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Abstract. The global ocean’s oxygen content has declined
significantly over the past several decades and is expected to
continue decreasing under global warming, with far-reaching
impacts on marine ecosystems and biogeochemical cycling.
Determining the oxygen trend, its spatial pattern, and uncer-
tainties from observations is fundamental to our understand-
ing of the changing ocean environment. This study uses a
suite of CMIP6 Earth system models to evaluate the biases
and uncertainties in oxygen distribution and trends due to
sampling sparseness. Model outputs are sub-sampled accord-
ing to the spatial and temporal distribution of the historical
shipboard measurements, and the data gaps are filled by a
simple optimal interpolation method using Gaussian covari-
ance with a constant e-folding length scale. Sub-sampled re-
sults are compared to full model output, revealing the biases
in global and basin-wise oxygen content trends. The sim-
ple optimal interpolation underestimates the modeled global
deoxygenation trends, capturing approximately two-thirds of
the full model trends. The North Atlantic and subpolar North
Pacific are relatively well sampled, and the simple optimal
interpolation is capable of reconstructing more than 80 % of
the oxygen trend in the non-eddying CMIP models. In con-

trast, pronounced biases are found in the equatorial oceans
and the Southern Ocean, where the sampling density is rel-
atively low. The application of the simple optimal interpo-
lation method to the historical dataset estimated the global
oxygen loss to be 1.5 % over the past 50 years. However, the
ratio of the global oxygen trend between the sub-sampled and
full model output has increased the estimated loss rate in the
range of 1.7 % to 3.1 % over the past 50 years, which par-
tially overlaps with previous studies. The approach taken in
this study can provide a framework for the intercomparison
of different statistical gap-filling methods to estimate oxygen
content trends and their uncertainties due to sampling sparse-
ness.

1 Introduction

Historical observations indicate that the ocean oxygen (O2)
inventory has declined in recent decades, a trend that has
been termed ocean deoxygenation (Keeling et al., 2010;
Levin, 2018). Ocean heat uptake causes the reduction of oxy-
gen solubility and changes in ocean circulation and biogeo-
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chemical processes. Ocean warming and increasing stratifi-
cation can further decrease O2 exchange between upper and
deep layers, further reducing the oceanic O2 inventory. The
reduction in dissolved oxygen can have far-reaching impacts
on marine habitats (Deutsch et al., 2015; Gruber, 2011; Pört-
ner and Farrell, 2008; Vaquer-Sunyer and Duarte, 2008).

The distribution of historical O2 measurements is irregu-
lar and sparse. The calculation of changes in the global O2
content requires filling the data gaps in time and space, mak-
ing it difficult to quantify global trends and their uncertain-
ties. Recent estimates of the global oxygen decline are in the
range of 0.5 %–3.3 % (IPCC, 2022) relative to climatologi-
cal means over the period of 1970–2010 (Helm et al., 2011;
Schmidtko et al., 2017; Ito et al., 2017). The wide range in
the estimates of ocean deoxygenation can stem from different
interpolation methods to estimate global O2 content, differ-
ent data quality control standards, and different data sources.
Previous studies estimating the rates of ocean deoxygenation
have relied on the World Ocean Database 2018 (WOD18)
(Boyer et al., 2018). WOD represents an international collab-
oration among national data centers, oceanographic research
institutions, and investigators to provide a comprehensive
dataset of quality-controlled oceanographic variables. Ship-
board observations are more prevalent in the Northern Hemi-
sphere oceans in the warm seasons. Oxygen measurements
from a single year (e.g., 1991; Fig. 1a) do not adequately
cover the global ocean; a pentadal composite (e.g., 1989–
1993; Fig. 1b) is performed to increase the coverage at the
expense of averaging out the high-frequency variability on
timescales shorter than 5 years. Even so, there are large data
gaps in the South Pacific and Indian Ocean. In such a case,
optimal interpolation (hereafter, OI) has been widely applied
to fill data gaps and to yield a gridded data field (Fig. 1c),
which produces the best-fit O2 distribution in the least-square
sense, given the covariance structure in the dataset (Wunsch,
1996). One shortcoming of OI application is that it can under-
estimate O2 trends in data-sparse regions. For regions with-
out any nearby measurements, the mapped field approaches
the climatology asymptotically (i.e., towards a zero-oxygen
anomaly). If there is a widespread O2 decline but only a frac-
tion of ocean volume is sampled, the OI method will under-
estimate the declining trend of ocean O2 content.

The objective of this study is to use a suite of Earth sys-
tem model (ESM) simulations as a test bed to evaluate the
uncertainties in ocean deoxygenation rates by sub-sampling
model output according to the spatial and temporal distribu-
tions of the historical shipboard measurements. Earth sys-
tem models represent our current understanding of physi-
cal and biogeochemical processes, expressed in mathemat-
ical equations. These processes and their interactions are nu-
merically integrated forward in time, predicting the trajec-
tory of the Earth’s climate system. ESMs generate their own
natural variability that reflects chaotic behavior of the natu-
ral climate system, but its temporal trajectory does not nec-
essarily match that of the real world. Observed O2 changes

may be influenced by both external forcing (such as volcan-
ism and anthropogenic greenhouse gases and aerosol emis-
sions) and natural climate variability. These models are im-
perfect and often include varying degrees of biases due to
inadequate process understanding and the lack of computa-
tional resources to resolve critical processes at smaller length
and/or timescales. Current Earth system models do not fully
reproduce the O2 variability and trends (Oschlies et al., 2018,
2017), and observational data are essential for the evaluation
of the model output. In turn, the analysis of model output can
inform the range of underlying variability and trends.

This study uses seven different ESMs from the Coupled
Model Intercomparisperon Project Phase 6 (CMIP6) that
provided dissolved oxygen output. These seven models sam-
ple the range of O2 variability and trends that can arise from
different model architectures, biogeochemical parameteriza-
tions, and modes and phases of natural climate variability.
Globally gridded O2 fields from ESMs provide fully sampled
states and, thus, perfectly known model trends for the simu-
lated variables. The modeled O2 distribution can also be sub-
sampled according to the time-evolving pattern of historical
ocean observations to evaluate the effect of sampling sparse-
ness. We purposefully remove information from the model
output where there was no in situ measurement. This hypo-
thetical observation of model output, with its realistic data
gaps, can be used to evaluate the uncertainties in ocean de-
oxygenation rates due to both data sparseness and statistical
gap-filling approaches. The sub-sampled model output can
then be subject to a statistical gap-filling method (OI) to eval-
uate how well the fully sampled states can be reconstructed.
It is of great interest to evaluate to what extent the OI method
underestimates the true O2 trend in the context of the simu-
lated deoxygenation.

The structure of this paper is as follows. The second sec-
tion describes the analysis method, the data sources, and the
Earth system models. The third section describes the results,
followed by the interpretation of the results and a conclusion
in section four.

2 Methods

2.1 Observational data source

We make use of observations from the bottle and
conductivity–temperature–depth instruments’ (CTD) O2
data in WOD18. Dissolved oxygen is the third most fre-
quently measured chemical tracer in the ocean, following
temperature and salinity. There are approximately 2.8 mil-
lion temperature, 2.4 million salinity, and 0.9 million O2 ver-
tical profiles in the ocean station data (OSD or simply bot-
tle data) reported in WOD18. In addition, CTD data include
approximately 1 million temperature and salinity profiles,
and 0.2 million O2 profiles. The OSD (i.e., bottle) O2 data
are largely located on the margins of the ocean basins and
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Figure 1. Maps of (a) single-year observation for the O2 anomaly in the year 1991 at 200 m depth; (b) the pentadal composite O2 anomaly
centered in the year 1991, covering the period from 1989 to 1993, at 200 m depth; and (c) the optimally interpolated pentadal O2 anomaly
based on the data in the middle figure.

Figure 2. Number of OSD and CTD oxygen profiles aggregated
into 1◦× 1◦ longitude–latitude grid cells for 4 decades, from 1965
to 2014. The color scale indicates the number of measurements in
log scale.

along repeat hydrographic transects (Fig. 2). O2 observations
in the OSD profile were typically measured by means of a
modified Winkler titration method with a precision of about
1 µmolkg−1 (Carpenter, 1965). Most modern oxygen chem-
ical titration measurements are based on Carpenter’s whole-
bottle titration method and an amperometric or photometric
end detection with a precision of about 0.5–1 µmolkg−1 (or
approximately, 0.3 %). The CTD O2 data are based on elec-
trochemical and optical sensors mounted on the CTD rosette
samplers, which are periodically calibrated to the Winkler
O2 (Grégoire et al., 2021). The coverage of CTD measure-
ments increased after the 1990s, and that of profiling floats
has rapidly increased in recent years. However, the overall
spatio-temporal coverage of O2 observations from bottle and
CTD has decreased since the 1990s. Profiling-float O2 data
have increased significantly in the past 10 years; however, the
precision is on the order of 1 %–2 % (∼ 2 µmolkg−1), and

the data quality control and calibration are still under devel-
opment, especially in the upper-ocean oxycline (Bittig et al.,
2018; Maurer et al., 2021). Float O2 data have been excluded
in this study but will be an important data source, especially
after 2010s for the future studies.

2.2 Data pre-processing and optimal interpolation

The pre-processing of the data includes a check for accept-
able data quality using the WOD18 quality control (QC)
flags. The original WOD18 standard-depth profiles with 102
depth levels are placed into bins which are the 1◦× 1◦

longitude–latitude grid cells with 102 vertical depth levels
referenced to the standard depths of WOD18. Of the 102 ver-
tical depth levels, 47 levels are in the upper 1000 m.

The target analysis period is after 1965 when the modern
oxygen titration method was established by Carpenter, as ref-
erenced above. Some of the data from most recent years are
not included in the ESMs, as discussed below, so the analy-
sis ends in 2014. The spatially binned quality-controlled data
were averaged at a monthly resolution where mean, variance,
and sample size are recorded from 1965 to 2014 for the bottle
data and from 1987 to 2014 for the CTD O2 data. Next, the
monthly mean climatology is determined by calculating the
climatological monthly mean combining the bottle and CTD
O2 data and then filling data gaps. We are interested in long-
term O2 changes which can be calculated as the anomalies
from the monthly climatological mean. Departures from the
monthly climatology are recorded as O2 anomalies for each
bin. The binned data are very sparse at a monthly timescale
(Fig. 1). For each year, the monthly anomaly data are av-
eraged into yearly anomalies, neglecting the months with
missing data. This step increases spatial data coverage sig-
nificantly while averaging out high-frequency variability in
the data, including changes shorter than the yearly timescale,
such as waves and eddies. In addition, a 5-year moving win-
dow (pentadal) averaging is applied to the yearly anomaly,
neglecting the years with missing data. This further increases
the spatial data coverage while averaging out variability on
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the timescale shorter than 5 years. The resulting, pentadal O2
anomaly data cover the 46-year period from 1967 to 2012.

A relatively simple optimal interpolation (OI) is applied to
the pentadal O2 anomaly data for each year to yield the spa-
tially interpolated O2 anomalies following Wunsch (1996).
This method provides the least-square estimate of the O2
field on regularly spaced grid cells, minimizing the mean
square error of the mapped data for given observations with
a covariance function. Stationary and isotropic Gaussian co-
variance is assumed throughout this study, with the e-folding
length scale (Lref) of 1000 km. This particular choice of
length scale controls how far an observation can influence
the far field together with the assumed noise-to-signal ratio
(ε) of 0.2. The Gaussian assumption may be qualitatively rea-
sonable, but the ocean circulation is neither spatially station-
ary nor uniform. The use of the Gaussian function allows
us to avoid calculating and storing the large and complex co-
variance structure, but it can distort the resulting maps (Fuku-
mori et al., 1991), which is a caveat for this study. A basin
mask is used to interpolate data points only within the same
ocean basin such as the Atlantic, Pacific, Indian, and South-
ern oceans. Each 1◦× 1◦ grid point is assigned to one of the
53 basins defined in Appendix 1 of Garcia et al. (2019). The
binned oxygen vector, X, is expressed as a (N × 1) vector,
where N is the number of binned data for a particular basin.
The objective map of oxygen climatology, Y , is a (M × 1)
vector, where M is the number of grid cells for the basin.
The optimal interpolation is applied to each basin as follows:

Y = DE−1X, (1)

where X is the pentadal oxygen anomaly input from the dis-
crete data, and Y is the objective map of (gap-filled) oxygen
anomalies. D is a (M×N ) data–grid covariance matrix based
on the Gaussian function, where Dmn = exp(−L2

mn/L
2
ref and

Lmn is the distance between the two points. C follows the
same definition but for the N ×N data–data covariance, and
E = C+ εI , where ε is the noise-to-signal covariance ra-
tio. For the Southern Ocean, all data points southward of
30◦ S are used. An example of this process in the year 1991
is shown in Fig. 1. Basin-wise application of optimal in-
terpolation is performed for the O2 anomalies, resulting in
yearly (running pentadal) maps for the 46-year period. The
O2 anomaly field and its standard error field are recorded.

2.3 Ocean deoxygenation trend

Using the yearly maps of the O2 anomaly field, global and
basin-wise O2 contents are calculated as the volume integral
over the upper 1000 m, O(t), where t is time since 1967.
The magnitude is referenced to the mean value of the first
10 years, where the 10-year (1967–1976) mean O2 contents
are subtracted from respective O2 content time series for
comparison purposes. Ocean deoxygenation trends are esti-
mated as the slope (a) of the O2 content time series using

standard linear regression:

a =
σtO

σtt
, (2)

b =O − at, (3)

where σtO is the covariance between time and O2, and σtt is
the variance in time. (a,b) are the slope and intercept of lin-
ear regression. Assuming that the regression errors are nor-
mally distributed, the standard error for the slope (εa) and
intercept (εb) can be calculated as follows:

εa =

√√√√MSE

(
1∑(
tn− t

)2
)
, (4)

εb =

√√√√MSE

(
1
Neff
+

t
2∑(

tn− t
)2
)
, (5)

where MSE stands for the mean square error of regression,
tn is time at nth data point. The gridded O2 dataset is con-
structed based on a 5-year running mean. An effective sample
size (Neff) is calculated assuming that 5-year data are inde-
pendent, thusNeff ∼ 9 for 46 years of data. These parameters
are later used to evaluate the uncertainty and will be used for
the comparison between models and observation.

2.4 CMIP6 Earth system models

Two sets of time-varying O2 fields are derived from the
ESMs, including the full field and the reconstructions from
the sub-sampled model output (Table 1). We selected a sub-
set of Earth system models participating in the Coupled
Model Intercomparison Project Phase 6 (CMIP6), and the
outputs for their historical simulation are downloaded from
the Earth System Grid Federation (https://esgf.llnl.gov, last
access: March 2023). The monthly mean O2 output is first
re-gridded onto the global 1◦× 1◦ longitude–latitude grid for
the period of 1965 to 2014. A bilinear interpolation is first
performed for the horizontal interpolation, followed by the
linear interpolation on the vertical axis to the standard depths
of the WOD18. Sub-sampled model output is then generated
from the full field where the model output fields were resam-
pled using the same spatial and temporal locations as with
the observations. The sub-sampling strategy assumes that a
grid box is sampled if, at least, one observation exists within
the grid cell at a particular year or month. If so, we retain
model data in the sub-sampled dataset. In reality, there could
be multiple casts within the same grid and the same year or
month, but multiple samples and/or variability within a sin-
gle cell are not considered. There are slight differences in the
land–ocean masks between models, and we use the model to-
pography as they are provided. Similarly to the observational
analysis, the sub-sampled monthly O2 climatology is assem-
bled from the sub-sampled data with the optimal interpola-
tion filling the data gaps using Eq. (1). Then O2 anomalies are
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Table 1. List of CMIP6 models used in this study. Variants represent
decadal-scale variability ensemble members and are coded accord-
ing to (r) realization, (i) initialization, (p) physics, and (f) forcing.
The first available variant, typically noted as r1i1p1f1, is taken from
each model.

Model name Variant Reference

CanESM5 r1i1p1f1 Swart et al. (2019)
MPI-ESM1-2-LR r1i1p1f1 Mauritsen et al. (2019)
GFDL-ESM4 r1i1p1f1 Dunne et al. (2020)
IPSL-CM6A-LR r1i1p1f1 Boucher et al. (2020)
MIROC-ES2L r1i1p1f2 Hajima et al. (2020)
NorESM2-LM r1i1p1f1 Seland et al. (2020)
E3SM1-1 r1i1p1f1 Burrows et al. (2020)

Figure 3. (a) Linear trend of upper-ocean (0–1000 m) column
O2 inventory from 1967 to 2012 from the optimally interpolated
pentadal O2 anomaly based on the World Ocean Database 2018.
(b) Time series of oxygen inventory is plotted for the global do-
main from 0 to 1000 m depth, including its linear trend and the 95 %
confidence interval of the trend line. The confidence interval is cal-
culated using a Monte Carlo method.

calculated by subtracting the sub-sampled monthly clima-
tology, and they are first aggregated into annual O2 anoma-
lies, neglecting months without data, followed by the running
pentadal averaging. Finally, the basin-wise optimal interpo-
lation is applied to yield the reconstructed O2 anomaly fields
using Eq. (2). These procedures are repeated for each of the
models in Table 1. For the comparison purposes, the 5-year
moving window averaging is applied to the full field.

3 Results

3.1 Observed and modeled O2 trend maps

The observational trend is first determined based on the opti-
mally interpolated gap-filled WOD18 profiles. The vertically
integrated O2 inventory (0–1000 m) trend pattern is shown
in Fig. 3a. While regional differences exist, the basin-scale
patterns of the observed O2 loss are similar to those in previ-
ous studies (Helm et al., 2011; Schmidtko et al., 2017; Ito
et al., 2017). In the North Atlantic, overall O2 decline is
observed, except for the south of Greenland in the subpo-
lar North Atlantic, where a patch of an increasing trend ex-
ists. In the North Pacific, a strong decrease is found in the
western subpolar region, spreading from the sea of Okhotsk
(Nakanowatari et al., 2007), which may be connected to the
reduced ventilation in this region. A weak increase is found
in the subtropical North Pacific (Ito et al., 2019), which is re-
lated to the multi-decadal natural variability of the North Pa-
cific climate. Oxygen increases are observed in the subtrop-
ical Southern Hemisphere oceans and to the south of Green-
land. In terms of the global inventory trends, the data suggest
a global linear trend of −175± 24 TmolO2 decade−1 or ap-
proximately 1.5 % loss over the 50-year period.

Figures 5 and 6 show the comparison of the trend pattern
between the models listed in Table 1 for the full model field
(Fig. 5) and the reconstructed model output (Fig. 6). The
modeled O2 trend patterns are moderately correlated to the
observations for some of the CMIP6 models, as summarized
in Table 2. CanESM5, MPI-ESM1-2-LR, IPSL-CM6A, and
MIROC-ES2L exhibit a moderately positive correlation of
approximately r = 0.3. It is interesting to contrast this result
to the hindcast simulation of the earlier generation of ocean
biogeochemistry models reported by Stramma et al. (2012).
The subset of CMIP6 models in this study is slightly better
correlated to observational estimates than the hindcast runs
using an earlier generation of models. This is likely due to the
improved biogeochemical model structure and parameteriza-
tion rather than the physical climate forcing. Hindcast sim-
ulations are forced by the observed atmospheric variability
through the meteorological reanalysis products. In contrast,
historical simulations of the CMIP6 models generate natu-
ral climate variability that, in general, does not reproduce the
phasing of observed variability.

The reconstructed CMIP6 model output is slightly better
correlated to the observation than the full model output for
the majority (five out of seven) of models, perhaps reflect-
ing the common sampling pattern and gap-filling approach.
Comparing the reconstructed and the full field from the same
model, the pattern correlation of the O2 trend ranges from
0.37 to 0.69. While it is not perfect, the OI can estimate the
general pattern of the full field with moderate correlation for
the 1◦× 1◦ gridded trend maps. This motivates us to further
investigate to what extent OI can estimate the O2 trend for a
larger-scale hemispheric and/or global domain.
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Table 2. From left to right column: spatial pattern correlation (Pearson’s correlation coefficients) between observed and modeled upper-ocean
(0–1000 m) column O2 trend and the global trend magnitudes, the pattern correlation between observed modeled O2 trend patterns (full and
sub-sampled optimally interpolated model outputs).

Sub-sampled model R Full model R Full and Global trend Global trend
with WOD2018 with WOD2018 sub-sampled R (Tmol decade−1) (Tmol decade−1)

(subsampled/OI) (full)

CanESM5 0.34 0.32 0.63 −89 −165
MPI-ESM1-2-LR 0.3 0.27 0.58 −77 −115
GFDL-ESM4 0.03 0.04 0.37 −60 −120
IPSL-CM6A-LR 0.31 0.25 0.69 −74 −82
MIROC-ES2L 0.24 0.22 0.45 −40 −64
NorESM2-LM 0.09 0.13 0.53 4 −45
E3SM1-1 0.06 0.08 0.53 −23 −44

Figure 4. Time series of upper-ocean (0–1000 m) column O2 in-
ventory from CMIP6 models from (solid line) full model output
and (dash line) sub-sampled and optimally interpolated model out-
put. Panel (a) is the global, and panels (b) and (c) are the Northern
and Southern hemispheres. The range of the vertical axis for the
hemispheric inventories is smaller than the global inventory. The
inventory anomaly is referenced in relation to the first 10-year aver-
ages.

3.2 Global and hemispheric O2 inventory time series

The globally integrated O2 content has a stronger declin-
ing trend than in ESMs, and the weak trend bias in mod-
els becomes even greater when reconstructed from sub-
sampled data (Fig. 4, Table 2). Only one of the models ex-
ceeded the observed global trend in the full field (CanESM5,
−165 Tmol decade−1; Table 2). When there are no observa-

tions nearby, the OI reverts to the background climatology,
thus decreasing the amplitude of anomalies. Thus, the esti-
mated O2 content tends to underestimate O2 anomalies in
the region of sparse sampling. The magnitude of underes-
timation depends on the distance from observations, which
sets the covariance according to the assumed Gaussian func-
tion. Figure 4 further shows that the sub-sampling introduces
three decadal-scale peaks in the years 1988, 2000, and 2011
for both observations and some of the models (Fig. 4). These
quasi-decadal peaks are not apparent in the full model out-
put. We hypothesize that these quasi-decadal peaks are likely
spurious, caused by the sparse sampling pattern. The magni-
tudes of these apparent spurious peaks are on the order of
100 Tmol O2. To provide a context, they are comparable to
the anomalous O2 inventory increase caused by the eruption
of Mt. Pinatubo and subsequent ocean cooling and enhanced
ocean O2 uptake (Fay et al., 2023).

The global inventory time series is divided into the north-
ern and southern hemispheric components (Fig. 4b and c).
Comparing the hemispheric and global inventory time series
indicates some notable issues with the sub-sampling. First,
northern hemispheric trends in some of the full model out-
puts (IPSL-CM6A-LR and CanESM5) have similar magni-
tudes to the observational trends. In some other ESMs, the
overall magnitudes of the southern hemispheric trends are
similar to the observations (GFDL-ESM4 and CanESM5).
Overall, the hemispheric trends demonstrate similar magni-
tudes between the north and the south for observations and
models. The reconstructed model outputs appear to underes-
timate the magnitude of the trends for all models. The magni-
tude and the causes of this underestimation are of great inter-
est and will be investigated further in the following sections.

Secondly, the observed quasi-decadal peaks primarily
appear in the southern hemispheric inventory (Fig. 4e
and f, solid black line), and some of the models repro-
duce these peaks (GFDL-ESM4, MIROC-ES2L, NorESM-
LM2, E3SM1-1) for the reconstructed model output (Fig. 4f).
There are no apparent peaks in the full model output, con-
firming that these features are spurious.
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Thirdly, in the Northern Hemisphere (Fig. 4c and d), there
is a moderate increase towards the late 1980s, and then it de-
creases strongly during the 1990s. Two of the Earth system
models (GFDL-ESM4 and E3SM1-1) show similar increases
in the early period (Fig. 4c); however, they underestimate the
decreasing trend after the 1990s. These features are distorted
in the reconstructed model output. It is difficult to determine
whether the apparent increase in oxygen content is mean-
ingful during the 1980s, but similar features are found in ear-
lier studies focusing on the near-surface waters (Garcia et al.,
2005).

The models and observations tend to disagree more sig-
nificantly in the Southern Hemisphere. Modeled inventory
trends disagree substantially from one another because of the
spurious quasi-decadal noises. While some models exceed
the observed magnitude of oxygen decline (GFDL-ESM4,
CanESM5), some other models even show increases in the
southern hemispheric O2 inventory (NorESM2-LM, IPSL-
CM6A-LR).

3.3 Spatial pattern of O2 trends and basin-wise
inventories

To examine O2 trends across ocean basins, we divided the
global data into 13 regions according to a basin mask (shown
in Fig. S1 in the Supplement). The basin O2 inventories are
integrated for each region from the full model output and
sub-sampled model (Fig. S2 and S3). Figure 5 shows the
spatial patterns of the column O2 trend (0–1000 m) from the
full model output. Blue shading shows strong O2 loss, and
red indicates O2 increase. The patterns of O2 trends from the
reconstructed model output are displayed in Fig. 6. The ef-
fect of sub-sampling does not change the spatial pattern; it
only affects the trend magnitudes. As expected, the recon-
structed model outputs exhibit weaker trend magnitudes. For
each region, the inventory time series are displayed in sep-
arate figures from Figs. S4 through S16. For the basin-scale
deoxygenation trend, the North Atlantic Ocean is the only
basin where all models show the same sign of change rel-
ative to the observation for the full-field and reconstructed
model outputs (Figs. S2 and S3).

Figure 7 shows the evolution of the spatial data coverage
for each basin. To calculate the percent coverage value, the
area of grid cells with at least one shipboard profile is di-
vided by the total area of grid cells in each basin. Overall,
the North Atlantic and Mediterranean Ocean are the most
well observed among the 13 regions. Near-surface waters are
better sampled than the deeper layers (400, 700 m). The data
coverage evolves over time, depending on the basin. Dur-
ing the 1970s and 80s, there was greater data coverage for
near-surface waters (100–200 m), and the near-surface data
coverage gradually decreased after the 1980s. However, this
pattern is not uniform through the depths. For some regions
such as the subpolar North Atlantic, there appears to be no
significant decrease in the deeper profile (700 m).

There are several notable features from this comparison.
First, models exhibit varying patterns of O2 changes, and the
model disagreements are more pronounced in the Southern
Hemisphere oceans, even in the full model output. This is
consistent with the varying hemispheric-scale trend magni-
tude, as shown in Fig. 4e and f. Approximately half of the
models show increasing or decreasing trends in the subtrop-
ical South Pacific. The observed O2 decline is strong in the
observations, but its time series is noisy, and the discrepan-
cies between the full-field and the reconstructed model out-
put are large in the Southern Ocean (Fig. S17). This is con-
sistent with the persistently low data coverage in the South-
ern Ocean (Fig. 7). The Southern Ocean contributes signif-
icantly to the spurious quasi-decadal peaks that are visible
in the hemispheric and global time series (Fig. 4); thus, the
observed trend in the Southern Ocean may include large un-
certainty.

There are two regions, namely the subpolar and subtropi-
cal North Atlantic, where observations and all models agree
in terms of the sign of changes. These two regions’ inven-
tory time series are displayed in Figs. S4 and S5. In the sub-
polar North Atlantic, the magnitude of modeled O2 changes
brackets the observation, whereas some models (CanESM5,
IPSL-CM6A-LR, E3SM1-1) exhibit even stronger O2 loss
than observations. In the subtropical North Atlantic, these
three models exhibit a similar magnitude of O2 loss as the
observations. In the equatorial Atlantic, there is a clear dif-
ference between the models and observation. The observa-
tion shows a decreasing trend, and not a single model was
able to reproduce it. Similarly, the models were not able to
reproduce the magnitude of O2 loss in the subpolar North
Pacific, with the exception of MPI-ESM-1-2-LR.

3.4 Synthesis

The basin-wise O2 trend is compared between the full-field
and reconstructed model output in Fig. 8, assessing the abil-
ity of the OI method to reproduce the full-field data. In Fig. 8,
the horizontal axis is the full model, and the vertical axis
is the reconstructed model output. Each dot indicates simu-
lated O2 trend magnitude for a basin. The solid red line is the
1 : 1 ratio, indicating where the OI method was able to fully
reproduce the trend magnitude. Most of the dots are located
between the solid red line and the dashed purple line, indi-
cating that the magnitude of the ocean deoxygenation trend
is underestimated due to the OI method applied to sparsely
sampled data.

Four regions (subtropical North Atlantic, subpolar North
Atlantic, Mediterranean, subpolar North Pacific) performed
very well in terms of capturing more than 80 % of the de-
oxygenation trend in the context of the simulation. These re-
gions are relatively well sampled, and the loss of the trend
magnitude due to the OI is minimal. In contrast, the four re-
gions (equatorial Atlantic, equatorial Pacific, equatorial In-
dian, Southern Ocean) performed very poorly, capturing less
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Figure 5. Modeled linear trend of the column O2 inventory (0–1000 m) from 1967 to 2014 from the full model output.

Figure 6. Same as Fig. 5 but for the trend reconstructed from optimal interpolation of sub-sampled model outputs.

than 30 % of the simulated deoxygenation trend. These re-
gions unfortunately are not well represented by the sub-
sampled and gap-filled data, showing the limitation of the
OI method. The strong negative trend in the Southern Ocean
(upper-left panel in Fig. 5) may be highly uncertain, and this
is concerning since the Southern Ocean significantly con-
tributes to the global oxygen content. Other basins (subtrop-
ical South Atlantic, subtropical North Pacific, subtropical

South Pacific, subtropical Indian Ocean, Arctic Ocean) are
moderately represented (30 %–80 % of the true trend).

To what extent did the OI method underestimate the global
deoxygenation trend? Figure 9 illustrates the relationship be-
tween the true global trend (on the x axis) and the estimated
trend from the sub-sampled model outputs. Each dot comes
from a model from two different ways of aggregating the
global trend. The blue dots include all basins regardless of
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Figure 7. Spatial data coverage of the pentadal O2 anomaly data from WOD18. The area covered by grid cells with at least one profile is
divided by the total area for each basin. Blue lines are Atlantic basins. Magenta lines indicate Pacific basins. Indian basins are in yellow, and
cyan is used for the Southern Ocean and the Arctic Ocean. Basin masks are defined in Fig. S1 and are coded by color. Abbreviations for the
basin names are as follows: subpolar North Atlantic (SPNA), subtropical North Atlantic (STNA), equatorial Atlantic (EQAT), subtropical
South Atlantic (STSA), Mediterranean Sea (MED), subpolar North Pacific (SPNP), subtropical North Pacific (STNP), equatorial Pacific
(EQPA), subtropical South Pacific (STSP), equatorial Indian Ocean (EQID), subtropical South Indian Ocean (STSI), Southern Ocean (SO),
and Arctic Ocean (AO).

Figure 8. Basin-wise relationship between fully sampled and sub-
sampled O2 trends for seven CMIP6 models. Data points on or near
the 1 : 1 line (solid red) indicate that sub-sampled data adequately
reproduced the fully sampled modeled trend. Abbreviations for the
basin names are as follows: subpolar North Atlantic (SPNA), sub-
tropical North Atlantic (STNA), equatorial Atlantic (EQAT), sub-
tropical South Atlantic (STSA), Mediterranean Sea (MED), subpo-
lar North Pacific (SPNP), subtropical North Pacific (STNP), equato-
rial Pacific (EQPA), subtropical South Pacific (STSP), equatorial In-
dian Ocean (EQID), subtropical South Indian Ocean (STSI), South-
ern Ocean (SO), and Arctic Ocean (AO).

the ability of the OI method to reconstruct the true trend.
The purple dots exclude the equatorial basins, as well as the
Southern Ocean. The linear regression among the seven mod-
els informs us that the sub-sampling and the gap filling with
the OI method can capture approximately two-thirds (68 %,

Figure 9. Global relationship between fully sampled and sub-
sampled model O2 trend. Blue dots indicate the seven CMIP6 mod-
els with full global model output. Purple dots indicate the same, ex-
cept the four poorly represented regions (equatorial Atlantic, equa-
torial Pacific, equatorial Indian, Southern Ocean) are excluded.

purple line) of the true trend, excluding the low-confidence
regions. Looking at the distribution among the models, the
spread of this ratio is 19 %, as calculated by the standard de-
viation. If all basins are included, the fraction that is retrieved
by the OI method decreases to 58 % (blue line).

One of the implications from the model analysis is that
the optimal interpolation method used in this study may re-
sult in the significant underestimation of the dissolved oxy-
gen trend in observations. The observation-based global oxy-
gen content trend can be adjusted assuming that the ratio of
the deoxygenation trend between the sub-sampled and full
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model output is approximately two-thirds (68± 19 %), as de-
termined by the CMIP6 ESMs. Optimal interpolation of the
WOD18 oxygen profiles estimated a 1.5 % O2 decline over
the last 50 years, but the true O2 decline may be in the range
of 1.7 % to 3.1 %. This partially overlaps with the recent es-
timates of the global oxygen decline, which is in the range of
0.5 %–3.3 % (IPCC, 2022), but suggests that the low end of
that range is very unlikely.

4 Discussion

The premise of this study is that Earth system models can
provide useful information about the uncertainties in the
global ocean deoxygenation rate due to the sparse sampling
and the specific gap-filling method used with observations.
The models disagree amongst each other and with the ob-
servations because of different and imperfect representations
of processes due to model structures, parameterizations, and
the presence of natural variability. However, a model can es-
timate the observational sampling bias by comparing its true
model state to one that is reconstructed by sub-sampling the
model output according to the pattern of shipboard profiles
(bottle and CTD) from the WOD18.

The model-based analyses in this study are generally con-
sistent in showing that sub-sampling with the gap-filling
method yields weaker trends than the full model output. The
gap-filling method used in this study is a relatively simple
implementation of optimal interpolation (OI), which pro-
vides the best-fit distribution of O2 anomaly in the least-
square sense assuming a Gaussian covariance structure of
the data. Our mapping approach is admittedly simple, but
this choice has certain benefits, for example, that the results
from a simple method are easy to understand and that it is
also easy to notice and to correct mistakes. It can be repli-
cated by other groups relatively easily. If the ocean deoxy-
genation has a wide-spread, large-scale signal, as well as re-
gional hotspots, we anticipate that a simple method should, at
least, capture the majority of the large-scale components and
some regional features. There are some drawbacks in that it
tends to smooth out spatial gradients, and it may not rep-
resent regional signals very well in data-poor regions. This
OI method essentially predicts a diminishing anomaly when
there is no observation nearby with the assumed e-folding
length scale. If there is a widespread O2 decrease, the OI can
underestimate the trend in a sparsely sampled region. Our
result confirmed this tendency for the global deoxygenation
trends from the subset of CMIP6 Earth system models. Our
analysis, based on seven such models, suggests that approx-
imately two-thirds of the true trend are captured by the re-
constructed model output. This conclusion generally applies
to all models independently of the model skills in capturing
the observed trend for the global and hemispheric invento-
ries (compare left and right column of Fig. 4) and for the
basin-wise trends (compare Figs. 5 and 6). Some ocean re-

gions have better coverage than others, and significant re-
gional variations exist for the sampling density and thus the
performance of OI. For example, the North Atlantic and sub-
polar North Pacific are relatively well sampled, and the OI
was able to capture more than 80 % of the true trend. In these
well-sampled regions, detailed analyses of ocean deoxygena-
tion rates are likely to be fruitful using models and observa-
tions using the OI method.

Broadly speaking, the Northern Hemisphere oceans are
generally better sampled than the Southern Hemisphere
oceans, but the overall trends appear to be equally con-
tributed by both hemispheres (Fig. 4). Basin-wise analysis
revealed diverging basin-wise trend patterns among the mod-
els (Figs. 5 and 6). There is no consistent pattern in the
contributions from different regions to the overall trend re-
gardless of the sampling density. Also, there is no consis-
tent pattern in the sign of multi-decadal O2 trends, except
for the North Atlantic Ocean, where all models are in gen-
eral agreement. This region has the highest sampling density
(Fig. 7), and the full-field and reconstructed O2 trends are
in good agreement (Fig. 8). Data coverage is not the only
factor, but it plays an important role in the performance of
the OI method. The North Atlantic is sampled at 20 %–50 %
density based on 1◦× 1◦ grid cells with decreasing coverage
from the surface to deeper depths and from subpolar to sub-
tropical latitudes (Figs. 7 and S17). In the low-sample region,
namely, the Southern Ocean, whose data coverage is persis-
tently less than 13 %, the OI method struggled to reconstruct
the full-field O2 trends. In this region, historical observations
are limited to certain longitudes or latitudes (e.g., Drake Pas-
sage) and the repeat hydrographic cruises (Fig. 2), and it was
clearly inadequate to represent the full-field data.

It is useful to compare oxygen content trends using mul-
tiple gap-filling approaches to assess the uncertainties from
different methodologies (IPCC, 2022). The framework de-
veloped in this study may be helpful to further deepen such
intercomparison studies and to quantify the skill of differ-
ent gap-filling methods in the context of model output. Such
comparison studies may reveal what sampling density is suf-
ficient to reconstruct the real trend. For such an exercise, it is
important to select model-derived oxygen fields that include
realistic background variability. For the OI method, it is also
crucial to have the covariance structure of the O2 field. An
important caveat for this study is that the models used here
were not eddy resolving, and we also used a Gaussian covari-
ance with a prescribed length scale. Mesoscale ocean eddies
are energetic features with characteristic spatial scales of 10–
100 km and characteristic timescales of several months. The
model outputs did not include this type of internal ocean vari-
ability, and the modeled fields did not include the mesoscale
noises that are present in the observation. The use of non-
eddying models reduces the level of internal ocean variability
to be much lower than the observations. Thus, we are not able
to address to what extent the trend estimates vary depending
on the presence of ocean eddies and smaller-scale variability,
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which is a caveat in this study. It may be possible to emu-
late the mesoscale eddy noise (and uncertainties from other
factors such as instrumental errors) and to estimate a more
realistic covariance structure of O2 fields using outputs from
detrended high-resolution simulations, but this is beyond the
scope of this paper and is left for future study.

This paper has focused on mapping and the trends of to-
tal O2, which consist of two sub-components, oxygen satu-
ration (O2sat) and apparent oxygen utilization (AOU). O2sat
strongly depends on temperature, with a minor contribution
from salinity, and explains less than half of the observed O2
trend (Ito et al., 2017; Schmidtko et al., 2017). Most uncer-
tainty is associated with the AOU component since temper-
ature is measured with much higher sampling rates, and its
mapping uncertainty would be significantly lower than that
of O2 or AOU. This paper has also focused on the map-
ping in depth coordinates. While it is beyond the scope of
this paper, interpolating O2 along isopycnal surfaces may po-
tentially reduce the mapping uncertainty. Temperature varia-
tion on an isopycnal is much smaller than that of O2 so the
O2sat variation would be better constrained along isopycnals.
Also, ocean transport in the interior ocean is primarily ori-
ented along isopycnals, and the interpolation on isopycnal
surfaces can potentially reduce the spurious errors. However,
there could be technical difficulties as the bottle O2 measure-
ments come from discrete bottle samples, and the sampling
depths are unlikely to match the location of desired isopyc-
nals, leading to an interpolation error. In the end, one would
have to try and evaluate how much uncertainty can be re-
duced by mapping along density horizons, which would be a
promising topic for future study.

While sampling sparseness is likely a major source of un-
certainty, there are other sources of uncertainties that remain
open for further investigation. Historical O2 profiles may
have evolving precision and uncertainty that are difficult to
replicate in a model-based study. For example, a Winkler
titration performed on a Nansen bottle during the 1960s may
have different precision than a more recent Winkler titration
done on a Niskin bottle using amperometric or photometric
end-point detection methods. Looking ahead, integration of
autonomous float O2 data will pose challenges in terms of as-
sessing uncertainties that are changing with the evolution of
measurement techniques. Another important area of future
investigation would be the uncertainties from natural vari-
ability. A recent modeling study (Fay et al., 2023) showed
overlapping magnitudes of externally forced and internally
generated O2 anomalies in the context of volcanic eruption.
Quantification of natural variability is difficult to achieve us-
ing observations or a collection of single runs from multiple
models. The best approach would be to use multi-model large
ensembles with adequate ensemble members of randomized
natural climate variability.
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