Corrigendum to Biogeosciences, 21, 893–909, 2024 https://doi.org/10.5194/bg-21-893-2024-corrigendum © Author(s) 2024. This work is distributed under the Creative Commons Attribution 4.0 License.

Corrigendum to "Understanding the effects of revegetated shrubs on fluxes of energy, water, and gross primary productivity in a desert steppe ecosystem using the STEMMUS–SCOPE model" published in Biogeosciences,

Enting Tang¹, Yijian Zeng¹, Yunfei Wang^{1,4}, Zengjing Song^{1,5}, Danyang Yu¹, Hongyue Wu^{2,3}, Chenglong Qiao^{2,3}, Christiaan van der Tol¹, Lingtong Du^{2,3}, and Zhongbo Su¹

¹Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, 7500 AE Enschede, the Netherlands ²Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, China

³Key Laboratory for Restoration and Reconstruction of Degraded Ecosystem in Northwest China of Ministry of Education, Ningxia University, Yinchuan 750021, China

⁴School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China
 ⁵Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing 400715, China

Correspondence: Yijian Zeng (y.zeng@utwente.nl), Lingtong Du (dult80@nxu.edu.cn), and Zhongbo Su (z.su@utwente.nl)

Published: 13 March 2024

21, 893–909, 2024

The Supplement to the abovementioned paper, as originally submitted by the authors, has been updated to address typographical and mathematical errors in the following equations. Equation (S6) in the Supplement has been corrected as below:

$$G(t) = \frac{\Gamma}{\sqrt{\pi}} \int_{-\infty}^{t} \frac{\mathrm{d}T(0,s)}{\sqrt{t-s}},$$
(S6)

where *t* is the current time step; T(0, s) represents the skin temperature at the soil surface (at depth zr = 0 cm); and *s* is the integration variable, supposing the skin temperature was simulated at discrete time s_0, s_1, \ldots, s_n over the period (t_{i-12}, t_i) .

Equation (S12) in the Supplement should read as follows:

$$q_{L} = q_{Lh} + q_{LT} + q_{La}$$

$$= -\rho_{L} \bigg[K_{Lh} \bigg(\frac{\partial h}{\partial z} + 1 \bigg) + (K_{LT} + D_{Ta}) \frac{\partial T_{s}}{\partial z}$$

$$+ \frac{K_{Lh}}{\gamma_{w}} \frac{\partial P_{g}}{\partial z} \bigg],$$

$$q_{V} = q_{Vh} + q_{VT} + q_{Va}$$

$$= - \bigg(D_{Vh} \frac{\partial h}{\partial z} + D_{VT} \frac{\partial T_{s}}{\partial z} + D_{Va} \frac{\partial P_{g}}{\partial z} \bigg).$$
(S12)

 K_{Lh} is the isothermal hydraulic conductivity $[m s^{-1}]$, while K_{LT} is the thermal hydraulic conductivity $[m^2 s^{-1} \circ C^{-1}]$. *h* is the capillary pressure head [m]. T_s is the soil temperature $[^{\circ}C]$. P_g is the mixed pore-air pressure [Pa]. γ_w is the specific weight of water $[kg m^{-2} s^{-2}]$. D_{Ta} is the transport coefficient for adsorbed liquid flow caused by the temperature gradient $[m^2 s^{-1} \circ C^{-1}]$.

Equation (S14) in the Supplement has been revised to incorporate a negative symbol preceding the entire term on the right-hand side of the equation:

$$q_{a} = -\left(D_{e}\frac{\partial\rho_{da}}{\partial z} + \rho_{da}K_{g}\frac{\partial P_{g}}{\partial z} - H_{c}\rho_{da}\frac{q_{L}}{\rho_{L}} + \theta_{a}D_{Vg}\frac{\partial\rho_{da}}{\partial z}\right).$$
(S14)

Equation (S19) in the Supplement has been corrected as follows:

$$V_e = \frac{J(C_i - \Gamma^*)}{5(C_i + 2\Gamma^*)}.$$
(S19)

Equation (S22) in the Supplement is to be presented as follows:

$$A_n = \min(V_c, V_e) = A_g - R_d.$$
(S22)