

Supplement of

Simulating ecosystem carbon dioxide fluxes and their associated influencing factors for a restored peatland

Hongxing He et al.

Correspondence to: Hongxing He (hongxing.he@mcgill.ca, hongxing-he@hotmail.com)

The copyright of individual parts of the supplement might differ from the article licence.

1 S1. Parameters values used in the reference model run

- 2 Table S1 List of model parameters used in the model run that differs from the model default for
- 3 the BDB restored peatland, for details of the parameter, equations see Jansson and Karlberg (2011)

Symbol	Parameters	Value	Unite	References
p_{cmax}	Surface max cover, shrub-trees/sedges/moss	0.5/0.5/1	-	Nugent et al. (2018)
k _{rn}	Beer's extinction coefficient, shrub-	0.5/0.5/1	-	Frolking et al. (2002)
	trees/sedges/moss			
p_{ck}	The sensitivity of reach max cover on LAI,	1/2/4	-	Moore et al. (2002)
	shrub-trees/sedges/moss			
Zr	The lowest shrub rooting depth, shrub-	0.5/0.35/0	m	Assumed
	trees/sedges/moss		~	
З	Light use efficiency, shrub-	1.15/1/0.65	g C	Kross et al. (2016)
0	trees/sedges/moss	5/2/0	MJ ¹	\mathbf{S} inverse \mathbf{s} (1000)
Θ_{Amin}	to provent a reduction of root water uptake	5/2/0	V01 %	Silvola et al. (1996)
	shrub-trees/sedges/moss			
)//	Critical pressure head for reduction of	100/60/40	cm	
φc	potential water uptake shrub-	100/00/10	water	
	trees/sedges/moss			
p_l	Coefficient determines how fast the	1/0.5/4	day-1	
	reduction of potential water uptake when ψ_c			
	is reached, shrub-trees/sedges/moss			
p_{mn}	Threshold Air temperature when	5/5/0	⁰ C	Moore et al. (2006)
	photosynthesis starts, shrub-			
	trees/sedges/moss			
$p_{rl,sp}$	Specific leaf area, shrub-trees/sedges/moss	75/45/45	g C m ⁻	Assumed
		100	2	
r _{alai}	LAI Scale factor for r_a of the shrub layer	100	m s ·	$\mathbf{H}_{2} \text{ at al} (2022)$
l_{cl}	trees/sedges/moss	0.23/0.33/0.9	-	He et al. (2025)
rwc1	Root allocation parameter, shrub-	0.3/0.35/0.00	-	
- wc1	trees/sedges/moss			
l_{Lc}	Leaf litterfall rate, shrub-trees/sedges/moss	0.004/0.004/0.02	d-1	Calculated based on
l_{Rc}	Root litterfall rate, shrub-trees/sedges/moss	0.00175	d-1	literature pool
l_{CRc}	Coarse root litterfall rate, shrub-	0.0001	d-1	turnover rates
-	trees/sedges/moss			
l_{Sc}	Stem litterfall rate, shrub-trees/sedges/moss	0.0005/0.0005/0.0001	d ⁻¹	
Zo	The surface roughness length	0.001	m	Campbell et al. (2002)
\mathcal{E}_{S}	The emissivity of the ground	0.95	-	Kettridge and Baird (2008)
α_{dry}	Soil albedo when tension $>10^4$ cm H ₂ O	15	%	Kellner (2001)
α_{wet}	Soil albedo when tension <10 cm H ₂ O	5	%	
kB^{-1}	Difference between the natural logarithm of	2.3	-	Humphreys et al.
	surface roughness length for momentum and			(2006)
	heat			
ψ_g	The empirical correction factor compensates	2.1	-	Assumed
	for the difference between the mean soil			
	moisture potential in the top-soil layer and			
	the soil moisture potential at the surface			

M_{T}	The snow melting coefficients for air	2	ko C	Gustafsson et al
101	temperature	2	$m^{-2} d^{-1}$	(2001)
Mp	The snow melting coefficients for radiation	2×10 ⁻⁷	kg J ⁻¹	(2001)
Hant .	Total porosity *	98.8 - 90	vol %	Measured
n _{tontuogita}	Tortuosity	1	-	Default
A	Macroporosity *	30-10	vol %	Liu and Lennartz
0 m		50 10	VOI 70	(2019)
<i>k_{minus}</i>	The minimum hydraulic conductivity	1×10 ⁻⁵	$\underset{1}{\operatorname{mm}} d^{-}$	Alvenäs and Jansson (1997)
k _{sat}	Total saturated hydraulic conductivity*	100000 - 600	mm d ⁻	McCarter and Price (2015) and Gauthier et al. (2022)
θ_r	Residual water content*	10-30	vol %	Schwärzel et al.
θ_{wilt}	Wilting point *	10-30	vol %	(2002); Menberu et al.
				(2021) and McCarter and Price (2013)
	The sorption scaling coefficient to calculate	0.05	-	Assumed
ascale	macropore flow			
a _{surf}	The first-order coefficient for surface runoff	0.05	-	Assumed
d _{space}	The distance between drainage ditches	500	m	Measured
Zditch	Drainage ditch depth	0.7	m	
D _{max}	The maximum surface water pool cover	0.3	-	Assumed
fwcovtot	The maximum amount of water on the soil surface pool	50	mm	Mustamo et al. (2016)
k _l	First-order decomposition coefficient for labile C	0.25	yr-1	Frolking et al. (2010)
k _{ref}	First-order decomposition coefficient for refractory C	0.004	yr-1	
C _{tot}	Total soil C at 1.5 m profile	101800	$g_2 C m^2$	Calculated from measured bulk density
$C_{tot, layer}$	Total soil C for each simulated layer*	625-56000	$g_2 C m^2$	and C concentration
Q_{10}	Q ₁₀ value for decomposition	3	-	Lafleur et al. (2005)
$p_{\theta Low}$	Lower range for moisture response	50	vol %	Or et al. (2007)
$p_{\theta U p p}$	Upper range for moisture response	30	vol %	
$p_{\theta p}$	Shape coefficient for the response function	1	-	
$p_{\theta satact}$	Anaerobic activity	0.1	-	Scanlon and Moore (2000)
h_1	Thermal conductivity coefficient for peat soil	0.01	W m ⁻¹ C ⁻¹	Lai, (2022)
h_2	Thermal conductivity coefficient for peat soil	0.0075	W m ⁻¹ C ⁻¹	
Cf	The coefficient for frozen surface conduction damping function	0.2	C-1	Assumed

4 5

* Note different values were used for the simulated 9 soil layers, the range from top to bottom layer was given.

5

S2. Time series of surface energy fluxes and soil temperature profiles, used for model
evaluation and validation, and additional simulation results for future climate change impact

9 Fig. S1 Measured (orange) and simulated (blue) daily total net radiation, sensible heat, latent
10 heat and soil surface heat flux.

12

13 Fig. S2. Measured (orange) and simulated (blue) 30-minute soil temperature profiles

14

15

18 evapotranspiration, and runoff) and water table depth under future year around temperature

20 Rivière-du-Loup 1994-2021 climate data.

evapotranspiration, and runoff) and water table depth under future year around precipitation

- increase or decrease by 10%; scenario 0 is the reference run. Equilibrium model runs use BDB
- 25 2013-2016 setup and Rivière-du-Loup 1994-2021 climate data.
- 26

27 **References**

- Alvenäs, G., and Jansson, P.E.: Model for evaporation, moisture and temperature of bare soil: calibration
- and sensitivity analysis, Agricultural and Forest Meteorology, 88, 47-56, 1997.
- 30 Campbell, D.R., Lavoie, C., and Rochefort, L.: Wind erosion and surface stability in abandoned milled
- 31 peatlands, Canadian Journal of Soil Science, 82, 85-95, 2002.
- 32 Frolking, S., Roulet, N.T., Moore, T.R., Lafleur, P.M., Bubier, J.L., and Crill, P.M.: Modeling seasonal to
- annual carbon balance of Mer Bleue Bog, Ontario, Canada, Global Biogeochemical Cycles, 16, 4-1-4-21,
 2002.
- Frolking, S., Roulet, N.T., Tuittila, E., Bubier, J.L., Quillet, A., Talbot, J., and Richard, P.J.H.: A new model
- of Holocene peatland net primary production, decomposition, water balance, and peat accumulation,
- 37 Earth System Dynamics, 1, 1-21, 2010.
- 38 Gauthier, T.-L.J., Elliott, J.B., McCarter, C.P.R., and Price, J.S.: Field-scale compression of Sphagnum moss
- to improve water retention in a restored bog, Journal of Hydrology, 612, 128160, 2022.
- 40 Gustafsson, D., Stähli, M., and Jansson, P.-E.: The surface energy balance of a snow cover: comparing
- 41 measurements to two different simulation models, Theoretical and Applied Climatology, 70, 81-96,
 42 2001.
- 43 He, H., Moore, T., Humphreys, E.R., Lafleur, P.M., and Roulet, N.T.: Water level variation at a beaver
- pond significantly impacts net CO₂ uptake of a continental bog, Hydrology and Earth System Sciences,
 27, 213-227, 2023.
- 46 Humphreys, E.R., Lafleur, P.M., Flanagan, L.B., Hedstrom, N., Syed, K.H., Glenn, A.J., and Granger, R.:
- 47 Summer carbon dioxide and water vapor fluxes across a range of northern peatlands, Journal of
- 48 Geophysical Research: Biogeosciences, 111, G4, 2006.
- 49 Jansson, P.-E., and Karlberg, L.: User manual of Coupled heat and mass transfer model for soil-plant-
- 50 atmosphere systems, Royal institute of technology, Department of land and water resources,
- 51 Stockholm, 2011.
- 52 Kellner, E.: Surface energy fluxes and control of evapotranspiration from a Swedish sphagnum mire,
- 53 Agricultural and Forest Meteorology, 110, 101-123, 2001.
- 54 Kettridge, N., and Baird, A.: Modelling soil temperatures in northern peatlands, European Journal of Soil 55 Science, 59, 327-338, 2008.
- 56 Kross, A., Seaquist, J.W., and Roulet, N.T.: Light use efficiency of peatlands: Variability and suitability for 57 modeling ecosystem production, Remote Sensing of Environment, 183, 239-249, 2016.
- Lafleur, P.M., Moore, T.R., Roulet, N.T., and Frolking, S.: Ecosystem Respiration in a Cool Temperate Bog
- 59 Depends on Peat Temperature But Not Water Table, Ecosystems, 8, 619-629, 2005.
- 60 Liu, H., and Lennartz, B.: Hydraulic properties of peat soils along a bulk density gradient-A meta study,
- 61 Hydrological processes, 33, 101-114, 2019.
- 62 McCarter, C.P.R., and Price, J.S.: The hydrology of the Bois-des-Bel bog peatland restoration: 10 years
- 63 post-restoration, Ecological Engineering, 55, 73-81, 2013.
- 64 McCarter, C.P.R., and Price, J.S.: The hydrology of the Bois-des-Bel peatland restoration: hydrophysical
- 65 properties limiting connectivity between regenerated Sphagnum and remnant vacuum harvested peat
- 66 deposit, Ecohydrology, 8, 173-187, 2015.
- 67 Menberu, M.W., Marttila, H., Ronkanen, A.K., Haghighi, A.T., and Kløve, B.: Hydraulic and Physical
- 68 Properties of Managed and Intact Peatlands: Application of the Van Genuchten-Mualem Models to Peat
- 69 Soils, Water Resources Research, 57, 7, e2020WR028624, 2021.
- 70 Moore, T., Bubier, J., Frolking, S., Lafleur, P.M., and Roulet, N.T.: Plant biomass and production and CO₂
- exchange in an ombrotrophic bog, Journal of Ecology, 90, 25-36, 2002.

- 72 Moore, T.R., Lafleur, P.M., Poon, D.M.I., Heumann, B.W., Seaquist, J.W., and Roulet, N.T.: Spring
- photosynthesis in a cool temperate bog, Global Change Biology, 12, 2323-2335, 2006.
- Mustamo, P., Hyvärinen, M., Ronkanen, A.K., Kløve, B., and Moffat, A.J.: Physical properties of peat soils
 under different land use options, Soil Use and Management, 32, 400-410, 2016.
- 76 Nugent, K.A., Strachan, I.B., Strack, M., Roulet, N.T., and Rochefort, L.: Multi-year net ecosystem carbon
- balance of a restored peatland reveals a return to carbon sink, Glob Chang Biol, 24, 5751-5768, 2018.
- 78 Or, D., Smets, B.F., Wraith, J.M., Dechesne, A., and Friedman, S.P.: Physical constraints affecting
- 79 bacterial habitats and activity in unsaturated porous media a review, Advances in Water Resources,
- 80 30, 1505-1527, 2007.
- 81 Scanlon, D., and Moore, T.: Carbon dioxide production from peatland soil profiles: the influence of
- 82 temperature, oxic/anoxic conditions and substrate, Soil Science, 165, 153-160, 2000.
- 83 Schwärzel, K., Renger, M., Sauerbrey, R., and Wessolek, G.: Soil physical characteristics of peat soils.
- S4 Journal of Plant Nutrition and Soil Science, 165, 479-486, 2002.
- Silvola, J., Alm, J., Ahlholm, U., Hykänen, H., and Martikainen, P.J.: CO₂ fluxes from peat in boreal mires
- 86 under varying temperature and moisture conditions, Journal of Ecology, 84, 219-228, 1996.

87