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Abstract. Heterotrophic respiration (Rh) is, at a global scale,
one of the largest CO2 fluxes between the Earth’s surface
and atmosphere and may increase in the future. The previous
generation of Earth system models (ESMs) was able to repro-
duce global fluxes relatively well, but at that, time no gridded
products were available to perform an in-depth evaluation.
The capacity of the new generation of ESMs used within the
Coupled Model Intercomparison Project Phase 6 (CMIP6)
to reproduce this flux has not been evaluated, meaning that
the realism of resulting CO2 flux estimates is unclear. In this
study, we combine recently released observational data on
Rh and ESM simulations to evaluate the ability of 13 ESMs
from CMIP6 to reproduce Rh. Only 4 of the 13 tested ESMs
were able to reproduce the total Rh flux, but spatial analy-
sis underlined important bias compensation for most of the
ESMs, which generally showed an overestimation in tropical
regions and an underestimation in arid regions. To identify
the main drivers of the bias, we performed an analysis of
the residuals and found that mean annual precipitation was
the most important driver explaining the difference between
ESM simulations and observation-derived products of Rh,
with a higher bias between ESM simulations and Rh prod-
ucts where precipitation was high. Based on our results, next-
generation ESMs should focus on improving the response of
Rh to soil moisture.

1 Introduction

Soil organic carbon stocks represent around 3 times the
amount of carbon in the atmosphere (Scharlemann et al.,
2014). This soil carbon is used as a substrate by soil microor-
ganisms to obtain their energy and feed their metabolism,
which accounts for the majority of heterotrophic soil organ-
ism biomass. Annual fluxes that result from the respiration of
these heterotrophic organisms (hereafter referred to as het-
erotrophic respiration) are estimated (Warner et al., 2019;
Hashimoto et al., 2015; Konings et al., 2019; Ciais et al.,
2021) to be 5 times higher than annual anthropogenic emis-
sions (Friedlingstein et al., 2022) and roughly similar to an-
nual terrestrial net primary production (Zhao et al., 2005).
Thus, due to the size of fluxes relating to heterotrophic respi-
ration, even minor changes in soil organic carbon dynamics
can lead to significant impacts on carbon feedbacks and, ul-
timately, on climatic changes. As a result, modification of
soil organic carbon stocks due to human activities is consid-
ered to be an important driver of future climate trajectories
(Chabbi et al., 2017).

Although heterotrophic respiration fluxes are important,
the way this flux is represented in Earth system models
(ESMs), which aim to simulate the most important drivers
of the Earth’s climate system, is currently challenged. This
is because important drivers are missing, and while new ap-
proaches have been proposed (Huang et al., 2021; Wieder
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et al., 2015), these lack sufficient evaluation of long-term
time series (Le Noë et al., 2023). Thus, identifying the ac-
curacy of predictions of heterotrophic respiration fluxes by
ESMs is key in helping constrain carbon–climate feedbacks
in ESMs. The ability of ESMs to reproduce this flux was pre-
viously studied by Shao et al. (2013), but this was done us-
ing the previous generation of ESMs using the simulations
done during the Coupled Model Intercomparison Project
Phase 5 (CMIP5). Moreover, at that time, no gridded prod-
ucts were available. Since then, the models have been greatly
improved, and assessing how accurately current ESMs re-
produce the fluxes associated with heterotrophic respiration
is therefore of major importance. Until now, it has not been
possible to undertake a robust spatial assessment because of
the lack of observation-derived gridded products of Rh. In re-
cent years, new gridded products have been derived from ei-
ther (i) upscaling of local observations or (ii) calculations us-
ing atmospheric inversions and satellite observations. These
products provide the opportunity to evaluate the simulations
of ESMs used within the Coupled Model Intercomparison
Project Phase 6 (CMIP6) against observation-derived prod-
ucts for heterotrophic respiration. CMIP is a key initiative
which aims to compare current ESMs and is a central el-
ement of national and international assessments of climate
change (Masson-Delmotte et al., 2021).

In this study, we have two major aims:

1. to compare predictions of the total flux of heterotrophic
respiration from 13 Earth system models with three re-
cent gridded products of heterotrophic respiration de-
rived from observations and to identify the spatial biases
of heterotrophic respiration in the models

2. to identify the major drivers of the heterotrophic respira-
tion bias in Earth system models to propose new devel-
opments for the next generation of Earth system models
using a model residual approach to disentangle the main
effect.

2 Materials and methods

2.1 Earth system model simulations

In this study, we used the model outputs from the sixth
Couple Model Intercomparison Project (CMIP6) (Eyring et
al., 2016), which coordinates global climate model sim-
ulations of the past, current, and future climate. CMIP6
proposes historical simulations spanning from 1850 to
2014. Historical simulations are driven from an initial
point chosen in control integration (piControl). We chose
to use the latest CMIP6 results for the basic initial
state (r1i1p1f1). We chose outputs from 13 ESMs that
provide heterotrophic respiration fluxes (BCC-CSM2-MR,
BCC-ESM1, CanESM5, CESM2, CNRM-ESM2-1, E3SM-
1-1-ECA, IPSL-CM6A-LR, MIROC-ES2L, MPI-ESM1-

2-LR, NorCPM1, NorESM2-LM, SAM0-UNICON, and
UKESM1-0-LL). The variable used is Rh, corresponding to
the total heterotrophic respiration on land. We computed an-
nual averages over the 1990–2010 period, which corresponds
to the period in which most of the observations in the global
Soil Respiration Database (Bond-Lamberty and Thomson,
2010) v3.0 were made. Two of the observation products we
used were obtained using those data.

2.2 Observation-derived products

In this study, we used three observation-derived products
(Warner et al., 2019; Konings et al., 2019; Hashimoto et
al., 2015). In Warner et al. (2019), the authors predicted an-
nual soil respiration and associated uncertainty across terres-
trial areas at a resolution of 1 km using a quantile regression
forest algorithm trained with observations from the global
Soil Respiration Database (Bond-Lamberty and Thomson,
2010) v3.0 (commit no. 651770 in GitHub, https://github.
com/bpbond/srdb, last access: 26 January 2024) spanning
from 1961 to 2011 but mostly after 1990. Then they de-
duced Rh from the soil respiration using two different meth-
ods (Bond-Lamberty et al., 2004; Subke et al., 2006). They
therefore proposed two Rh maps derived from a unique mean
map of Rs from the quantile regression forest model. Here,
we decided to use the mean of two approaches as a reference
for Warner et al.’s (2019) Rh results. The second product we
used – that from Hashimoto et al. (2015) – is also based on
the Soil Respiration Database (Bond-Lamberty and Thom-
son, 2010) v3.0, but in this case, the Rh flux was derived
using a climate-driven model of soil respiration derived from
the Raich’s model (Raich et al., 2002). Hashimoto et al. pro-
vided a 0.5◦ resolution product at a monthly step time be-
tween 1965 and 2012. In our case, we used the yearly aver-
age over the period. The third product used – that of Konings
et al. (2019) – estimated Rh as a residual remote sensing data
point, exploiting recent advances in carbon flux estimations.
In contrast with the two other products, which are bottom-up,
the Konings et al. (2019) product proposes a top-down ap-
proach combining net ecosystem productivity estimates from
atmospheric inversions with an optimally scaled gross pri-
mary productivity dataset derived from satellite observations.
Rh is then derived using the CARbon DAta MOdel fraMe-
work (CARDAMOM). Their result is a monthly evaluation
of Rh between January 2010 and December 2012 at a resolu-
tion of 4◦× 5◦.

2.3 Data treatment and regridding

Since the ESM outputs and products were not at the same
resolution, we chose a reference for map grid resolution. The
coarsest resolution was from Konings et al.’s (2019) prod-
uct, with a 4◦× 5◦ resolution grid. Reducing the resolution
of every Rh map to match this would cause a substantial loss
of information. Thus, we increased the resolution of those
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Figure 1. Mean Rh spatial distribution over 2010–2012 from the
Konings et al. (2019) product – original (46× 72, a) vs. regridded
(128× 256, b).

datasets and decreased the very-fine-scale maps to an arbi-
trary reference corresponding to the CNRM-ESM2-1 model,
which runs at a 0.7◦ resolution. We chose to set the reference
as the maximum resolution available among CMIP6’s ESMs
predicting Rh. We used the common regridding routine Cli-
mate Data Operators (CDO) remapdis (NCO module), which
performs regridding by distance-weighted average remap-
ping and conserves latitudinal and longitudinal means. The
CDO software is a collection of multiple operators for stan-
dard processing of climate and forecast model data. The op-
erators include simple functions (statistical and arithmetic)
to be used for data selection, subsampling, and spatial in-
terpolation. To avoid coastal pixels encroaching into oceans,
we weighted each pixel by the proportion of its area covered
by land. The sum of Rh over the land was compared before
and after regridding to ensure that it was conservative. When
comparing the original and the regridded version of the Kon-
ings et al. (2019) product, we observed a very similar pattern
(Fig. 1).

2.4 Comparison between models’ outputs and
heterotrophic respiration products

To estimate the ability of the CMIP6 models to reproduce soil
heterotrophic respiration, we first compared the global flux
summed over all the grid cells and averaged over the 1990–
2010 period (in Pg C yr−1). We also compared the Rh maps
after regridding, averaged over the 1990–2010 period. We
also performed latitudinal and longitudinal mean calculus,
including oceanic zero values. Secondly, we wanted to assess
spatial bias distribution. Therefore, we (i) compared CMIP6
model averages with observation products and (ii) compared
each CMIP6 model with observation products. Thus, we first
represented the model average (over the period 1990–2010)
and all the observation-derived products in the same figure
with their associated latitudinal and longitudinal means. We
also calculated the 25th and 75th quantiles of latitudinal and
longitudinal CMIP6 model means. Then, we computed the
difference for each individual CMIP6 model with the median
of the three observation products. To compare the ESMs with
the observation products, we calculated the root mean square
error (RMSE) and the R2 using the median of the observa-
tion products. Finally, we also calculated the median abso-
lute deviation (MAD) for each grid cell, and we calculated
the number of pixels for each model that fit within the me-
dian±MAD.

2.5 ESM residual analysis

We defined the ESM residuals as the median of the differ-
ences between each individual CMIP6 model outputs and the
observation-based products’ medians calculated for each grid
cell. The ESM residuals were calculated in three steps:

1. We first calculated the median for each cell (i), which
we called Rh_obsi , using the three observation-derived
products together with Eq. (1), with Rh_Hashimoto et
al. (2015)i , Rh_Warner et al. (2019)i , and Rh_Konings
et al. (2019)i being the heterotrophic respirations given
for the grid cell I by Hashimoto et al. (2015), Warner et
al. (2019), and Konings et al. (2019), respectively. We
consider this median to be our best estimate.

Rh_obsi =Med
(

Rh_Hashimotoet al. (2015)i,

Rh_Warneret al. (2019)i,

Rh_Koningset al. (2019)i

)
(1)

2. Next, we calculated the residual between each CMIP6
model output and our best estimate, which we called
Res_Xi (X being the model’s name), for each grid cell
i using Eq. (2).

Res_Xi = Rh_Xi −Rh_obsi (2)
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3. Finally, we calculated the ESM residuals (Resi) as the
median of these model-specific residuals (Res_Xi) us-
ing Eq. (3).

Rh_Xi −Rh_obsi (3)

Using the ESM residuals, we performed a statistical anal-
ysis to identify the main drivers of disagreement between
predictions and observations. Following this we undertook
a two-step methodology. First, we compared several linear
generalized least-square models with different spatial struc-
tures (Gaussian, exponential, spherical, linear, or rational)
(gls package, Venables and Ripley, 2002) and without spatial
structures to estimate the effect of spatial correlation. Based
on Akaike information criterion (AIC) values, we selected
the rational quadratic spatial correlation structure that had
the smallest AIC values for the second step of the analysis.
Then, we used generalized additive mixed models with ESM
residuals as variables to explain the mean annual tempera-
ture (MAT), mean annual precipitation (MAP), observation-
derived SOC, and ESM residuals on net primary production
(NPP) and lithology as predictor variables. MAT and MAP
are derived from the Global Soil Wetness Project Phase 3
(GSWP3) reanalysis (http://hydro.iis.u-tokyo.ac.jp/GSWP3/
last access: 5 April 2022). SOC was taken from the Soil-
grid250m product (Hengl et al., 2017). ESM residuals on
NPP are calculated as the median of the difference between
ESM NPP and NPP from the Global Inventory Monitor-
ing And Modeling Studies group (GIMMS). Lithology maps
from the global lithological map (GLiM) (Hartmann and
Moosdorf, 2012) were used, but since lithology was not sig-
nificant (p>0.05) and since the model had a lower AIC with-
out this variable, it was not included in the final generalized
additive mixed model presented here. All statistical analyses
were carried out using R v3.5 (R Core Team, 2018).

3 Results

3.1 Global heterotrophic respiration flux and spatial
biases

Global heterotrophic respiration flux simulated by the 13
ESMs ranges from 29 to 78 Pg C yr−1 (Fig. 2), whereas the
equivalent estimates for observationally derived products es-
timates range from 43 to 51 Pg C yr−1. The multi-model
mean of the ESMs (49 Pg C yr−1) falls within the range of
the observation-derived products. However, only 4 out of
13 ESMs (BCC-CSM2-MR, CNRM-ESM2-1, IPSL-CM6A-
LR, and SAM0-UNICOM) simulate an overall heterotrophic
respiration flux that is within the range of the observation-
derived products (Fig. 2). When comparing the model obser-
vation products with the median±MAD from the observa-
tion products (46± 7 Pg C yr−1), 7 out of the 13 ESMs pre-
dicted a heterotrophic respiration within this range (Fig. 2).

Figure 2. Global estimations of soil heterotrophic respiration mean
over 1990–2010 period.

The R2 between the model outputs and the median of the ob-
servation products range between 0.57 for E3SM-1-1-ECA
and 0.82 for MIROC-ES2L (Table 1). When using RMSE to
compare the model outputs and the median of the observa-
tion products, we obtained values of 170.9 gC m−2 yr−1 for
IPSL-CM6A-LR and 345.1 gC m−2 yr−1 for CanESM5 (Ta-
ble 1). Finally, we also estimated the number of pixels that
fell within the median±MAD, and, using this metric, BCC-
ESM1 was the best-performing model followed by BCC-
CSM2-MR and CNRM-ESM2-1.

Despite similar global-scale values, regional-scale differ-
ences between the observation-derived products are much
larger (Fig. 3). The Konings et al. (2019) product estimates
large heterotrophic fluxes in the tropics and lower fluxes in
other regions such as the west coast of Northern America
or central Asia as compared to the Warner et al. (2019) and
Hashimoto et al. (2015) products that share similar spatial
patterns (Fig. 4). The mean of the 13 ESM simulations also
gives a much larger heterotrophic respiration flux over the
tropics, in particular over southeast Asia compared to any of
the three observation-derived products. In general, the het-
erotrophic respiration fluxes from the mean of the 13 ESMs
is closer to that of the Konings et al. (2019) product over the
tropics but closer to the Warner et al. (2019) and Hashimoto
et al. (2015) products over temperate regions. For boreal
regions, the three observation-derived products and the 13
ESMs means are very close.
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Figure 3. Comparison of mean soil heterotrophic respiration spatial distribution among mean CMIP6 outputs and observation data.

To generate our best estimate of heterotrophic respira-
tion fluxes from the three observation-derived products, we
calculated the median for each cell. Thus, we obtained the
spatially distributed best estimate. At each grid cell, we
then compared each ESM with the observation-derived prod-
ucts’ median (Fig. 5). This evaluation indicates that, com-
pared to observation-based products, ESMs (apart from the
ESM NorCPM1) tend to overestimate heterotrophic respira-
tion fluxes in tropical regions (approx. 1000 gC m−2 yr−1 for
MPI-ESM1-2-LR over the Amazon or 1500 gC m−2 yr−1 for
UKESM1-0-LL over southeast Asia, for instance). Models
perform relatively well in temperate regions, with a bias close
to 0 gC m−2 yr−1 for BCC-ESM-1 over North America and
Europe. Important discrepancies were observed for boreal re-
gions, with some models underestimating the heterotrophic
respiration fluxes to a large degree (e.g., NorCPM1 or
SAM0-UNICON) and one overestimating the fluxes (MPI-
ESM1-2-LR). The BCC models (BCC-CSM2-MR and BCC-
ESM1) performed quite well over this region. Importantly,
the four models that predict a global heterotrophic respiration
flux within the range given by the observation-derived prod-
ucts (BCC-CSM2-MR, CNRM-ESM2-1, IPSL-CM6A-LR,
and SAM0-UNICOM) do not perform well at finer scales –
with overestimation of the flux in some regions and underes-
timation in others. Therefore, this good global-scale perfor-
mance masks spatial bias compensation.

3.2 Identification of the major drivers of the
heterotrophic respiration bias in Earth system
models

In order to improve predictions of heterotrophic respira-
tion fluxes in future ESMs, we need to understand the spa-
tial biases we observed and determine their causes. To ex-
plore these biases, we performed a statistical analysis based
on a generalized additive mixed model of the ESM residu-
als, defined as the median of the differences between each
CMIP6 model’s output and the median of the observation-
based products calculated in each grid cell. ESMs share a
very common approach based on first-order kinetics with soil
organic decomposition driven by soil moisture and tempera-
ture (Varney et al., 2022; Todd-Brown et al., 2014). This ap-
proach is derived from the very first attempts to describe soil
organic decomposition with mathematical equations (Henin
and Dupuis, 1945) and is still the most used to describe this
process (Manzoni and Porporato, 2009; Wutzler et al., 2008).
Since soil organic matter (SOM) decomposition schemes in
ESMs are very similar, comparing each model individually
can be redundant and not very informative and less general-
izable. To allow broader conclusions and suggestions to im-
prove ESM performances, we decided to perform the residual
analysis on the ESM median rather on each individual model.
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Figure 4. Maps of differences between the observation-based prod-
ucts used in this study (Hashimoto et al., 2015, and Warner et al.,
2019, in a; Warner et al., 2019, and Konings et al., 2019, in b; and
Hashimoto et al., 2015, and Konings et al., 2019, in c).

The main drivers of heterotrophic respiration are soil car-
bon availability, soil moisture and temperature, carbon in-
puts, and mineralogy (Doetterl et al., 2015). To explain our
model residuals, we used soil organic carbon, net primary
production residuals calculated using similar methods to het-
erotrophic respiration flux residuals, mean annual precipita-
tion, mean annual temperature, and lithology. Our method
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Figure 5. Spatially distributed residuals of CMIP6 ESM predictions over the period 1990–2010 with respect to median observation products.

identified the main drivers of ESM residuals as soil organic
carbon, net primary production residuals, mean annual pre-
cipitation, and mean annual temperature (Fig. 6). The effect
of lithology was not statistically significant (p>0.05), and
the model had a lower AIC without this variable; thus, we
did not include lithology in the final model presented here.
The residuals due to soil organic carbon stock are close to
zero for soil with a low carbon stock, but heterotrophic res-
piration is under estimated by ESMs for soils rich in or-
ganic carbon (> 3000 g C m−2) (Fig. 6a). The model residu-
als for heterotrophic respiration flux are partially explained
by the model residuals on net primary production, with a
slight increase from model underestimation to model over-
estimation when model residuals on net primary production
increase from −1000 to 400 g C m−2 yr−1. We noted that,
when net primary production fits well with satellite prod-
ucts (i.e., model residuals close to 0 g C m−2 yr−1), the ESM
residuals on the heterotrophic respiration flux are also close
to 0 g C m−2 yr−1. For a few grid cells where ESMs largely
overestimate net primary production (i.e., model residuals

higher than 400 g C m−2 yr−1), the ESM residuals on het-
erotrophic respiration flux tend to be negative, suggesting
that ESMs underestimate heterotrophic respiration flux. The
clearest tendency we obtained was with mean annual precip-
itation: the more it increases, the more the models overesti-
mate the heterotrophic respiration flux (Fig. 6c). The median
ESM residual was also partially controlled by mean annual
temperature (Fig. 6d), with a relatively low overestimation
by the models for cold temperatures, such as those recorded
in polar climate zones and in some continental climate zones
(e.g., subarctic climate); a relatively good fit for temperatures
between 0 and 20 ◦C, corresponding to temperate and some
continental climate zones (e.g., hot summer continental cli-
mates); and then a sudden underestimation for warm tem-
peratures above 20 ◦C, corresponding to tropical and dry cli-
mate zones. This sudden underestimation might be explained
by an arbitrary maximum respiration level observed in this
dataset and identified as the result of the temperature depen-
dence of soil respiration used by Hashimoto et al. (2015)
(Varney et al., 2020). Such a bias may therefore be a con-
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664 B. Guenet et al.: Spatial biases reduce the ability of Earth system models

Figure 6. Median of ESM residuals on soil heterotrophic respira-
tion. The residuals are explained by soil organic carbon (a), median
of NPP residuals (b), mean annual precipitation (c), and mean an-
nual temperature (d). Negative values mean model underestimation.

sequence of the observation-based products used here rather
than being a real bias in ESMs. Similar results were obtained
when performing the same analysis with means rather than
medians (Fig. 7).

4 Discussion

In this study we evaluated, for the first time, the ability of
the ESMs to reproduce heterotrophic respiration fluxes. In-
deed, previous datasets were not gridded, and, so far, spa-
tial patterns of heterotrophic respiration in ESMs could only
be constrained indirectly by constraining other C fluxes in-
cluding heterotrophic respiration, such as net ecosystem ex-
change fluxes, or through ecosystem respiration in which het-
erotrophic respiration is just one component, the other being
the autotrophic respiration (Stoy et al., 2013). We showed
that only 4 out of 13 of the CMIP models produce global-
scale estimates that are consistent with observation-derived
products. However, we also showed that this consistency was
due to spatial bias compensations driven by different envi-
ronmental variables. Heterotrophic respiration represents a
carbon flux that is roughly 5 times that of anthropogenic
emissions (Friedlingstein et al., 2022), and, as such, it is vital
that work is done to improve the ability of ESMs to reproduce
this flux. Nevertheless, we also observed large discrepancies
between observation-based products, showing that our ability
to provide heterotrophic flux based on observations is not op-
timal. To better constrain ESM projections, some efforts are

Figure 7. Mean of ESM residuals on soil heterotrophic respiration.
The residuals are explained by soil organic carbon (a), mean of NPP
residuals (b), mean annual precipitation (c), and mean annual tem-
perature (d). Negative values mean model underestimation.

needed to reduce residuals between observation-based prod-
ucts.

However, working only on heterotrophic respiration may
not be sufficient to improve the entire soil organic carbon
module of the ESMs (Table 2). ESM capacities to reproduce
observed soil organic carbon stocks also need to be improved
(Ito et al., 2020; Varney et al., 2022). To improve both soil
organic carbon stocks and heterotrophic respiration fluxes,
soil organic carbon decomposition rates must be better con-
strained. The ESM residual analysis we performed here sug-
gests some new research avenues relating to the response of
the major drivers. First, most of the boundary conditions of
the soil organic carbon modules of an ESM are calculated
by the ESM itself. Thus, if soil moisture, soil temperature,
or litter production are incorrect, the soil organic carbon dy-
namic cannot be correct. We observed that, when the residual
of NPP was close to zero, the residual on heterotrophic res-
piration is also close to zero. Thus, improving the plant func-
tioning scheme may ultimately improve the capacities of the
ESMs to reproduce the heterotrophic respiration flux. Our
study also showed that mean annual temperature is an im-
portant driver of the ESM residuals, in particular for hot re-
gions with large underestimations of the flux. These regions
probably correspond to very arid regions since, for most of
the ESMs, heterotrophic respiration fluxes from regions like
Australia, the Middle East, or northern Africa tend to be un-
derestimated. Nevertheless, the underestimation observed in
these regions may be also due to reduced C inputs and low
SOC stocks, reducing the heterotrophic respiration fluxes.
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Table 2. Summary of the main features proposed in this study to improve the heterotrophic respiration fluxes in Earth system models.

Main features to improve in the next ESM generation

NPP residuals Improving plant inputs through NPP is key to improving heterotrophic respiration by implementing N cycles, for instance.
MAT Dynamic and/or spatialized temperature sensitivity parameters such as Q10.
MAP Improving the soil moisture functions using bell shape functions, for instance.
SOC More constrained parameters such as CUE (carbon use efficiency) and/or residence times.

The response of soil organic decomposition by microor-
ganisms is likely to be temperature dependent, with lower
rates of decomposition in cold regions and higher rates in hot
regions (Wang et al., 2010; Zhou et al., 2009). In contrast,
the response of soil organic decomposition to temperature
in ESMs is generally controlled by Q10 equations (David-
son and Janssens, 2006), with fixed parameters that are not
dynamic and not spatially distributed (Ito et al., 2020). Previ-
ous studies suggested that a spatially distributed Q10 con-
strained by observations is an important step to improve
ESMs (Koven et al., 2017; Varney et al., 2020). Our re-
sults support this and hint that having more flexible Q10
parameters may help to improve ESM capacities to repro-
duce observation-derived products of heterotrophic respira-
tion fluxes. Moreover, land surface schemes of ESMs are
known to be very sensitive to Q10 values (Jones et al., 2003;
Todd-Brown et al., 2018).

Finally, we observed a relatively linear, positive relation-
ship between mean annual precipitation and the ESMs’ resid-
uals (Fig. 6c). This response is probably driven by soil mois-
ture because it is a key driver of microbial activity and there-
fore of heterotrophic respiration fluxes (Moyano et al., 2012).
ESMs use three main groups of soil moisture response func-
tion (Falloon et al., 2011): (i) some models do not represent
soil moisture effect; (ii) some models increase soil organic
decomposition when soil moisture increases, assuming less
water limitation for microbial activity; and (iii) some mod-
els assume a humped relationship between soil moisture and
soil organic decomposition, with high decomposition at in-
termediate soil moisture and low decomposition in very wet
soils, where microbial activity is reduced because of limi-
tations in relation to oxygen availability, and in dry soils,
where microbial activity is reduced because of limitations
in relation to water. As with Q10, the land surface models
are highly sensitive to which soil moisture response function
is chosen, and most of the ESMs use option (ii) (Varney et
al., 2022). Soil incubations have repeatedly shown that the
response of heterotrophic respiration fluxes to soil moisture
is approximated by a bell-shaped function, with parameters
depending on soil organic carbon, soil clay content, and soil
bulk density (Moyano et al., 2012). Thus, for wet soils, het-
erotrophic respiration fluxes are probably reduced because
of oxygen limitation. Implementing this bell-shaped func-
tion approach is necessary to accurately represent the soil or-
ganic carbon stock of peatland in some land surface schemes

used by ESMs (Qiu et al., 2019). The approach proposed
by Moyano et al. (2012) seems to be well adapted to con-
straining ESMs since the author proposed several versions of
the bell-shaped function and defined a function using drivers
that are included in ESMs (model 2 in Moyano et al., 2012).
The model including bulk density might perform better, but
bulk density is not calculated by ESMs, and, consequently,
such an approach is hardly implementable in ESMs. Other
approaches have been proposed in the literature (Davidson
et al., 2014; Sierra et al., 2015), but the solutions proposed
are mostly based on O2 diffusion, which is more mechanis-
tic but more difficult to implement in an ESM compared to
a more empirical solution, such as that proposed by Moyano
et al. (2012). Gas diffusion implementation at the spatial res-
olution of ESMs is quite challenging because it depends on
drivers that are highly variable at small scales. Not consider-
ing the possible oxygen limitation effect on wet soils may ex-
plain why ESMs tends to overestimate the heterotrophic res-
piration flux when mean annual precipitation is high. Chang-
ing the soil moisture function to better represent this effect
should be relatively easy and may substantially improve the
capacities of ESMs to reproduce the heterotrophic respiration
flux.

Another important parameter controlling heterotrophic
respiration flux is carbon use efficiency, defined as the ra-
tio between the carbon remaining in a system and the carbon
entering that system (Manzoni et al., 2018). In our context.
this is the ratio between the carbon mineralized through mi-
crobial heterotrophic respiration and the carbon incorporated
into the microbial biomass. The heterotrophic respiration
flux therefore results from two processes in ESMs, namely
the soil organic carbon decomposition and its allocation to
other soil carbon pools or to heterotrophic respiration. Car-
bon use efficiency is highly variable and depends on several
biotic and abiotic factors (Sinsabaugh et al., 2013; Manzoni,
2017; Manzoni et al., 2012). In ESMs, carbon use efficiency
is neither dynamic nor spatially distributed, and, thus, having
flexible carbon use efficiency control may help to reproduce
observations (Zhang et al., 2018). A simple approach that
may aid in a better representation of heterotrophic respira-
tion fluxes is optimizing the carbon use efficiency parame-
ters of the ESMs using a Bayesian approach, as is done for
other land fluxes (Kuppel et al., 2012). This would result in
a spatially distributed set of parameters for carbon use effi-
ciency, but this approach would not be dynamic. Another op-
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tion that might benefit the current large carbon use efficiency
measures existing in the literature (Manzoni et al., 2012) is
defining statistical functions predicting carbon use efficiency
based on explanatory variables that could themselves be dy-
namic (soil temperature, pH, soil C : N ratio, etc.). Thus, car-
bon use efficiency might be spatialized and dynamic.

A better representation of the heterotrophic respiration
flux is also important for other biogeochemical variables,
particularly in ESMs with explicit nitrogen cycle representa-
tion in their land surface scheme. Indeed, heterotrophic res-
piration fluxes are indicators of soil organic carbon decom-
position, but when nitrogen is explicitly represented, it also
becomes an indicator of soil N mineralization (Vuichard et
al., 2019). In the field, the soil organic matter is composed by
complex molecules made of carbon and nitrogen, among oth-
ers (Cleveland and Liptzin, 2007). Microorganisms decom-
pose soil organic matter, releasing CO2 to the atmosphere
and mineral nitrogen to the soil solution. Microbial activity is
therefore a major driver of mineral nitrogen availability and
partially controls nitrogen limitations on primary production
and therefore on land carbon sink (Bragazza et al., 2013).
Since more and more ESMs explicitly represent the nitro-
gen cycle in their land surface models (Varney et al., 2022;
Davies-Barnard et al., 2020), this results in well-constrained
heterotrophic respiration fluxes that may help to constrain
the nitrogen mineralization flux as they both come from the
soil organic matter decomposition by extracellular enzymes.
A better representation of the mineral N release flux would
probably, in turn, improve the simulation of NPP.

5 Conclusions

Our study showed that, despite previous ESM evaluations
of heterotrophic respiration (Shao et al., 2013), few current
ESMs represented total heterotrophic respiration flux well,
and all failed at representing its spatial distribution. Since
heterotrophic fluxes are large and are a major determinant of
whether land surfaces represent a carbon sink or source, it is
of major importance to better constrain these fluxes and to
determine how they will be impacted by climate and land
use changes. We showed that current ESMs failed to re-
produce heterotrophic respiration fluxes where precipitation
is important, probably because heterotrophic respiration re-
sponses to soil moisture are poor representations of reality.
Nevertheless, it is important to note that soil moisture is not
only driven by precipitation. Other water fluxes like runoff,
drainage, and evapotranspiration affect the water balance in
soils. In this study we did not directly consider soil mois-
ture because it was not available for all the ESMs. Another
limitation of our study is that we did not account for other
important drivers of heterotrophic respiration in our model
residual analysis like pH, microbial biomass, nitrogen avail-
ability, etc. We decided to focus on explanatory variables
calculated by all the models because we aimed to identify

biases due to feedbacks between ESM variables rather than
to identify missing mechanisms. We propose several options
to improve the ESM without extensive modifications of the
current schemes. We believe that our proposals would be rel-
atively easy to implement in the next generation of ESMs,
resulting in a possible reduction of the observed spatial bias
and a better response to climate change.
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