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Supplementary Information 
  

Figure S1. Special treatment of evergreen broadleaf class in Amazon 
basin. (Top) Figure adapted from Gatti et al. (2021) showing deforestation 
extent through 2018 (red). Deforestation in interior/western Amazon basin 
(blue quadrant) is significantly less. (Bottom) EBLF classes in blue quadrant 
calibrated with K34 Interior Amazon eddy flux measurements to reflect 
carbon exchange in a more ecologically intact rainforest. 



 
 
 
 
 
 
 
 
 
 
  

Figure S2.  NOAA HYSPLIT 10-day back trajectories in 5x5degree bounding box 
surrounding RBA, representing influences for a typical 2016 wet season month. (Top Row) 
Back trajectories corresponding to dates, times, and locations of actual aircraft vertical profiles. 
(Middle Row) Back trajectories corresponding to dates, times, and location of available and 
representative OCO-2 receptors. (Bottom Row) Weighted annual influences (2010 to 2018) from 
Gatti et al. (2021) generally track prevailing wet season 2016 wind direction. 
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Figure S3.  NOAA HYSPLIT 10-day back trajectories in 5x5degree bounding box 
surrounding ALF, representing influences for a typical 2016 wet season month. (Top Row) 
Back trajectories corresponding to dates, times, and locations of actual aircraft vertical profiles. 
(Bottom Row) Back trajectories corresponding to dates, times, and location of available and 
representative OCO-2 receptors. (Bottom Row) Weighted annual influences (2010 to 2018) from 
Gatti et al. (2021) generally track prevailing wet season 2016 wind direction. 
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Figure S4. Diurnal results, calibration sites. 
  



Figure S5. Diurnal results, validation sites. 



  

(a) 

(b) 

Figure S6. Flowchart of methodology. (a) Overall methodology; (b) aircraft vertical profile site 
simulation and comparison. 
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Figure S7. Light Use Efficiency and ERA5 modeled PAR at Br-K67. (a) Monthly and 
constant LUE estimated by VPRM and Wu et al. (2017). Note that error bars are 1-s standard 
deviation from NLS parameter fitting; (b) modelled PAR. 



Figure S8. Seasonal fits to Br-K67 and diurnal model performance. Left panels: wet season; right 
panels: dry season.  
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Figure S9. Vertically resolved footprints at RBA used in vertical profile simulation. Magenta 
points are fire locations identified between February and March 2016. 
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Figure S10. Vertically resolved footprints at ALF used in vertical profile simulation. Magenta 
points are fire locations identified between February and March 2016. 



Table S1. WRFv3.8.1 model configuration details. 
Option Description 
Land-surface Noah land-surface model with MM5 Monin-Obukov surface layer  
PBL package Yongsei University (YSU) scheme  
LW radiation RRTMG  
SW radiation RRTMG  
Microphysics Lin et al.   
Convection Grell-Freitas 
Nesting One-way 
Nudging u,v,T,q at all levels above PBL in d01; u,v in PBL in d01; every 6 h; 1 h relaxation time 
Time stepping 3rd order Runge-Kutta; 4 short time steps per long time step  
Advection 5th order horizontal, 3rd order vertical 

positive definite advection for moisture and scalars  
Diffusion 2nd order horizontal diffusion using Smagorinsky first-order closure  
Damping No upper level or vertical velocity damping; default values for divergence and external 

model damping 
 

  



Table S2. Calibration parameters for ecosystem classes represented by eddy flux sites in 
VPRM domain. Values and standard deviation provided for each parameter from NLS fitting to 
non-gapfilled observational data. VPRM model version shown as one of TRA, TRG, SIF, SIFg. 
For Br-K67, results from seasonal fitting are also provided, as blue font (wet season) and brown 
font (dry season). 

 Eddy Flux Site Used in VPRM Calibration 
 Br-CST Br-FNS Br-K34 Br-K67 Br-PDG 

l 

(s) 

TRA 0.047 (0.00) 0.067 (0.01) 
 

0.052 (0.01) 
 

0.106 (0.00) 
0.138 (0.00) 
0.087 (0.00) 
 

0.037 (0.00) 
 

TRG 0.067 (0.01) 0.082 (0.01) 0.051 (0.01) 0.116 (0.00) 
0.160 (0.00) 
0.088 (0.00) 
 

0.044 (0.00) 

SIF 0.019 (0.00) 0.029 (0.00) 0.024 (0.00) 0.034 (0.00) 
0.033 (0.00) 
0.032 (0.00) 
 

0.016 (0.00) 

SIFg 0.033 (0.00) 0.032 (0.00) 0.023 (0.00) 0.038 (0.00) 
0.041 (0.00) 
0.032 (0.00) 
 

0.019 (0.00) 

PAR0 

(s) 

TRA 4608 (1380) 2427 (628) 1818 (489) 733 (21) 
731 (30) 
886 (29) 
 

1996 (328) 

TRG 2377 (434) 1841 (405) 1994 (542) 701 (17) 
655 (23) 
900 (28) 
 

1572 (238) 

SIF 2295 (379) 1256 (127) 1443 (351) 802 (18) 
888 (40) 
854 (30) 
 

1296 (151) 

SIFg 1085 (109) 1118 (107) 1675 (405) 745 (15) 
747 (27) 
863 (29) 
 

1058 (122) 

a 

(s) 

TRA -0.095 (0.02) -0.050 (0.05) -0.820 (0.07) 0.678 (0.03) 
0.688 (0.03) 
0.644 (0.04) 
 

0.015 (0.02) 

TRG -0.095 (0.02) 0.082 (0.06) -0.823 (0.07) 0.586 (0.02) 
0.823 (0.04) 
0.629 (0.03) 
 

0.035 (0.02) 

SIF -0.0519 (0.02) 0.504 (0.05) -0.693 (0.07) 0.616 (0.02) 
0.409 (0.04) 
0.677 (0.03) 
 

0.107 (0.02) 

SIFg -0.023 (0.01) 0.634 (0.05) -0.792 (0.06) 0.709 (0.02) 
0.737 (0.04) 
0.673 (0.03) 
 

0.134 (0.02) 

b 

(s) 

TRA 3.15 (0.42) 3.10 (1.3) 28.0 (2.0) -10.0 (0.64) 
-8.92 (1.1) 
-9.29 (0.71) 
 

0.571 (0.42) 

TRG 0.179 (0.45) -5.96 (2.6) 9.13 (4.1) -20.8 (0.62) 
-25.8 (1.1) 
-21.6 (0.77) 
 

-2.87 (0.89) 

SIF 2.37 (0.39) -6.72 (1.1) 23.7 (1.8) -7.74 (0.53) 
-2.47 (1.1) 
-9.70 (0.79) 
 

-0.290 (0.42) 

SIFg -0.092 (0.37) -13.2 (1.8) 5.41 (2.7) -21.6 (0.55) 
-23.3 (1.1) 
-17.8 (0.88) 
 

-2.07 (0.63) 

g 

(s) 

TRA -- -- -- -- -- 

TRG 14.5 (0.91) 14.3 (3.6) 37.1 (7.1) 29.0 (0.49) 
34.6 (0.88) 
24.7 (0.72) 
 

7.62 (1.7) 

SIF -- -- -- -- -- 
SIFg 7.33 (0.28) 3.05 (0.67) 18.4 (2.1) 8.59 (0.15) 

10.0 (0.22) 
5.79 (0.31) 
 

1.71 (0.45) 



Table S3. Respiration bias by ecosystem type. Italicized font is used for validation sites. Bold 
values indicate overestimate of respiration relative to observations; normal font is underestimated 
relative to observations. 

 
 
 

  

Respiration Bias Median Model-Obs Bias (µmol CO2/m2/s) 
Site IGBP Season TRA TRG SIF SIFg 

Br-BAN Woody Sav Ann -3.5 -1.1 -0.20 0.82 
Wet -3.2 -0.94 -0.17 0.83 
Dry -6.0 -2.5 -1.5 -1.3 

Br-CST Woody Sav Ann -0.47 -0.57 -0.16 -0.19 
Wet -1.8 -0.60 -1.4 0.64 
Dry -0.058 -0.56 0.23 -0.46 

Br-K77 Grasslands Ann 0.36 0.93 -0.047 -0.45 
Wet -0.74 -0.20 -0.82 -0.98 
Dry 0.78 2.1 0.71 0.50 

Br-FNS Grasslands Ann -3.1 -3.2 -0.80 -0.43 
Wet -4.8 -3.6 -1.8 -0.64 
Dry -2.5 -2.8 -0.13 -0.11 

Br-PDGa Savannas Ann -0.16 0.17 1.1 1.5 
Wet -0.23 0.57 1.1 1.9 
Dry -0.13 0.078 1.1 1.3 

Br-PDGb Savannas Ann -0.96 -0.43 0.51 0.92 
Wet -2.0 -1.1 0.42 0.48 
Dry -0.54 -0.32 0.88 1.0 

Br-K83 Evergreen Bdlf Ann -1.4 -1.5 -0.86 -0.22 
Wet -2.3 -3.4 -1.9 -1.4 
Dry 0.55 2.3 1.4 2.7 

Br-K67 Evergreen 
Bdlf 

Ann -1.4 -0.39 -1.0 0.019 
Wet -2.8 -3.7 -2.1 -1.3 
Dry -0.17 2.4 0.54 1.8 

Br-K34 Evergreen 
Bdlf 

Ann -1.2 -1.1 -1.6 -2.1 
Wet -3.9 -4.6 -4.8 -4.5 
Dry -1.2 -0.61 -1.5 -1.1 



S1 Impact of Seasonality on VPRM Performance: Br-K67  

Wu et al. (2017) explore causes of GPP variability in Amazonian rainforests, focusing on the relative importance 

of light versus water limitations at the Br-K67 site, using data spanning 2002–2011. Wu et al. (2017) estimate monthly 

and constant light use efficiency (LUE; CO2 uptake per unit of PAR) directly from the ratio of observationally derived 

GPP to PAR under reference (i.e., “non-stressed”) environmental conditions. Their resulting reference monthly LUE 

ranges from 0.02 to 0.03 µmol CO2 (µmol photons)-1 over the seven years of Br-K67 eddy flux data in contrast to a 

constant LUE of ~0.02 µmol CO2 (µmol photons)-1. Wu et al. (2017) show seasonality in monthly LUE, with peak 

dry season values lower than peak wet season by as much as 33%.  In this section, we present our results examining 

(1) seasonal variations in the LUE (i.e, the l term in VPRM) term across model versions and compared to literature 

values; and (2) impacts of seasonality in VPRM fitting parameters on modelled relative to observed NEE both in 

aggregate and diurnally. 

Figure S7a displays the monthly average LUE obtained from VPRM NLS fitting to all available Br-K67 data, 

with LUE estimated by Wu et al. (2017) included for reference. We note that all versions of the VPRM indicate a 

seasonal cycle in LUE whose timing is similar to Wu et al. (2017). However, while the traditional VPRM formulations 

estimate a peak dry season LUE that is 66% lower than the peak wet season LUE, the difference in SIF-based 

formulations is 39–46% lower in the dry season. The traditional VPRM versions estimate monthly LUE that is 

frequently an order of magnitude higher than those estimated by the SIF-based versions and in Wu et al. (2017). In 

contrast, both SIF-based VPRM formulations estimate LUE that is generally higher but comparable to Wu et al. 

(2017); differences are ascribed to the LUE estimation methodology. Overall, the LUE from SIF-based VPRM 

formulations have significantly better agreement with Wu et al. (2017); given the direct relation between LUE and 

GPP, our results provide higher confidence in SIF-based GPP estimates over the traditional VPRM GPP estimates. 

Seasonal variations in diurnally averaged modeled PAR are shown in Fig. S7b-c. 

Given the seasonality in tropical forest LUE, and their dominance in domain land cover type, we next test our 

assumption that (1) the direct VPRM variables (i.e., SIF, Tscale, Pscale, EVI, LSWI, Tair) explain more of the real-

time variation in carbon flux than the tuning parameters, and (2) constant annual-based tuning parameters can 

reasonably be used across seasons and years. Wu et al. (2017) have previously shown that while environmental drivers 

indeed explain the most variability at shorter (hourly) timescales, they tend to explain progressively less at longer 

timescales (diurnal, monthly, annual) when the influence from intrinsic ecosystem variables begin to aggregate. 

However, Wu et al. (2017) use an LUE-based photosynthesis model that is adopted from the VPRM-TRA formulation 

as in Mahadevan et al. (2008).  

Table S4 summarizes the results from a test where the wet and dry season Br-K67 evaluation subsets (described 

in Sect. 2.2.2) were used to predict seasonal NEE from annual- and seasonal-fit calibration parameters (Table S2). 

Overall, while all models generally underestimated net uptake in the wet season and underestimated net release in the 

dry season, the VPRM-SIFg formulation performed consistently better across all calibration parameters with hourly 

errors ranging from 0-10%. As expected, the optimal model-observation fit across all model versions occurred when 

season-specific parameters were used (% error < 3). However, when seasonal NEE was predicted using calibration 

parameters tuned to the opposite season, VPRM-TRA performed the worst (% error: 53–71), followed by VPRM-



TRG (% error: 8.7–23), VPRM-SIF (% error: 11–18) and VPRM-SIFg (% error: 8.9–9.2). Finally, errors in seasonal 

NEE predictions from annual parameters smoothed the impacts of lower cross-season predictability; however, even 

with the cross-seasonal smoothing, the VPRM-TRA performed relatively poorly (% error: 19–36%), particularly when 

compared to VPRM-SIFg (% error: 2.7–6.9).  
Table S4. Impact of calibration parameter seasonality on NEE predictability.  Calibration parameters used in evaluation are 
obtained from the annual set where NLS fitting was conducted for entire Br-K67 data set (NEEann), the wet season where calibration 
was conducted for a random 70% subset of Br-K67 wet season data (NEEwet), and the dry season where calibration was conducted 
for a random 70% subset of Br-K67 dry season data (NEEdry). Mean Bias is reported for each of wet and dry seasons relative to 
hourly NEE observations in the 30% seasonal evaluation subsets. % Error (model relative to observations) and R2 values are 
provided in parentheses. 

  Mean Bias, µmol CO2 m-2 s-1 (% error, R2) 

Model Calibration Parameters NEEwet,VPRM vs. NEEwet,Obs NEEdry,VPRM vs. NEEdry,Obs 

V
PR

M
-

TR
A

  NEEann 1.92 (36.4, 0.72) -1.21 (18.9, 0.74) 

NEEwet 0.041 (0.788, 0.72) -4.54 (70.9, 0.74) 

NEEdry 2.81 (53.4, 0.72) 0.015 (0.230, 0.74) 

V
PR

M
-

TR
G

 NEEann 0.402 (7.64, 0.77) -0.239 (3.73, 0.76) 

NEEwet 0.020 (0.373, 0.77) -1.48 (23.0, 0.76) 

NEEdry 0.456 (8.67, 0.77)  -0.007 (0.103, 0.77) 

V
PR

M
-

SI
F 

NEEann 0.451 (8.57, 0.71) -0.326 (5.09, 0.77) 

NEEwet 0.064 (1.22, 0.71) -1.15 (17.9, 0.77) 

NEEdry 0.591 (11.2, 0.77) -0.021 (0.324, 0.77) 

V
PR

M
-

SI
Fg

 

NEEann 0.362 (6.88, 0.78) -0.173 (2.71, 0.78) 

NEEwet 0.146 (2.79, 0.78) -0.592 (9.24, 0.78) 

NEEdry 0.469 (8.92, 0.78) -0.00 (0.013, 0.78) 

 

Figure S8 displays diurnal patterns in seasonal predictability. While the diurnal averaging by season smooths the 

hourly model-observation mismatch displayed in Table S4, the diurnal breakdown suggests improved respiration 

parameterization in the SIF-based VPRM formulations.  

While Br-K67 seasonal predictions using annually fit parameters smoothed the impacts of lower cross-season 

predictability, the cross-season results (Table S4, Fig. S8) combined with the order-of-magnitude higher LUEs (Fig. 

S7a), indicate the traditional VPRM formulations are driven by environmental variables that inadequately represent 

the dominant land cover type in the study domain. The exceptionally poor VPRM-TRA results also brings into 

question the reliability of the VPRM-TRG formulation given that they both incorporate the same environmental 

predictors. We also note that across all model versions, model-observation mismatch was highest in the wet season 

which is intuitive given the added complexity of cloud cover and associated impacts on uncertainties in remotely 

sensed environmental drivers and light use efficiency. 

 
 


