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Abstract. In the context of global change, it is essential to
quantify and monitor the carbon stored in forests. Allometric
equations are mathematical models that predict the biomass
of a tree from dendrometrical characteristics that are easier to
measure, such as tree diameter, height, or wood density. Var-
ious model forms have been proposed for allometric equa-
tions. Moreover, the model choice has a critical influence on
the estimate of the biomass of a forest. So far, model selec-
tion for allometric equations has been performed based on
the tree-level predictive performance of the models. How-
ever, allometric equations are used to estimate the biomass
of plots rather than individual trees. The distribution of trees
sampled for establishing allometric equations often differs
from the forest structure. Moreover, at the plot level, the
residual individual errors for different trees can cancel off.
Therefore, we expect the plot-level predictive performance
of a model to differ from its tree-level performance. Using a
dataset giving the observed biomass of 844 trees in central
Africa and a null model for the size distribution of trees in
the forest, we simulated forest plots between 0.1 and 50 ha
in area. Then, using a Monte Carlo approach, we calculated

the mean sum of squared errors (MSS) of the differences be-
tween observed and predicted plot biomass. We showed that
MSS could be well approximated by a three-term formula,
where the first term corresponded to bias, the second one cor-
responded to the tree residual error, and the third one corre-
sponded to the uncertainty on model coefficients. For small
plots (≤ 0.1 ha), the plot-level predictive performance was
dominated by the tree residual error term. Model selection
based on plot-level predictive performance was then con-
sistent with that based on tree-level performance. For large
plots, this term vanished. Model selection based on plot-level
performance could then differ from that based on tree-level
performance. In the case of large plots, chains of models that
combined a general equation to predict biomass and local
equations to predict some of the predictors of the biomass
equation could provide a good trade-off between the bias in
and the uncertainty on model coefficients. We recommend
using plot-level rather than tree-level predictive performance
to select allometric equations. The three-term formula that
we developed provides an easy way to assess the effect of
plot size on model selection and to balance the respective
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contributions of bias, tree residual error, and the uncertainty
on model coefficients.

1 Introduction

In the context of changing climate due to increasing CO2 at-
mospheric concentration, it is essential to quantify and mon-
itor the main compartments that store or emit carbon at the
global level. Forests are one of these compartments and are
part of the solution to mitigate climate change (Lewis et al.,
2019). However, there are still uncertainties in the quan-
tification of forest carbon stocks, in particular in the trop-
ics (Rodda et al., 2024). Measuring and monitoring forest
carbon stocks involves a chain of measurements that starts
with biomass measurement at individual tree level and ends
with remote sensing techniques (Gibbs et al., 2007; Réjou-
Méchain et al., 2019). Typically, tree-level biomass mea-
surements are used to fit allometric equations that predict
the biomass of a tree from tree dendrometrical characteris-
tics that are easier to measure, such as diameter, height, or
wood density (Chave et al., 2014). Allometric equations are
used in turn to estimate the biomass of forest plots. Plot-
level biomass can be used to fit plot-level models that predict
plot biomass from plot volume and other plot characteristics,
using biomass expansion factors or related approaches (Pan
et al., 2004; Fang et al., 2007; Guo et al., 2010). These plot-
level models can then be used to estimate forest biomass at
the country (Fang et al., 2007) and continental (Fang et al.,
2014) scales. Plot-level biomass data can also be used to cal-
ibrate remote sensing indices to predict the biomass of pixels
in satellite images. Satellite images are finally used to map
forest biomass on large areas.

Because plot-level biomass data are key for large-scale
biomass estimation, it has been proposed to directly mea-
sure biomass at the plot level (Clark and Kellner, 2012).
Fast-developing measurement techniques like terrestrial or
airborne lidar may provide plot-level measures of biomass
in the future (Xu et al., 2021). However, based on destructive
measurements, plot-level measures of biomass are currently
difficult. Allometric equations thus remain an indispensable
link in the measurement chain (Vorster et al., 2020). The de-
velopment of new tree biomass allometric equations is still
mobilizing a great deal of scientific effort around the world
(Yang et al., 2024). However, the uncertainty on the choice
of the allometric equation used to convert inventory data into
biomass estimates remains a major source of error (Picard
et al., 2016). In this study, we focus on the step of the allo-
metric equation that connects the tree level to the plot level
while considering that allometric equations are intended to
provide biomass estimates at the plot level rather than at the
tree level (McRoberts and Westfall, 2014; McRoberts et al.,
2015; Paul et al., 2016).

Improving the predictive performance of allometric equa-
tions often consists of reducing their residual standard error.
This reduction can be achieved by integrating new predictors
into the equation, such as crown dimensions, trunk shape,
diameter of the largest branches, or tree architecture (Mac-
Farlane, 2011; Goodman et al., 2014; Brede et al., 2022).
New measurement techniques are indeed providing a greater
level of detail in the description of trees (Momo Takoudjou
et al., 2018; Lines et al., 2022). There is an ecological inter-
est in understanding the drivers of biomass allometry at the
tree level (Yang et al., 2024). Nevertheless, the application
of allometric equations to plot data over large areas relies on
forest inventory data. The use of detailed predictors in allo-
metric equations is thus limited by the set of dendrometrical
variables commonly available in forest inventories. In trop-
ical forests, these variables are usually limited to diameter
and species. Adding dendrometrical predictors to the model
to reduce the tree-level residual error would then inflate the
measurement cost to obtain these additional predictors at the
plot level.

Beyond the availability of predictors at the plot level, there
is a more fundamental reason for not systematically attempt-
ing to reduce the residual standard error of allometric equa-
tions. A large residual error at the tree level may be compen-
sated at the plot level when the residual errors from different
trees cancel off. The leveling off of the individual residual
error is all the more important, as the plot is large. Thus, ex-
plaining the greatest share of the variance in tree biomass
may not always be the best strategy to select an allomet-
ric equation to predict plot biomass. Assessing the predic-
tive performance of allometric equations at the plot level,
rather than at the individual level, could significantly alter
how equations are selected and improved.

Adding a predictor that is not available in inventory data
can be achieved by using an auxiliary equation to predict this
predictor. Tree height has often been incorporated in biomass
allometric equations in this way (Chave et al., 2014). Tree
height generally improves the prediction of biomass but is
rarely available in large-scale forest inventories. On the other
hand, datasets on tree height are much more abundant than
datasets on tree biomass, so a diameter–height model can
usually be fitted with higher precision than biomass mod-
els (Feldpausch et al., 2011). Thus, one option is to pre-
dict height from diameter, then biomass from diameter and
height, i.e., to use a chain of models (Feldpausch et al., 2012).
Another option is to predict biomass from diameter alone. A
pending question is which option is the best.

The objective of this study was to compare allometric
equations based on their predictive performance at the plot
level rather than at the tree level. We examined whether shift-
ing the focus from the tree to the plot influenced model selec-
tion. Different competing models were compared. We placed
ourselves in the context of fitting allometric equations, when
a calibration dataset of observed tree biomass is available and
model coefficients need to be estimated. A different context

Biogeosciences, 22, 1413–1426, 2025 https://doi.org/10.5194/bg-22-1413-2025



N. Picard et al.: Allometric equation selection 1415

Table 1. Statistics used to assess the predictive performance of a fitted allometric model f at the tree, plot, and forest levels. The mathematical
expressions are only specified for the statistics specific to this study. Otherwise, the description of the statistic is recalled. The allometric
model f was fitted to a dataset X that gave the biomass Bi and the dendrometrical characteristics xi of m trees. The coefficients θ of model
f had a multivariate normal distribution8 with covariance matrix 6. A plot with area A and tree densityN was obtained by samplingN×A
trees from X with replacement using the probability of drawing wi for the ith tree of X . The forest was the limit when the plot area A tended
to infinity for a fixed N .

Level Statistic Mathematical expression / description

Tree AIC Akaike information criterion
Tree σ Residual standard error
Tree R2 Coefficient of determination
Tree bX

1
m

∑m
i=1[Bi − f (xi ,θ)]

Tree MSEX
1
m

∑m
i=1[Bi − f (xi ,θ)]

2

Tree MEX
∫
ϑ

{
1
m

∑m
i=1[f (xi ,θ)− f (xi ,ϑ)]

}2
8(ϑ,θ,6)dϑ

Plot MSS Mean sum of squared plot-level errors
Plot (NbF )2 See below
Plot (N/A)MSEF See below
Plot N2MEF See below
Forest bF

∑m
i=1wi [Bi − f (xi ,θ)]

Forest MSEF
∑m
i=1wi [Bi − f (xi ,θ)]

2

Forest MEF
∫
ϑ

{∑m
i=1wi [f (xi ,θ)− f (xi ,ϑ)]

}2
8(ϑ,θ,6) dϑ

is when allometric equations are given with known coeffi-
cients, and a validation dataset is given to compare their pre-
dictive performance. The method we proposed can accom-
modate models fitted in different ways. It can also be used to
assess the predictive performance of a chain of models, i.e.,
a model that predicts y from x followed by another one that
predicts tree biomass from y. Such a situation is often found
when it comes to the role of tree height in the prediction of
its biomass. Our method is a Monte Carlo method that re-
lied on randomly generated plot-level data, thus allowing us
to compare equations for different plot sizes. Given a dataset
on individual tree attributes (including tree biomass), a plot
was generated by randomly picking trees while constraining
plot structural characteristics (such as tree density or basal
area) to prescribed values. These plot structural characteris-
tics were set using a null forest model. We used a dataset
on tree biomass in the Congo Basin to illustrate the method
(Fayolle et al., 2018).

Using this dataset, we addressed the following questions.
(i) Does model selection based on predictive performance at
tree level agree with model selection based on predictive per-
formance at plot level? (ii) How does plot size affect model
selection when this selection is based on predictive perfor-
mance at plot level? (iii) When extra data on tree height are
available so that a height–diameter model can be fitted, does
predicted height improve the prediction of biomass through a
chain of models? We hypothesized that the role of the resid-
ual model error, which is decisive in tree-level predictive per-
formance, decreases with plot size when evaluating plot-level
predictive performance.

2 Material and methods

The comparison and selection of allometric equations is com-
monly based on the goodness of fit of the fitted models, using
selection criteria like the Akaike information criterion (AIC),
the Bayesian information criterion (BIC), and the root-mean-
square error (RMSE). This selection mode puts the empha-
sis on the predictive performance of the models at the tree
level. Here, we assessed the predictive performance of allo-
metric equations (i) at the tree level based on a dataset of
tree biomass observations, (ii) at the plot level based on ran-
domly generated plots using a null forest model and the tree
dataset, and (iii) at the forest level based on the same null
forest model. For each of these three levels, specific perfor-
mance statistics were used (Table 1).

From a statistical standpoint, criteria like AIC or BIC may
be tricky to use to compare models that have been fitted
in different ways (e.g., ordinary-least-squares fitting on log-
transformed data versus weighted-least-squares fitting on un-
transformed data). All the models we considered were fitted
using linear regression on log-transformed data. Thus, AIC,
R2, and the residual standard error σ refer to the model fit
(i.e., the log-transformed biomass), while the other statistics
in Table 1 refer to biomass.

2.1 Tree biomass data and tree-level predictive
performance

We used the dataset on individual tree biomass described
in Fayolle et al. (2018). This dataset, denoted X , includes
the diameter, height, wood specific gravity, aboveground
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Figure 1. Diameter distribution of (a) the 844 trees sampled in the
Congo Basin forests for the measurement of their biomass (Fayolle
et al., 2018) and (b) the 10 000 trees resampled from the former set
of trees so as to conform to an exponential distribution with param-
eter 0.0689 cm−1. The red line is a density estimate dX of the dis-
tribution using a Gaussian kernel with a bandwidth determined by
Silverman’s rule of thumb. The blue line is the density dF of the ex-
ponential distribution with parameter 0.0689 cm−1. The dataset in
panel (b) was obtained from the dataset in panel (a) by resampling
each diameter x with a probability proportional to dF (x)/dX (x).

biomass, and species of m= 844 trees in the Congo Basin.
The trees belong to 52 different species and 49 different
genera. Data were collected in six countries of the Congo
Basin: Cameroon, Central African Republic, Congo, Demo-
cratic Republic of the Congo, Equatorial Guinea, and Gabon.
Details on tree measurements and data collection are given
in Fayolle et al. (2018). Trees in dataset X were sampled in
the range 10.3–208.0 cm in diameter at breast height (dbh),
with a peak of the sampling effort around 35 cm dbh (Fig. 1).
Let dX be the density of the diameter distribution of trees in
dataset X . This distribution reflects the sampling design of
trees and is unrelated to the diameter distribution of trees in
the forest.

Let f be an allometric equation that predicts the tree
biomass f (x,θ) of each tree using its dendrometrical char-
acteristics x, where θ denotes the coefficients of the model.
Model f included the bias correction factor when back-
transforming data from the log-transform. A prediction bias
remained even with this correction factor. The prediction er-
ror for a tree with observed biomassB wasB−f (x,θ). From
the prediction errors for all trees in dataset X , various per-
formance statistics could be computed, including the predic-
tion bias bX , which is the average prediction error, and the
mean squared error MSEX (Table 1). Although rarely con-
sidered in the statistics of predictive performance of allomet-
ric equations, one may also consider the prediction variabil-
ity brought by the uncertainty on the model coefficients θ .
When using a linear regression to fit the model, the estima-
tor of θ is distributed as a multivariate normal distribution
with mean θ and covariance matrix 6. Drawing coefficient

values ϑ according to this multivariate normal distribution,
computing the resulting tree biomass f (x,ϑ), and averaging
its squared difference with the prediction f (x,θ) brought the
mean error MEX (Table 1).

As a secondary dataset, denoted X ′, we used a subset of
the pantropical dataset assembled before X by Chave et al.
(2014). We kept only observations from the Congo Basin
(Cameroon, Central African Republic, and Gabon), totaling
m′ = 177 trees. The dataset gives the diameter, height, wood
specific gravity, and aboveground biomass of trees. However,
for the purposes of our study, we only kept the diameter and
height variables.

2.2 Null forest stand model and forest-level predictive
performance

Plot-level biomass data were generated using the collection
of tree biomass measurements and a null model for the di-
ameter structure of the forest. This null model had two en-
tries: the stand density N and its basal area G. Following
the hypothesis of demographic equilibrium, the null model
assumed that the forest had a reverse-J-shaped diameter dis-
tribution that could be modeled by an exponential distribu-
tion (Muller-Landau et al., 2006; Picard et al., 2021). The
parameter µ of this exponential distribution can be com-

puted from N andG as µ= [
√

2G/(πN)− x2
0/4−x0/2]−1,

where x0 is the minimum diameter for inventory in the
forest plot. For N and G we used average values given
by Picard et al. (2021), based on sample plots in central
Africa: N = 467 ha−1 and G= 29.8 m2 ha−1. These values
gave µ= 0.0689 cm−1.

An outcome Y of a plot in the null forest was randomly
drawn by resampling dataset X so that the diameter distri-
bution of trees in Y conformed to the exponential distribu-
tion with parameter µ. Let dF (x)= µexp[−µ(x− x0)] be
the density of this target distribution. Because the diameter
distribution of trees in X differed for the target distribution,
the resampling involved unequal weights. Specifically, the
ith tree of X was resampled with a weight wi proportional to
dF (xi)/dX (xi). In other words,

wi =
dF (xi)/dX (xi)∑m
j=1dF (xj )/dX (xj )

, (1)

so
∑m
i=1wi = 1. For a forest plot with areaA, theN×A trees

in Y were thus sampled from X with replacement using the
probability of drawing wi for the ith tree of X .

The forest level was reached by letting the plot areaA tend
to infinity for a fixed N . In the resulting forest-level distribu-
tion of trees, the ith tree of X had probability wi . Replac-
ing equal tree weights 1/m with these unequal weights wi
changed the predictive performance statistics. The prediction
bias at the forest level bF , the mean squared error MSEF ,
and the mean error MEF due to the uncertainty on the model
coefficients were thus obtained (Table 1).
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2.3 Error partitioning and plot-level predictive
performance

The different sources of prediction error at the plot level were
assessed using a Monte Carlo approach. Plot variability in
biomass predictions was generated by drawing different out-
comes of the null forest stand model. The variability due to
model coefficients was generated by drawing different out-
comes of the model coefficients according to a multivariate
normal distribution with mean θ and covariance matrix 6.
Calculations were performed by combining each plot out-
come with each coefficient outcome, resulting in a full facto-
rial design.

2.3.1 For a model

Let K be the number of randomly generated forest plots
and let J be the number of randomly generated model co-
efficients. Let nk be the number of trees in the kth plot,
let θj be the j th outcome of the model coefficients, and let
xki and Bki be the dendrometrical characteristics and ob-
served biomass of the ith tree of the kth plot. Let ekj =
[
∑nk
i=1Bki−f (xki,θj )]/A be the difference between the ob-

served biomass of the kth plot and its predicted biomass ac-
cording to model f using the j th coefficient value per unit of
plot area. The plot-level predictive performance of model f
was assessed using the mean sum of squares of these dif-
ferences, denoted mean sum of squared errors (MSS). Using
the calculations of the analysis of variance, this mean sum
of squared differences could be partitioned into the squared
bias, the plot variability, and the coefficient variability (Ap-
pendix A1). These three terms could be approximated by
(NbF )2, (N/A)MSEF , and N2 MEF , respectively.

2.3.2 For a chain of models

We generalized the assessment of the predictive performance
of an equation to a chain of two allometric equations, where
the response variable of the first equation is a predictor
of the second one. Our computations readily extends to a
chain of three or more allometric equations. Let g be an
allometric equation that predicts some tree characteristics
y = g(x,φ) from some dendrometrical characteristics x of
the tree. Let f be a second allometric equation that predicts
the tree biomass f (x,y,θ) using its dendrometrical charac-
teristics x and those predicted by model g. Coefficients θ
and φ are those of models f and g, respectively. Typically,
y is tree height. The chain f ◦ g cannot be compared to an-
other biomass model using AIC or BIC, whereas the MSS
statistic still allowed us to compare their predictive perfor-
mance.

To theK randomly generated plots and J randomly drawn
coefficients θ , we now add L random draws of the coeffi-
cients φ. Let φl be the lth outcome of the model coefficients.
Let eklj = {

∑nk
i=1Bki − f [xki,g(xki,φl),θj ]}/A be the dif-

ference between the observed biomass of the kth plot and
its predicted biomass according to the chain f ◦ g using the
j th coefficient value of f and the lth coefficient value of g
per unit of plot area. The mean sum of squared errors (MSS)
of these differences could be partitioned into four terms (Ap-
pendix A2): the squared bias, the plot variability, the vari-
ability due to the coefficients of model g, and the variability
due to the coefficients of model f .

2.4 Model comparisons

We compared five allometric equations (see Eqs. 3–7 in Ta-
ble 2) and one chain of equations. All these models are rooted
in the concept of allometry as defined by Huxley and Teissier
(1936). It assumes that the relative growth rates of two parts
of an individual correlate (Gould, 1966). Models (3) to (6)
correspond to simple allometry, where the ratio between rel-
ative growth rates is fixed. As discussed by White and Gould
(1965), the biologically meaningful parameters are the co-
efficients associated to covariates. Model (7) corresponds to
complex allometry, where the relative growth rate of biomass
is a convex function of the relative growth rate of diameter.
After back-transformation from the log-transform, model (7)
also corresponds to a log-normal model (Picard et al., 2015).
Its parameters correspond to maximal biomass, the diameter
where biomass reaches its maximum, and a shape parameter.
This model can account for senescence: as a tree grows, it ac-
cumulates biomass as its diameter increases, until it reaches
senescence. When senescent, it may lose biomass (because
of dead branches, holes in the trunk, etc.) while its diame-
ter still increases. Regarding the chain of equations, its first
model predicted tree height from tree diameter:

ln(H)= a6+ b6 ln(D), (2)

while its second model was model (3).
We used F-tests to compare nested models, i.e., to com-

pare models (3) and (4), models (5) and (6), and mod-
els (6) and (7). Models (3)–(7) were fitted to dataset X with
m= 844 observations, while model (2) was fitted to X ∪X ′
with m+m′ = 1021 observations. When back-transforming
the data from the log-transform, the bias correction factor
exp(σ 2/2)was used, where σ was the residual error of the fit-
ted model. Monte Carlo computations were performed with
K = 1000 and J = 1000, bringing 106 values of ekj . For the
chain assessment, we used K = 800 and J = L= 50, bring-
ing 2× 106 values of eklj . All computations were performed
with the software R.

3 Results

The predictive performances of the models differed between
the tree level and the forest level. When looking at tree-level
performance statistics, the best model was model (4). It had
at the same time the lowest AIC, the smallest residual stan-
dard error σ , the smallest prediction bias NbX , the smallest
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Table 2. Statistics on the predictive performance of five allometric equations fitted to a dataset X of 844 trees in the Congo Basin forests. The
response variable of all these models is the log-transformed tree aboveground biomass ln(B), with B in kg. ρ is the wood specific gravity
in g cm−3, D is tree diameter in cm, H is tree height in m, and s denotes the tree genus. N is the density of a forest plot with area A= 1 ha,
distributed according to a null forest model F . The quantity b is the prediction biases of tree biomass, MSE is the mean squared error of tree
biomass, and ME is the mean error due to coefficient uncertainty. For these three quantities, subscripts F and X refer to the null forest and
to the fitting dataset. AIC is the Akaike information criterion, σ is the residual standard error, and R2 is the coefficient of determination of
the fitted model.

Model (NbF )2 (N/A) (N/A) N2
× N2

× MEX AIC σ R2

ln(B)= (NbX )2 MSEF MSEX MEF

(3) a1+ b1 ln(ρD2H) 22.48 76.52 63.97 3370.0 6.87 1068.6 91.8 0.255 0.98
(4) a2s + b2s ln(ρD2H) 24.89 31.95 36.76 1722.7 5.67 879.1 −164.4 0.208 0.99
(5) a3+ b3 ln(ρ)+ c3 ln(D) 2.50 17 729.3 66.97 4622.1 7.98 1424.2 173.8 0.267 0.97
(6) a4+ b4 ln(ρ)+ c4 ln(D)+ d4 ln(H) 0.19 1804.4 59.35 3439.5 6.90 1099.7 24.0 0.245 0.98
(7) a5+ b5 ln(ρ)+ c5 ln(D)+ d5 ln(H) +e5[ln(D)]2 0.06 2540.9 59.72 3503.8 7.09 1 430.8 25.8 0.245 0.98

mean squared error (N/A)MSEX , and the smallest mean er-
ror due to coefficient uncertainty N2 MEX among the five
competing models (Table 2). When looking at forest-level
performance statistics, model (4) still had the smallest mean
squared error (N/A)MSEF and the smallest mean error due
to coefficient uncertainty N2 MEF among the five models
(Table 2). However, it was the worst-performing model in
terms of prediction bias NbF . The model with the smallest
forest-level prediction bias NbF was model (7).

The plot-level statistics (NbF )2, (N/A)MSEF , and
N2 MEF approximated the terms of the partition of MSS
well. The forest-level squared biased (NbF )2 was a good ap-
proximation of the squared bias (SB) component of MSS for
plot area greater than 50 ha (Fig. 2c). The SB component of
MSS actually showed few fluctuations around (NbF )2 as the
plot area changed (Fig. 2c). The forest-level mean error due
to coefficient uncertainty N2 MEF was also a good approx-
imation of the coefficient variability component of MSS for
plot area greater than 50 ha (Fig. 2a). Like SB, the coefficient
variability showed few fluctuations around N2 MEF as plot
area changed (Fig. 2a). In contrast, the plot variability com-
ponent of MSS sharply decreased with plot area (Fig. 2b). It
actually decreased proportionally to the inverse of plot area,
with the coefficient of proportionality being well approxi-
mated by NMSEF .

The plot-level predictive performance of a model thus
depended on plot area. For a small plot area of 0.1 ha,
MSS was dominated by its plot variability component (blue
bars in Fig. 3a). Accordingly, the model with the low-
est MSS was model (4), i.e., the model with the lowest
(N/A)MSEF . This selection agreed with the model selec-
tion based on tree-level performance statistics (Fig. 3a). The
ranking of the five competing models based on their AIC
(model (4)> (6)> (7)> (3)> (5)) was actually almost the
same as their ranking based on their MSS for a plot size of
0.1 ha (model (4)> (6)> (3)> (7)> (5)). For a plot area of
1 ha, MSS was still dominated by its plot variability com-
ponent, but the other components of MSS (violet and orange

bars in Fig. 3b) gained in importance. Model (4), which had a
large prediction bias, was outperformed by model (7), which
had the smallest prediction bias among the five models. For
a large plot area of 10 ha, the plot variability component of
MSS was no longer decisive in model selection (Fig. 3c).
Thanks to its small prediction bias and coefficient variability,
model (7) again outperformed the other models.

The choice of whether or not to add a variable to a model’s
predictors therefore depended on the level considered and the
plot size. According to the F-test to compare nested mod-
els, which is a tree-level approach, model (6) outperformed
model (5) (F = 165.5 with 841 and 840 df, p value< 0.001).
In other words, adding tree height on top of wood specific
gravity and tree diameter in the model predictors improved
the predictive performance of the model at the tree level.
Whatever the plot area, the same conclusion was reached
when comparing these two models at the plot level using
MSS (compare models (5) and (6) in Fig. 3). However, model
comparison based on MSS did not always agree with the
F-test. All sorts of disagreement could be found. Tree-level
prediction could be improved by adding the variable, while
plot-level prediction was not. On the contrary, tree-level pre-
diction was not improved by adding the variable, while plot-
level prediction was. The variable “genus” illustrated the for-
mer disagreement: model (4) outperformed model (3) at the
tree level (F = 5.45 with 842 and 746 df, p value< 0.001).
At the plot level, for a large plot area (10 ha), the performance
ranking of the two models reversed (compare models (3)
and (4) in Fig. 3c). The variable log(D)2 illustrated the latter
disagreement: model (7) did not outperform model (6) at the
tree level (F = 0.20 with 840 and 839 df, p value= 0.66). At
the plot level, the opposite conclusion was obtained for plot
areas of 1 and 10 ha (compare models (6) and (7) in Fig. 3).

Adding tree height as a predictor through a chain of mod-
els improved plot-level predictive performances for large
plots. There is no F-test or goodness-of-fit statistic to com-
pare a chain of models to a model. However, the MSS
allowed us to compare the models to the two-step chain
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Figure 2. Coefficient variability (a), plot variability (b), and squared
bias (c) as a function of plot area when predicting the aboveground
biomass of a forest plot using the allometric equation ln(B)=
a1+b1 ln(ρD2H) fitted to a dataset of 844 trees in the Congo Basin.
The dashed lines are (a) the horizontal line y =N2 MEF ; (b) the
line y = (N/A)MSEF , where A is the plot area; and (c) the hori-
zontal line y = (NbF )2, where forest plots are randomly generated
according to a null forest model F with tree density N . The x axis
has a log scale.

where tree height was first predicted from tree diameter, then
biomass was predicted from wood specific gravity, diame-
ter, and height. Predicting tree height from diameter using a
larger dataset reduced the prediction bias but brought some
additional variability due to the coefficients of the height–
diameter model. The model based on diameter alone outper-
formed the chain for a plot area of 1 ha (compare (5) and (8)

Figure 3. Partition of the mean sum of squared errors into squared
bias, plot variability, the variability due to the coefficients of
the first model, and the variability due to the coefficients of the
second model for six models or model chains (labeled on the
x axis) and for plots of area (a) A= 0.1 ha, (b) A= 1 ha, and
(c) A= 10 ha. Errors are the differences between observed and pre-
dicted plot-level aboveground biomass. Model labels follow the
model numbering in Table 2: (3) ln(B)= a1+ b1 ln(ρD2H); (4)
ln(B)= a2s+b2s ln(ρD2H); (5) ln(B)= a3+b3 ln(ρ)+c3 ln(D);
(6) ln(B)= a4+ b4 ln(ρ)+ c4 ln(D)+ d4 ln(H); (7) ln(B)= a5+
b5 ln(ρ)+c5 ln(D)+d5 ln(H)+e5[ln(D)]2; (8) chain (f ◦g), with g:
ln(H)= a6+ b6 ln(D) and f : ln(B)= a1+ b1 ln(ρD2H).
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in Fig. 3). However, as plot area increased and plot variability
vanished, the chain performed better than the model based on
diameter alone.

4 Discussion

4.1 Predictive performance statistics

Forest-level predictive performance statistics were quite dif-
ferent from tree-level ones. Model selection for allomet-
ric equations has so far been based on tree-level predic-
tive performance, such as AIC, residual standard error, and
RMSE (e.g. Chave et al., 2014). Using forest-level perfor-
mance statistics may thus shed new light on the selection of
allometric equations among competing models. The differ-
ent weighting of trees in the dataset and in the null forest
changed the performance statistics. For instance, large trees
had a much stronger weight in the dataset X than in the null
forest F . Therefore, models that are biased for large trees
will counter-perform according to bX but show better per-
formance according to bF . This result also implies that dif-
ferent forests will yield different performance statistics. In
particular, the diameter distribution of trees in the forest will
influence the forest-level performance statistics.

A significant result of our study was that the performance
of a model to predict the biomass of a plot depended on
plot size. This result is consistent with previous results based
on error propagation (Chave et al., 2004). The plot-level
performance statistics were good proxies of the MSS par-
tition. Rather than performing long Monte Carlo computa-
tions to obtain MSS, one can immediately approximate it as
(NbF )2+(N/A)MSEF+N2 MEF . This formula readily ex-
plains the change in MSS with plot size. For small plots, the
predictive performance according to MSS is determined by
the forest-level mean squared error MSEF . For large plots,
individual tree errors compensate each other and cancel off,
so MSEF no longer matters for the predictive performance.
The predictive performance is then determined by the pre-
diction bias and the variability due to model coefficients. In
other words, models with high residual standard error are
strongly penalized in tree-level selection, whereas it is much
less a selection criterion in plot-level selection for large plots.
When predicting the biomass of a large plot, what matters is
the prediction bias and the coefficient variability.

When developing allometric equations, a recurring ques-
tion is whether it is worth adding a variable among the set
of predictors of a model (Feldpausch et al., 2012; Goodman
et al., 2014). This question is equivalent to comparing two
nested models, one with the variable among its predictors
and the other without. When there was strong indication that
adding the variable improved the prediction of the biomass
of trees, the same conclusion was reached when consider-
ing the biomass of plots. However, when the benefit from
adding the variable was not so marked, the conclusion based

on tree-level prediction could differ from that based on plot-
level prediction. Adding a predictor is all the more relevant,
as it explains biomass variability. Alternatively, at the plot
level, this variability can be left as a random noise that can-
cels off if the plot is large enough. It is thus a question of
trade-off between bias and variance. The variable “genus” il-
lustrates this trade-off here. Model (4), which fits a different
allometry for each species genus, had the best tree-level pre-
dictive performance. It confirmed that different tree genera
had different biomass allometries. However, at the scale of
the forest where the species composition was not exactly the
same as in the calibration dataset, model (4) resulted in the
highest bias and the weakest overall predictive performance.
In this example, we conclude that, even there are differences
in allometry between tree genera, if our objective is to predict
the biomass of large plots, it is statistically more efficient to
leave the heterogeneity in species composition as a random
noise.

Using plot-level predictive performance is desirable to
predict plot biomass. However, to disentangle the biological
processes that contribute to biomass allometry, goodness of
fit should still be assessed at the tree level. The models we
compared were all rooted in the allometry concept. Another
family of models that predict tree-level biomass consists of
geometric models, which are rooted in the tree taper con-
cept. They predict biomass as wood density times volume,
where volume is integrated from a taper equation (Manso
et al., 2024). Another family of models emerges from the
carbon allocation strategy of trees (Wolf et al., 2011; Yang
et al., 2024). These different model families must be com-
pared against the observations to build a theory of allometry.

One limitation of our study is that measurement errors
were not taken into account in the MSS. However, measure-
ment errors generally have a minor contribution to the over-
all biomass prediction error at the plot level (Chave et al.,
2004). Another limitation is that simulated forests instead of
real forest inventory data were used to generate plot data.
We expect the bias contribution to MSS to increase with plot
size for real data instead of being almost independent of it
(Fig. 2c). If this hypothesis is verified, our results would be
conservative with respect to the role of bias in model selec-
tion.

4.2 Validation datasets

We created this study in the context of model fitting, i.e.,
when a calibration dataset is available and model coefficients
need to be estimated. A different context is when models
are given with known coefficients and a validation dataset is
available to compare their predictive performance. The MSS
computations can take place in both contexts. Nonetheless,
for a calibration dataset, by construction, model residuals
sum up to zero. This property ensures that there is no pre-
diction bias, at least for log-transformed variables and with
equal tree weights in the dataset. This is no longer true with
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a validation dataset. If the trees used to fit the model are not
representative of the area where the allometric equation is ap-
plied, it will lead to prediction bias. To exemplify this bias,
we can fit the allometric equation using dataset X , whose
trees come from central Africa, and assess its predictive per-
formance using the subset of dataset X ′ corresponding to the
Amazon (with trees coming from Brazil, Colombia, French
Guiana, and Peru). The coefficient variability and the plot
variability were of the same order for Amazonian forests as
for central African forests (Fig. 4a). However, the bias com-
ponent was about 30 times greater for Amazonian forests
than for central African forests, thus confirming that central
African forests differed from Amazonian forests. Therefore,
assessing the predictive performance of the allometric equa-
tions on a dataset that is not representative of the forest where
the equations were fitted inflates the role of bias in the overall
performance.

If some model predictors vary in a systematic way (i.e.,
non-randomly) across plots in the validation dataset, then
the model residuals will also result in a plot-level prediction
bias. To illustrate this effect, consider a pseudo-validation
dataset V that is resampled from X using weightswi given by
Eq. (1) but with the additional condition that a tree is sampled
if its height is greater than the 9/10 of the average height pre-
dicted by model (2). Dataset V is not a true validation dataset
because it is built from the calibration dataset X . Nonethe-
less, it illustrates what would happen if a validation dataset
was taken from a plot where trees were systematically more
slender than in the calibration plots. Then, the squared bias
component of the MSS is indeed inflated. For model (3), it
increases from 22 to 130 Mg2 ha−2 (Fig. 4b; to be compared
to model (3) in Fig. 3).

A similar approach can be used to assess the prediction er-
ror when predictors extend beyond the calibration range. To
illustrate this effect, we partitioned dataset X into a subset
of large trees with diameter ≥ 48.9 cm and a subset of small
trees with diameter < 48.9 cm, where 48.9 cm is the median
diameter of trees in X . One subset was then used for model
fitting, and the other one was used to compute MSS. The er-
ror of predicting the biomass of large trees with an allometric
equation fitted to small trees was much greater than the error
of predicting the biomass of small trees with an allometric
equation fitted to large trees (Fig. 4c and d). Moreover, the
bias was comparatively greater in the former case than in
the latter case. Due to heteroscedasticity, there is much more
variability in tree biomass in large trees than in small trees.
Including large trees in biomass datasets is a recommenda-
tion that has long been known (Chave et al., 2005).

4.3 Local specific versus general equations

Our results can contribute to the long-standing debate about
locally developed specific equations versus general allomet-
ric equations (Chave et al., 2004; Weiskittel et al., 2015).
Given a maximum sampling effort, and thus a given amount

Figure 4. Partition of the mean sum of squared errors (MSS) into
squared bias, plot variability, and the variability due to the model
coefficients when the dataset used for model fitting differs from
the dataset used to compute MSS: (a) the calibration dataset is
the dataset X of Fayolle et al. (2018), and the validation dataset
is a subset of the dataset of Chave et al. (2014) corresponding to
the Amazon; (b) the calibration dataset is X , and the validation
dataset is the subset of X with the slenderest trees (i.e., exclud-
ing trees less than 0.9× the average tree height); (c) the calibra-
tion dataset is the subset of X with the largest trees (D ≥ 48.9 cm),
and the validation dataset is the subset of X with the smallest trees
(D< 48.9 cm); (d) the calibration dataset is the subset of X with
the smallest trees (D< 48.9 cm), and the validation dataset is the
subset of X with the largest trees (D ≥ 48.9 cm). The model is
ln(B)= a1+ b1 ln(ρD2H), and the plot area varies from 0.1 to
10 ha (on the x axis). Errors are the differences between observed
and predicted plot-level aboveground biomass.

of available observations, the question is whether observa-
tions should be split among different categories (typically
species and sites) to fit locally developed specific equations
or whether observations should be kept together to fit a gen-
eral equation. Locally developed specific equations tend to be
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less biased (Weiskittel et al., 2015). However, because they
are based on a smaller number of observations, they tend to
have a greater residual error and a greater variability due to
coefficients. Our results indicate that the answer to this ques-
tion also depends on the size of the plots for which biomass is
predicted. Larger plots penalize biased models more heavily.
They thus tend to favor locally developed specific equations.
Our results also show that, in up to 1 ha of plot area, the plot
variability is the dominant component of MSS. Because this
component of MSS is the one related to the residual model er-
ror, it indicates that general allometric equations would tend
to be preferred to predict the biomass of plots with an area
less than or equal to 1 ha. This conclusion would have to be
confirmed using other datasets.

A variant of this question is whether or not to add an ex-
tra variable (typically tree height) as a predictor of the model
(Feldpausch et al., 2012). The extra variable can better ac-
count for local variation in biomass, thus reducing bias. On
the other hand, the requirement for this variable may reduce
the availability of data, thus increasing residual error and the
variability due to coefficients. Using a chain of models where
the extra variable is first predicted from other predictors (typ-
ically tree height predicted from diameter) can circumvent
this problem (Chave et al., 2014; Sullivan et al., 2018). Typ-
ically, the first model (the height–diameter relationship) is
locally fitted, while the second model (the biomass equation)
is a general equation, thus combining the advantages of lo-
cally fitted models with those of general models. We showed
here that this strategy could indeed be efficient, even for a
single calibration dataset.

5 Conclusions

The plot-level predictive performance of an allometric equa-
tion depended on plot size. The effect of plot size A could be
well approximated by the formula (NbF )2+(N/A)MSEF+
N2 MEF , where the first term corresponds to bias, the second
corresponds to the tree residual error, and the third one cor-
responds to the uncertainty on model coefficients. For small
plots (≤ 0.1 ha), the plot-level predictive performance was
dominated by the MSEF term. Model selection based on
plot-level predictive performance was then consistent with
model selection based on tree-level performance. For large
plots, the term depending on MSEF vanished. Model selec-
tion based on plot-level performance could then differ from
that based on tree-level performance. In the case of large
plots, chains of models that combined a general equation
to predict biomass and local equations to predict some of
the predictors of the biomass equation could provide a good
trade-off between the bias and the uncertainty in model coef-
ficients. For these large plots, introducing additional covari-
ates in the models may not be needed. The unexplained share
of biomass variability may instead be left as a random noise
that cancels off among trees. Our results may thus contribute

to save efforts in measuring tree biomass for the future de-
velopment of allometric equations.

Appendix A: Decomposition of the mean sum of squares

A1 One-model decomposition

For one model, the mean sum of squares of differences be-
tween observed and predicted plot-level biomass is

MSS=
1
KJ

K∑
k=1

J∑
j=1

e2
kj . (A1)

By the definition of the variance, the mean sum of squares
is equal to the variance plus the squared bias. As the plot area
tends to infinity, the number of trees goes to infinity and the
difference between the plot-level observed biomass and the
predicted one tends towards the forest-level bias times the
number of trees in the plot. Thus MSS=Var+SB, where

SB= e2
=

(
1
KJ

K∑
k=1

J∑
j=1

ekj

)2

≈ (NbF )
2, (A2)

Var=
1
KJ

K∑
k=1

J∑
j=1
(ekj − e)

2. (A3)

Using the calculations of the analysis of variance, the vari-
ance can in turn be partitioned into an inter-plot variance (or
plot variability) and an intra-plot variance. The variability in
plot-level biomass errors results from the individual tree er-
rors that do not compensate. Therefore, the greater the resid-
ual standard error of model f , the greater this plot variability.
As the plot area tends to infinity, the tree-level errors from
different trees compensate each other and the plot variability
vanishes. As the plot area tends to zero, the tree-level errors
from different trees do not compensate. For a very small plot
area, the plot contains very few trees whose errors accumu-
late almost independently. Therefore, the plot-level variance
of biomass differences is close to the sum of individual er-
rors:NA×MSEF . Scaling this error per unit area of the plot
finally brings (N/A)MSEF .

Regarding the intra-plot variance (or variability within a
plot), it results from the different coefficient values and re-
flects the uncertainty on these coefficients. For a tree taken
at random in the forest with probability wi , the difference in
biomass due to a model coefficient θj is

∑m
i=1wi[f (xi,θ)−

f (xi,θj )]. For the NA trees found in a plot with area A, this
difference is multiplied by NA. Integrating over the possible
outcomes of θj and scaling per unit area of the plot, it shows
that the coefficient variability is close to N2 MEF .
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To summarize, Var= (plot variability)+ (coefficient vari-
ability), where

plot variability=
1
K

K∑
k=1
(ek.− e)

2

≈ (N/A)MSEF , (A4)

coefficient variability=
1
KJ

K∑
k=1

J∑
j=1
(ekj − ek.)

2

≈N2 MEF , (A5)

ek. =
1
J

J∑
j=1

ekj . (A6)

A2 Two-model decomposition

For a chain of two models, the mean sum of squares of dif-
ferences between observed and predicted plot-level biomass
is

MSS=
1

KLJ

K∑
k=1

L∑
l=1

J∑
j=1

e2
klj . (A7)

As before, the mean sum of squares is the variance plus
the squared bias, MSS=Var+SB, where

SB= e2
=

(
1

KLJ

K∑
k=1

L∑
l=1

J∑
j=1

eklj

)2

, (A8)

Var=
1

KLJ

K∑
k=1

L∑
l=1

J∑
j=1
(eklj − e)

2. (A9)

Again, the variance can be partitioned into an inter-plot
variance (or plot variability) and an intra-plot variance (or
coefficient variability), Var= (plot variability)+ (coefficient
variability), where

plot variability=
1
K

K∑
k=1
(ek..− e)

2, (A10)

coefficient variability=
1

KLJ

K∑
k=1

L∑
l=1

J∑
j=1

× (eklj − ek..)
2, (A11)

ek.. =
1
LJ

L∑
l=1

J∑
j=1

eklj . (A12)

Now the coefficient variability can be partitioned into
the variability due to the coefficients of model g and that
due to the coefficients of model f , (coefficient variabil-
ity)= (variability due to g coefficients)+ (variability due to

f coefficients), where

variability due to g coefficients

=
1
KL

K∑
k=1

L∑
l=1
(ekl.− ek..)

2, (A13)

variability due to f coefficients

=
1

KLJ

K∑
k=1

L∑
l=1

J∑
j=1
(eklj − ekl.)

2, (A14)

ekl. =
1
J

J∑
j=1

eklj . (A15)
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