et al., 2023). We also need to recognise that the many in-
creases in sophistication that we might want to include to
improve the representativeness of LMs (Fisher and Koven,
2020) may come at a significant cost. The more degrees of
freedom we have in a model, the broader the range of ob-
servational data we need to effectively constrain it, the less
able we are to pinpoint model shortcomings, and the more
susceptible we become to getting the right answer for the
wrong reasons (Lenhard and Winsberg, 2010). A very crude
statistical analogy might be that, if we have a model with one
process that is right 90 % of the time, the model is 90 % ac-
curate. However, if we have a model with 10 serial processes
that are right 90 % of the time, the model is 0.910

= 35 % ac-
curate (although only if the errors are independent).
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This of course does not mean that LMs will always appear
to perform badly in global-scale studies, especially if perfor-
mance expectations are not quantified in the way we have
done here. Figures S4, S5, and S6 show that we can explain
a considerable amount of observed variability with very sim-
ple models, and examining results on longer timescales, as
is typically the case in global studies, will not change this.
We are only able to draw the conclusions we have here be-
cause we have clearly defined performance expectations in
terms of the amount of information available to LMs about
surface flux prediction, and we have examined this close to
the process scale rather than averaging over longer periods
and spatial scales.

4.4 Next steps

As with most model comparisons, the summary statistics pre-
sented in this paper do not give us any categorical indications
about how to start improving models. They nevertheless al-
low us, perhaps for the first time, to fairly account for some
of the inevitable difficulties and eccentricities associated with
using observed data. By evaluating performance relative to
out-of-sample empirical estimates, we can quantify expec-
tations of achievable LM improvement and isolate the cir-
cumstances under which this potential for improvement is
most apparent. We did not actively explore these circum-
stances in detail here, since they are particular to each LM,
but we have nevertheless provided an approach to achieve
this. Some clear indications are already evident from the sites
shown in green and particularly blue in Figs. 8 and S14a,
b, c, d. These are sites where we know that LM prediction
can be substantially improved, since an out-of-sample em-
pirical model offers substantial performance improvements
using the same predictors as LMs. These of course form the
average discrepancy across all the LMs, so the capacity for
improvement at a particular site is likely to vary for differ-
ent models. Equivalent figures for each individual model and
variable can be found at https://modelevaluation.org in the
PLUMBER2 workspace on the profile page for each sub-
mitted model output. The data and analysis code from this
experiment are also available, and we openly invite further
analyses and contributions from the community.

The next steps for the community towards building LMs
that better utilise the information available to them seem rea-
sonably clear. Understanding the shortcomings of a LM is
not a simple process, so moving away from in-house, ad hoc
model evaluation towards more comprehensive, community-
built evaluation tools where the efforts of those invested in
model evaluation are available to everyone will be key. This
will allow results to be comparable across institutions and
routine automated testing to become part of the model devel-
opment cycle. This will need to cover both global scales (e.g.
ILAMB; Hoffman et al., 2017; Collier et al, 2018) and site-
based process evaluation (e.g. https://modelevaluation.org;
Abramowitz, 2012). In both cases, inclusion of empirical per-

formance estimates, such as those shown here, will be key
to distinguishing incremental improvements from qualitative
improvements in LM performance.

Finally, there is obviously much, much more to explore in
the PLUMBER2 dataset. Most participants submitted many
more variables than were examined in this paper (and several
came close to the list in Table S2). The vast majority of sub-
missions to PLUMBER2, as well the forcing and evaluation
data, are publicly available at https://modelevaluation.org as
a community resource for further analyses, and we actively
invite further collaborations to utilise the dataset that this
experiment has produced. This paper nevertheless provides
the community with a benchmarking framework that is rela-
tively insensitive to observational errors and choices in eval-
uation metrics, and it defines model performance in terms of
demonstrated capacity for improvement rather than model–
observation mismatch alone.
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