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Abstract. Over the past years, microbially driven models
have been developed to improve simulations of soil organic
carbon (SOC) and have been put forward as an improve-
ment to assess the fate of SOC stocks under environmental
change. While these models include a better mechanistic rep-
resentation of SOC cycling compared to cascading-reservoir-
based approaches, the complexity of these models implies
that data on SOC stocks are insufficient to constrain the ad-
ditional model parameters. In this study, we constructed a
novel depth-explicit SOC model (SOILcarb — Simulation of
Organic carbon and its Isotopes by Linking carbon dynam-
ics in the rhizosphere and bulk soil) that incorporates multi-
ple processes influencing the §!3C and A'C values of SOC.
This was used to assess if including data on the §'3C and
A'C values of SOC during parameter optimisation reduces
model equifinality, the phenomenon that multiple parameter
combinations lead to a similar model output. To do so, we
used SOILcarb to simulate depth profiles of total SOC and
its §13C and A'*C values. The results show that when the
model is calibrated based on only SOC stock data, the resi-
dence time of subsoil organic carbon (OC) is not simulated
correctly, thus effectively making the model of limited use
to predict SOC stocks driven by, for example, environmen-
tal changes. Including data on §'3C in the calibration process
reduced model equifinality only marginally. In contrast, in-
cluding data on A'*C in the calibration process resulted in
simulations of the residence time of subsoil OC being consis-
tent with measurements while reducing equifinality only for
model parameters related to the residence time of OC associ-
ated with soil minerals. Multiple model parameters could not

be constrained even when data on both §'3C and A'*C were
included. Our results show that equifinality is an important
phenomenon to consider when developing novel SOC mod-
els or when applying established ones. Reducing uncertainty
caused by this phenomenon is necessary to increase confi-
dence in predictions of the soil carbon—climate feedback in a
world subject to environmental change.

1 Introduction

Soils are an important component of the global carbon cy-
cle, storing a vast amount of organic carbon (OC) (Scharle-
mann et al., 2014; Ciais et al., 2013). However, it is often
overlooked that about 77 % of the soil organic carbon (SOC)
in the upper 3m of soil is present below a depth of 0.3m
(Lal, 2018). Furthermore, while topsoil (< 0.3 m depth) OC
is generally characterised by average residence times rang-
ing from years to decades (Baisden et al., 2013; Schrumpf
and Kaiser, 2015), subsoil (> 0.3 m depth) OC typically has
residence times of up to centuries or millennia (Balesdent
et al., 2018; Luo et al., 2019). Despite these long residence
times, subsoil OC is likely to play an important role in the
climate—soil carbon feedback, as subsoil OC has been shown
to be susceptible to losses upon soil warming (Hicks Pries
et al., 2017; Soong et al., 2021; Jia et al., 2019). A correct
representation of the rate of OC cycling along the soil pro-
file in biogeochemical models is necessary to make accurate
predictions about climate—soil carbon feedbacks. When these
rates are overestimated, the simulated size of the SOC stock
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will adapt too fast to changes in OC inputs. This leads to
an underestimation of the time it takes for soils to increase
their OC storage due to increases in, for example, net pri-
mary productivity or OC inputs in agroecosystems (He et al.,
2016; Wang et al., 2019).

Classical models simulating subsoil OC dynamics are
based on conceptual pools with intrinsic turnover times, with
the simulated carbon generally cascading along a sequence of
model pools. The rate of OC turnover is generally calculated
as a function of abiotic factors and the chemistry of organic
compounds. Such models have been developed as stand-
alone models (e.g. Elzein and Balesdent, 1995; Ota et al.,
2013; Wang et al., 2015) or have been incorporated in ecosys-
tem models (e.g. Camino-Serrano et al., 2018; Koven et al.,
2013). These biogeochemical models have been criticised,
as they do not incorporate the emerging understanding of the
controls on soil organic carbon (SOC) dynamics (Blankin-
ship et al., 2018; Schmidt et al., 2011; Dungait et al., 2012;
Bradford et al., 2016). For example, these models do not ex-
plicitly simulate soil microbes, which are both decomposers
and important precursors of stabilised SOC (Denef et al.,
2010; Kastner and Miltner, 2018; Kogel-Knabner, 2002; Six
et al., 2006), and organo-mineral associations, which protect
SOC from decomposition (Kleber et al., 2015, 2021; Sollins
et al., 1996). In addition, model pools with a strong inherent
recalcitrance, such as the “passive pool” in models such as
DayCent (Parton et al., 1987) and the “humified organic mat-
ter pool” in RothC (Coleman et al., 1997), are assumed to be
the result of humification, a theory that is being considered
flawed and obsolete (Kleber and Lehmann, 2019; Lehmann
and Kleber, 2015).

As a reaction to this emerging understanding of the con-
trols on SOC dynamics over the past decades, several mech-
anistic, microbially driven models simulating depth profiles
of SOC have been developed (e.g. Ahrens et al., 2015, 2020;
Dwivedi et al., 2017; Riley et al., 2014; Yu et al., 2020; Zhang
et al., 2021). These models share multiple characteristics,
such as the explicit representation of soil microbes and the
protection of SOC by association with soil minerals. More-
over, the increasing residence time of SOC with soil depth is
simulated as an emerging function of biotic and abiotic soil
properties (Ahrens et al., 2020). This improves the mecha-
nistic representation of SOC dynamics in these models com-
pared to first-order decay models, which generally use an ex-
ponentially decreasing parameter with depth to force the de-
creasing processing rate of SOC along the soil profile (Koven
et al., 2013; Wang et al., 2015, 2020).

This new generation of SOC models is characterised by
an increase in model complexity and in the number of model
parameters (Campbell and Paustian, 2015; Lawrence et al.,
2009). This is an important consideration, as an increase
in parameter uncertainty can outweigh model improvements
due to a better mechanistic description of the system, thereby
increasing the overall model error (Van Rompaey and Gov-
ers, 2002). Finding an optimal balance between errors re-
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lated to process representation and data availability is of
major importance to create confidence in model outputs
(Schindler and Hilborn, 2015). A model that is too complex
with respect to the availability of data can result in multi-
ple combinations of parameter values that lead to a near-
optimal solution, so-called “behavioural models”. This phe-
nomenon has been referred to in the literature by multiple
terms, such as equifinality (e.g. Beven, 2006, 1993), non-
uniqueness (Beven, 2006) or non-identifiability of model pa-
rameters (Brun et al., 2001; Sierra et al., 2015). Equifinality
is a major issue for models simulating hydrology (e.g. Beven
and Freer, 2001), SOC (e.g. Sierra et al., 2015; Braakhekke
et al., 2013; Marschmann et al., 2019), soil nitrogen (e.g.
Schulz et al., 1999) and ecosystem models in general (e.g.
Luo et al., 2009; Tang and Zhuang, 2008). In the case of
SOC models, models characterised by equifinality are often
able to make correct predictions of steady-state SOC stocks,
although these stocks can be predicted by different distribu-
tions of SOC among the simulated model pools (Braakhekke
et al., 2013). The problems (and uncertainty) arise when dif-
ferent behavioural models are used to make predictions of
SOC stocks based on changing environmental conditions or
OC inputs. In this case, behavioural models starting from
an identical initial SOC stock can produce a wide range of
predicted values, from which it is generally not possible to
identify the correct model (and parameter set) (Luo et al.,
2016,2017). In the present article, we use the term parameter
equifinality for this phenomenon. In addition, the term over-
parameterisation is used for the situation when the number
of model parameters is too large with respect to the available
observational support for the processes represented by these
parameters.

One way to reduce parameter equifinality is to include ad-
ditional constraints on model parameter values during the
calibration process (Braakhekke et al., 2014). This has been
done for multiple classical SOC models by simulating, in ad-
dition to total SOC, depth profiles of the ratio of stable carbon
isotopes (813C) (Amundson and Baisden, 2000; van Dam
et al., 1997; Poage and Feng, 2004), radioisotopes (AMC)
(Baisden and Parfitt, 2007; Jenkinson and Coleman, 2008;
Koven et al., 2013; Tifafi et al., 2018; Braakhekke et al.,
2014), a combination of both (Wang et al., 2020; Baisden
et al., 2002) or 2'°Pb (Braakhekke et al., 2013). Some mech-
anistic models also simulate the behaviour of “C (Ahrens
et al., 2015, 2020; Dwivedi et al., 2017; Yu et al., 2020).
While it has been shown that simulating these additional vari-
ables puts meaningful constraints on parameter values, mea-
surements of the necessary data are costly and hence such
data are not widely available. On the other hand, 813C iso-
tope ratios can be rapidly and relatively cheaply measured.
While these isotopes do not decay radioactively like '“C,
multiple processes that take place over decadal to centennial
timescales influence depth patterns of the §'3C value of SOC.
For example, it has been shown that long-term changes in
the 813C value of vegetation (Keeling, 1979; Schubert and
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Jahren, 2015) influence the § 13C value of SOC along the
depth profile considerably (Paul et al., 2019). In addition,
there is evidence that microbial necromass, which constitutes
up to 50 % SOC (Rumpel and K&gel-Knabner, 2010; Wang
et al., 2021; Angst et al., 2021), is generally enriched in Bc
compared to their substrate (Dijkstra et al., 2006; Gleixner
et al., 1993; Miltner et al., 2004). Explicitly simulating the
fate of microbial necromass and its '3C isotopes therefore
has the potential to better constrain the rate of the formation
of stabilised microbial necromass in soils (§antr1°1(:kové etal.,
2018). Lastly, as above- and belowground C inputs to the soil
generally have different §'3C values (Bowling et al., 2008;
Werth and Kuzyakov, 2010), simulating the 8'3C value of
these inputs has the potential to better constrain the vertical
mixing of OC from different sources along the soil profile. To
the best of our knowledge, the potential of using '3C isotope
data to constrain the parameter values of a microbially driven
and depth-explicit SOC model has to date not been explored.
Therefore, the aim of this study is to assess to what ex-
tent the simulation of the §13C and A!*C values of SOC, in
addition to SOC itself, allows model parameter values of a
microbially driven and depth-explicit SOC model to be bet-
ter constrained, thereby reducing model equifinality. To do
so, we constructed a novel depth-explicit SOC model that
incorporates multiple processes that influence the 8'3C and
A'C values of SOC. We hypothesised that (1) calibrating a
microbially explicit model using only OC stock data results
in substantial parameter equifinality and (2) underestimates
the residence time of subsoil OC (following He et al., 2016),
while (3) using simulated depth profiles of §13C or A'*C or
a combination of both as additional constraints on parameter
values will narrow the range of optimised parameter values,
which results in behavioural models (i.e. a model solution
that cannot easily be rejected). As the 8'3C value of SOC
is generally not simulated in mechanistic SOC models, we
also discuss the effect of different mechanisms on simulated
depth profiles of §'3C. As equifinality in SOC models has
received only limited research attention, increasing aware-
ness of, and solving, this problem will increase confidence
in simulations of the role soils can play in climate change
mitigation or increasing SOC stocks to improve soil health.

2 Materials and methods
2.1 The SOILcarb model

This section provides a brief description of the main pro-
cesses simulated in SOILcarb (Simulation of Organic car-
bon and its Isotopes by Linking carbon dynamics in the rhi-
zosphere and bulk soil). A detailed model description and
overview of the equations are provided in the Supplement,
as well as an overview of the state variables (Table S5 in the
Supplement) and model parameters (Table S6). The R codes
of SOILcarb are available from Van de Broek (2025). The
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presented version of SOILcarb was used to simulate depth
profiles of OC dynamics in natural forest soils. We note that
the main aim of the developed model for the present paper
was to show the effect of equifinality on model outcomes
and that the application of SOILcarb to other environments
requires further testing.

The vertical soil profile is simulated down to 1 m depth for
layers with an increasing thickness with depth. SOILcarb has
been programmed in R (R Core Team, 2024), with the dif-
ferential equations regulating the flows of OC being solved
using the /sodes solver from the deSolve package (Soetaert
et al., 2010). For the presented simulations, the model was
run for a period of 15000 years up to the year 2004. It is
noted that the current model does not include the effect of
temperature and soil moisture, limiting the model to predict
SOC and its isotopic signature under steady-state environ-
mental conditions.

2.1.1 Simulation of organic carbon dynamics

SOILcarb is divided into three compartments: (1) litter layer,
(2) rhizosphere and (3) bulk soil (Fig. 1). The litter layer
is simulated spatially separated from the soil compartments.
The rhizosphere and bulk soil compartments are used to con-
ceptually separate the parts of the soil where most OC in-
puts occur and OC cycles relatively fast (the rhizosphere)
from the zone where available OC for microbes is relatively
limited due to mineral protection and where OC cycles rel-
atively slow (the bulk soil). Inputs of OC in the litter layer
originate from litterfall, which is separated into particulate
OC (Cpoc-1) and dissolvable OC (Cpoc-1)- Depolymerisation
and microbial uptake of Cpoc.] and Cpoc.] are simulated us-
ing the equilibrium chemistry approximation (Tang and Ri-
ley, 2013) (the model assumes that dissolved organic carbon
(DOC) needs to be depolymerised before uptake, as a consid-
erable portion of DOC is generally not bio-available; Risse-
Buhl et al., 2013; Shen et al., 2015; Andreasson et al., 2009),
while microbial turnover is simulated as a logistic growth
process (Georgiou et al., 2017). Microbial OC uptake in all
compartments is reduced based on a fixed carbon use effi-
ciency (CUE), with the remaining OC being transformed to
CO,. Carbon from the litter layer is transferred to the bulk
soil through bioturbation of Cpoc. and leaching of Cpoc.1-
In the rhizosphere, OC inputs are separated into (1) rhi-
zodeposits, providing bio-available OC (Cpjoay-r) to the soil,
and (2) root turnover, providing particulate OC (Cpoc-r) to
the soil. Depolymerisation of Cpoc.r to Chioay-r i Simulated
using reverse Michaelis—Menten kinetics, whereby the rate
of depolymerisation is modified based on the ratio of mi-
crobes in the rhizosphere (Cpic.r) to Cpocr (see Supple-
ment). Uptake of Cpioay-r bY Cmicr 1S simulated using for-
ward Michaelis—Menten kinetics, whereby the rate of OC
uptake is modified based on the ratio of Cpjcr to Chioay-r-
Following microbial turnover in the rhizosphere (simulated
using a logistic growth function), the soluble portion of mi-
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Figure 1. Conceptual model of SOILcarb showing the model pools and fluxes of organic carbon in the litter layer, rhizosphere and bulk soil.

POC is particulate organic carbon; DOC is dissolvable organic carbon.

crobial cells (the cytoplasm) is transferred back to Chioay-rs
while the non-soluble portion of microbial cells is transferred
to the DOC pool in the bulk soil (Cpoc.b). A fixed portion of
Chioav-r 18 transferred to Cpoc.p to allow the direct adsorp-
tion of root-derived OC on soil minerals without first passing
through a soil microbe. From Cpoc-p, OC can either be pro-
tected by adsorption on soil minerals (Cpip-p), rendering it in-
accessible to microbial uptake, or be taken up by microbes in
the bulk s0il (Cpjc-b). Competition for Cpoc.p between min-
erals and microbes is simulated using the equilibrium chem-
istry approximation (Tang and Riley, 2013). De-protection
of Cpin-p 1s simulated as a first-order process. Vertical trans-
port of OC along the soil profile occurs as (1) bioturbation,
simulated as a diffusion process (for Cpoc-r, Cpoc-b> Cmin-b
and Cpic-p), and (2) leaching, simulated as an advection pro-
cess (for Cpipav-r and Cpoc-p). It has been shown that the rate
of de-protection of mineral-associated OC is influenced by
root exudates (Keiluweit et al., 2015). Therefore, the simu-
lated rate of de-protection of OC from minerals is a function
of the portion of the soil occupied by the rhizosphere, calcu-
lated following Finzi et al. (2015). In addition, the amount of
mineral surfaces available for the protection of OC is scaled
according to the rhizosphere volume (i.e. the larger the rhi-
zosphere volume, the larger the surface of minerals which is
in contact with OC originating from the rhizosphere).

Biogeosciences, 22, 1427-1446, 2025

2.1.2 Simulation of §'3C and A'C of organic carbon

In SOILcarb, fluxes of 3C and #C between model pools
follow fluxes of 12C. The model first calculates fluxes of 12C
between pools and subsequently uses the ratio of '>C leaving
every pool to the total amount of '>C of the respective pools
to calculate how much '>C and '#C leave every pool:

FIZC

X
Fxc = Chool * 5
poo >
12Cpool

6]

where Fx is the flux of 13C or 1*C leaving a pool, Fir¢ is
the previously calculated flux of >C leaving the same pool,
X Cpool is the amount of 13C or C in the pool which loses
OC, and 12Cpool is the amount of 12C in the pool which loses
OC. The model parameters are thus defined based on the '>C
content of every pool.

The simulated processes that affect temporal variations in
the 813C value of SOC are (1) annual changes in the sB3c
value of atmospheric CO», directly affecting the §'3C value
of vegetation; (2) the effect of atmospheric CO, concentra-
tion on kinetic fractionation against '3C during plant photo-
synthesis; (3) differences in the §'>C value of aboveground
plant biomass, belowground biomass and rhizodeposits; and
(4) heterotrophic CO; assimilation by soil microbes. The
same processes affect the temporal variation in the A'*C of
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SOC, in addition to radioactive decay. Note that no prefer-
ential microbial mineralisation of '>C relative to '3C is sim-
ulated, as consistent empirical evidence for this is lacking
(Bostrom et al., 2007; Ehleringer et al., 2000).

The difference in the 8'3C value between atmospheric
CO; and aboveground biomass is calculated for every time
step as the sum of a fixed and variable component:

diff!® Capmteat (1) = difffixed + diffyariaple (7), )

where diffgyeq i @ constant representing a fixed and user-
provided difference in 8'3C between atmospheric CO, and
aboveground biomass, and diffyayiaple (f) represents the effect
of atmospheric CO> concentration on kinetic fractionation
against '3C during photosynthesis for every time step (see
Sect. S1.6.3 in the Supplement).

The value of difffxeq is provided by the user for the last
simulation year and is assumed to be constant throughout
the simulation. For every simulated time step, the §'3C value
of aboveground biomass is subsequently calculated from a
long-term series of average annual §'3C values of atmo-
spheric CO,, which was compiled from Schmitt et al. (2012),
Bauska et al. (2015), and Graven et al. (2017) (see Fig. S2 in
the Supplement). The annual A'*C value of OC inputs from
aboveground biomass is determined from a compiled series
of annual average A!'*C values of atmospheric CO, (from
Reimer et al., 2013; Hua et al., 2013; Hammer and Levin,
2017; see Fig. S3). It was assumed that during photosynthe-
sis, the fractionation against 1400, is twice that of 13CO,, as
the mass difference between *CO5 and 12CO, is twice that
between 13CO, and '2CO, (Schuur et al., 2016).

The second simulated mechanism affecting temporal
changes in the 8'3C and A'*C values of OC inputs to the
soil is the effect of the atmospheric CO; concentration on ki-
netic fractionation against '>C during photosynthesis. This
is based on observations showing that for C3 plants, the
magnitude of fractionation against '*C during photosynthe-
sis increases with increasing atmospheric CO> concentration
(Keeling et al., 2017; Schubert and Jahren, 2012, 2015). It
has been shown that accounting for this mechanism improves
simulations of depth profiles of the §'C value of SOC (Paul
et al., 2019). The model simulates a linear effect of the atmo-
spheric CO, concentration on kinetic fractionation against
813C during photosynthesis (Keeling et al., 2017):

diffyariable (1) = ([CO2](fena) — [CO21(1)) - S, 3

where [CO;](feng) is the atmospheric CO; concentration
(ppm) in the last simulated calendar year (fenq), [CO2](¢)
is atmospheric CO; concentration in every other simulated
year t, and S represents the change in fractionation against
13C by plants per unit change in atmospheric CO, concentra-
tion (%oppm™~'; Schubert and Jahren, 2015). The value of §
was fixed at 0.014 %oppm™~!, following Keeling et al. (2017).

With respect to variations in the §'3C value of SOC with
depth, a first simulated process is caused by differences in
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813C between aboveground biomass, roots and rhizodeposits.
The §'3C value of aboveground biomass is calculated for
every time step using Eq. (2), while the 813C values of
roots and rhizodeposits are calculated using user-defined dif-
ferences in 8'3C between aboveground vegetation, on the
one hand, and roots and rhizodeposits, respectively, on the
other hand (see Sect. S1.6.4). The second mechanism is het-
erotrophic CO, assimilation by soil microbes (Santrii¢kova
et al., 2005, 2018; Nel and Cramer, 2019; Akinyede et al.,
2020, 2022). In our model simulations, we assumed that
soil microbes derive 1.1 % of their OC from heterotrophic
CO, assimilation, as quantified for a soil in Hainich National
Park, Germany, by Akinyede et al. (2020) (see Sect S1.3.1).
To simulate the effect of the §'3C and A!4C values of soil
CO, along the depth profile on the microbial §'3C and A4C
values due to heterotrophic CO, assimilation, depth profiles
of the §'3C0O, and A'¥CO, were simulated using a one-
dimensional CO; diffusion model (Amundson and Davidson,
1990; Cerling, 1984; Goffin et al., 2014) (see Sect. S1.4).

2.2 Study site

The model was applied to a deciduous forest site in Hainich
National Park (Germany; 51°04'N, 10°27'E), using data
from Schrumpf et al. (2013). The soil is an eutric Cambisol
with a sand, silt and clay content of ca. 3 %, 38 % and 59 %,
respectively (Schrumpf et al., 2011, 2013). Soil samples were
collected in 2004 in three replicates for depth intervals of 0—
5, 5-10, 10-20, 20-30, 30-40, 40-50 and 50-60 cm. Using
density fractionation on 2 mm sieved soil, the amount of OC
in (1) the free light fraction (referred to as particulate organic
carbon, POC), (2) the occluded light fraction and (3) the
heavy fraction (referred to as mineral-associated organic car-
bon, MAOC) was obtained. As SOILcarb does not simulate
aggregate dynamics, the total amount of measured OC was
reduced by the amount of OC in the occluded light fraction,
which constituted 8.4 % of total SOC down to 60 cm. There-
fore, when referring to total SOC in this paper, we refer to the
sum of POC and MAOC. Measured values of total OC, POC,
MAOC, and §'3C and A!'*C of the POC and the MAOC frac-
tions were used for model calibration purposes. More infor-
mation about the study site and data processing is provided
in Schrumpf et al. (2011, 2013).

The annual amount of litterfall and root production at
the study site was obtained from Kutsch et al. (2010),
who, using measurements between 2000 and 2007, ob-
tained an annual average rate of aboveground litter in-
put of 209+14gCm~2yr~' and root production of
232+ 15gCm~2yr~!. The annual production of rhizode-
posit OC was calculated by multiplying the annual root OC
production by 0.4, which is the median ratio of net rhizode-
position to the root biomass from a meta-analysis from for-
est soils by Pausch and Kuzyakov (2018). We note that this
number is likely to be an underestimation because it does
not account for post-rhizodeposition losses. This led to a to-
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tal annual belowground OC flux of 324 gCm~2 (92gCm™2
as rhizodeposits (29 %)). The root and rhizodeposit inputs
were distributed over the upper 1 m of the soil following the
asymptotic non-linear model of Gale and Grigal (1987) (see
Sect. S1.3.3). To calibrate the amount of OC in the simulated
litter layer, measurements of the litter and organic layer by
Schrumpf et al. (2013) were combined (580 ng’z). The
depth profiles of OC stocks in the POC and MAOC fractions
were obtained by combining measured OC concentrations
for the respective fractions with the bulk density of the same
depth layers (Schrumpf et al., 2013).

The §'3C value for the litter layer was calculated to be
0.1 %o lower than the average §'3C value of leaves (see be-
low), following Knohl et al. (2005), resulting in a §'3C value
of —29.2%o. The A'*C value of the litter layer (98.7 %0) was
measured in 2004 by Schrumpf et al. (2013). The §'3C value
of root inputs in 2004 was derived from the average measured
813C value of POC below 0.2 m depth (—27.8 %o), assuming
that this POC is mostly derived from roots. The 8!3C value
of aboveground vegetation was derived from the measured
difference of 1.5 %o in the 8'3C value between roots and leaf-
area-index-weighted leaves at the same site (Knohl et al.,
2005), resulting in a §'3C value for aboveground biomass
in 2004 of —29.3 %o. As measurements of the §!3C value of
root exudates were not available, a range of reasonable values
was tested and the resulting §'3C values of SOC and MAOC
depth profiles were compared to measured values. The tested
813C of root exudates that resulted in the closest fit of mea-
sured and modelled depth profiles of 8'3C was —28.9 %o,
which was used for all subsequent simulations. The heav-
ier isotopic signature of root exudates compared to leaves is
in line with the fact that root exudates are composed of sug-
ars, amino acids and organic acids, among other chemical
compounds (Pinton et al., 2007), which are enriched in '3C
compared to bulk leaves (Bowling et al., 2008).

2.3 Parameter optimisation
2.3.1 Litter parameter optimisation

Parameter optimisation was performed using the differential
evolution (DE) algorithm from the DFEoptim package in R
(Mullen et al., 2011; Ardia et al., 2011), an evolutionary op-
timisation algorithm to find optimal global parameter val-
ues in a complex multi-dimensional parameter space. Pa-
rameter optimisation was performed separately for the litter
and soil layers. For the litter layer, three parameter values
were optimised: the half-saturation constants for POC de-
polymerisation (Km_poc-1) and DOC depolymerisation and
uptake (Km_poc-1), in addition to the maximum rate for both
of these processes (Vinax-1).- No information on the distribu-
tion of the total amount of litter OC between the simulated
model pools (Cpoc-1, Cpoc-1 and Cpjc.1) was present. As the
focus of the present study is on OC dynamics in the soil, the
amount of measured OC in the litter layer was assumed to be
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distributed as follows: 33 % as DOC, 66 % as POC and 1 %
as microbial C. We note that these portions were not based
on data but on our best estimates of a reasonable distribu-
tion of OC in the litter layer of a temperate forest. The error
for simulations of the litter layer was calculated by summing
the squared relative errors for the individual litter pools and
isotopic constraints:

5 2
meas; — mod;
€lit = Z (nlleT,-l> > “4)

i=1

where €)j; is the total error for the litter layer (unitless),
meas are the measured pools, mod are the modelled pools
and i refers to the calibrated model pool (Cpoc-1, Cpoc-1,
Cumic.1, 813C) and A4Cy, where the latter two refer to the §13C
and AC values of total litter OC).

2.3.2 Soil parameter optimisation

During parameter optimisation, the measured POC fraction
was compared to the modelled Cpoc-; pool, while the mea-
sured MAOC pool was compared to the simulated OC in the
bulk soil, referred to here as Cpy (i.e. the sum of Ciin-p,
Cpoc-b and Chic-b). To assess the effect of isotopic con-
straints (813C and A*C) on optimised parameter values of
SOILcarb, the model parameters were optimised with four
different scenarios.

— Scenario 1: optimisation with OC data only. The op-
timised model pools are the amount of OC in POC
(Cpoc-r) and in the bulk soil (Cpyik).

— Scenario 2: optimisation with OC and 8'3C data. The

optimised model pools are Cpoc-r, Chulk, 813Cpoc.r and
813 Cpuk.

- Scenario 3: optimisation with OC and A'C data. The
optimised model pools are Cpocs, Chulk, A14Cpoc_r
and AMCbulk-

— Scenario 4: optimisation with OC, 8'3C and A'“C
data. The optimised model pools are Cpoc.r, Cbulk,
8'3Cpoc.r, 813 Cpurk, A*Cpocr and A Cpyg.

In addition, parameter sets were rejected during the cali-
bration if the simulated model outcome did not meet the fol-
lowing criteria: (1) the amount of Cpjgay-r has to be smaller
than the amount of Cpoc.r and (2) the total mass of OC in
soil microbes (i.e. the sum of Cpjc.r and Cpjc.p) cannot ex-
ceed 5 % of total simulated SOC. The errors in the respective
pools were calculated as squared relative errors, similar to
Eq. (4). The errors for the same model pool along the depth
profile were summed to obtain the total error for every pool.

In a first step, we selected 11 parameters which were
deemed to be most critical and for which no measured values
or reasonable estimates were available in the literature (Ta-
ble S1). After optimisation of these parameters, a sensitiv-
ity analysis was performed (see Sect. 2.5.1). This led to the
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identification of nine model parameters that were optimised
(Table S2) under the four scenarios outlined above.

Two model parameters were not retained for calibration.
The first one is the rate of DOC advection (v) because of its
limited sensitivity (Fig. S5). The second parameter is the e-
folding depth of bioturbation (zp) to avoid correlations with
the biodiffusion coefficient (Dy(0)) despite having an influ-
ence on model results (Fig. S5). We note that although the
parameters Viax poc-r and VipaxU,mic-r had a minimal influ-
ence on model outcomes, these were retained to assess if pa-
rameters in the rhizosphere were prone to equifinality. For
the optimisation of parameter values using the DE algorithm,
300 iterations were run. During each iteration 180 parameter
combinations were tested, resulting in a total of 54 000 model
runs per optimisation scenario.

2.4 Assessment of parameter equifinality

After parameter optimisation using the DE algorithm, the
equifinality of the optimised parameters was analysed. Mul-
tiple methods are available to this end, such as GLUE (Beven
and Binley, 1992) and Bayesian approaches (e.g. Vrugt,
2016), but these methods require prior information on the
parameter value distribution to perform optimally. As this in-
formation was not available for the optimised parameters, an
alternative approach was developed.

The DE algorithm efficiently explores the multi-
dimensional parameter space by proposing new sets of pa-
rameter combinations during every iteration, based on previ-
ously generated parameter sets. To assess if multiple param-
eter combinations resulted in behavioural models, we kept
track of all tested sets of parameter values during the opti-
misation procedure. For every calibration scenario, this re-
sulted in 54 000 non-unique parameter sets that were gener-
ated in the parameter space. In a next step, the model was
run using the unique parameter combinations, and the results
and respective model errors were stored. The parameter sets
resulting in the 10 % lowest errors were retained and were
considered to be behavioural models after visually assess-
ing that the model results were within the uncertainty of the
measured values (Fig. 3). To assess how the different cali-
bration scenarios influenced model results, the depth profiles
of total OC, §!13C and AC were plotted for every calibra-
tion scenario (Fig. 3). To assess how each scenario influenced
the range in optimal parameter values that resulted in be-
havioural models, the range of these parameter values for the
different calibration scenarios was plotted (Fig. 4). All pa-
rameter values explored by the DE algorithm were plotted to
confirm that the entire parameter space within the provided
boundaries was explored (Fig. 4). Last, to assess correlations
between parameters leading to behavioural models, correla-
tion plots for these parameter values were developed using
the Pearson correlation coefficient (Fig. 5).
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2.5 Sensitivity analysis
2.5.1 Selection of calibration parameters

To assess the influence of the 11 parameters that were ini-
tially selected for optimisation (Table S1), a sensitivity analy-
sis was carried out using the PAWN method (Pianosi and Wa-
gener, 2015). This is a density-based global sensitivity anal-
ysis that quantifies the model sensitivity related to uncertain-
ties of input parameters based on the cumulative distribution
function (CDF) of the output distribution. This is done for the
CDF when all parameters are varied (the unconditional CDF)
and when one parameter is kept constant (the conditional
CDF). The distance between both cumulative distributions is
used to quantify the sensitivity of the model to different pa-
rameters and is calculated using the Kolmogorov—Smirnov
(KS) statistic. The advantage of this method is that it does
not assume that the variance in the model output is a mea-
sure for model uncertainty, making it more suitable to deal
with e.g. multi-modal or skewed distributions than variance-
based sensitivity analyses. The parameter sets to calculate
the conditional and unconditional CDFs were obtained using
the MATLAB® version of the SAFE toolbox (Pianosi et al.,
2015), which was also used to post-process the results and
calculate the KS statistic. In addition to the parameters to be
tested, a dummy parameter with no influence on the model
results was included in the sensitivity analysis. The KS statis-
tic calculated for the dummy parameter was subtracted from
the KS statistics of the model parameters before the results
were analysed. We used 500 parameter sets to calculate the
unconditional CDFs, 500 parameter sets to calculate the con-
ditional CDFs and 50 conditioning values sampled from the
one-dimensional space of each tested parameter, following
recommendations by Pianosi and Wagener (2015). The pa-
rameter values were varied over the range that resulted in the
10 % best solutions in the first round of model optimisation
(see Sect. 2.3.2 and Table S1).

2.5.2 Sensitivity of parameters influencing the
simulated §'3C depth profile

In a second sensitivity analysis, the sensitivity of the shape
of the simulated §'3C depth profile to five model parame-
ters was tested: (1) the 8'3C value of OC inputs from above-
ground biomass (813Cear), (2) the 813C value of root OC
inputs (8'3Croor), (3) the 8'3C of rhizodeposit OC inputs
(813 Cexudates), (4) the fraction of microbial biomass derived
from soil CO; («) and (5) the change in fractionation against
13C by plants per unit change in atmospheric CO concen-
tration (S). The value of these parameters was varied over
a range that results in a change in 8'3C value of 1%o (Ta-
ble S4) to assure a uniform effect of the parameter ranges on
the simulated depth profiles of §'3C, except for &, which was
varied over the range of values reported in the literature. We
note that the process of absorption was not included in this
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Figure 2. Simulated depth profiles of (a) OC (%), (b) §13C (%o) and (¢) A4C (%0) of the POC and bulk SOC pools (i.e. the sum of Cppin-p.
Cpoc-p and Chic-p), based on a calibration combining data on OC, §13C and A4C for these pools. Circles indicate measured values for
POC (green), mineral-associated OC (brown) and total OC (black) by Schrumpf et al. (2013). Error bars indicate the standard deviation on
the measurements of POC and MAOC (when no error bars are visible, the error was smaller than the size of the circles showing the averages).

sensitivity analysis, as there is no preferential absorption of
12¢, BC or '*C on minerals in the model. The sensitivity of
three characteristics of the simulated §'3C depth profiles was
assessed: (1) the 813C value in the top centimetre of the soil,
(2) the 813C value at a depth of 0.40 m and (3) the difference
in 813C between these two soil layers. The sensitivity analy-
sis was performed using the PAWN method (Sect. 2.5.1) to
calculate the global sensitivity of these parameters. In addi-
tion, a local sensitivity analysis was performed by plotting
depth profiles of §'3C for the range over which these param-
eters were varied during the global sensitivity analysis with
the PAWN method.

3 Results

3.1 Simulation of depth profiles of OC, §!3C and A4C
using the optimal parameters

Model simulations for the litter and the soil compartments of
SOILcarb align well with measurements after parameter op-
timisation using all available data. The simulated amounts of
OC, §13C and A'™C in the litter layer closely align with mea-
surements after parameter optimisation based on OC, §'3C
and A'%C data (Fig. $6). In addition, the temporal evolution
of 813C and A'¥C reflects changes in the value of these iso-
topes of atmospheric CO; over the past 150 years.

Similarly for the soil, after parameters are optimised using
measurements of depth profiles of OC, §'3C and A'*C of the
POC and MAOC pools, the measurements of both pools are
simulated very well by the model (Figs. 2 and S7).

This indicates that the model captures differences in the
amount of OC in POC and MAOC, in addition to the res-
idence time of OC in these pools. Concerning simulated
depth profiles of §'3CO, and A'#CO, along the soil profile
(Fig. S8), the model simulated 8'3CO, values ca. 4 %o larger
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compared to available OC, as well as positive AMCOZ values
similar to the A'*C available OC, in agreement with general
observations (Trumbore, 2000; Cerling et al., 1991).

3.2 Simulation of OC depth profiles using different
isotopic constraints

Calibrating the model with an increasing number of con-
straints (data on SOC, $13C and/or A14C) led to the increas-
ing accuracy of simulated depth profiles of §'3C and A'*C.
The results presented in Fig. 2 show an example of the model
using the most optimal parameter set. However, a frequentist
model optimisation that tunes model parameters to simulate
the average measurements as closely as possible does not ac-
count for the fact that multiple parameter sets may result in
a solution that is within measurement uncertainty (i.e. be-
havioural models). This was explored by retaining the param-
eter sets that led to the 10 % best solutions obtained during
the DE optimisation, as these were within the uncertainty of
measurements (Fig. 3).

When the model is optimised using only data on the OC
percentage (OC%) of POC and MAOC (Fig. 3a—c), simu-
lated depth profiles of OC% show a close fit to measurements
(€ =0.006 (unitless); € being the average weighted squared
relative error for the POC and bulk SOC pools (i.e. MAOC);
see Sect. 2.3.2), while simulated values of § B3¢ along the
depth profile are overestimated, most notably in the topsoil
(€=0.269). Simulated A'*C values are underestimated for
most simulations (¢ =0.58), with a large spread in simu-
lated values, indicating that the turnover rate of OC along
the soil profile is highly variable in this calibration scenario.
For the second calibration scenario, the model was optimised
using data on OC% and §'3C of POC and MAOC (Fig. 3d-
f). Retained model results show a close fit between modelled
and measured depth profiles of OC% (€ =0.036) and §'3C
(€=0.159). Although simulations of topsoil A'*C show a
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Figure 3. Optimised depth profiles of total OC, 813C and AC obtained by optimising the model using measurements of the POC and
MAQOC pools under different calibration scenarios: (1) optimisation using OC data only (a—c); (2) optimisation using OC and & 13C data (d—
f); (3) optimisation using OC and A4C data (g—i); and (4) optimisation using C, s13C and A4C data (j-1). These simulations show the
10 % best solutions obtained using the DE algorithm. In each row, blue lines show depth profiles that were optimised, while grey lines show
simulations of isotopes using the same optimised parameters. Dots and error bars show measured data by Schrumpf et al. (2013). The average
error, calculated as a weighted average of the errors for POC and bulk soil OC (squared relative errors; see Sect. 2.3.2), is denoted by €, and

the inter-quantile range is shown between squared brackets.

closer fit with measurements compared to an optimisation
using OC% data only, the average A'*C values of SOC are
overestimated below a depth of 0.2 m (¢ = 0.352). This indi-
cates that including §'3C as a calibration constraint is not suf-
ficient to correctly simulate AC values, and thus turnover
rates, of subsoil OC. The latter was only the case when data
on A'C were used to constrain model parameters (Fig. 3g—
1). Model optimisation using data on OC% and A'#C, either
with or without data on §!3C, resulted in a close fit between
modelled and measured values of OC% (€ = 0.049 and 0.014

https://doi.org/10.5194/bg-22-1427-2025

respectively) and both isotopic ratios. It is noted that the sim-
ulated 8'3C depth profiles had a lower error when data on
813C were included as a calibration constraint (€ =0.181)
compared to when they were excluded (€ =0.241).

The average error in OC% for the behavioural models was
the lowest when only OC% data were used as a calibra-
tion constraint (€ =0.006) and highest for the scenario us-
ing OC% data combined with §'>C and A'%C (€=0.049).
In contrast, the overall model error (calculated as the sum
of the errors for the simulated depth profiles of OC%, §'3C

Biogeosciences, 22, 1427-1446, 2025
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Figure 4. Ranges in parameter values that resulted in the retained model simulations in Fig. 3. The ranges are shown for all optimised
parameters, grouped per calibration scenario. Black dots show the retained parameter values, while boxplots show the quantiles of these
optimal parameter values. Grey dots show all parameter values tested by the DE algorithm in the range of the retained values. The median

and interquartile range (between brackets) of the retained values are shown on the right side of the graphs.

and A'#C) was the lowest for the scenario constrained by all
available data (€ = 0.34), while it was the highest for the op-

timisation scenario using data on only OC% (€ =0.85). This

indicates that while the former optimisation scenario does not

result in the overall best fit for the simulated depth profiles of

OC%, it results in the best overall model performance, given
that processes such as the vertical mixing of aboveground
and belowground OC (as shown by the 8'3C values along the

Biogeosciences, 22, 1427-1446, 2025

3.3 Parameter equifinality

soil profile) and the turnover rate of OC (as shown by the
A'C values) are simulated more correctly.

All model parameters were subject to equifinality for all cal-
ibration scenarios; i.e. there was always a range of parameter
values that resulted in behavioural models. For the retained
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Figure 5. Correlation between the optimised parameters for the calibration scenarios using data on (a) OC only and (b) OC, s13Cand Al4C.
Numbers are the correlation coefficients, while colours are shown for parameter combinations with a significant correlation (p < 0.05).
Correlation plots for the other calibration scenarios are shown in Fig. S9.

behavioural models, it was assessed how including different
calibration constraints affected (1) the range and (2) the ab-
solute values of the parameters (Fig. 4). In an ideal situation,
the parameter values resulting in behavioural models during
a parameter optimisation procedure (1) are correct in their
absolute values and (2) do not show a large variation. To
evaluate the first condition, it is assumed that the scenario
in which parameter values are constrained using data on OC,
813C and A'™C resulted in the most reliable parameter val-
ues, as this scenario led to the lowest average model error
(€ =0.34; Fig. 3) and most reliably simulated the turnover
rate of SOC along the soil profile. Similarly, it was assumed
that the parameter values of the scenario using data on OC
only result in the least reliable parameter values (€ =0.85).
To evaluate the second criteria, the interquartile range of the
parameter values resulting in behavioural models was calcu-
lated (Fig. 4).

Adding data on §'3C to the calibration constraints, in ad-
dition to data on OC, improved only the value of the inten-
sity of bioturbation (Dy(0)), i.e. resulting in values similar
to the values obtained with the optimisation scenario using
data on OC, §'3C and A'*C. As simulated depth profiles of
813C are partly shaped by the mixing of aboveground and
belowground OC, it is expected that adding information on
the 8!3C of OC better constrains parameters simulating this
process. However, the optimal values of Dy (0), after con-
straining with OC and 8'3C, exhibited a substantial range.
Adding data on AMC to the calibration constraints, in ad-
dition to data on OC, most notably improved the values of
kdeprotect(0), as is clear from the better prediction of the A l4c
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value along the soil profile (Fig. 3i). Other parameters had
values different from the optimisation using C, 8'3C and
A'C and/or had a substantial variation.

The most notable observation from these results is that
for six out of the nine calibrated model parameters (all ex-
cept Kmads» Kmpoc-b and Kgeprotect (0)), including data on
0OC, §13C and A'C did not result in substantially more con-
strained parameter values compared to when only data on OC
are used (Fig. 4). These parameters regulate the simulated
amounts of bio-available OC and DOC, two model pools that
could not be explicitly constrained using available data. It
thus seems that while adding data on §'3C and A'*C better
constrains parameters related to the turnover of the largest
SOC pool (mineral-associated C), it does not help to con-
strain the size of other model pools, which may compensate
for each other to result in a correct amount of simulated total
OC.

For all optimisation scenarios, there were significant cor-
relations between the optimised parameter values (as shown
by the coloured cells in Figs. 5 and S9). A first reason for the
correlations between optimised parameter values is a con-
sequence of the model structure, as parameter values can
compensate inputs to and outputs from a model pool so its
steady-state size is similar. For example, when only data on
OC were used to optimise model parameters (i.e. the optimi-
sation objective was only to get a good fit between measured
and modelled OC% of POC and MAOQC, irrespective of, for
example, the turnover rate of OC), there is a strong corre-
lation (R2 = —0.69) between the rate of OC desorption from
minerals (Kgeprotect (0)) and the affinity of DOC for adsorption

Biogeosciences, 22, 1427-1446, 2025



1438

(km_ads; note that lower values of ky, imply a higher affinity).
This is to be expected, as low and high rates, respectively,
of both OC inputs and outputs to mineral-associated OC will
lead to a similar size of this pool, although with respective
slow and fast turnover rates. In contrast, when the turnover
of the mineral-associated OC pool is included as a calibra-
tion criterion (through its A™C value), this correlation is ab-
sent, as only a narrow range in desorption rates (Kgeprotect (0))
result in the correct turnover rate of this pool (Fig. 4i).

A second reason for such correlations is related to the for-
mulation of the mathematical equations. For example, pa-
rameters in the numerator and denominator of an equation
may compensate for each other. This is clear from the sce-
nario including most optimisation data (Fig. 5Sb), where there
is strong correlation between Vipax_ads and Ky _ads, Which oc-
cur in the numerator and denominator, respectively, of the
equation representing the rate of DOC adsorption on min-
erals. While such correlations are generally unwanted (they
are an expression of equifinality) and complicate the optimi-
sation procedure, they reflect the ability of the optimisation
algorithm to find parameter values that lead to a narrow range
of adsorption rates, resulting in the correct simulation of the
turnover time of the mineral-associated OC pool.

3.4 Sensitivity of parameters affecting simulated §13C
depth profiles

Different model parameters had a distinct effect on the sim-
ulated depth profiles of 8'3C. The global sensitivity analysis
of parameters affecting the §'3C value of both topsoil and
subsoil OC (Fig. 6a—c) showed that the 813C value of topsoil
OC was most influenced by the §'3C value of leaves, while
the other tested parameters had a limited effect. The subsoil
(0.40 m depth) 8'3C was influenced most by the §'3C of roots
and the effect of atmospheric CO, concentration on isotopic
fractionation against 8'3CO, during photosynthesis. The in-
fluence of the 8'3C value of leaves on the subsoil §'3C was
negligible, indicating that the incorporation of aboveground
biomass into the soil profile was limited to the uppermost
soil layers. The change in the 8'3C value along the soil pro-
file (A13C topsoil—subsoil) was most sensitive to the § 13Cof
leaves, the §!3C of roots and the effect of atmospheric CO;
concentration on isotopic fractionation against §'3CO, dur-
ing photosynthesis. The local sensitivity analysis (Fig. 6d-h)
confirmed these results, showing that the factors having the
largest effect on absolute values of 8'3C along the soil pro-
file were the §'C values of leaves and roots and the effect
of atmospheric CO; concentration on isotopic fractionation
against 8'3CO, during photosynthesis.
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4 Discussion

4.1 Simulation of §'3C depth profiles in SOILcarb:
mechanisms and challenges

During the past decades, multiple mechanisms have been
put forward to explain the generally observed increase in
the 8!13C value of SOC with depth in temperate ecosys-
tems. Here, it is assessed to what extent these mechanisms
are reflected in the model outcomes. Three main mecha-
nisms that have been proposed are simulated by SOILcarb.
The first mechanism concerns inputs of '>C-depleted above-
ground litter at the soil surface and vertical mixing with
13C-enriched belowground inputs along the soil profile (e.g.
Wynn et al., 2006; Jagercikova et al., 2017). The sensitiv-
ity analysis showed that this mechanism plays an important
role in shaping the depth profile of the 8'3C value of SOC at
the studied site (Fig. 6¢). This effect played a role down to a
depth of ca. 0.3 m, as shown by a model simulation in which
the mixing of above- and belowground vegetation was the
only mechanism affecting the 8'3C depth profile (Fig. S10).
The second mechanism concerns temporal variations in the
813C value of vegetation and thus OC inputs to the soil (e.g.
Paul et al., 2019; Wynn et al., 2006). In SOILcarb, this ef-
fect has been partitioned into (1) temporal changes in the
813C value of atmospheric CO; (Keeling, 1979) and (2) the
effect of atmospheric CO; concentration on the discrimina-
tion against '3CO, during photosynthesis (i.e. a higher at-
mospheric CO, concentration leads to more intense frac-
tionation against 1>CO, by plants and thus lower §'3C val-
ues; Schubert and Jahren, 2012). Additional simulations with
SOILcarb show that when only the first mechanism is consid-
ered, the simulated 8!'3C of SOC increases by ca. 1 %o with
depth (Fig. S11). While this process thus contributes substan-
tially to the observed increase in 8'3C with depth, including
the effect of atmospheric CO, concentration on fractionation
against §'2CO, during plant photosynthesis was necessary to
simulate the measured increase in 8'3C of ca. 2 %o with soil
depth (Fig. 2b). The last mechanism is heterotrophic CO,
assimilation by soil microbes (e.g. Santrickov4 et al., 2018;
Nel and Cramer, 2019). The sensitivity analysis showed that
this was the mechanism with the lowest impact on the dif-
ference in §13C between the topsoil and the subsoil, with
the effect on the range in subsoil 8'3C being 0.23 %0 when
the value of « varied over the range reported in the literature
(Fig. 6e). Our model simulations thus suggest that, in contrast
to proposals of this mechanism being important based on em-
pirical studies, the potential effect is limited. At the study
site, this is caused by the limited amount of CO; that is as-
similated by soil microbes (1.1 % of total microbial biomass;
Akinyede et al., 2020) and the limited difference between
the §'3C value of SOC and soil CO; of 4.4 %o (Cerling et al.,
1991).

While numerical simulations of depth profiles of §'3C help
to quantify the importance of different mechanisms shaping
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Figure 6. Sensitivity of simulated si3c depth profiles to five model parameters: (1) the change in fractionation against B¢ by plants per
unit change in atmospheric CO, concentration (5), (2) the fraction of microbial biomass carbon derived from CO, assimilation (&), (3) the
s13C of rhizodeposit OC inputs (813Cexudates)y (4) the §13C value of root OC inputs (813Cro0r) and (5) the §13C value of leaf OC inputs
¢ 13C]eaf). The sensitivity of these parameters is calculated for topsoil § 13C0.01m depth), subsoil & 13C (0.40m depth) and the difference in
813C between these layers (A13 C topsoil—subsoil). The top row (a—c) shows the results for the global sensitivity analysis, while the bottom
row (d-h) shows the results for the local sensitivity analysis. The A values in the lower row indicate the maximum difference in the simulated
813C values for the topsoil and subsoil, while the ranges in the lower-left corners of these graphs show the range over which the respective

parameter values were varied.

the vertical profile, these simulations are prone to uncertain-
ties. For example, the absolute values of the 813C of SOC
depend on the §'3C value of vegetation (Fig. 6f-h). In the
present study, we relied on measurements made at the study
site to obtain this information, but these measurements are
often not available. Estimating the §'3C of vegetation based
on literature values when measured data are not available is
unlikely to be reliable, as §'3C values of C3 vegetation vary
over a large range (between ca. —23 %o to —32 %0) depending
on, for example, precipitation (Kohn, 2010) and vegetation
type (Martinelli et al., 2021). Also the §'3C value of differ-
ent plant organs varies considerably (Bowling et al., 2008).
Most notably, estimating the §'3C value of root exudates is
challenging. Thus, there is considerable uncertainty on esti-
mates of the §'3C value of different sources of OC inputs to
the soil. Therefore, model users should be aware of large un-
certainties in simulated absolute values of the §'C of SOC
when measured values are not available and thus balance the
benefits of simulating 8'3C versus the increased uncertainty.

https://doi.org/10.5194/bg-22-1427-2025

4.2 Overparameterisation and equifinality in soil
biogeochemical models

Our results show that overparameterisation, which arises
when a numerical model has too many parameters compared
to the data available to constrain parameter values, has im-
portant consequences for the correct simulation of SOC dy-
namics. As many of the recently developed SOC models have
a similar structure and use similar equations, it is likely that
this is a general issue for such models (Sierra et al., 2015;
Marschmann et al., 2019), as has previously been shown for
conventional turnover-based pool models (Braakhekke et al.,
2013; Luo et al., 2016, 2017). Using only data on total OC
concentration of the POC and MAOC pools to constrain pa-
rameter values resulted in many parameter combinations that
led to behavioural models for total OC, i.e. with a close fit
to observations. However, simulated A!4C values within the
soil profile were generally underestimated, while §'>C values
were slightly overestimated (Fig. 3a—c). This does not con-
firm our second hypothesis, which anticipated an overesti-
mation of the turnover rate of SOC. Nevertheless, this shows
that, if only total SOC stocks are used as the calibration crite-
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rion, turnover times of SOC are simulated incorrectly despite
a correct simulation of the total SOC inventory. This is im-
portant, as a correct simulation of the turnover time of SOC
is crucial for making reliable projections of changes in the
global C cycle for the coming decades (He et al., 2016; Wang
et al., 2019). Similar conclusions were drawn at the plot scale
by Braakhekke et al. (2014), who found that the turnover rate
for the slowest SOC pool in their model was substantially
overestimated without A'4C data as a constraint on parame-
ter values. Furthermore, for simulations of the turnover rate
of SOC at the global scale, models optimised without data on
A'C resulted in a substantial overestimation of the turnover
rate of SOC (He et al., 2016). It is thus clear that, without
data on the age of SOC as a parameter constraint during cal-
ibration, the turnover rate of SOC, especially in the subsoil,
is unlikely to be simulated correctly.

Soil biogeochemical models suffer not only from overpa-
rameterisation, but also from parameter equifinality, i.e. the
phenomenon that multiple parameter sets lead to model re-
sults that cannot readily be rejected (Marschmann et al.,
2019; Sierra et al., 2015; Tang and Zhuang, 2008). In line
with our first hypothesis, a model constrained by data on
only SOC stocks was characterised by substantial equifinal-
ity (Fig. 3a—c). However, contrary to our third hypothesis,
including data on the §'3C and/or A'*C values of SOC to
constrain parameter values during calibration did not sub-
stantially reduce the range in most parameter values lead-
ing to behavioural models, as shown by the interquartile dis-
tances in Fig. 4. Two exceptions were the range in rates of de-
protection of OC (Kgeprotect(0)) and the affinity of DOC for
adsorption (kpy ads), which were substantially reduced when
data on §'3C and A'*C were included during optimisation.

In line with previous studies, we found that the parame-
ters of the Michaelis—Menten equation (Vpax in the numer-
ator and Ky, in the denominator) were subject to substantial
equifinality (Sierra et al., 2015; Marschmann et al., 2019).
The wide use of this equation in microbially driven soil bio-
geochemical models thus suggests that equifinality of these
parameters is common, as information on both the maxi-
mum rate (represented by Vipax) and the rate-limiting prop-
erty (represented by K,) is generally not available. Other pa-
rameters of SOILcarb subject to equifinality are representing
processes that can compensate for each other to result in a
similar total pool size. For example, as shown by the positive
correlation between the rate of bioturbation (Dy(0)) and the
rate of OC uptake by microbes in the bulk soil (Vimax,poc-b),
the more OC in the bulk soil diffuses downwards, the faster
microbes need to process it to simulate the measured OC con-
tent.

4.3 Ways forward to identify and reduce equifinality in
microbially driven SOC models

Sierra et al. (2015) show that equifinality is likely to be an
issue in microbially driven SOC models. These authors used
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the identifiability analysis by Brun et al. (2001) to show that
for a relatively simple non-linear microbial model, only two
or three parameters could be uniquely identified using cali-
bration data on soil respiration and A'#C values of bulk soil
and respired CO;. Similarly, Marschmann et al. (2019) stud-
ied five microbially driven SOC models of varying complex-
ity and found substantial equifinality in every model, includ-
ing a simple two-pool microbial model. From previous stud-
ies and the results presented here, it seems that equifinality
in soil biogeochemical models can only be partly reduced by
including more generally available data, while a reduction in
complexity might be needed to fully resolve this issue.

A consequence of equifinality is that it undermines confi-
dence in projected changes in the SOC stock due to environ-
mental changes, as behavioural models can make similar pro-
jections for the near future but greatly diverge on a decadal
timescale (Luo et al., 2016, 2017). Therefore, identifying and
reducing equifinality in soil biogeochemical models is an im-
portant prerequisite to increase confidence in the predictions
by such models. This is particularly important as these mod-
els are incorporated in Earth system models to make predic-
tions of the response of the SOC stock to changes in the
Earth’s climate (e.g. Wieder et al., 2024) or to assess how
changes in agricultural management practices can increase
the amount of SOC to mitigate climate change and assign
carbon credits (e.g. Mathers et al., 2023).

One way forward to better constrain parameters in micro-
bially driven SOC models is to include additional data dur-
ing the parameter calibration process. As show in the present
and previous studies (He et al., 2016; Wang et al., 2019), the
residence time of SOC along the soil profile can be better
constrained by including data on A'*C during calibration.
Reducing the range in acceptable parameter values related
to soil microbial dynamics is, however, more challenging, as
these data are often lacking, especially for the subsoil or over
large spatial scales. Therefore, it is likely that parameters re-
lated to soil microbial dynamics in soil biogeochemical mod-
els will have to be optimised until more data become avail-
able or fixed at values derived from measurements.

Equifinality also implies that it is unlikely that the develop-
ment of even more complex models will immediately pay off
in terms of improved accuracy in predictions. Defining the
optimal model structure for simulation and prediction, given
the data that are available, is therefore as important as further
increasing our process understanding. Multiple methods are
available to identify parameter equifinality in environmental
models, including the GLUE methodology (Beven and Bin-
ley, 1992), Bayesian methods (Vrugt, 2016), the parameter
identifiability method from Brun et al. (2001), the Manifold
Boundary Approximation Method (Marschmann et al., 2019)
and methods to assess local structural parameter identifiabil-
ity (Stigter et al., 2017), among others (Miao et al., 2011).
Many of these methods are easily accessible to researchers in
the form of packages in R and other software environments.
This should enable modellers to identify this phenomenon in

https://doi.org/10.5194/bg-22-1427-2025



M. Van de Broek et al.: SOILcarb

their models and thus reduce model complexity when appro-
priate.

A last way forward to better constrain model parameters
is the construction of integrated databases that bring together
data on multiple aspects of the SOM cycle (e.g. OC fractiona-
tion, stable and radioisotopes, mineralogy, microbial charac-
teristics, environmental drivers) (Sierra et al., 2015). While
in the recent past several efforts have been made to construct
global databases with data related to SOC cycling (e.g. IS-
RAD, Lawrence et al., 2020; WOSIS, Batjes et al., 2020; So-
DaH, Wieder et al., 2021; LUCAS, Orgiazzi et al., 2018), the
use of these databases to identify and reduce equifinality in
soil biogeochemical models has been, surprisingly, very lim-
ited. Thus, this is a low-hanging fruit that would significantly
increase our confidence in projections of the soil carbon—
climate feedback for the coming decades.

5 Conclusions

In this study, a new mechanistic, depth-explicit SOC model
(SOILcarb) was presented and used to assess the potential
to decrease parameter equifinality by including data on §'3C
and A'C data of two soil fractions (POC and MAOC) as
constraints on parameter values during model optimisation.
Our results show that while the optimised model was able to
simulate depth profiles of total OC, §'3C and A'*C in line
with measurements, all optimised model parameters were
prone to equifinality. Including §'3C data, in addition to to-
tal OC, did little to improve simulations of the turnover rate
of SOC or limit parameter equifinality. Adding A'#C data
as a calibration constraint, in contrast, resulted in the correct
simulation of the turnover rate of SOC, while only substan-
tially reducing equifinality for the parameter regulating the
desorption rate of OC from minerals. Adding a combination
of 813C and A'¥C data improved the simulation of the §'3C
value in the topsoil, the rate of adsorption and desorption of
OC on minerals along the soil profile, and thus the turnover
rate of SOC along the soil profile. Our results show that more
data are needed to reliably constrain parameter values of mi-
crobially driven SOC models. As these data are generally not
available at larger spatial scales, it is unlikely that including
more complexity in soil biogeochemical models will improve
simulations in the near future, while more emphasis should
be put on finding a better balance between model complex-
ity and available data. This is an important prerequisite to
increase confidence in projections of the soil carbon—climate
feedback in a world subject to climatic change.

Code availability. The R codes of SOIlLcarb are available
on the GitHub page of the corresponding author or at
https://doi.org/10.5281/zenodo.14592264 (Van de Broek, 2025).
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