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Abstract. Fire interacts with many parts of the Earth system.
However, its drivers are myriad and complex, interacting dif-
ferently in different regions depending on prevailing climate
regimes, vegetation types, socioeconomic development, and
land use and management. Europe is facing strong increases
in projected fire weather danger as a consequence of climate
change and has experienced extreme fire seasons and events
in recent years. Here, we focus on understanding and sim-
ulating burnt area across a European study domain using re-
mote sensing data and generalised linear models (GLMs). We
first examined fire occurrence across land cover types and
found that all non-cropland vegetation (NCV) types (com-
prising 26 % of burnt area) burnt with similar spatial and tem-
poral patterns, which were very distinct from those in crop-
lands (74 % of burnt area). We then used GLMs to predict
cropland and NCV burnt area at ∼ 9×9 km and monthly spa-

tial and temporal resolution, respectively, which together we
termed BASE (Burnt Area Simulator for Europe). Compared
to satellite burnt area products, BASE effectively captured
the general spatial and temporal patterns of burning, explain-
ing 32 % (NCV) and 36 % (cropland) of the deviance, and
performed similarly to state-of-the-art global fire models.
The most important drivers were fire weather and monthly
indices derived from gross primary productivity followed by
coarse socioeconomic indicators and vegetation properties.
Crucially, we found that the drivers of cropland and NCV
burning were very different, highlighting the importance of
simulating burning in different land cover types separately.
Through the choice of predictor variables, BASE was de-
signed for coupling with dynamic vegetation and Earth sys-
tem models and thus enabling future projections. The strong
model skill of BASE when reproducing seasonal and inter-
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annual dynamics of NCV burning and the novel inclusion of
cropland burning indicate that BASE is well suited for inte-
gration in land surface models. In addition to this, the BASE
framework may serve as a basis for further studies using ad-
ditional predictors to further elucidate drivers of fire in Eu-
rope. Through these applications, we suggest BASE may be
a useful tool for understanding, and therefore adapting to, the
increasing fire risk in Europe.

1 Introduction

Fire is recognised as a fundamental ecological force
(McLauchlan et al., 2020); a key component of the Earth sys-
tem (Archibald et al., 2018; Bowman et al., 2009); and a seri-
ous hazard for human health, livelihoods, property, wildlife,
and biodiversity (Arrogante-Funes et al., 2024; Bowman et
al., 2020; Johnston et al., 2012; Sullivan et al., 2022). It in-
teracts with many components of the Earth system, with no-
table effects on biogeochemical cycles, surface energy bud-
gets, and vegetation dynamics and composition (Archibald
et al., 2018; Bowman et al., 2009). Through these effects,
fire alters the chemical composition of the atmosphere and
the physical properties of the land surface, thereby influ-
encing regional and global climate (Archibald et al., 2018;
Bowman et al., 2009; Jones et al., 2022). Total global burnt
area (including fires set deliberately for land management)
is decreasing, which is primarily driven by decreases in fire
in savanna, grassland, and cropland regions (Andela et al.,
2017). However, the frequency of extreme wildfires is in-
creasing (Cunningham et al., 2024) as is forest area loss due
to fire (Tyukavina et al., 2022). Many regions are experienc-
ing wildfires of hitherto unrecorded extent and/or severity,
e.g. 2019/2020 in Australia (Boer et al., 2020) and 2023 in
Canada (Hu et al., 2024). Studies of regional fire dynam-
ics can help resolve these complexities by revealing region-
specific processes and drivers whilst also providing results
which can inform policy at local, national, and transnational
levels. One such region is Europe, which is experiencing un-
precedented wildfires (San-Miguel-Ayanz et al., 2023). The
already fire-prone region of southern Europe has been expe-
riencing extreme fire seasons with difficult to control fires,
for example, in Portugal in 2017 (Turco et al., 2019), Greece
in 2018 (Giannaros et al., 2022), and southwestern Europe
in 2022 (Rodrigues et al., 2023). In northern and central
Europe, regions which were not previously considered fire-
prone are now experiencing wildfires (Arnell et al., 2021;
Krüger et al., 2023). Even moderate climate change scenar-
ios show large increases in fire danger due to fire weather
changes (El Garroussi et al., 2024; Turco et al., 2018). Thus,
there is an urgent need to understand and simulate fire occur-
rence on the European scale.

However, whilst the basic physical prerequisites of fire
occurrence can be summarised fairly simply as a sufficient

amount of spatially continuous, suitably aerated, dry fuel
and an ignition source, understanding where and when these
conditions are fulfilled and how large the resulting fires be-
come is rather more complex. Meteorological conditions
(“fire weather”) at the time of a fire affect its rate of spread,
and conditions in antecedent days affect the moisture con-
tent of both live and dead fuels. Vegetation, the primary fuel
source, varies tremendously across the planet, resulting in
large heterogeneity in fuel conditions in terms of both fuel
moisture and physical flammability characteristics (i.e. leafy
vs. woody, dead vs. live fuel, and fuel particle dimensions).
Human activity and infrastructure account for the majority of
fire ignitions (responsible for 96 % of burnt area in Europe;
Dijkstra et al., 2022), but lightning and other natural ignitions
also occur. Humans may start fires for a myriad of reasons
(including negligence and arson) which vary depending on
land use type and cultural practices, but humans also work to
suppress fires (Millington et al., 2022). Legislation and law
enforcement also play a role if fire practices are allowed to
manage the landscape or how well firefighting techniques are
funded and can be applied. Land use also affects the vegeta-
tion and hence fuel conditions and introduces barriers to fire
spread into the landscape. Topography affects rate of spread
and can also introduce barriers to fire spread. In summary, we
find a plethora of factors affecting fire occurrence and expect
them to function differently depending on the local vegeta-
tion, socioeconomic development, and human activity.

Two modelling approaches have typically been used to
study fire occurrence from an Earth system perspective or on
large scales. Process-based fire models coupled to land sur-
face and dynamic global vegetation models (DGVMs) have
been used for studying fire dynamics by simulating biophys-
ical mechanisms and some socioeconomic factors across a
range of complexities (Hantson et al., 2016). Complementary
approaches using correlative methods have been developed
using either statistical models (such as generalised linear
models, GLMs; for example, Bistinas et al., 2014; Haas et al.,
2022) or machine learning models (typically random forests;
Forkel et al., 2017; Kuhn-Régnier et al., 2021; Mukunga et
al., 2023). These approaches typically use a larger set of input
variables, include more socioeconomic variables, and use ob-
served vegetation. Both types of models are usually applied
at a global level and so are inherently focussed on match-
ing the global pattern of burnt area. This global pattern is
dominated by grass fires in the tropics, particularly Africa,
and the fire-enabled DGVMs do a reasonable job simulating
this (Hantson et al., 2020). However, they have notable re-
gional discrepancies and in particular overpredict burnt area
in the extra tropics (see Fig. 4 and Table 2 in Hantson et al.,
2020) likely because their global focus leaves them unable
to resolve regionally specific processes or phenomena. On
the other hand, national- and sub-national-scale studies are
inherently limited in the range of environmental and socioe-
conomic conditions that they encompass and hence in their
broader applicability. Thus, there is a need to develop models
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focussed on intermediate (i.e. continental) scales (Boulanger
et al., 2018; Keeping et al., 2024; Turner et al., 2011) where
there is large variation (and hence applicability), but the pat-
terns are not overpowered by the tropical savannas, and the
model is sensitive to regionally important phenomena.

Concerning fire regimes on the pan-European scale, re-
cent studies have described and quantified fire regimes in Eu-
rope (Galizia et al., 2021), estimated the fractions of anthro-
pogenic vs. lightning ignitions and their contribution to burnt
area (Dijkstra et al., 2022), investigated drivers of large to ex-
treme fire occurrence in terms of individual events (Ochoa et
al., 2024), and examined the compounding effects of fire and
other hazards (Sutanto et al., 2020). Other research has fo-
cussed on relating burnt area to fire weather variables in dif-
ferent regions of southern Europe, such as districts of Portu-
gal (Carvalho et al., 2008), NUTS3 subregions (Turco et al.,
2018), and Mediterranean countries (Amatulli et al., 2013).
There have also been a number of DGVM studies which used
global fire models to project future changes in burnt area in
Europe but which do not specifically focus on the driving
factors and have only limited regional adaptation for Europe
(Dury et al., 2011; Migliavacca et al., 2013; Wu et al., 2015;
Khabarov et al., 2016). We are not aware of any study exam-
ining drivers of burnt area which simultaneously (i) consid-
ers specifically the pan-European scale, (ii) considers drivers
beyond fire-weather-related variables, and (iii) operates at a
gridded resolution for integration with DGVMs and which
is necessary for including highly heterogeneous topographic,
socioeconomic, and vegetative factors. Furthermore, Europe
has a diverse array of land cover types, and these have not
been distinguished between in previous studies. This is of
particular importance given recent advances in satellite ob-
servation of burnt areas which indicate occurrences of fire in
croplands that are higher than previously estimated (Hall et
al., 2024; Roteta et al., 2019). Cropland burning as an explicit
process is almost entirely neglected in fire-enabled DGVMs
and the land surface models used in Earth system models
(ESMs); we are aware of only one such model in which it is
simulated (Li et al., 2013), one in which it is prescribed from
remote sensing data (Rabin et al., 2018) and one in which
fires in croplands are simulated in the same manner as fires
in grasslands (Burton et al., 2019).

Here we seek to fill this knowledge gap by disentangling
the drivers of fire occurrence across a European study domain
(defined here as 27 countries of the European Union with the
United Kingdom and six Balkan candidate countries). This
study’s aims are twofold: (i) to gain insight into drivers of fire
activity across land cover types in Europe and (ii) to encap-
sulate this knowledge into a new fire model that can be em-
bedded into a DGVM. To fulfil these aims, we chose to use
GLMs. As a correlative method, GLMs have the advantage
over process-based models that they are highly data-driven
and therefore can tease out process understanding rather than
only embodying existing knowledge. But also, compared to
more complex correlative techniques (for example random

forests), GLMs can be described by a handful of coeffi-
cients and so can easily be embedded into other models. As
a preamble to developing the GLMs, we first examined fire
and land cover data to determine which broad land cover cat-
egories should be simulated. We then fitted GLMs to deter-
mine which environmental and socioeconomic variables can
explain fire behaviour in Europe and produce parsimonious
predictive models.

2 Materials and methods

2.1 Datasets

This study relied solely on gridded datasets, with the com-
mon spatial resolution determined by a state-of-the-art cli-
mate dataset with 0.07(03135)°, which corresponds to ap-
proximately 9× 9 km, derived from ERA5-Land (Muñoz-
Sabater et al., 2021). This dataset was selected in order to
provide comparatively fine spatial resolution and compati-
bility with the FirEUrisk Assessment System (Chuvieco et
al., 2023) and is available until 2014. For clarity, we refer to
elements of the target 9 km grid as grid cells and elements of
higher-resolution grids as pixels. Unless otherwise noted, all
data processing was done using R (R Core Team, 2024) and
the terra package (Hijmans, 2023).

2.1.1 Fire occurrence and land cover combination

Central to this analysis was the combination of ESA
FireCCI51 (Lizundia-Loiola et al., 2020) and ESA Land
Cover CCI (ESA, 2017) datasets, which we used to quantify
fire occurrence in different land cover types (LCTs) in two
different ways: burnt area, BA (ha), and burnt fraction, BF
(unitless), on a monthly basis. We also calculated the fraction
of a grid cell covered by an LCT, LF (unitless). To combine
these products, we first performed nearest-neighbour regrid-
ding to bring the 300 m land cover data on to the 250 m grid
of the burnt area data. Then, for a given LCT, month, and
9 km grid cell, we calculated BPLCT, the number of burnt
pixels in the grid cell (from the FireCCI51 pixel product land
cover layer), and TPLCT, the total number of pixels of that
LCT (from the regridded Land Cover CCI product). We also
calculated the total area of the 9 km grid cell, A (ha), and the
number of 250 m pixels within that 9 km grid cell, TP.

We calculated burnt fraction (unitless) by

BF=
BPLCT

TPLCT
. (1)

Land cover type fraction (unitless) was calculated by

LF=
TPLCT

TP
. (2)

And, finally, burnt area (ha) was calculated by

BA= BF.LF.A. (3)
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Note that this method accounts for the variation in grid cell
size with latitude but not the (far smaller) variation in pixel
size within a 9 km grid cell.

Burnt fraction was used as the target variable for model fit-
ting, and mean burnt fraction (averaged across grid cells) was
used for comparing temporal patterns of fire occurrence be-
tween LCTs. Burnt area was used for comparing predicted
fire occurrence to the observed patterns in terms of both
agreement metrics and visualisation and comparing the over-
all amounts of burnt area present in the study area.

2.1.2 Fire weather and wind speed

To capture fire weather, we used an adapted version of the
Canadian Forest Fire Weather Index (FWI) (Van Wagner,
1987) that considers the total daily precipitation combined
with the daily temperature, relative humidity, and wind speed
at noon. Here we calculated it using the implementation of
the Canadian Forest Fire Danger Rating System in the R
package cffdrs, which calculates the FWI and all subindices
(Wang et al., 2017b). The climate variables required were
taken from a version of the ERA5-Land climate dataset,
which was produced by regridding the original triangular–
cubic–octahedral (TCo1279) operational grid from the re-
analysis simulations (Muñoz-Sabater et al., 2021) to a regular
9 km grid (∼ 0.07°) across Europe (Chuvieco et al., 2023) in
order to maintain a higher spatial resolution than the stan-
dard 0.1° resolution. We used accumulated daily precipita-
tion (in mm), the noon values were approximated using the
maximum daily temperature (in °C), the minimum relative
humidity (in %) and the daily mean wind speed (in km h−1)
by the approach of Hetzer et al. (2024). Monthly averages
were calculated from the daily FWI values. We also consid-
ered the monthly mean and maximum of wind speed from
this climate dataset as candidate predictors.

2.1.3 Gross primary productivity and derived
quantities

We considered gross primary productivity (GPP) and quanti-
ties derived from it as potential predictors for fuel accumula-
tion and ecosystem state. The monthly version of the Global
OCO-2 SIF GPP product (GOSIF, Li and Xiao, 2019) was
regridded from its native 0.05° resolution to the target grid
using average resampling. From these monthly values, we
calculated the sum of the antecedent 12 months (GPP12) fol-
lowing Kuhn-Régnier et al. (2021) to quantify fuel buildup.
We also derived two indices to quantify ecosystem state and
post-harvest timing (only for use in the cropland burning
model). We define the monthly ecosystem productivity in-
dex (MEPI) as this month’s GPPm divided by the maximum
of the 13 previous months (including this month); i.e. the fol-
lowing applies:

MEPI= GPPm/max(GPPm, GPPm−1 , . . ., GPPm−12). (4)

MEPI therefore ranges between 0 and 1. High values indicate
that photosynthesis is occurring at close to its maximum rate,
and so the ecosystem is in an unstressed state with full leaf
expansion – i.e. high proportions of live fuel and high live
fuel moisture content and thus low expected flammability.
Low values imply either a dormant state (i.e. leaves senesced
and higher dead fuel proportion) or a stressed state, which
we expect to correspond to higher flammability. Using the
13-month maximum accounts for the overall productivity of
a grid cell in a manner which is insensitive to the length of
the growing season (unlike the annual mean).

We defined the post-harvest index (PHI) by

PHI=mean(GPPm−1, GPPm−2, GPPm−3)/

max(GPPm, GPPm−1 , . . ., GPPm−12). (5)

The logic behind PHI is that crop residue burning is likely
to happen when productivity for the previous 3 months has
been high relative to the annual maximum. Such a situation
indicates a productive growth period for the crops after which
point the crops can be harvested, creating an opportunity for
residue burning. Note that we expect the opposite response
for PHI compared to MEPI, with high values of PHI indicat-
ing a higher likelihood of fire occurrence but low values of
MEPI indicating higher likelihood.

2.1.4 Fraction of absorbed photosynthetically active
radiation

The fraction of absorbed photosynthetically active radiation
(FAPAR) is a proxy for live leaf biomass and can be used
to quantify fine fuel buildup and availability (Forkel et al.,
2017; Knorr et al., 2016; Kuhn-Régnier et al., 2021). Here
we used the FAPAR 1km v2 product by the Copernicus
Global Land Service (CGLS), which is derived from SPOT-
VEGETATION and PROBA-V data (European Commission
Directorate-General Joint Research Centre, 2020). It is orig-
inally provided at 1 km resolution globally but was aggre-
gated and regridded to the 9 km target grid using pixel aver-
aging and bilinear interpolation. It covers the analysis period
in 10 d steps until June 2020. For each time step, the final
consolidation product RT6 was used.

2.1.5 Tree cover

The degree of tree cover affects fuel load and composition,
local wind speed, and fuel moisture (due to subcanopy micro-
climates). A recent global study indicated that tree cover has
a negative effect on burnt area (Haas et al., 2022). For maxi-
mum precision, we used the global 30 m Landsat tree canopy
version 4 product (Sexton et al., 2013), which was processed
to 9 km resolution by simple averaging. We took the mean
of the layers for 2000, 2005, 2010, and 2015 to smooth out
occasional anomalous values seen in the individual layers.
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2.1.6 Population density

The presence of humans has long been recognised as affect-
ing fire occurrence and population density and is widely used
in global fire models (Hantson et al., 2016; Rabin et al., 2017)
and empirical studies of global fire patterns (Bistinas et al.,
2014; Haas et al., 2022). For this study, population density
was acquired from the HYDE v3.2 database baseline ver-
sion (Klein Goldewijk et al., 2017). This was converted from
ASCII to netCDF format using GDAL (Rouault et al., 2024).
Annual maps were created by linearly interpolating between
the 5-yearly population density estimates, performed using
Climate Data Operators (Schulzweida, 2023) and remapped
to this study’s ∼ 9 km spatial resolution.

2.1.7 Human development index and gross domestic
product

Both the human development index (HDI) and gross do-
mestic product (GDP) have been used as socioeconomic in-
dicators to represent human effects on fire regimes. Li et
al. (2013) implemented a suppression of both non-cropland
and cropland fires with increasing GDP per capita in a global
fire model. More recently, Chuvieco et al. (2021) used HDI
in an analysis to explain variability in burnt area and found
that increasing HDI dampens burnt area interannual variabil-
ity. Here both HDI and GDP per capita were taken from the
datasets from Kummu et al. (2018) and regridded to the target
9 km resolution by simple averaging. This dataset introduced
a small data gap in Northern Macedonia.

2.1.8 Topographic variables

The interactions between terrain and fire spread can be highly
complex and variable (Sharples, 2009). On the one hand,
rough terrain can be expected to increase fire size by increas-
ing fire spread rate on a local scale on slopes (e.g. Rother-
mel et al., 1972) and by limiting access to firefighters. On
the other hand, it may reduce fire size by introducing bar-
riers to fire spread. In their study at 0.5° resolution, Haas
et al. (2022) found that the vector ruggedness measure, a
measure of terrain roughness, had a negative effect on burnt
area in a grid cell. In contrast, the topographic position in-
dex (TPI), which quantifies the relative proportions of hill
tops to valley floors, was found to have a slightly positive
effect. Here we extracted a set of terrain variables from the
Geomorpho90 dataset, which is based on the 90 m resolu-
tion MERIT digital elevation model (Amatulli et al., 2020).
We masked out pixels with more than 50 % urban or perma-
nent water bodies based on version 3 of the Copernicus Land
Cover dataset (Buchhorn et al., 2020) as such pixels are not
expected to burn and influence fire behaviour. We then ag-
gregated these to the target grid by calculating the median of
pixels using Google Earth Engine (Gorelick et al., 2017). We
found that at our target resolution of ∼ 9 km, all the terrain

variables fell into two groups of strongly correlated variables
(data not shown). From these groups, we picked slope and
TPI because of their relative simplicity of interpretation and
for comparability with other studies.

2.2 Analysis of fire occurrence by land cover types

Before performing the main task of building GLM models,
we first grouped land cover types based on their relative con-
tributions to the total burnt area and their spatiotemporal pat-
terns of burning. We therefore examined fire occurrence in
land cover types using the ESA Land Cover CCI dataset.
We first of all separated cropland from non-cropland areas to
form two main land cover types and then divided these types
into subtypes. For croplands, we considered the following
subtypes: herbaceous croplands, woody croplands, and mo-
saic croplands. For non-croplands we considered grasslands,
shrublands, woodlands, natural mosaics, and sparse vegeta-
tion (see Table S1 in the Supplement for more details).

We then compared the mean annual burnt area in each of
our aggregated classes to determine their relative contribu-
tions to fire occurrence in Europe, indicating which classes
are most important to simulate. To determine how we might
group the subtypes, we examined the spatial patterns of burnt
area, and the interannual variability and season cycle of mean
grid cell burnt fraction. Based on this, we concluded that it
would be sufficient to build separate models for only two land
cover types: croplands (excluding woody and mosaic crop-
land types) and non-cropland vegetation (hereafter NCV).

2.3 GLM fitting

We fitted GLMs for the NCV and cropland LCTs using the
standard glm function in R over the period of 2002–2014 (de-
termined by the climate dataset). The quasi-binomial family
was used to account for the high degree of overdispersion
(large amount of zero values) in the data with the logit link
function. Note that the use of a “quasi” family precluded the
use of some standard GLM tools such a Q–Q plots and infor-
mation criteria because there is no clear generating model.
We also chose not to scale the predictors in order to main-
tain maximum interpretability of the results, but our testing
showed that scaling made no difference to model fit results.

We considered every month and grid cell which had more
than 10 % of the LCT present as a data point and used 80 % of
the data points (sampled randomly from all grid cell months)
for training and kept 20 % for testing. When comparing the
normalised mean error (NME; Kelley et al., 2013) between
the testing and training, we saw differences of ∼ 0.002.

2.4 Predictor variable selection

For predictor variable selection, we took an approach that
could be summarised as “process-informed trial and error”.
This was chosen over automated variable selection methods
because we wanted to select and test specific variables to cap-

https://doi.org/10.5194/bg-21-5539-2024 Biogeosciences, 21, 5539–5560, 2024



5544 M. Forrest et al.: Understanding and simulating cropland and non-cropland burning

Table 1. List of all predictors variables considered for BASE, the reasons for their inclusions, their temporal resolution, and the form of the
associated term in the final BASE models (including pre-applied transformations of the log and square root).

Quantity Dataset Reason Temporal
resolu-
tion

NCV Cropland

Fire weather
index (FWI)

Hetzer et al. (2024) Fire weather conditions Monthly Log, inter-
action with
FWI

Linear

MEPI GOSIF GPP Li and Xiao
(2019)

Monthly ecosystem productiv-
ity index – health and pheno-
logical state of vegetation

Monthly Interaction
with MEPI

Linear

PHI GOSIF GPP Li and Xiao
(2019)

Post harvest index Monthly – Linear

Wind speed Hetzer et al. (2024) Affects rate of spread Monthly – Quadratic

Human devel-
opment index
(HDI)

Kummu et al. (2018) Socioeconomic, proxy for cul-
tural practices, investment in
firefighting, public awareness
and legislation

Annual Linear Linear

GDP Kummu et al. (2018) Socioeconomic Annual – –

Pop_dens HYDE v3.2 Klein Gold-
ewijk et al. (2017)

People start/extinguish fires Annual Square root Square
root

FAPAR12 CGLS FAPAR 1km v2 Eu-
ropean Commission
Directorate-General Joint
Research Centre (2020)

Fraction of absorbed photo-
synthetically active radiation
– fine-fuel buildup over last
12 months, general productivity

Past 12
months

Linear –

GPP12 GOSIF GPP Li and Xiao
(2019)

Gross primary productivity –
fine-fuel buildup over last 12
months, general productivity

Past 12
months

– Quadratic

Tree cover (%) Landsat Sexton et al. (2013) Fuel characteristics and ecosys-
tem openness

Static
map

Quadratic –

Slope Geomorpho90 Amatulli et
al. (2020)

Topographic: affects rate of
spread, fragmentation, and ac-
cess

Static
map

Linear Linear

Topographic
position index
(TPI)

Geomorpho90 Amatulli et
al. (2020)

Topographic: affects rate of
spread, fragmentation, and ac-
cess

Static
map

Linear –

ture specific effects or processes. This means, for example,
that at least one variable that is an indicator of fuel availabil-
ity and one for fire weather must be maintained in the model.
As the model was developed, variables were added, substi-
tuted, or removed. Interaction terms and different responses
(e.g. quadratic terms) were also tested. This required continu-
ous evaluation of model performance and of the responses of
individual variables. We also minimised the degree of corre-
lation between predictors by testing only one predictor from
any set of highly correlated variables (say FAPAR and GPP
or HDI and GDP) at a time (for correlations between pre-
dictors, see Fig. S6 in the Supplement). Automated variable

selection does not allow for this flexibility nor does it allow
informed decision-making anchored in process understand-
ing. We therefore present the outcome of this variable selec-
tion fait accompli, but we also present a table of sensitivity
of model results, with predictors changed/removed and plots
of the effects of removing certain key terms.

2.5 Evaluating model fit and behaviour

The statistical models generated here can be viewed as both
a GLM and a simulator of fire occurrence for use in an ESM
context and, as such, can be evaluated through these two
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lenses. When viewed as a GLM, we evaluated the models us-
ing deviance explained; we made partial response and resid-
ual plots for each predictor on the link scale as is typically
done for such analyses using the R visreg package (Breheny
and Burchett, 2017), and we calculated variable importance
using a SHAP-derived variable importance ranking using the
R vip package (Greenwell and Boehmke, 2020). Note that
because we did not scale the predictors and did choose to use
interaction and polynomial terms, we avoided the use of pre-
dictor coefficients or t statistics to compare variable impor-
tance. Overall, this form of evaluation looks at the model’s
ability to predict burnt fraction, with equal weight given to
all grid cells in the training dataset (regardless of how much
of an LCT is present in the grid cell or what time of year it is)
and does not consider details of the spatiotemporal patterns.

We also undertook complementary evaluation of predicted
burnt area using methods that are more typically used in
an ESM/DGVM context. We plotted the spatial, interannual,
and seasonal patterns of burnt area and compared them to
the observations. We also calculated the normalised mean er-
ror (NME) of the spatial and interannual burnt area distribu-
tion and the mean phase difference (MPD) to quantify the
seasonal agreement, all following Kelley et al. (2013), com-
pared to the data (over the full datasets, not just the training or
testing subsample). We also plotted the predictor responses
on the response scale (with all other predictors held at their
median values) and compared them between the LCTs to
give a more “real-world” idea of how these predictors act. It
should be noted that these evaluations were done with burnt
area as opposed to burnt fraction, so when the model pre-
dictions are aggregated for the spatial temporal plots, they
implicitly weight the grid cells’ contribution by the fraction
of LCT present. This implies that grid cells with less of a
LCT present contribute less to the plot.

3 Results

3.1 Analysis of observed fire occurrence by land cover
type

Of the 1.46 Mha yr−1 of burnt area in our European study
domain between 2001 and 2020, the majority occurred in
croplands, with a mean of 1.09 Mha yr−1 (74 % of total)
(Fig. 1a). The majority of this was in herbaceous croplands
(0.98 Mha yr−1), with a much smaller contribution from mo-
saic croplands (0.08 Mha yr−1) and a very small amount in
woody croplands (0.01 Mha yr−1). Given that cropland burn-
ing comprised three-quarters of total burnt area, we conclude
that our study should include cropland burning. Furthermore,
since 90 % of this burning happened in herbaceous cropland,
we decided to neglect burning in the other crop land cover
types and consider only herbaceous cropland with the expec-
tation that this corresponds to the practice of burning crop
residues.

A further 0.38 Mha yr−1 (26 % of total burnt area) is burnt
in non-cropland vegetation (Fig. 1a). The largest contri-
butions to this were from the woodlands and natural mo-
saics categories (0.13 and 0.12 Mha yr−1, respectively), with
smaller contributions from grasslands (0.06 Mha yr−1) and
shrublands (0.03 Mha yr−1) and a negligible contribution
from sparse vegetation (0.003 Mha yr−1).

Although both NCV and cropland burning are generally
confined to southern Europe, the spatial patterns of burnt
fraction were rather distinct (Fig. 1b). Cropland burning was
concentrated in the Balkans, particularly in Bulgaria and Ro-
mania on their respective sides of the Danube and around
northern Serbia, and with some further patches in Italy and
less intense patches on the Iberian Peninsula. In contrast,
NCV burning was most intense in Portugal, with further
patches across much of the Mediterranean, including par-
ticular hotspots in Sicily, on the Balkan Adriatic coast, and
in northern Serbia. Comparing the normalised time series of
burnt fraction of cropland and NCV revealed very different
interannual variabilities (IAVs; Fig. 1c). The seasonal dis-
tribution of the burnt fraction (Fig. 1d) also showed some
considerable differences, with a broader summer peak and
distinctive October shoulder in the cropland burning. De-
spite the fact that NCV and cropland burning showed very
different spatiotemporal patterns, our analysis of the NCV
subtypes (including grasslands, shrublands, and woodlands)
revealed remarkably similar distributions (see Figs. S3–S5).
From this we concluded that it would be sufficient to build
GLMs for only two broad land cover classes to capture the
fire patterns in Europe: herbaceous croplands (henceforth
just croplands) that experience residue burning and all other
non-cropland vegetation (NCV) which primarily experience
uncontrolled wildfires, which we refer to as BASE Cropland
and BASE NCV, respectively.

3.2 BASE deviance explained and predictors

The final selection of predictors is shown in Table 1 and the
associated regression coefficients in Tables S2 and S3. In
terms of raw deviance explained, the fitted GLMs did moder-
ately well, explaining 32.4 % of the deviance of NCV burn-
ing and 36.0 % of cropland burning (Tables 2 and 3).

For the BASE NCV, the SHAP-derived importance scores
indicated that the most important driver was FWI (log-
transformed) closely followed by MEPI (Fig. 2). These rela-
tionships were positive and negative, respectively, as would
be expected (Fig. 3). HDI (negative response), tree cover
(unimodal response), and FAPAR12 (positive response)
formed a group each with approximately one-third of the im-
portance, closely followed by topographic slope (positive re-
sponse). TPI and Pop_dens were of small importance, and
both had a positive response. Additionally, we found that in-
cluding an interaction between FWI and MEPI had a small
beneficial effect on the reproduction of the IAV and seasonal
cycle (see Sect. S6 in the Supplement for details).
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Figure 1. Breakdown of burnt area per land cover types and spatiotemporal patterns of cropland vs. non-cropland vegetation (NCV) burning.
In panel (c), the trend (calculated with linear regression) is plotted as a straight line, with the 95 % confidence interval shown as grey shading.

In BASE Cropland, MEPI was the most important deter-
minant variable, with a negative response best represented
in quadratic form (Figs. 2 and 3). PHI (positive), FWI (uni-
modal), GDP (negative), and GPP12 (unimodal) all showed
high and similar levels of importance (about two-thirds that
of MEPI) and wind speed, population density, and slope
showed less importance (all negative). We further note that
many predictors produced contrasting responses and differ-
ent functional forms in the NCV versus the cropland model
(Fig. 2).

3.3 NCV model performance

The spatial patterns of burning simulated by BASE NCV
matched the ESA FireCCI51 data reasonably well (Fig. 4)
as evidenced by an NME score of 0.87 (Table 2). Burnt
area occurred and was simulated largely in southern Europe
on the Iberian Peninsula, in the Balkans, in Italy, and on
Mediterranean islands. However there were some regional
mismatches. The most striking mismatch is the large over-
estimation by BASE in Spain and the simultaneous under-
estimation in Portugal. BASE also overestimated burning in
Sardinia and Greece but failed to simulate the high amount of

burning along the Balkan Adriatic coast. Observational data
also showed some areas of fire occurrence in temperate and
boreal Europe (these may correspond to a single fire event)
which were not simulated by BASE. The IAV was well cap-
tured (Fig. 5), with an NME of 0.58 and the reproduction
of both the observed weakly declining trend and the timing
of peak fire years (although peak amplitudes were underes-
timated). The model also reproduced the observed timing of
both spring and summer fire peaks but underestimated their
magnitude (Fig. 6) and produced an overall MPD of 0.28.

3.4 Cropland model performance

BASE Cropland successfully simulated the large extents of
cropland burning in the Balkans, Greece, and Italy (Fig. 4)
and gave a good overall spatial NME of 0.61 (Table 3). It did,
however, considerably overestimate cropland burning across
the Iberian Peninsula, where little burning was present in the
ESA FireCC51 data. In terms of interannual variability, the
model did less well (Fig. 5), with an NME of 0.99. The model
reasonably reproduced the observed seasonal timing of crop-
land burning, with a MPD of 0.26 but underestimated the
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Figure 2. Partial responses of burnt area to each predictor variable for the NCV (green line and shaded area) and cropland (purple line and
shaded area) burning models. Dashed lines for the NCV and cropland burning model mark the burnt area predicted by the BASE models
when all predictors are held at their median values. Pops_dens is the population density, MEPI is the monthly ecosystem productivity index,
FWI is the fire weather index, FAPAR12 is the fraction of absorbed photosynthetically active radiation averaged over the last 12 months,
HDI is the human development index, GDP is the gross domestic product (per capita), PHI is the post-harvest index, and GPP12 is the gross
primary productivity summed over the previous 12 months.

length of the summer fire peak considerably and missed the
spring peak (Fig. 6).

3.5 Alternative model formations

Tables 2 and 3 show the performance of the fitted sensitiv-
ity models. Changes equal to or larger than 0.005 (i.e. 0.5 %

change in deviance explained or NME) are in bold when they
decreased model fit and italics if they improved it. In general,
all changes from the chosen model either worsened model
agreement metrics or had negligible impact. In the rare case
that a metric improved, it was almost always accompanied
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Figure 3. SHAP-derived variable importance for (a) the NCV and (b) the cropland models. For variable descriptions, see Table 1. Pops_dens
is the population density, MEPI is the monthly ecosystem productivity index, FWI is the fire weather index, FAPAR12 is the fraction of ab-
sorbed photosynthetically active radiation averaged over the last 12 months, HDI is the human development index, GDP is the gross domestic
product (per capita), PHI is the post-harvest index, and GPP12 is the gross primary productivity summed over the previous 12 months.

Table 2. Model skill metrics for best NCV burning model and the differences relative to the model for sensitivity models. Changes above
0.005 are highlighted in italics if they correspond to model improvement and bold if they correspond to model degradation. The numbers
in parentheses in column titles refer to the bootstrap null model. Pops_dens is the population density, MEPI is the monthly ecosystem
productivity index, FWI is the fire weather index, FAPAR12 is the fraction of absorbed photosynthetically active radiation averaged over
the last 12 months, HDI is the human development index, GDP is the gross domestic product (per capita), and GPP12 is the gross primary
productivity summed over the previous 12 months.

Description Deviance explained Spatial NME (1.066) MPD (0.409) IAV NME (1.235)

BASE v1.0 0.324 0.867 0.284 0.581
Omit FWI −0.206 −0.003 0.110 0.357
Omit HDI −0.042 0.067 −0.004 0.084
Omit tree cover −0.013 0.045 −0.002 0.009
Omit FAPAR12 −0.010 0.011 −0.002 −0.005
Omit MEPI −0.050 −0.008 −0.001 0.139
Omit Pop_dens −0.002 0.006 0.000 0.013
Omit slope −0.011 −0.015 −0.001 0.021
Omit TPI −0.001 0.005 0.000 0.006
Include wind speed 0.000 −0.001 0.000 −0.001
FWI not logged −0.045 0.024 0.034 0.160
MEPI and FWI not interacting −0.002 −0.002 −0.002 0.011
Pop dens quadratic 0.000 −0.001 0.000 −0.001
MEPI quadratic −0.001 −0.001 −0.006 0.017
Tree cover not quadratic −0.007 0.015 −0.001 0.017
Replace FAPAR12 with GPP12 −0.009 0.013 −0.002 −0.019
Include HDI × Pop_dens 0.000 −0.001 0.000 −0.001
Replace HDI with GDP −0.017 0.032 −0.002 0.058
Replace HDI with Pop_dens × GDP −0.017 0.032 −0.002 0.058

by a larger decrease in performance as measured with other
metrics.

One noteworthy result is the large degradation of the IAV
performance of BASE Cropland associated with the inclu-
sion of GDP, which resulted in a 13 % decrease in IAV NME.
However, this was set against improvements in deviance ex-

plained and spatial NME (6 % and 10 %, respectively). We
also investigated swapping HDI for GDP, which resulted in a
further 13 % degradation of IAV NME with only very small
improvements in deviance explained and spatial NME. Ex-
amination of the temporal trends showed that HDI was re-
sponsible for introducing a decreasing trend in the cropland
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Table 3. Model skill metrics for best cropland burning model and the differences relative to the model for sensitivity models. Changes above
0.005 are highlighted in italics if they correspond to model improvement and bold if they correspond to model degradation. The numbers
in parentheses in column titles refer to the bootstrap null model. Pops_dens is the population density, MEPI is the monthly ecosystem
productivity index, FWI is the fire weather index, HDI is the human development index, GDP is the gross domestic product (per capita), PHI
is the post-harvest index, and GPP12 is the gross primary productivity summed over the previous 12 months.

Description Deviance explained Spatial NME (1.081) MPD (0.338) IAV NME (1.35)

BASE v1.0 0.360 0.610 0.258 0.988
Omit FWI −0.092 0.052 0.027 0.359
Omit GDP −0.055 0.096 0.002 −0.126
Omit GPP12 −0.016 0.016 0.000 0.027
Omit PHI −0.031 0.011 −0.026 0.087
Omit MEPI −0.072 0.045 −0.014 0.132
Omit Pop_dens −0.002 0.005 0.000 0.010
Omit slope −0.002 −0.001 0.001 0.021
Omit wind speed −0.008 −0.003 0.000 0.039
Include TPI 0.000 0.000 0.000 −0.001
FWI not quadratic −0.026 0.029 0.009 0.001
GPP12 not quadratic −0.015 0.015 0.000 0.038
MEPI not quadratic −0.009 0.014 0.000 0.020
PHI quadratic 0.001 0.000 0.000 −0.003
MEPI PHI interacting −0.007 0.014 −0.001 0.025
Replace MEPI with GPP −0.023 0.029 0.002 −0.021
Include GDP × Pop_dens 0.001 −0.004 0.000 0.012
Replace GDP with HDI 0.006 −0.005 0.001 0.125
Replace GDP with Pop_dens × HDI 0.007 −0.009 0.001 0.133

burning model that is not observed in the data (Fig. S11),
which explains its deleterious effect on IAV NME. We also
note that the inclusion of either HDI or GDP in the cropland
burning model improves the broad spatial patterns markedly
by increasing cropland burning in the Balkans and decreas-
ing it in western Europe (Fig. S12). We therefore chose to in-
clude GDP because of its lesser negative impact on the IAV
NME. In contrast, in BASE NCV, we found that the inclusion
of HDI improved the description of the trend as the simula-
tions correctly produced the slightly decreasing trend found
in the data as opposed to an incorrectly increasing trend with-
out HDI included (Fig. S13). We also found that HDI was a
superior predictor to GDP in all respects for NCV burning
(Table 2).

4 Discussion

The results from the fitted GLMs broadly conformed to our
expectations of the drivers of fire occurrence in both land
cover types. The models demonstrated reasonable explana-
tory power when viewed as statistical models, and when
viewed as simulators of fire occurrence, they showed similar
model skill to global more complex vegetation-fire models
applied on a global scope in terms of NME scores (Hantson
et al., 2020). The models were constructed using predictors
which either are easily calculable in most DGVMs or can
be taken as prescribed input layers (including pre-existing

future projections where appropriate). We suggest that these
models could be integrated immediately into DGVMs for ap-
plication on the European scale, particularly as we are not
currently aware of any such models developed specifically
for Europe.

Splitting the burnt area by LCT proved to be particu-
larly illuminating. Whilst there was considerable overlap of
the drivers of cropland and NCV burning, there were also
some marked differences in terms of the direction of the re-
sponses and functional forms that provided the best fit. Fur-
thermore, cropland burning modelling is comparatively un-
derdeveloped; we are only aware of two global fire-enabled
DGVMs that do so (Burton et al., 2019; Li et al., 2013) and
one that prescribes it (Rabin et al., 2018), although the reader
is advised to see also recent developments from Perkins et
al. (2024). Recent studies have indicated that there is a larger
amount of cropland burning than previously estimated (Chen
et al., 2023; Hall et al., 2024). Indeed, in this study, crop-
land burning comprised 74 % of the total burnt area, which
is much higher than our initial expectation. Although these
may not strongly impact the global carbon cycle, the trace
gas emissions associated with this burning have significant
implications for regional air quality and atmospheric chem-
istry and also have ecological implications for cropland soils.
The results and methods here can be tested and extended to
simulate cropland burning on a global scale.
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Figure 4. Spatial patterns of non-cropland vegetation (NCV) and cropland burning for BASE and ESA FireCCI51 from years 2002 to 2014.

4.1 Contrasting drivers of NCV and cropland fire
occurrence

Cropland areas are fairly evenly distributed across Europe
(Fig. S1), with the exception of north Scandinavia and the
west coast of British Isles, where no fires occur. We have
demonstrated that within this broad European climate niche
(Mediterranean, temperate, and boreal), croplands burn with
very different temporal and spatial patterns compared to
NCV. Consistent with this observation and our expectations,
we also found the drivers of each to differ in some respects
(variables associated with fire danger and spread, popula-
tion density, and vegetation properties) while retaining some
broad similarity in others (MEPI and socioeconomic devel-
opment).

4.1.1 Fire weather and spread rate drivers

While NCV burning increased with FWI as would be ex-
pected, cropland burning showed a unimodal peak at inter-
mediate FWI values. This makes sense as farmers would

likely not burn fields during the most intensive period of fire
weather due to the risk of losing control of the fire or contra-
vening fire bans.

Similarly, wind was not found to be a useful predictor in
BASE NCV (likely because of the monthly resolution and
because local wind speeds are highly modified by terrain
and vegetation cover) but was a negative predictor for BASE
Cropland. Topographic slope was a positive driver in BASE
NCV but a negative one for BASE Cropland. Again, this can
be understood as farmers not burning fields in circumstances
which will encourage fast or unpredictable fire spread – i.e.
during windy periods and on steep terrain.

These results imply that current mechanistic modelling ap-
proaches are likely not well suited to modelling cropland
fires. Mechanistic models are typically based on biophysical
relationships concerning flammability and rate of spread and
are run with the general assumption that higher flammability
or faster rates of spread produce more burnt area. Our find-
ings imply that this approach is not valid for cropland burn-
ing as more flammable conditions do not necessarily imply
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Figure 5. Annual time series of cropland (a) and non-cropland veg-
etation (NCV; b) burning for BASE and ESA FireCCI51. The trend
(calculated with linear regression) is plotted as a straight line with
the 95 % confidence interval shown as grey shading.

Figure 6. Seasonal cycles of cropland (a) and non-cropland vege-
tation (NCV; b) burning for ESA FireCCI51 (solid line) and BASE
(dashed line).

more burning in the croplands. Given this and the complex-
ities of human land management and other socioeconomic
factors, the inclusions of statistical or agent-based (Perkins
et al., 2024) approaches in future cropland modelling efforts
may prove fruitful.

4.1.2 Population density

We also saw opposing effects of population density on burnt
area in each LCT. For NCV, our results show that more peo-
ple implies more fires, which is consistent with the logic that

more people and infrastructure cause more fire starts (Haas
et al., 2022). But for croplands, we found that more people
implies fewer fires, perhaps because burning near population
centres is forbidden, because burning is forbidden generally
and only enforced near population centres, or because burn-
ing is unpopular with local residents.

4.1.3 Vegetation properties

We also found the vegetation-related drivers of fire were dif-
ferent between the different land cover types. FAPAR during
the preceding 12 months, a proxy for fuel buildup (particu-
larly fine fuels), has a positive effect in BASE NCV, which is
in line with a previous study (Kuhn-Régnier et al., 2021).
The better performance of FAPAR12 than GPP12 can be
explained by FAPAR’s specific relationship to leaf biomass
rather than GPP’s relationship to general biomass production
and the importance of fine fuel (i.e. leaves) for enabling fire
ignition and spread. However, in BASE Cropland, the best
similar predictor was the GPP of the last 12 months with a
quadratic form, which gave a strong response at intermediate
values. The low burning at low values of GPP can be easily
explained by having insufficient biomass to burn. The low
burning at high GPP is harder to explain, but we suggest this
may be because higher GPP areas have more intense farming
practices which use less fire or do not have an appropriate
burn window due to insufficient precipitation seasonality.

For NCV burning, we found that intermediate levels of tree
cover had the strongest positive effects on fire activity, al-
though the exact mechanisms behind this correlation are hard
to attribute. We suggest that this might occur because semi-
forested ecosystems are, on the one hand, productive enough
to produce sufficient quantities of fuel and, on the other hand,
open enough that a lot of this fuel will be surface fine fuels
– grasses and shrubs – which strongly support fire spread.
This openness also implies a drier and windier microclimate,
which also encourages fire spread. Further work is required
to disentangle these mechanisms, and we further note that
some caution is required here as it cannot be excluded that
the reduced tree cover in such areas is a consequence of fire
occurrence rather than a cause of it.

4.2 Simulation of the seasonal cycle and the monthly
GPP-derived indices

From very few monthly predictors BASE produces an ac-
ceptable representation of the seasonal fire cycle. In particu-
lar, BASE NCV predicts seasonal fire patterns very well us-
ing only two monthly predictors (MEPI and FWI) and their
interaction (technically, FAPAR12 data are monthly, but their
effect is heavily damped because it is a 12-month rolling
mean). We suggest this offers a simple approach for sep-
arately quantifying two distinct but easily conflated factors
when considering fire danger: (1) the meteorologically deter-
mined fire weather risk, here captured by FWI, and (2) the
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moisture and phenological status of the vegetation, captured
here using MEPI. The good performance indicates that using
FWI offers a simpler alternative to using multiple climate
variables as has been used in other studies. These climate
variables are often highly correlated, which may risk over-
fitting and cause difficulties for causal attribution. Similarly,
MEPI – based only on GPP – provides a means of using cur-
rent vegetation functioning to determine the vegetation state
and therefore flammability in a single predictor variable.

The seasonal cycle produced by BASE Cropland does not
match the observations as well those produced by BASE
NCV despite BASE Cropland using a larger number of
monthly predictor variables. The factors determining the tim-
ing of cropland burning are less clear than for NCV burning
as its timing is controlled by human agency rather than bio-
physical factors. Flammability must still play a role in crop-
land burning, and our results indicate that preferred residue
burning conditions are intermediate fire weather and low
wind speeds. Beyond this, it is a matter of agricultural prac-
tice and crop rotations, which are not taken into account here
but could be explored in future work with an expanded ver-
sion of BASE.

4.2.1 Applicability of MEPI and PHI

The monthly ecosystem productivity index (MEPI) was con-
structed for this study as a robust way to quantify months
when an ecosystem is in a more flammable state – which we
equate to when it is not photosynthesising because it is ei-
ther phenologically dormant or under drought stress. We also
note that over croplands, relatively low GPP may also occur
after harvest if photosynthesising biomass has been removed
or at the end of the summer, and it is at these times when
residue clearing fires may occur. This approach worked well,
and MEPI gave the expected response and was the most im-
portant and second-most-important variable in BASE Crop-
land and BASE NCV, respectively. However, MEPI also in-
cludes periods when photosynthesis is low due to other fac-
tors which does not necessarily imply high flammability, in
particular because of low temperatures. This will always be
mitigated to some extent because low temperatures imply
low fire risk, but it may be possible to improve the index to
better handle periods where low temperatures reduce photo-
synthesis.

We designed the post-harvest index (PHI) to identify pre-
ceding 3-month periods with high GPP as an indication that
crops could have been grown to the point of harvest and
therefore when burning to clear residues may occur. This was
to keep maximum model flexibility by avoiding the use of
data-specific harvest dates, which might not be available. PHI
was a high-importance predictor which improved the overall
deviance explained and the spatial and interannual patterns,
although it decreased the model skill with respect to seasonal
patterns. This may be because the indicator was designed to

capture fire immediately after summer harvest but may not
predict spring crop burning.

Overall, our results suggest that defining indicators based
on monthly GPP is a promising approach. We chose GPP
over greenness measures such as the normalised difference
vegetation index (NDVI) because it can capture the ecosys-
tem response to hot dry conditions (i.e. reduced photosyn-
thesis due to water stress) before changes in greenness oc-
cur. Furthermore, GPP is a standard variable in DGVMs
with recent advances in both observing it using solar-induced
chlorophyll fluorescence (Mohammed et al., 2019) and sim-
ulating it using eco-evolutionary optimality methods (EEO;
Stocker et al., 2020; Wang et al., 2017a). Thus, GPP and
derived indicators could provide a relatively robust contact
point for coupling DGVMs and fire models.

4.3 Strengths and weaknesses of BASE

BASE NCV did a good job of reproducing the timing of spa-
tially aggregated seasonal and interannual fire observations,
but it underestimated both the seasonal and the long-term
peak burnt area amplitudes. It was less skilful in reproduc-
ing the observed spatial patterning of fire activity, which, al-
though broadly correct, was too diffuse. The observed fire
hotspots of central Portugal and the Adriatic coasts of Croa-
tia, Montenegro, and Albania were not reproduced, and, in
general, the model failed to pick out local regions of the
burnt area. To some extent, this may be because the data com-
prise discrete fire events which include a strong stochastic as-
pect that is inherently difficult for a statistical model (which
predicts mean values) to reproduce. However, even allowing
for this, the details of the fire patterns in much of fire-prone
southern Europe were not well captured. This might indicate
an over-reliance on fire weather as a driver along with a fail-
ure to include local factors that may lead to high danger such
as particularly flammable vegetation types or high ignition
risks due to human activities, land cover interface zones, and
infrastructure (Rodrigues et al., 2014).

These findings suggest that BASE NCV successfully cap-
tures broad fire drivers in terms of meteorological dan-
ger, coarse vegetation properties, and socioeconomic indi-
cators and is suitable for projecting future fire occurrence
across Europe. Although the simulated spatial distribution
of fire is imperfect, future work may improve this by in-
cluding more detailed datasets concerning infrastructure, so-
cioeconomic indicators, and vegetation types. However, such
datasets might not be available for future scenarios and so
including them would inhibit the use of the model for future
projections, and so it was not done here.

In contrast to the BASE NCV, BASE Cropland’s represen-
tation of the spatial distribution of fire occurrence is com-
paratively better than its temporal distribution. It picks out
all the hotspots of cropland burning, although it does over-
predict in some other regions. However, its simulation of the
summer burning peak is too narrow and does not resolve the

Biogeosciences, 21, 5539–5560, 2024 https://doi.org/10.5194/bg-21-5539-2024



M. Forrest et al.: Understanding and simulating cropland and non-cropland burning 5553

October shoulder, while the interannual variability is poorly
reproduced. It does capture a weakly increasing interannual
trend, but this trend may be spurious as over a longer period
cropland burning actually shows a decreasing trend (Fig. 1c).
From this we can conclude we have captured the broad de-
pendency of European cropland fires on socioeconomic de-
velopment and suitable burning weather but have not cap-
tured some specific factors affecting the likelihood or timing
of burning, such as sowing and harvest dates, crop types and
systems (including double-cropping systems), or legislative
pressures, which would require significantly more data input
than is available at present in a spatially gridded format.

4.3.1 Spain: an outlier demonstrating the importance
of regional effects

In contrast to other southern European countries, Spain
stands out for its low observed wildfire fire incidence despite
its fire-enabling Mediterranean characteristics. This is par-
ticularly clear in the observations when comparing as the ob-
served NCV fires in Spain to neighbouring Portugal (Fig. 4).
However, BASE NCV fails to simulate this change in fire
occurrence on the national border. Furthermore, BASE Crop-
land also overestimates in Spain, predicting an extensive area
of cropland burning when in fact there are only limited areas.
This overestimation is larger than the low levels of overpre-
diction seen in, for example, France and Poland, which is a
consequence of the GLM tendency to predict a lot of low
values (which is here overemphasised by the threshold in the
colour scale). These substantial overestimates of both crop-
land and NCV fire occurrence may indicate phenomena spe-
cific to Spain which are not accounted for in BASE. We sug-
gest that the answer may lie in changes made to its approach
to wildfire risk at political and management levels during our
study period. The period from 2003 to 2014 saw a decreas-
ing trend in forest fires (Jiménez-Ruano et al., 2017; Vilar et
al., 2015) due to the development, implementation, and ef-
ficacy of wildfire suppression practices after the devolution
of responsibility for them to regional authorities (Galiana et
al., 2013; Pastor et al., 2020). This was associated with a
decrease in the number of fire incidents and burnt area due
to improved fire control, potentially pushing fire sizes below
the level which is detectable in the FireCCI51 product. The
Spanish example highlights the importance of governance
factors which cannot easily be quantified by broad indicators
such as HDI or GDP as well as the challenges associated with
simulating fire regimes across multiple governmental or or-
ganisational jurisdictions. The inclusion of regional datasets
and random effect terms (based on, for example, administra-
tive areas or legislative changes) may improve model skill,
increase understanding, and be useful for short-term forecast-
ing. However, these techniques will be difficult to apply on
larger spatial scales and in longer range projections, so ac-
counting for such effects remains an open challenge for fire
modelling on continental to global scales.

4.4 HDI and GDP as predictors of fire occurrence

Whereas GDP represents economic development, HDI re-
flects broad trends in human wellbeing across health, edu-
cation, and economic development. As such, they have cor-
relative rather than causative relationships with burnt area
as neither explicitly captures the effectiveness of human fire
management nor the tendency to utilise fire as a land manage-
ment tool and may be collinear with urbanisation and other
infrastructural developments that may fragment landscapes
and lead to declining burnt area (Haas et al., 2022). Never-
theless, increasing societal wellbeing is likely reflective of in-
creased state capacity for fire management and public aware-
ness as well as the enforcement of environmentally focussed
policies (Bhuvaneshwari et al., 2019; Zhang et al., 2020), and
one could conjecture that HDI, as the broader indicator, will
be a better proxy for such developments. Our results support
this supposition but only for NCV burning. We found HDI to
be an important predictor for NCV burning; it was superior to
GDP and its inclusion was important to capture the declining
trend in NCV burning.

The picture is less clear for cropland burning. Both HDI
and GDP improved the deviance explained and spatial pat-
terns of cropland burning. We chose GDP over HDI for
BASE Cropland because HDI introduced a declining trend in
the cropland during predictions, which is not seen in the data
and correspondingly worsened the temporal NME. GDP did
not introduce this trend and had less of a negative impact on
the reproduction of IAV. GDP may be a better predictor be-
cause it more directly reflects capitalisation and investment,
which in turn directly affects agricultural practices and hence
cropland burning.

However, we do not consider the result that GDP is a bet-
ter predictor than HDI for cropland burning to be fully ro-
bust for a number of reasons. Firstly, due to the short record
length and high IAV, the increasing trend in observed crop-
land burning (which appears to indicate that GDP is the better
predictor) may be spurious. Indeed, a decreasing trend is seen
over a longer period (Fig. 1c). Secondly, it is not clear what
actually drives the IAV of cropland burning and a priori one
would not expect such large variability, particularly as small
fires generally have a lower IAV than larger ones (Randerson
et al., 2012). Year-to-year variability in appropriate burning
conditions will likely play a role, and BASE Cropland clearly
indicates that burning conditions are important. There are
likely further influences on cropland burning IAV not cap-
tured here, possibly related to legislative factors, such as Bul-
garia’s and Romania’s accession to the EU in 2007 (although
we note that the decline in cropland burning commenced af-
ter 2007). However, one would assume these would affect
the trend rather than the IAV in cropland burning. Thirdly,
it is possible that changes in land use, specifically the aban-
donment of croplands, are not immediately captured in the
land cover data, leading to the erroneous allocation of fires
as cropland when they are in fact NCV. Such abandoned ar-
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eas are considered to have high fire danger (Moreira et al.,
2001; San-Miguel-Ayanz et al., 2012), which exacerbates the
misclassification of land cover, and so wildfires in these ar-
eas may contaminate the cropland burning signal, with im-
plications for IAV. Finally, inclusion of either GDP or HDI
worsens the IAV NME (but GDP less so) whilst improving
other metrics. Because these indicators represent broad so-
cioeconomic changes through the years, we expected them
to improve the temporal reproduction of observations.

There are other issues that might arise with using
GDP/HDI. We note that there is greater variation in HDI and
GDP in space than in time, and it is likely that the spatial
variation dominates the fitted model response. However, in-
troducing HDI does allow the model to capture the declining
trend in NCV burning (Fig. S13), so the temporal response
seems to be reasonable. Another potential issue is that an-
nual GDP is sensitive to short-term financial crises or other
abrupt changes. Such a drop in GDP would have an immedi-
ate effect on the model, and this is likely not entirely realistic
(although we are unaware of any studies attempting to quan-
tify this). HDI is likely a better indicator in this regard as
economic activity comprises only one-third of its value, and
the other two factors (life expectancy and years in education)
are not so immediately susceptible to short-term changes in
economic circumstances.

4.5 Implications and outlook for simulation of crop
residue burning

The drivers of human fire use and their relation to wider
fire regimes remain poorly understood on large spatial scales
(Ford et al., 2021; Shuman et al., 2022). In our study area,
cropland burning accounts for nearly three-quarters of burnt
area but has been comparatively understudied. For exam-
ple, within the Database of Anthropogenic Fire Impacts –
a global meta-analysis of academic literature on human–fire
interactions – 43 % (n= 300) of instances of human fire use
in our study area document prescribed fire to tackle extreme
wildfires, whilst another 35 % (n= 245) of cases focus on
diagnosing the human sources of unmanaged wildfires. By
contrast, just 5 % (n= 38) of instances of human fire use
document crop residue burning (Millington et al., 2022).

This study contributes to filling this knowledge gap by
demonstrating how socioeconomic and environmental pro-
cesses have contrasting impacts on cropland and NCV burn-
ing. This finding is in broad alignment with local-scale em-
pirical studies (Millington et al., 2022) and the few exist-
ing modelling studies of large spatial extents (Perkins et al.,
2024). Most importantly, we found that the drivers of crop
residue burning differ in key ways from NCV fire occurrence.
This is not surprising as they are very different phenomena.
In Europe, the majority of NCV fires can be characterised
as undesirable blazes either set accidentally or burning out
of control, for which high fire danger and fuel loads play a
large role. In contrast, residue burning is a deliberate process

where socioeconomic factors and the avoidance of burning
at times of high fire danger are highly relevant. These facts
are codified in our results, providing tangible evidence that
cropland and NCV fires must be modelled separately. Many
previous attempts to reproduce large-scale burnt area patterns
have not explicitly taken this into account, including many
global fire models in DGVMs. We suggest that in the future
better results can be obtained by explicitly simulating crop-
land fires and accounting for their different drivers and dy-
namics or by simply removing burnt areas occurring in crop-
lands from the target dataset if they are deemed not relevant.

This study elucidates some of the controls over cropland
burning, but further research is needed, particularly that fo-
cussing on its temporal dynamics. For maximum flexibility
and parsimony, BASE Cropland does not use information
about harvest dates, crop types, or cropping systems, but in-
cluding these could potentially provide new insights and im-
prove the representation of the seasonal cycle, which is one
of the weaker aspects of BASE Cropland. Introducing re-
gionally specific factors to account for legislative changes,
such as when countries joined the EU, in which residue burn-
ing is, in principle, forbidden, may also prove helpful, in par-
ticular for understanding the temporal evolution of cropland
burning. It may also help resolve questions about the use of
the broader socioeconomic predictors, such as HDI and GDP.

4.6 Limitations and caveats

4.6.1 GLM approach

Overall, our approach of fitting GLMs to monthly data
worked well and therefore demonstrates that this method
can give serviceable fire occurrence estimates with a sea-
sonal cycle suitable for integration into other models such
as DGVMs. However, the approach does come with a few
limitations. What it has in common with other GLM stud-
ies (e.g. Bistinas et al., 2014; Haas et al., 2022) is that our
model tends to “smear out” the burnt area by underestimating
extremes and predicting many small values instead of zero.
This may in part be due to the fact that, in reality, fire man-
ifests in discrete events, whereas GLMs only predict mean
values. This also explains the distinctive “many small under-
estimates and a few large overestimates” pattern in the par-
tial residuals (Figs. S7 and S8). Another caveat is that due
to spatial autocorrelation in the datasets, the standard errors
are likely to be considerable underestimations and the uncer-
tainty bands in Figs. 2, S7, and S8 should be viewed as lower
bounds (although this does not affect the central parameter
estimates). Finally, the necessary use of the quasi-binomial
distribution to model burnt fraction precludes the use of stan-
dard statistical tools and diagnostics, such as Q–Q plots and
information criteria. It may be possible to overcome some of
these limitations in the future by moving away from burnt
fraction as the target variable and focussing on other aspects
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of the fire regime, thus putting understanding of fire occur-
rence on a more rigorous statistical footing.

4.6.2 Uncertainties and errors in remote sensing data

This study relies heavily on remote sensing data, particu-
larly the burnt area and land cover data used to construct the
target variable. Remote sensing products based on MODIS
(including the ESA FireCCI data used here) are known to
struggle with detecting small fires and have high omission
errors, particularly in the Mediterranean (Katagis and Gitas,
2021), although FireCCI51 does feature improved sensitivity
to small fires (Lizundia-Loiola et al., 2020). This has impli-
cations for all fires, but cropland fires in particular are typ-
ically small, brief, and low-intensity and more often missed
by remote sensing (Hall et al., 2021; Zhu et al., 2017). So
while it accounts for the majority of the burning in the study
region, the estimate of cropland burning used here is likely
an underestimation, and analyses with newer remote sensing
datasets may modify and ultimately improve on our results.
Misclassifications of land cover will also affect our results
– in particular, imperfect separation of croplands from other
vegetation types due to rapid land use change (Winkler et al.,
2021; Zubkova et al., 2023). Notably, abandoned croplands
in their early stage of transition represent a major fire risk
(Moreira et al., 2001; San-Miguel-Ayanz et al., 2012) and
may cause commission error in the identification of cropland
fires. However, the prevalence and predictability of this sig-
nal and the support from existing literature (Millington et al.,
2022) give us confidence that the bulk of this signal is in-
deed cropland residue burning. In particular, one recent study
based on higher-resolution remote sensing data in Romania
(one of the cropland burning hotspots in Europe) confirmed
many of the results here (Mattes et al., 2024) – namely, that
the majority of burning in Romania is indeed in arable land,
that these fires occur less often in areas with steep topog-
raphy, and that their frequency is reducing due to socioeco-
nomic factors.

5 Conclusions

This study aimed to disentangle the drivers of fire occurrence
across a European study domain and encapsulate this knowl-
edge into a new fire model (the BASE model). Our initial
investigations of burnt area in Europe revealed that crop-
land and non-cropland vegetation (NCV) land cover types
burn with very different spatiotemporal patterns. After fitting
GLMs to each land cover type separately, we confirmed that
there are very different drivers for fire occurrence in the land
cover types. This was most clearly manifested in fire weather
and other variables connected to rate of spread, where our re-
sults indicated that crop residue burning is preferentially con-
ducted in situations of lower fire danger and rate of spread.
This outcome has implications for any large-scale studies to

simulate burnt area over a mixture of land cover types. Our
results also provide some novel insights into the drivers of
cropland burning which has, to our knowledge, not previ-
ously been systematically studied over Europe. In addition to
optimal burning conditions, we found a strong control over
spatial patterns by socioeconomic development and over sea-
sonal timing by GPP-derived indices. However, the mecha-
nisms controlling the seasonality and interannual patterns of
cropland burning remain poorly understood and require fur-
ther study. This is of particular importance because fire oc-
currence in cropland has recently been revealed to be more
prevalent than previously estimated.

Overall, the BASE model reasonably captures the spa-
tiotemporal patterns of burnt area in Europe. BASE NCV
does particularly well with reproducing observed temporal
dynamics and relatively less well with the spatial patterns,
while the opposite is true for BASE Cropland. We suggest
two potential future applications for BASE. As a simula-
tor, BASE already provides a serviceable means to simu-
late fire occurrence in Europe that is compatible and easily
integrated with other model frameworks, such as DGVMs.
In particular, its skilful reproduction of the seasonal and in-
terannual patterns of wildfires indicate that it captures the
temporal dynamics and so is suitable for projecting changes
in fire hazard over annual to decadal timescales, particu-
larly when considering cropland and non-cropland land cover
types. The explicit simulations of cropland fires are also a
noteworthy advance. In addition to its use for projections,
we suggest that the BASE framework may also be further
utilised by considering additional potential predictor datasets
to improve understanding of the controls on burnt area in
Europe. For BASE Cropland, data about harvest dates and
cropping systems and variables to capture changes in legisla-
tion may help understand the temporal dynamics. For BASE
NCV, additional socioeconomic indicators and maps of veg-
etation types and infrastructure may explain the spatial pat-
terns. Both of these applications of BASE may help in meet-
ing the challenges of increasing fire risk faced by Europe.
In addition, the scientific outcomes and methodology devel-
oped here can facilitate the development of similar models
for other regions.

Code availability. Code used in this analysis (including data
preparation, model fitting, analysis, and plotting) is available at
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