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S1. Parameters values used in the reference model run 1 

Table S1 List of model parameters used in the model run that differs from the model default for 2 

the BDB restored peatland, for details of the parameter, equations see Jansson and Karlberg (2011) 3 

Symbol Parameters Value Unite References 

pcmax Surface max cover, shrub-trees/sedges/moss 0.5/0.5/1 - Nugent et al. (2018) 
krn Beer’s extinction coefficient, shrub-

trees/sedges/moss 

0.5/0.5/1 - Frolking et al. (2002) 

pck The sensitivity of reach max cover on LAI, 

shrub-trees/sedges/moss 

1/2/4 - Moore et al. (2002) 

zr The lowest shrub rooting depth, shrub-

trees/sedges/moss 

0.5/0.35/0 m Assumed 

ε Light use efficiency, shrub-

trees/sedges/moss 

1.15/1/0.65  g C 

MJ− 1 

Kross et al. (2016) 

θAmin The minimum amount of air that is necessary 

to prevent a reduction of root water uptake, 

shrub-trees/sedges/moss 

5/2/0 vol % Silvola et al. (1996) 

ψc Critical pressure head for reduction of 

potential water uptake, shrub-

trees/sedges/moss 

100/60/40 cm 

water 

pl Coefficient determines how fast the 

reduction of potential water uptake when ψc 

is reached, shrub-trees/sedges/moss 

1/0.5/4 day-1 

pmn Threshold Air temperature when 

photosynthesis starts, shrub-

trees/sedges/moss 

5/5/0 0C Moore et al. (2006) 

prl,sp Specific leaf area, shrub-trees/sedges/moss 75/45/45 g C m-

2 

Assumed 

ralai LAI Scale factor for ra of the shrub layer 100 m s-1 

lc1 Leaf allocation parameter, shrub-

trees/sedges/moss 

0.25/0.35/0.9 - He et al. (2023) 

rwc1 Root allocation parameter, shrub-

trees/sedges/moss 

0.3/0.35/0.00 - 

lLc Leaf litterfall rate, shrub-trees/sedges/moss 0.004/0.004/0.02 d-1 Calculated based on 

literature pool 

turnover rates 
lRc Root litterfall rate, shrub-trees/sedges/moss 0.00175 d-1 

lCRc Coarse root litterfall rate, shrub-

trees/sedges/moss 

0.0001 d-1 

lSc Stem litterfall rate, shrub-trees/sedges/moss 0.0005/0.0005/0.0001 d-1 

zo The surface roughness length 0.001 m Campbell et al. (2002) 

s The emissivity of the ground 0.95 - Kettridge and Baird 

(2008) 

αdry Soil albedo when tension >104 cm H2O 15 % Kellner (2001) 

αwet Soil albedo when tension <10 cm H2O 5 % 

kB-1 Difference between the natural logarithm of 

surface roughness length for momentum and 

heat 

2.3 - Humphreys et al. 

(2006) 

𝜓𝑔 The empirical correction factor compensates 

for the difference between the mean soil 

moisture potential in the top-soil layer and 

the soil moisture potential at the surface 

2.1 - Assumed 



 

 

MT The snow melting coefficients for air 

temperature 

2 kg C 

m-2 d-1 

Gustafsson et al. 

(2001) 

MR The snow melting coefficients for radiation 2×10-7 kg J-1 

θsat Total porosity * 98.8 - 90 vol % Measured 

ntortuosity Tortuosity  1  - Default 

θm Macroporosity * 30-10 vol % Liu and Lennartz 

(2019) 

kminus The minimum hydraulic conductivity 1×10-5 mm d-

1 

Alvenäs and Jansson 

(1997) 

ksat Total saturated hydraulic conductivity*  100000 - 600 mm d-

1 

McCarter and Price 

(2015) and Gauthier et 

al. (2022) 

θr Residual water content* 10-30 vol % Schwärzel et al. 

(2002); Menberu et al. 

(2021) and McCarter 

and Price (2013) 

θwilt Wilting point * 10-30 vol % 

ascale 

 
The sorption scaling coefficient to calculate 

macropore flow

 

0.05 - Assumed 

asurf The first-order coefficient for surface runoff 0.05 - Assumed 

dspace The distance between drainage ditches 500 m Measured 

zditch Drainage ditch depth 0.7 m 

pmax The maximum surface water pool cover 0.3 - Assumed 

fwcovtot The maximum amount of water on the soil 

surface pool 

50 mm Mustamo et al. (2016) 

kl First-order decomposition coefficient for 

labile C 

0.25 yr-1 Frolking et al. (2010) 

kref First-order decomposition coefficient for 

refractory C 

0.004 yr-1 

Ctot Total soil C at 1.5 m profile 101800 g C m-

2 

Calculated from 

measured bulk density 

and C concentration Ctot, layer Total soil C for each simulated layer* 625-56000 g C m-

2 

Q10 Q10 value for decomposition 3 - Lafleur et al. (2005) 

𝑝𝜃𝐿𝑜𝑤  Lower range for moisture response 50 vol % Or et al. (2007) 

𝑝𝜃𝑈𝑝𝑝 Upper range for moisture response 30 vol % 

𝑝𝜃𝑝 Shape coefficient for the response function 1 - 

pθsatact Anaerobic activity  0.1 - Scanlon and Moore 

(2000) 

h1 Thermal conductivity coefficient for peat 

soil 

0.01 W m-1 

C-1 

Lai, (2022) 

h2 Thermal conductivity coefficient for peat 

soil 

0.0075 W m-1 

C-1 

cf The coefficient for frozen surface 

conduction damping function 

0.2 C-1 Assumed 

* Note different values were used for the simulated 9 soil layers, the range from top to bottom layer was given.  4 
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S2. Time series of surface energy fluxes and soil temperature profiles, used for model 6 

evaluation and validation, and additional simulation results for future climate change impact 7 



 

 

 8 

Fig. S1 Measured (orange) and simulated (blue) daily total net radiation, sensible heat, latent 9 

heat and soil surface heat flux. 10 

 11 

 12 

Fig. S2. Measured (orange) and simulated (blue) 30-minute soil temperature profiles 13 
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Fig S3. Simulated mean annual CO2 fluxes and hydrological fluxes (precipitation -17 

evapotranspiration, and runoff) and water table depth under future year around temperature 18 

increase; scenario 0 is the reference run. Equilibrium model runs use BDB 2013-2016 setup and 19 

Rivière-du-Loup 1994-2021 climate data.  20 



 

 

  21 

Fig S4. Simulated mean annual CO2 fluxes and hydrological fluxes (precipitation -22 

evapotranspiration, and runoff) and water table depth under future year around precipitation 23 

increase or decrease by 10%; scenario 0 is the reference run. Equilibrium model runs use BDB 24 

2013-2016 setup and Rivière-du-Loup 1994-2021 climate data.  25 
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