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Abstract. Forest net primary productivity (NPP), represent-
ing the net carbon gain from the atmosphere, varies signifi-
cantly with forest age. Reliable forest NPP–age relationships
are essential for forest carbon cycle modeling and predic-
tion. These relationships can be derived from forest inven-
tory or field survey data, but it is unclear which model is the
most effective in simulating forest NPP variation with age.
Here, we aim to establish NPP–age relationships for China’s
forests based on 3121 field survey samples. Five models,
including the semi-empirical mathematical (SEM) function,
the second-degree polynomial (SDP) function, the logarith-
mic (L) function, the Michaelis–Menten (M) function, and
the 0 function, were compared against field data. Results of
the comparison showed that the SEM and 0 functions per-
formed much better than the other three models, but due to
the limited field survey samples at old ages, the 0 function
showed a sharp decrease in NPP (decreased to almost zero) at
old ages when building some forest NPP–age curves, while
SEM could capture the variations in forest NPP at old ages
reasonably well. Considering the overall performance with
currently available forest field survey samples, SEM was re-
garded as the optimal NPP–age model. The finalized forest
NPP–age curves for five forest types in six regions of China
can facilitate forest carbon cycle modeling and future projec-
tion by using the process-based Integrated Terrestrial Ecosys-
tem Carbon (InTEC) model in China and may also be useful
for other regions.

1 Introduction

Forests play a critical role in sequestering atmospheric car-
bon dioxide (Hicke et al., 2007; Liu et al., 2012b; Eggle-
ston et al., 2006; Pan et al., 2011) and mitigating climate
change (Friedlingstein, 2020). Forest net primary productiv-
ity (NPP), which represents the net carbon gain from the at-
mosphere in the form of biomass accumulation (Fang et al.,
2001b; Chapin et al., 2006), constitutes a key component of
the terrestrial carbon cycle (Alexandrov et al., 1999; Hase-
nauer et al., 2004; Zha et al., 2013; Zhao and Zhou, 2005).
It varies significantly with forest age (Bond-Lamberty et al.,
2004; Wang et al., 2007, 2011), generally featured by an ini-
tial increase at young ages, a maximum at a middle age, and
then a gradual decline at old ages (Yu et al., 2017; He et al.,
2012). The increase in forest NPP at young ages is mainly
driven by a fast increase in leaf area (Ryan et al., 1997; Yu
et al., 2014), while the decline in NPP at old ages is pri-
marily driven by the decrease in both gross primary pro-
ductivity (GPP) and autotrophic respiration (Ra) as forests
age, with GPP declining faster than Ra (Drake et al., 2011;
Ryan et al., 1997, 2004; Ryan and Waring, 1992; Tang et
al., 2014). These forest NPP–age variations have been inte-
grated into process-based models such as the Integrated Ter-
restrial Ecosystem Carbon (InTEC) model (W. Chen et al.,
2000; J. Chen et al., 2003; Wang et al., 2011; Zhang et al.,
2012) for modeling the forest carbon cycle and building for-
est NPP–age curves as model inputs and are therefore essen-
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tial for facilitating forest carbon cycle modeling (Luyssaert
et al., 2008; Chen et al., 2000; Zhang et al., 2012; Shang et
al., 2023).

Forest NPP–age curves differ considerably for different
regions and forest types due to their varied compositions
and diverse growth environments (Yu et al., 2017; He et al.,
2012). In Europe (Zaehle et al., 2006), Canada (Chen et al.,
2003), and America (Guo et al., 1955; He et al., 2012), for-
est NPP–age curves have been established for different for-
est types or regions. However, these curves cannot be di-
rectly used for China’s forest carbon modeling because of
regional differences in environmental conditions. The NPP–
age curves produced in previous studies have very different
and sometimes inconsistent shapes, making it difficult to an-
alyze the influence of environmental conditions on the curves
of different forest types. To address these issues, some stud-
ies have tried to build forest NPP–age curves in China. Yu
et al. (2017) established forest NPP–age curves for 12 ma-
jor forest types in Heilongjiang Province using forest in-
ventory data and yield tables. Wang et al. (2018) derived
forest NPP–age curves for nine pure forest types with dif-
ferent site indices within Heilongjiang Province using yield
tables, biomass equations, and forest inventory data. Zheng
et al. (2019) built two forest NPP–age curves separately for
coniferous and broad-leaved forests in Zhejiang Province us-
ing forest inventory data, but these curves are limited to the
provincial level (currently only available in Heilongjiang and
Zhejiang provinces) and cannot represent the diverse growth
status of China’s forests. Wang et al. (2011) constructed five
forest NPP–age curves for five representative forest ecosys-
tems in China, but the NPP data used to build these curves
were obtained from the simulations of the Boreal Ecosystem
Productivity Simulator (BEPS) model (Chen et al., 2012; Ju
et al., 2006; Liu et al., 2002, 1999), not forest inventory data
or field survey data. Furthermore, these curves did not con-
sider the significant differences in forest and climate condi-
tions between the north and south of China and were insuffi-
cient to differentiate the north–south variations in China (Dai
et al., 2011). Therefore, it is essential to develop forest NPP–
age curves for the entire China while taking into account the
differences in regions and forest types.

There were some models that could be used to simulate the
forest NPP–age curves (Chen et al., 2003; Yu et al., 2017; He
et al., 2012; Peper et al., 2001; Semenzato et al., 2011; Dal-
gleish et al., 2015; Tang et al., 2014). The semi-empirical
mathematical (SEM) function was first developed for simu-
lating NPP–age relationships in Canada (Chen et al., 2003),
America (He et al., 2012), and China (Wang et al., 2011;
Yu et al., 2017; Wang et al., 2018; Zheng et al., 2019). The
second-degree polynomial (SDP) function, logarithmic (L)
function, Michaelis–Menten (M) function, and 0 function
were used to build the NPP–age relationships for the boreal
and temporal forests (Tang et al., 2014). The L function was
mainly used to construct the relationship among diameter at
breast height (DBH), forest height, and forest age (Peper et

al., 2001; Semenzato et al., 2011; Dalgleish et al., 2015), and
it was also used to model NPP–age relationships (Tang et
al., 2014) as forest NPP is related to DBH and forest height.
The M function is a common mathematical model used to
describe enzyme reaction kinetics (Do et al., 2022) and was
also found to be suitable for relating carbon fluxes to forest
age (Tang et al., 2014). The 0 function was demonstrated
to have better performance than the SDP function, L func-
tion, and M function in building the NPP–age relationships
for the boreal and temporal forests (Tang et al., 2014). Dif-
ferent models showed diverse performance in tracking forest
NPP–age curves for different forest types and regions. To fa-
cilitate the forest carbon modeling, it is crucial to compare
these models in building forest NPP–age curves across di-
verse forest types and regions in China.

There are two objectives of this study: (1) to build for-
est NPP–age relationships for the entire China considering
differences in regions and forest types based on forest field
survey data and remote sensing data and (2) to compare five
models and determine the optimal model for building forest
NPP–age relationships across China. The built forest NPP–
age curves from the optimal model for different forest types
and regions in China would be served as inputs of a process-
based model to facilitate China’s forest carbon cycle model-
ing and future projection.

2 Study area and data

2.1 Study area

China is selected as the study area, and its forests consist
of five forest cover types: evergreen broad-leaved forests
(EBFs), evergreen needle-leaved forests (ENFs), decidu-
ous broad-leaved forests (DBFs), deciduous needle-leaved
forests (DNFs), and mixed forests (MFs). The five forest
types were separated in the building of forest NPP–age
curves with consideration for their different physiological
and ecological characteristics (Wang et al., 2011). Except for
forest cover types, climatic differences in different regions
of China can also affect the forest NPP–age relationships (Li
and Zhou, 2015; Song et al., 2018), so regions also need to be
divided when building the forest NPP–age curves. Accord-
ing to China’s geographical division (Fang et al., 2001a), the
study area was divided into six regions (Fig. 1): northeast
China (NE), north China (N), northwest China (NW), east
China (E), southwest China (SW), and south China (S). Sig-
nificant differences in forest types can be observed among
different regions. Region NE (including Heilongjiang, Jilin,
and Liaoning provinces) is a typical boreal forest and the
most significant natural forest area in China. Region N (in-
cluding Beijing and Tianjin as well as Hebei, Shanxi, and
Inner Mongolia provinces) accounts for 14 % of China’s to-
tal forest area and is mainly composed of DBF and ENF.
Region NW (including Gansu, Ningxia, Qinghai, Shanxi,
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Figure 1. Distribution of forest field survey sites and their forest
cover types (different colors indicate different types) within the six
regions of China. Northeast China: NE, north China: N, northwest
China: NW, east China: E, south China: S, southwest China: SW,
evergreen broad-leaved forest: EBF, evergreen needle-leaved forest:
ENF, deciduous broad-leaved forest: DBF, deciduous needle-leaved
forest: DNF, mixed forest: MF.

and Xinjiang provinces) only accounts for 2.57 % of the to-
tal forest area in China. Region E (including Shanghai and
Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, Shandong, and
Taiwan provinces) accounts for 14 % of China’s total forest
area, and its forests show significant zonal characteristics.
Region SW (including Yunnan, Sichuan, Xizang, Guizhou,
and Chongqing provinces) is the second-largest natural forest
area in China, accounting for 26 % of China’s total forest area
and 43 % of China’s forest stock (Liu et al., 2021). Region S
(including Henan, Hubei, Hunan, Guangdong, Guangxi, and
Hainan provinces) accounts for 20 % of the total forest area
in China with a large proportion of planted forests.

2.2 Data

The forest field survey data (Fang et al., 2018) and the
GLOBMAP version 3 leaf area index (LAI) product (Liu et
al., 2012a) were used to build forest NPP–age curves for dif-
ferent regions and forest types.

The forest field survey data include 3121 sampling sites
across China (Fig. 1), except for Taiwan, Hong Kong spe-
cial administrative region (SAR), and Macao SAR (Fang et
al., 2018). It includes 585 EBF sites, 1340 ENF sites, 745
DBF sites, 196 DNF sites, and 255 MF sites. These sites
were selected according to their representativeness of the for-
est types in a given area, and they were sampled using the
method outlined by the Intergovernmental Panel on Climate
Change (IPCC) (Tang et al., 2018). This dataset records the
site location, survey time (from 2009 to 2013), forest cover
type, stand age, forest aboveground biomass, forest under-
ground biomass, and so on. These attributes were first used to

calculate the forest field NPP and then build the forest NPP–
age curves.

The GLOBMAP version 3 LAI product (Liu et al., 2012a)
was mainly used in the calculation of forest foliage biomass
as part of NPP. It provides consistent long-term global LAI
data at 500 m spatial resolution from 1981 to 2022 on a geo-
graphical grid by fusion of the Moderate Resolution Imaging
Spectroradiometer (MODIS) and Advanced Very High Res-
olution Radiometer (AVHRR) data. According to the site lo-
cation and survey time, the annual maximum LAI within the
survey year for the field survey sample was used to calculate
the turnovers of foliage and turnovers of fine roots in the soil.

3 Methods

3.1 Calculating forest field NPP

Forest field NPP was not directly provided by the forest field
survey data. As 33 %–50 % of forest NPP is allocated to fo-
liage and fine roots each year (Gower et al., 1997), the forest
field NPP was calculated from forest field survey data con-
sidering four components (Chen et al., 2002; He et al., 2012):
total biomass increase (sum of the stem, branch, and coarse-
root biomass), mortality, turnovers of foliage, and turnovers
of fine roots in the soil (Chen et al., 2002; He et al., 2012;
Xia et al., 2019).

NPP= Bc+M +Ll+Lfr, (1)

where Bc is the annual increment of total living biomass in-
cluding stems, branches, and coarse roots;M is the mortality
per year that includes standing dead trees and fallen dead
trees; Ll is the turnover of leaves per year; and Lfr is the
turnover of fine roots per year in the soil. Mortality (M) is ig-
nored in this study due to a lack of observations at the ground
plots and its average small proportion of NPP except for ex-
treme conditions (see Sect. 5.2 for a detailed discussion).

The annual increment of total living biomass was calcu-
lated from the annual biomass change (B) and the ratio of
biomass to carbon (c) (White et al., 2000; Xia et al., 2019).
The c was set to 0.5 following previous studies (Van Tuyl et
al., 2005; Fang et al., 2001a; Pan et al., 2011).

Bc = B × c (2)

The calculation of the leaf renewal rate (Ll) is related to leaf
area index (LAI), specific leaf area (SLA), leaf turnover rate
(tl), and carbon content (c):

Ll =
LAI
SLA
× tl× c. (3)

The amount of fine-root regeneration is closely related to the
amount of leaf regeneration, and hence the proportions of
NPP allocated to fine root and leaf are related:

Lfr = Rfr,l×Ll, (4)

https://doi.org/10.5194/bg-21-625-2024 Biogeosciences, 21, 625–639, 2024



628 P. Li et al.: Evaluation of five models for constructing forest NPP–age relationships

Table 1. The input parameters in the calculation of NPP for different
forest types. SLA is the specific leaf area, tl is the foliage turnover
ratio, andRfr,l is the ratio of NPP to fine roots and leaves. Evergreen
broad-leaved forest: EBF, evergreen needle-leaved forest: ENF, de-
ciduous broad-leaved forest: DBF, deciduous needle-leaved forest:
DNF, mixed forest: MF.

Forest type SLA tl Rfr,l
(m2 kg C−1) (yr−1) (kg C kg C−1)

EBF 32.000 0.860 1.200
ENF 8.200 0.260 1.400
DBF 32.000 1.000 1.200
DNF 22.000 1.000 1.200
MF 23.550 0.780 1.300

where Rfr,l represents the ratio of carbon allocated to new
fine roots to carbon in new leaves. Table 1 provides detailed
values for the coefficients of SLA, tl, and Rfr,l for different
forest types (White et al., 2000). The coefficients of MF were
calculated as the average value of the other four forest cover
types.

3.2 Building forest NPP–age relationships

Five models, including the SEM function, SDP function, L
function, M function, and 0 function, were used to build the
NPP–age relationships among the five forest cover types and
six regions in China.

The SEM function (Chen et al., 2003; He et al., 2012) is
as follows:

NPP(i)= a
[
1+

(
b(i/c)d − 1

)
/e(i/c)

]
, (5)

where a, b, c, and d are empirical coefficients to be deter-
mined from data, and NPP(i) is NPP at the age of i.

The SDP function (Tang et al., 2014) is as follows:

NPP(i)= a× i2+ b× i+ c, (6)

where a, b, and c are empirical coefficients.
The L function (Peper et al., 2001; Semenzato et al., 2011;

Dalgleish et al., 2015) is as follows:

NPP(i)= a[log(i+ 1) ]b, (7)

where a and b are empirical coefficients.
The M function (Tang et al., 2014; Do et al., 2022) is as

follows:

NPP(i)= a× i/(b+ i) , (8)

where a and b are empirical coefficients.
The 0 function (Tang et al., 2014) is as follows:

NPP(i)= k0i
k1ek2·i, (9)

where k0, k1, and k2 are empirical coefficients.

To reduce the influence of noises or outliers in building
forest NPP–age curves, the forest field NPPs were averaged
within different age bins (e.g., 3, 5, 10, or 20 years). The
age bins were divided according to the number of samples
in each age bin, and if there were not enough samples for
some ages, larger age bins would be used. TheR2 and RMSE
were used to determine the optimal model for building forest
NPP–age curves in China, and the model with the highest R2

and smallest RMSE would be regarded as optimal.

3.3 Determination of 10 forest NPP–age curves

Figure 2 shows the statistics of forest field survey samples
according to the three age groups in China. The age group of
0–50 years had the most samples in all forest cover types and
regions. Regions NE and N mainly contained DBF (highest
number), ENF, DNF, and MF sites. Region NW was domi-
nated by the samples of DBF (highest number) and ENF. Re-
gion SW had the most samples of ENF and identical samples
of EBF, DBF, and MF. Region S mainly had the samples of
ENF (highest number), EBF, and DBF. The samples of EBF
and ENF were dominant in region E. The age group of 51–
100 years had fewer samples than the group of 0–50 years.
EBF samples were mainly located in region E and region SW.
The samples of ENF were identical for all six regions. The
samples of DNF, DBF, and MF were dominant in the north
(NE, N, and NW) regions, and a few samples of DBF and
MF were located in the south (SW, S, and E) regions. The
age group of > 100 years had the lowest number of samples.
The sample of ENF was dominant in the NW and S regions.
The sample of EBF was dominant in regions E and S, and the
sample of DNF was dominant in region NW.

Taking into account the survey sample and stand age dis-
tribution patterns, 10 forest NPP–age curves were derived
across the entire China. The samples of EBF were sufficient
to separate three forest NPP–age curves for the northern (NE,
N, and NW) regions, SW region, and S and E regions. The
samples of ENF, BDF, and MF were sufficient to build two
separate forest NPP–age curves for the northern (NE, N, and
NW) and southern (SW, S, and E) regions. The samples of
DNF were rare and mainly located in the northern (NE, N,
and NW) regions, and there was only one forest growth curve
for DNF in the entire China.

3.4 Uncertainty analysis

The uncertainty of an NPP–age curve mainly comes from the
calculation of forest field NPP, whose uncertainty was calcu-
lated from its four components (Yu et al., 2017) in Eq. (1). It
was represented as the sum of the variances of four indepen-
dently calculated values based on forest age group:

σ 2
NPP = σ

2
Bc
+ σ 2

M + σ
2
Ll
+ σ 2

Lfr
, (10)

where σ 2
NPP is the uncertainty of the NPP–age curve; σ 2

Bc
is

the uncertainty in the biomass measurements; σ 2
M is the un-
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Figure 2. The statistics of forest field survey samples according to age groups, regions, and forest cover types in China. The first horizontal
coordinate (yellow) indicates the region, the second horizontal coordinate (blue) indicates the forest cover type, the bar indicates the number
of samples, and the bar color indicates the age group (purple is for 0 to 50 years, green is for 51 to 100 years, and orange is for > 100 years).
Northeast China: NE, north China: N, northwest China: NW, southwest China: SW, south China: S, east China: E, evergreen broad-leaved
forest: EBF, evergreen needle-leaved forest: ENF, deciduous broad-leaved forest: DBF, deciduous needle-leaved forest: DNF, mixed forest:
MF.

certainty in the mortality estimation; and σ 2
Ll

and σ 2
Lfr

are
the uncertainties in the estimates of the turnovers of leaves
and fine roots, respectively. Since Ll and Lfr were correlated,
their errors were estimated as follows:

σ 2
Ll+Lfr

= σ 2
Ll
+ σ 2

Lfr
+ 2covLl,Lfr , (11)

where σ 2
Ll

is the standard deviation of the leaf renewal rate;
σ 2
Lfr

is the standard deviation of the fine-root renewal rate;
and covLl,Lfr is the covariance betweenLl andLfr, which was
simplified as covLl,Lfr ≈ covLl, Rfr,l·Ll = Rfr,l× covLl,Ll =

Rfr,l× σ
2
Ll

(He et al., 2012).

4 Results

4.1 Characterization of forest NPP–age curves

Figure 3 shows the comparison of the five models in building
the NPP–age curves for various forest types and regions in
China based on the averaged forest field NPP, and the three
components of forest field NPP for each curve are shown
in Fig. 4. The annual increment of total living biomass con-
stitutes the predominant share of NPP, markedly surpassing
the sum of other components in NPP. Despite their relatively
minor proportions, the turnover rates of foliage and the fine
roots in the soil are essential components of NPP (He et al.,
2012). Across various forest types, the annual increment of
total living biomass rises in early forest development, peaks
mid-term, and later declines, generally consistent with the
trajectory of NPP with age. There are also exceptions for
some curves with slightly increasing trends in some NPP
components at old ages. This might be explained by the fol-
lowing reasons: first, this study did not separate the overstory
and understory LAI, and the presence and growth of under-
story LAI can influence the trends of the NPP components

at old ages; second, due to the limited forest field survey
samples, we merged samples over large regions to build the
forest growth curves for some forest cover types in China,
and this can also be a reason for not showing a declining
trend. Lastly, in mixed forests, the growth of different forests
is asynchronous, leading to the absence of a declining trend
in old ages.

4.2 Comparison of five models in building forest
NPP–age curves

Figure 5 shows the quantitative comparison of the five func-
tions in building forest NPP–age curves across varied forest
cover types and regions in China. The SEM function and 0
function performed prominently in all 10 curves, perfectly
capturing the NPP variations with forest age. The SEM func-
tion had the highest R2 and lowest RMSE for three curves
of EBF (NE, N, and NW), EBF (S and E), and ENF (CHN)
and had the lowest RMSE but comparable R2 for five curves
including ENF (NE, N, and NW), ENF (SW, S, and E), DBF
(NE, N, and NW), MF (NE, N, and NW), and MF (SW, S,
E). The 0 function had the highest R2 and lowest RMSE for
two curves of EBF (SW) and DBF (SW, S, and E). The NPP–
age variations were not well captured by the SDP function, L
function, andM function: the declining trend in forest NPP at
old ages was not captured by the L andM functions, and five
curves constructed by the SDP function exhibited unreason-
able declines in NPP for older forest ages (with NPP sharply
decreasing to zero before reaching 200 years). Even though
the SDP function achieved a relatively highR2 (< 0.05 lower
than the highest R2) in building two curves of EBF (SW) and
DBF (SW, S, and E), it had 13 %–88 % larger RMSEs than
the lowest RMSE. The M function also reached a relatively
high R2 (< 0.05 lower than the highest R2) in building four
curves of EBF (S and E), ENF (NE, N, and NW), DBF (NE,
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N, and NW), and MF (NE, N, and NW), but it had 29 %–
124 % larger RMSEs than the lowest RMSE.

To further evaluate the performances of the SEM function
and the 0 function, we extended the forest age to 300 years
and normalized the built NPP–age curves by dividing each
curve by its maximum NPP value (Fig. 6). The most sig-
nificant differences between the normalized NPP–age curves
simulated using these two functions appear in the extended
old ages. The curves built from the SEM function exhibit
stable forest NPP at old ages, while those from the 0 func-
tion display a distinct and continuous decrease in NPP as the
forests become very old. For the two curves of EBF (SW) and
DBF (SW, S, and E) where the 0 function had the highest R2

and lowest RMSE, the forest NPP decreased to almost zero
when the stand age reached 300 years. The forest NPP in the
curves of ENF (SW, S, and E), MF (SW, S, and E), DBF (NE,
N, and NW), and DNF (CHN) built by the 0 function also de-
creased sharply at the age of 300 years and decreased to al-
most zero at the ages of 400–500 years. These forest growth
patterns contradict the results of previous studies, which indi-
cated that forest NPP is usually reduced to about half (Mund
et al., 2002; Ryan et al., 2004) or one-third (Luyssaert et al.,
2008; Wang et al., 2011) of its maximum value. The curves
from the 0 function suggest that forests would stop growth
completely at old ages and act as carbon sources. However,
studies have demonstrated that old forests still act as carbon
sinks, despite the controversial magnitude of the forest car-
bon sink ranging from 1.0 to 3.2 Mg C ha−1 yr−1 (Gundersen
et al., 2021; Luyssaert et al., 2008). Ecologically, we would
expect old forests to maintain stable conditions through self-
renewal processes, such as the generation of new trees after
the mortality of old trees (Harmon et al., 1990). The SEM
function that produces stable NPP at old ages is therefore
more reasonable in capturing the forest NPP–age variations
at old ages and was determined as the optimal forest model
for building the forest NPP–age curves in China (the model
coefficients of the 10 built curves are provided in Table 2).

4.3 Comparison to the forest NPP–age curves built
previously in China

The forest NPP–age curve could be depicted by a key char-
acteristic: the age at which forest NPP peaks (shortened as
peak NPP age). The 10 forest NPP–age curves built by the
SEM function in this study were compared to the forest NPP–
age curves built previously in China using this characteristic
(Table 3). Climate factors have a significant influence on the
peak NPP age (Zhang et al., 2017). The NPP–age curves of
forests in southern regions, characterized by higher tempera-
tures, generally exhibit an earlier age of peak NPP compared
to forests in the northern regions with lower temperatures.

EBF achieves its highest NPP at 30 years in the NE, N,
NW, S, and E regions, while this peak occurs at 42 years in
region SW, similar to the previously reported average peak
age of 40 years for EBF in China (Wang et al., 2011). The

Table 2. The coefficients of the built forest NPP–age curves by the
SEM function in China (the unit of NPP calculated from the coeffi-
cients a–d is gC m−2 yr−1). The model coefficients: a–d, northeast
China: NE, north China: N, northwest China: NW, east China: E,
south China: S, southwest China: SW, evergreen broad-leaved for-
est: EBF, evergreen needle-leaved forest: ENF, deciduous broad-
leaved forest: DBF, deciduous needle-leaved forest: DNF, mixed
forest: MF.

Forest type a b c d

EBF (NE, N, NW) 664.100 0.100 7.618 3.643
EBF (SW) 670.000 0.113 11.470 3.310
EBF (S, E) 654.600 0.291 9.131 3.032
ENF (NE, N, NW) 460.192 0.045 13.007 3.809
ENF (SW, S, E) 378.106 2.828 31.679 0.721
DBF (NE, N, NW) 429.184 1.353 26.832 0.995
DBF (SW, S, E) 355.632 0.097 9.508 4.153
DNF (CHN) 303.573 2.029 15.739 2.425
MF (NE, N, NW) 432.260 0.110 10.750 3.291
MF (SW, S, E) 401.900 1.926 22.778 1.200

peak NPP for ENF is achieved at 55 years in the north-
ern regions, while it occurs at 34 years in the southern re-
gions, aligned with previous reports where the peak age in
the northern regions is 21 years later compared to the south-
ern regions (Xu et al., 2010). But in the southern regions, our
peak NPP age of 34 years was significantly different from the
13 years reported by Wang et al. (2011). However, their fit-
ting points showed a significant bimodal distribution around
13 and 53 years. Considering this bimodal distribution, the
average peak NPP age could be 33 years, which is more
closely aligned with our findings.

DBF, predominantly located in the northern regions, peaks
in NPP at the age of 47, slightly later than the southern re-
gions where the peak is observed at 41 years. These two val-
ues were much smaller than the 122 years reported by Wang
et al. (2011), where the NPP–age curve for DBF was built by
the SDP function instead of the SEM function. This large dif-
ference for DBF was also noticed by He et al. (2012), and our
results were consistent with the peak NPP age of 27± 16.5
for BDFs in America (He et al., 2012).

DNF, of which 60.2 % are located in the northern regions,
reaches peak NPP at the age of 40 years, congruent with
the peak growth age derived from the same region by other
researchers using the logistic stand growth model with Na-
tional Forest Inventory (NFI) data (Xu et al., 2010). Our peak
age differed by 14 years from the 54 years reported by Wang
et al. (2011). However, their fitting points demonstrated that
the peak NPP spanned ages from 20 to 70 years (Wang et
al., 2011), with an average of 45 years, which aligns more
closely with our peak NPP age.

MF reached the peak NPP at the age of 40 in the northern
regions and 39 years in the southern regions, presenting a de-
viation of less than 8 years compared to Wang et al. (2011)
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Figure 3. Comparison of five models in building the forest NPP–age curves for different forest cover types and regions in China. In each
panel, regions are shown at the top. The empty black dots with error bars represent the average NPP and its 1 standard deviation. The five
colored lines indicate the curve fitting from the five functions. Northeast China: NE, north China: N, northwest China: NW, east China: E,
south China: S, southwest China: SW, evergreen broad-leaved forest: EBF, evergreen needle-leaved forest: ENF, deciduous broad-leaved
forest: DBF, deciduous needle-leaved forest: DNF, mixed forest: MF.

and a consistent peak NPP reported in Heilongjiang province
by Yu et al. (2017). The peak NPP age of our national NPP–
age curve shows substantial differences from the peak NPP
ages identified by Yu et al. (2017) and Zheng et al. (2019)
in their respective studies on the Heilongjiang and Zhejiang
provinces. This could be attributed to significant variations in
forest growth patterns nationwide compared to these specific
provinces, arising from various factors including but not lim-
ited to forest species, climatic conditions, and soil types (Dai
et al., 2011; Zhao and Zhou, 2006; Ji et al., 2020; Xiaoyun et
al., 2018).

5 Discussion

In this study, we derived 10 forest NPP–age curves for 6 re-
gions and 5 forest cover types in China based on 3121 forest
field samples (Fang et al., 2018) and 5 tested mathematical
models including the SEM function, SDP function, L func-
tion, M function, and 0 function for simulating the curves.
The SEM function and 0 function performed prominently in
fitting all 10 curves, nearly perfectly capturing NPP varia-
tions with forest age, while for the SDP function, L func-
tion, and M function, the NPP–age variations were not well
captured. The declining trend in forest NPP at old ages was
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Figure 4. Distribution of the three components of NPP for different forest cover types and regions in China. Empty points with error
bars represent the components of NPP along with 1 standard deviation. Bc is the annual increment of total living biomass including stems,
branches, and coarse roots; Ll is the turnover of leaves per year; and Lfr is the turnover of fine roots per year in the soil. Northeast China: NE,
north China: N, northwest China: NW, east China: E, south China: S, southwest China: SW, evergreen broad-leaved forest: EBF, evergreen
needle-leaved forest: ENF, deciduous broad-leaved forest: DBF, deciduous needle-leaved forest: DNF, mixed forest: MF.

not captured by the L function and M function, while the
SDP function exhibited a sharp decline in NPP to zero be-
fore reaching 200 years in five forest NPP–age curves. These
results were consistent with the study that compared NPP–
age relationships in boreal and temporal forests constructed
using the SDP function, L function,M function, and 0 func-
tion (Tang et al., 2014). Further analysis using the normalized
NPP–age curves with forest age extended to 300 years sug-
gested that the 0 function tends to force NPP to be zero at
old ages for some forest NPP–age curves due to the limited
old-aged forest field survey samples. Considering the overall
performance with currently available field survey samples,
the SEM function was regarded as optimal for building for-
est NPP–age curves in China.

5.1 The mechanism of NPP–age variations

Forest NPP exhibits a rapid increase at young ages, reach-
ing a peak at middle ages, and subsequently declining at old
ages (Chen et al., 2003; Yu et al., 2017; He et al., 2012). The
increase in forest NPP at young ages is mainly driven by a
fast increase in leaf area (Ryan et al., 1997; Yu et al., 2014),
when the forest stand is relatively open with low competition
for light, water, and nutrients (Gower et al., 1996; Yan et al.,
2006). Previous studies have attributed the decline in NPP in
aging forests primarily to the reduction in gross primary pro-
ductivity (GPP) as the forest ages, while autotrophic respira-
tion (Ra) increases with age (Kira and Shidei, 1967; Odum,
1969). However, recent studies have challenged this classi-
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Figure 5. Quantitative descriptions of the five models in building the forest NPP–age curves for different forest cover types and regions
in China. The highest R2 is labeled in green, and the lowest RMSE is labeled in red. Northeast China: NE, north China: N, northwest
China: NW, east China: E, south China: S, southwest China: SW, evergreen broad-leaved forest: EBF, evergreen needle-leaved forest: ENF,
deciduous broad-leaved forest: DBF, deciduous needle-leaved forest: DNF, mixed forest: MF.

cal view, revealing that the age-driven decline in NPP is pri-
marily driven by the decrease in both GPP and Ra as forests
age, with GPP declining at a faster rate than Ra (Drake et
al., 2011; Ryan et al., 1997, 2004; Ryan and Waring, 1992;
Tang et al., 2014). This decline in forest NPP at old ages can
be attributed to nutrient limitation and ecosystem succession
(Camenzind et al., 2018; Fisher et al., 2012; Gao et al., 2018;
Gough et al., 2008). As forest age increases, soil nutrients
are often depleted to some extent. Trees respond by inten-
sified competition for these nutrients by growing more fine
roots to absorb them (Ryan et al., 1997; Tang et al., 2011).
This increased competition can lead to nutrient deficiency
and decreased NPP. However, old forests can maintain sta-
ble growth conditions through self-renewal and continue to
accumulate carbon with a magnitude of carbon sinks rang-

ing from 1.0 to 3.2 Mg C ha−1 yr−1 (Gundersen et al., 2021;
Luyssaert et al., 2008).

Generally, forest NPP in southern China tends to reach
its peak earlier than that in northern China (Yu et al., 2017;
Wang et al., 2018; Zheng et al., 2019). This pattern can be
attributed to China’s wide latitudinal range, resulting in sig-
nificant variations in temperature and precipitation. Higher
temperatures and precipitation contribute to an earlier peak
of forest NPP in southern China (Litton et al., 2007; Sillett
et al., 2010). Moreover, microscale factors, such as increased
hydraulic resistance of tall trees, diminished nutrient supply,
and the contraction of leaf area due to crown abrasion, may
also contribute to the decline in NPP at younger ages (Ryan
et al., 1997).
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Figure 6. The normalized NPP–age curves built from the SEM function and the 0 function with the forest age extended to 300 years.
The solid lines are for the age period with field data (the triangle in each line indicates the largest age with the field data), and the dashed
lines are for the age period without field data. Northeast China: NE, north China: N, northwest China: NW, east China: E, south China:
S, southwest China: SW, evergreen broad-leaved forest: EBF, evergreen needle-leaved forest: ENF, deciduous broad-leaved forest: DBF,
deciduous needle-leaved forest: DNF, mixed forest: MF.

5.2 Limitations and future modifications

There were also some limitations in this study. First, con-
sidering the sample numbers, distributions, and age groups,
only 10 forest NPP–age curves were derived across the entire
China. Except for DNF, the differences in forest NPP–age
curves between the southern and northern regions of China
(Dai et al., 2011) were considered for all forest cover types.
For EBF, its samples were sufficient to separate two forest
NPP–age curves in southern China: one is for region SW,
and the other is for regions S and E. The constructed forest
NPP–age curve may not be universally applicable to all areas
within the region or specific forest types. For future modifi-
cations, it is advisable to incorporate additional samples and
develop separate NPP–age curves tailored to smaller regions.

Second, mortality is ignored in this study due to a lack
of observations at the ground plots and its average small
proportion of NPP except for extreme conditions. Accord-
ing to He et al. (2012), mortality considered in NPP calcula-
tions typically includes standing dead trees and downed dead

wood, which, in the United States, accounted for an aver-
age of 3.7 % of NPP across 18 forest type groups (Shang et
al., 2023). Similarly, in China, mortality varies among differ-
ent tree species and regions. For example, in northeast China,
17 major tree species experience a drought-induced mortality
rate of 0.49 % (Ma et al., 2023). In Fujian Province, accord-
ing to the eighth and ninth NFI data, the average loss rate of
forest stock volume due to mortality was 2.5 % and 3.49 % of
the total stock volume, respectively. When converting stock
volume into NPP, these proportions attributed from mortal-
ity can be even smaller (Zhang et al., 2019) because the cal-
culation of NPP includes additional components such as fo-
liage turnover and fine-root turnover in the soil. Nonetheless,
in specific environmental conditions such as droughts, fires,
and pest infestations (Shang et al., 2022), the mortality rate
of certain tree species can increase significantly, sometimes
comprising a substantial proportion of the aboveground NPP
(Xu et al., 2012; Ding et al., 2023). Despite this, when con-
structing the NPP–age curve, these extreme mortality rates
were not taken into account, as we mainly focused on the
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Table 3. Comparison of the forest NPP–age curves built previously in China at the peak NPP age. Northeast China: NE; north China: N;
northwest China: NW; east China: E; south China: S; southwest China: SW; evergreen broad-leaved forest: EBF; evergreen needle-leaved
forest: ENF; deciduous broad-leaved forest: DBF; deciduous needle-leaved forest: DNF; mixed forest: MF; ENF in the tropics and subtropics:
ENF-S; mixed broad-leaved forest: MBF; ENF in Heilongjiang province, including Pinus sylvestris and Pinus koraiensis: ENF-H; DBF in
Heilongjiang province, including Quercus mongolica, planted Populus, Populus davidiana, Betula davuria, Tilia, and Betula platyphylla:
DBF-H; Larix gmelinii in Heilongjiang province: DNF-H; mixed broad-leaved forest in Heilongjiang province: MBF-H; mixed needle-
leaved forest in Heilongjiang province: MNF-H; mixed forest in Heilongjiang province: MF-H; needle-leaved forest in Zhejiang province:
NF-Z; broad-leaved forest in Zhejiang province: BF-Z.

Study area Forest type Regions in China Methods Age at peak NPP (year) Source

China

EBF
NE, N, NW

SEM

30

Our NPP–age curves

SW 43
S, E 30

ENF
NE, N, NW 55
SW, S, E 34

DBF
NE, N, NW 47
SW, S, E 41

DNF CHN 40

MF
NE, N, NW 40
SW, S, E 38

China

EBF CHN SEM 40

Wang et al. (2011)
ENF-S SW, S, E SEM 13
DBF CHN SDP 122
DNF CHN SEM 54
MBF CHN SEM 32

Heilongjiang

ENF-H

– SEM

19± 4.2

Yu et al. (2017)

DBF-H 11± 5.1
DNF-H 20± 2.7
MBF-H 11± 2.0
MNF-H 39± 7.4
MF-H 16± 1.9

Zhejiang
NF-Z

– SEM
23

Zheng et al. (2019)
BF-Z 15

average state across a larger region. Considering the small
contribution of mortality to overall NPP and the paucity of
ground plot data, mortality was overlooked in this study. Fu-
ture research efforts could focus on collecting mortality data
to enhance the building of the NPP–age curves and consider
the use of NPP–age curves under extreme conditions to sim-
ulate variations in forest carbon sequestration during extreme
events.

Third, the turnovers of leaves and fine roots, which were
also two important components of the field NPP, were cal-
culated based on the assumption that fine-root production is
linearly correlated with the production of leaves (Litton et al.,
2007; He et al., 2012). This assumption was supported by the
correlation between new fine-root carbon and new leaf car-
bon indicated by the field measurements (Burkes et al., 2003;
DesRochers and Lieffers, 2001). It should be noted that fine-
root production could also be affected by other factors such
as soil texture, moisture, and climate (Zerihun and Montagu,
2004), which might be calculated from other carbon alloca-
tion methods in future modifications (White et al., 2000).

Fourth, the old-aged forest field survey samples were lim-
ited for some forest cover types and regions, resulting in a
sharp decrease in forest NPP at old ages for some forest
NPP–age curves built by the 0 function. This phenomenon
does not deny that the 0 function can simulate the relation-
ship between NPP and forest age well in the range of for-
est age with field survey samples. With more old-aged forest
field survey samples collected, the 0 function could also be
a good choice for building the forest NPP–age curves and
serves as the model inputs to facilitate forest carbon cycle
modeling with a process-based model.

Last, the site condition was not considered in the build-
ing of the forest NPP–age curves. It has been shown that the
site condition can impact the forest NPP–age variations, and
better site conditions can result in faster growth of NPP at
young ages, greater peak NPP, and steeper decline in NPP at
old ages (Yu et al., 2017; Wang et al., 2018). However, the
lack of site condition data impeded our ability to build sepa-
rate forest NPP–age curves according to the site conditions.
Regardless of these limitations, this study still provides valu-
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able insights into forest NPP–age variations, and collecting
more comprehensive data in the future can further enhance
the construction of forest NPP–age curves.

6 Conclusions

In this study, we investigated the relationship between for-
est NPP and age in China by using 3121 forest field survey
samples and remote sensing data. A total of 10 forest NPP–
age curves were derived for the entire China’s forests based
on the spatial distributions of forest cover type, biomass,
and age of the field survey data. Five models, including the
SEM function, SDP function, L function, M function, and
0 function, were compared to determine the optimal model
for building the forest NPP–age curves in China. The com-
parison against the survey data showed that the SEM func-
tion and the 0 function performed much better than the other
three models, and through extending forest ages to 300 years,
we found that the SEM function was more applicable than
the 0 function in capturing the forest NPP–age variations
at old ages. Considering the overall performance with cur-
rently available field survey samples, the SEM function was
regarded as optimal for building forest NPP–age curves in
China. The built forest NPP–age curves offer an independent
and comprehensive source of information for forest growth
estimation and can facilitate forest carbon cycle modeling
and future projection in China and elsewhere.
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