

Supplement of

Effect of straw retention and mineral fertilization on P speciation and P-transformation microorganisms in water-extractable colloids of a Vertisol

Shanshan Bai et al.

Correspondence to: Xiaoqian Jiang (jiangxq7@mail.sysu.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

Table S1 Chemical shift of peaks detected in ³¹P-NMR spectra of NaOH-Na₂EDTA samples

Categorya	P form or compound class	Chemical Shift (ppm)				
Inorganic P						
	Orthophosphate	6.0				
	Pyrophosphate	-4.39±0.03				
Organic P						
Orthophosphate Monoesters						
	myo-IHP	$4.28{\pm}0.01,4.44{\pm}0.02,4.81{\pm}0.01,5.71{\pm}0.02$				
	scyllo-IHP	3.96±0.02				
	α-glyc	5.01±0.02				
	β-glyc	4.66±0.02				
Orthophosphate dies	sters DNA	-0.41±0.04				

 $^{^{}a}myo\text{-}inositol\ hexakisphosphate\ (myo\text{-}IHP),\ scyllo\text{-}inositol\ hexakisphosphate\ (scyllo\text{-}IHP),\ \alpha\text{-}glycerophosphate\ (\alpha\text{-}glyc),\ \beta\text{-}glycerophosphate\ (\beta\text{-}glyc).}$

Table S2 The KO number, function descriptions, gene name and classification of the investigated genes referring to KEGG database

Classification		K	KO number Details for gene function		Corresponding gen
Genes involved in solubilization	inorganic	P- K00117		quinoprotein glucose dehydrogenase	gcd
			K01507	inorganic pyrophosphatase	ppa
			K00937	Polyphosphate kinase	ppk
			K01524	$exopolyphosphatase \ / \ guanosine-5'-triphosphate, 3'-diphosphate \ pyrophosphatase$	ppx
Genes involved in mineralization	n organic	P-	K05774	C-P lyase subunit, ribose 1,5-bisphosphokinase	phnN
			K00111	Glycerol-3-phosphate dehydrogenase	glpA
			K00112	Glycerol-3-phosphate dehydrogenase subunit B	glpB
			K00113	Glycerol-3-phosphate dehydrogenase subunit C	glpC
			K00864	Glycerol kinase glpK	glpK
			K01083	3-Phytase	phy
			K01093	4-phytase	appA
			K01126	glycerophosphoryl diester phosphodiesterase	ugpQ
			K01077	alkaline phosphatase	phoA
			K01113	alkaline phosphatase	phoD
			K09474	acid phosphatase (class A)	phoN
			K03788	acid phosphatase (class B)	aphA
Genes involved in P-starvation response regulation		tion	K07636	two-component system, OmpR family, phosphate regulon sensor histidine kinase PhoR	phoR
		K07657	two-component system, OmpR family, phosphate regulon response regulator PhoB	phoB	
Genes involved in P-uptake and transport system	P-uptake	and	K05813	Glycerol-3-phosphate transporter subunit, periplasmic-binding component	ugpB
		K05814	Glycerol-3-phosphate transporter subunit	ugpA	
		K05815	Glycerol-3-phosphate transporter subunit, membrane component	ugpE	
		K05816	Glycerol-3-phosphate transporter subunit, ATP-binding component	ugpC	
		K02041	phosphonate transport system, ATP-binding component	phnC	
		K02042	phosphonate transport system, membrane component	phnE	
			K02044	phosphonate transport system, periplasmic-binding component	phnD
			K02036	phosphate transport system, ATP-binding component	pstB
			K02037	phosphate transport system, membrane component	pstC
			K02038	phosphate transport system, membrane component	pstA
			K02040	phosphate transport system, periplasmic-binding component	pstS

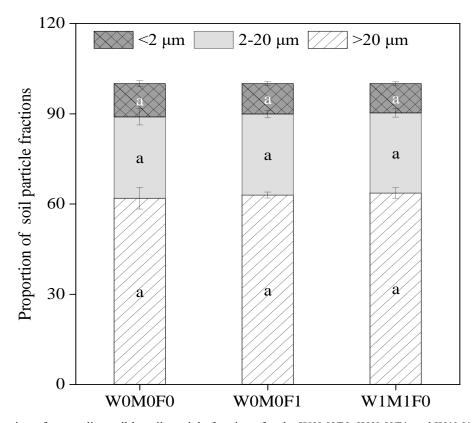


Fig. S1 Proportion of water-dispersible soil particle fractions for the W0M0F0, W0M0F1 and W1M1F0 treatments

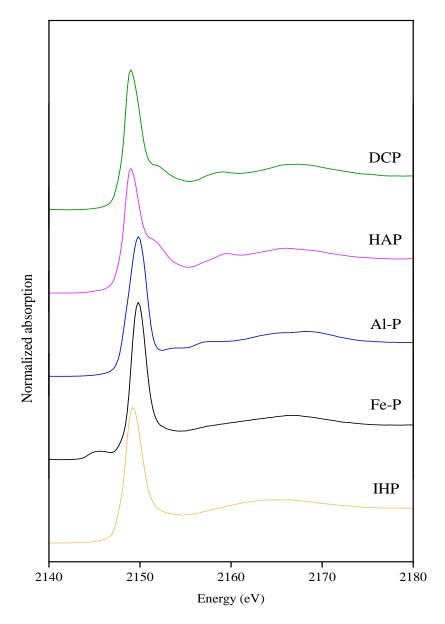


Figure S2 Phosphorus K-edge XANES spectra of P reference compounds

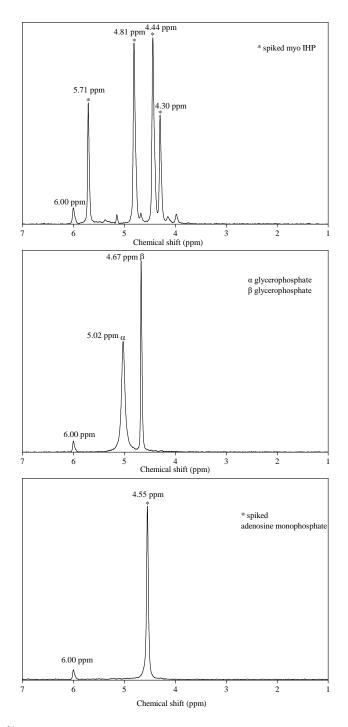


Fig. S3 The solution ^{31}P NMR spectrum of a NaOH-Na₂EDTA extract of the W0M0F0 bulk soil spiked with a) myo-inositol hexakisphosphate (Myo-IHP), b) α - glycerophosphate and β - glycerophosphate, and c) adenosine monophosphate.

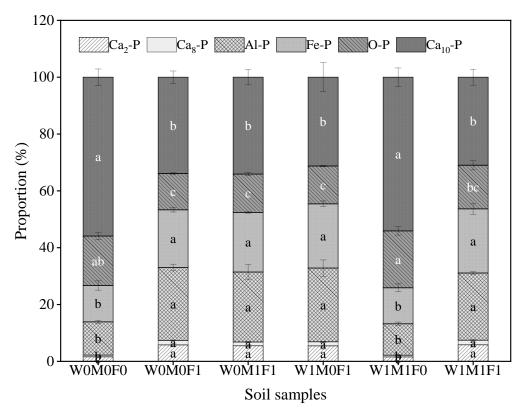


Fig. S4 Proportion of different soil inorganic phosphorus fractions in bulk soil

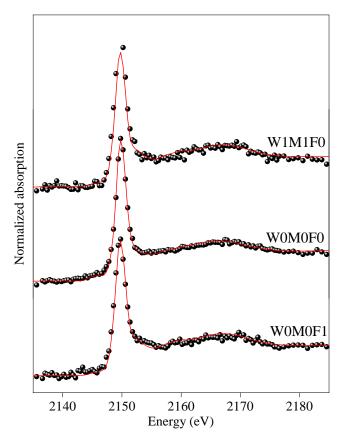
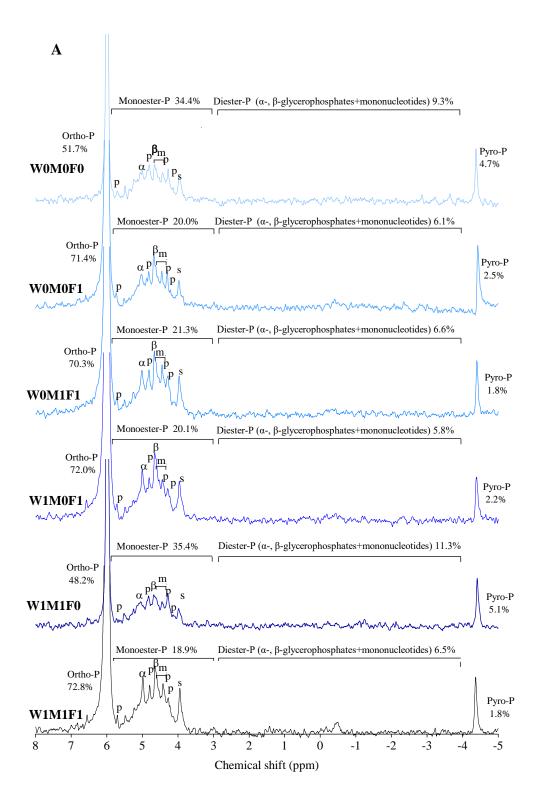



Fig. S5 Results of the linear combination fitting (LCF) of the P K- edge XANES spectra for water-extractable colloids (WECs) of the W0M0F0, W0M0F1 and W1M1F0 treatments. The raw data is represented by points and the fitting results are shown by solid lines.

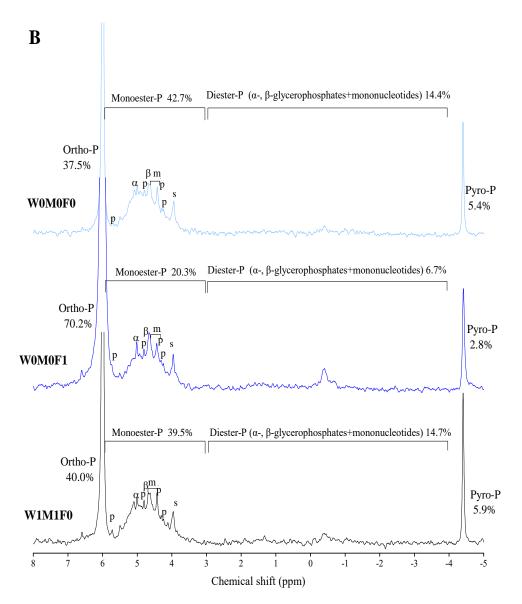


Fig. S6 Solution ^{31}P NMR spectra of NaOH–Na₂EDTA extracts of bulk soil (A) and water-extractable colloids (WECs, B) The signals were assigned as follows: orthophosphate (Ortho-P); orthophosphate monoester (Monoester-P); orthophosphate diesters (Diesters-P); pyrophosphate (Pyro-P); myo-inositol hexakisphosphate (p); syllo-inositol hexakisphosphate (s); mononucleotides (m); α -glycerophosphate (α); β -glycerophosphate (α). Calculation by including diester degradation products (i.e., Glyc+nucl: α/β - glycerophosphate and mononucleotides) with Diesters-P rather than Monoesters-P. The percentage indicated the proportion of each phosphorus compounds fraction to the extracted-P.

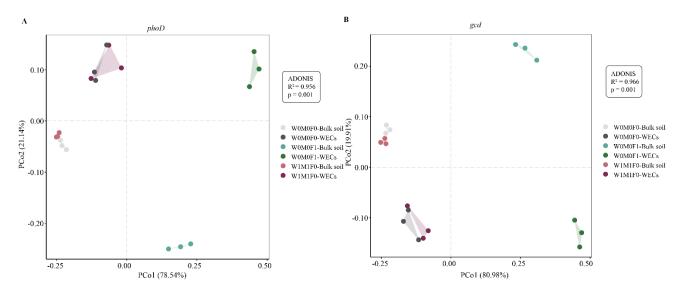


Fig. S7 Principal coordinate analysis (PCoA) of microbial community for *phoD* (A) and *gcd* (B)gene in bulk soils and water-extractable colloids (WECs)

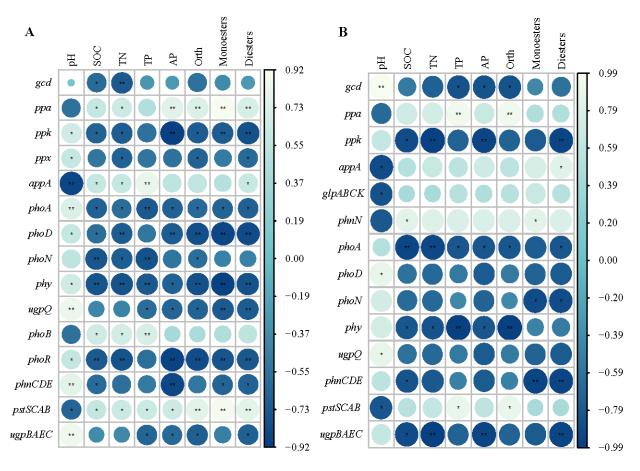


Fig. S8 Spearman correlation heatmap of P-cycling genes and soil nutrients in bulk soils (A) and water-extractable colloids (WECs, B)

The relative abundance of phn transporter systems was calculated as the average abundances of gene phnC, phnD, and phnE; the pst transporter systems was calculated as the average abundances of gene pstS, pstC, pstA, and pstB; The ugp transporter systems was calculated as the average abundances of gene ugpB, ugpA, ugpE, and ugpC. Soil properties include soil pH, soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP), available P (AP), orthophosphate (Orth), orthophosphate monoesters (Monoesters), orthophosphate diesters (Diesters). Asterisks indicate a significant association between the abundance of a given functional gene and particular soil properties: **, p < 0.01; *, p < 0.05.