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Abstract. Amazonia’s net biome exchange (NBE), the sum
of biogenic and wildfire carbon fluxes, is a fundamental indi-
cator of the state of its ecosystems. It also quantifies the mag-
nitude and patterns of short- and long-term carbon dioxide
sources and sinks but is poorly quantified and out of equilib-
rium (non-zero) due to both direct (deforestation) and indi-
rect (climate-related) anthropogenic disturbance. Determin-
ing trends in Amazonia’s carbon balance, shifts in carbon ex-
change pathways of NBE, and timescales of ecosystem sen-
sitivity to disturbance requires reliable biogenic flux models
that adequately capture fluxes from diurnal to seasonal and
annual timescales. Our study assimilates readily available
observations and a derived solar-induced fluorescence (SIF)
product to estimate hourly biogenic carbon dioxide (CO2)
fluxes (here in units of µmolCO2 m−2 s−1) as net ecosystem
exchange (NEE), as well as its photosynthesis and respiration
constituents, at 12 km resolution using four versions of the
data-driven diagnostic Vegetation Photosynthesis and Respi-
ration Model (VPRM). The VPRM versions are all calibrated
with ground-based eddy flux data and vary based on whether
(1) the photosynthesis term incorporates SIF (VPRM_SIF)
or traditional surface reflectance (VPRM_TRA) and (2) the
respiration term is modified beyond a simple linear air tem-
perature dependence (VPRM_SIFg; VPRM_TRG). We com-
pare the VPRM versions with each other and with hourly
fluxes from the bottom-up mechanistic Simple Biosphere
4 (SiB4 v4.2) model. We also use NASA’s Orbiting Car-
bon Observatory (OCO-2) CO2 column observations to opti-
mize the VPRM and SiB4 models during the 2016 wet sea-

son which occurred at the tail of the 2015/2016 severe El
Niño. The wet season 2016 case study suggests that relative
to SiB4 and the SIF-based VPRMs, the traditional VPRM
versions can underestimate uptake by a factor of 3. In addi-
tion, the VPRM_SIFg version better captures biogenic CO2
fluxes at hourly to seasonal scales than all other VPRM ver-
sions in both anomalously wet and anomalously dry condi-
tions. We also find that the VPRM_SIFg model and the in-
dependent bottom-up mechanistic hourly SiB4 model con-
verge in NEE, although there are differences in the parti-
tioning of the photosynthesis and respiration components.
We further note that VPRM_SIFg describes greater spa-
tial heterogeneity in carbon exchange throughout the Ama-
zon. Despite the paucity of OCO-2 CO2 column observa-
tions (XCO2) over the Amazon in the wet season, incorpo-
rating XCO2 into the models significantly reduces near-field
model–measurement mismatch at aircraft vertical profiling
locations. Finally, a qualitative analysis of the unoptimized
biogenic models from 2010–2020 agrees with the wet sea-
son 2016 case study, where the traditional VPRM formula-
tions significantly underestimate photosynthesis and respira-
tion relative to VPRM_SIFg. Overall, the VPRM_SIFg bio-
genic flux model shows promise in its ability to capture Ama-
zonian carbon fluxes across multiple timescale and moisture
regimes, suggesting its suitability for larger studies evaluat-
ing interannual and seasonal carbon trends in fire as well as
the biogenic components of the region’s NBE.
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1 Introduction

The terrestrial tropics dominate the interannual variability
in the global carbon cycle (Piao et al., 2020). As the dom-
inant component of the South American terrestrial tropics,
the Amazon is a major contributor to both the long-term
global terrestrial carbon balance and the interannual varia-
tions in the terrestrial biosphere’s sequestration of anthro-
pogenic CO2 emissions (Phillips and Brienen, 2017; Gatti
et al., 2014; Saleska et al., 2003). Covering about one-third
of South America with about 80 % as tropical rain forest, the
tropical Amazon is being altered profoundly by human ac-
tivity especially in recent decades (Andreae, 2019; Fu et al.,
2013). Gatti et al. (2021) found that, from 2010–2018, most
of the Amazon’s carbon emissions came from the disturbed
eastern Amazon, and most of those emissions are from fires.
In the past 2 decades, 44 % of carbon loss from the Brazil-
ian Amazon has been attributed to degradation and distur-
bance and 56 % to deforestation (Kruid et al., 2021). Recent
work (Aragão et al., 2018) suggests that drought-related fires
are increasing in importance relative to deforestation-related
fires, but this statement was made under the assumption that
protections of the Amazon against deforestation would re-
main in place. Following over a decade of decline, swaths of
the Amazon have been illegally burned beginning with the
2019 dry season; there was a 3-fold increase in fire activity
in 2019 compared to the previous year (Brando et al., 2020).
Furthermore, the fire severity is potentially exacerbated by
increased ecosystem fragmentation: aggregate impacts of hu-
man activity reduce the buffer that would have been present
in a healthier and more intact ecosystem, making the Ama-
zon more vulnerable to fire impacts (Fu et al., 2013; Aragão
et al., 2018; Alden et al., 2016; Brando et al., 2020).

The associated carbon response to large-scale fire activity
is complicated given that the Amazon is not evolutionarily
adapted to fires: while fires have played a historical role in the
region, they have almost all been started by humans, gener-
ally for agricultural purposes (Uhl et al., 1988; Brando et al.,
2020). As such, it is uncertain how prior burn trauma impacts
future ecosystem productivity (Trumbore et al., 2015). Yet
the direct and indirect carbon effects of the fires ravaging the
Amazon during the dry seasons, particularly along the south-
eastern frontier termed the “arc of deforestation” (Fig. 1), are
playing an increasing role in the region’s net biome exchange
(NBE) (Gatti et al., 2021a). With the dry season length of
southern Amazonia already increasing significantly by ap-
proximately 6.5 d per decade, conditions conducive to en-
hanced fire seasons are further prolonged (Fu et al., 2013).
Therefore, we are at a critical time for both the Amazonian
and global carbon balance when a warmer, drier Amazon is
poised to face additional pressures from the combined ef-
fects of both drought- and deforestation-related fires (Brando
et al., 2020; Naus et al., 2022). Furthermore, under Brazil’s
volatile political regime, any re-established protections face

Figure 1. Study spatial domain with OCO-2 and aircraft observa-
tion locations. (a) WRF domain. The black diamonds indicate the
semimonthly aircraft vertical profiling areas available for evalua-
tion over the study period. Bounding boxes represent the VPRM
(green: 12 km native resolution) and WRF meteorology domain
nests (black: d01, 36 km resolution; blue: d02, 12 km resolution).
The dashed orange line approximates the arc of deforestation.
OCO-2 column measurements (land nadir and land glint sound-
ings, March 2016), thinned to 2 s along-track, are provided as black
points. (b) Vertically integrated footprints for March 2016 optimiza-
tion case study using 14 levels of WRF-STILT footprints within the
WRF d02 domain.

an uncertain future (Brando et al., 2020; Naus et al., 2022;
Gatti et al., 2023).

Despite the carbon response of the Amazon being a key
variable in climate modeling (e.g., Cox et al., 2000, 2013),
regional surface flux estimates of CO2 as well as the at-
mospheric measurements to constrain them have been his-
torically sparse due to physical, economic, and political
limitations. As a result, capturing Amazon carbon surface
fluxes and their sensitivities has been a challenge (Liu et al.,
2017). However, the past 2 decades have seen an increase
in multi-platform measurement efforts with the potential to
greatly improve our ability to quantify carbon cycling in the
Amazonian biosphere. Ground-based carbon flux measure-
ments through AmeriFlux and the Amazon Tall Tower Ob-
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servatory (ATTO) provide important surface-based ecosys-
tem information at a high temporal resolution (e.g., Basso
et al., 2023; Paca et al., 2022; Hayek et al., 2018). Aircraft
observations have provided important constraints enabling
in-depth assessments of land–atmosphere carbon exchange
(e.g., Gatti et al., 2010, 2014, 2021; Gloor et al., 2012; van
der Laan-Luijkx et al., 2015; Alden et al., 2016). Beginning
in 2010, sustained semimonthly aircraft measurements have
been conducted in the four corners of the Brazilian Ama-
zon as an international effort among researchers, informing
estimates of fire effects in the region (Gatti et al., 2021a).
Finally, total column CO2 retrievals and solar-induced fluo-
rescence (SIF) from NASA’s Orbiting Carbon Observatory
(OCO-2; operational September 2014) enable previously in-
ferred features of the tropical biosphere’s carbon response to
climatological variability to be more accurately estimated at
multiple spatiotemporal scales (Bloom et al., 2016).

With the Amazon becoming warmer and drier, the im-
pacts of fires and other disturbances – both climate-related
and directly through deforestation and other degradation –
on carbon stock loss are compounded (Barkhordarian et al.,
2019; Kruid et al., 2021). However, absent a consistent obser-
vationally constrained multi-decadal record extending into
the present, when CO2 surface fluxes from both photosyn-
thesis and respiration are captured, our capacity to evaluate
long-term shifts in carbon dynamics of the South American
tropics is limited. Existing global flux products with multi-
decadal temporal records such as gross primary productiv-
ity (GPP) estimates from NASA’s MODIS have been found
to inadequately represent complex Amazonian ecosystems
(Almeida et al., 2018). In recent years, the availability of
global satellite-based SIF observations – a more direct corre-
late to photosynthetic activity, including in the Amazon – has
greatly improved our ability to capture the timing and mag-
nitude of ecosystem carbon exchange (e.g., Doughty et al.,
2019; Koren et al., 2018; Zhang et al., 2018a; Luus et al.,
2017). To this end, our study uses SIF along with a suite
of readily available ground-to-satellite observations to esti-
mate hourly biogenic CO2 fluxes (µmolCO2 m−2 s−1) via
an improved version of the Vegetation Photosynthesis and
Respiration Model (VPRM) (Mahadevan et al., 2008). The
VPRM is a minimally parameterized data-driven diagnostic
ecosystem light-use efficiency model that has many advan-
tages for exploring shifts in regional carbon dynamics and
modes of carbon exchange, particularly in its translation of
local ecosystem and satellite observations into spatially re-
solved fluxes of CO2 as net ecosystem exchange (NEE), GPP,
and Reco at fine spatial (here, 12 km) and temporal (hourly)
scales. The VPRM has demonstrated effectiveness as a prior
model in diverse CO2 source attribution studies at midlati-
tudes and the Arctic (e.g., Dayalu et al., 2018; Luus et al.,
2017; Hilton et al., 2013; Matross et al., 2006). Further-
more, the region-specific approach of the VPRM contrasts
with subsets of existing global vegetation carbon flux mod-
els which, in data-sparse regions such as the Amazon, can

be insufficiently resolved (Dayalu et al., 2018; Luus et al.,
2017; Hilton et al., 2013; Matross et al., 2006). The VPRM
is calibrated with direct ecosystem observations when avail-
able for each land use category in the domain of interest.
Traditionally, satellite surface-reflectance-based proxies such
as the enhanced vegetation index (EVI) and the land surface
water index (LSWI) are incorporated into the VPRM; how-
ever, there are known issues with that approach, particularly
pertaining to the LSWI inadequately capturing the effects of
water stress (Dayalu et al., 2018; Luus et al., 2017).

The SIF-based formulation of the VPRM has improved
performance relative to the traditional VPRM (VPRM_TRA)
when compared against aircraft and tower observations in
extratropical settings (Luus et al., 2017). However, the SIF-
based VPRM holds promise for the tropics as well: SIF is
implicitly and significantly correlated to previously hard-
to-quantify parameters like water stress (e.g., Mohammadi
et al., 2022). Particularly in the Amazon, where moisture can
be a strong control on carbon cycling (Gatti et al., 2014), us-
ing SIF includes early-stage ecosystem response to moisture
availability in the VPRM in a way that traditional vegetation
indices do not (Zhang et al., 2018a). Similar to Luus et al.
(2017), our work adapts the VPRM formulation where the
traditional MODIS-based satellite surface reflectance data
are entirely replaced with SIF data derived from OCO-2 mea-
surements (VPRM_SIF). In addition, our work further adapts
the respiration term of the VPRM similarly to Winbourne
et al. (2022) and Gourdji et al. (2022), where the amount of
living biomass per pixel informs the autotrophic respiration
term. The adaptation of the VPRM respiration term addresses
a tendency for the VPRM to systematically underestimate au-
totrophic respiration, at least in the extratropics (e.g., Dayalu
et al., 2018; Gourdji et al., 2022). In the tropics, where respi-
ration is a strong control on NBE, models that provide more
accurate respiration parameterizations are needed. The bio-
genic carbon fluxes generated by SIF-based VPRM formu-
lations provide the basis for this study’s quantification and
categorization of the spatial and temporal variations in the
Amazon’s carbon sink strength from 2010–2020.

In our study, we expand upon the latest research for the
Amazon, leveraging observations where available, to con-
struct, improve, and evaluate biosphere carbon fluxes. This
is a critical first step to evaluating long-term anthropogenic
impacts on and trends in the Amazon’s carbon balance. We
broadly define Amazonia’s wet and dry seasons as 6-month
periods, with the wet season typically extending from De-
cember through May and the dry season extending from June
through November. We construct and evaluate multiple ver-
sions of the VPRM: the traditional version before and af-
ter modifying respiration (VPRM_TRA, VPRM_TRG) and
the SIF-based version before and after modifying respiration
(VPRM_SIF, VPRM_SIFg). The VPRM CO2 fluxes are gen-
erated for all hours from 2010 through September 2020. As
an additional test, we compare all versions of the diagnostic
VPRM to output from the process-based bottom-up Simple
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Biosphere 4 model (SiB4; Haynes et al., 2021), which to our
knowledge is the only publicly available hourly partitioned
biogenic carbon flux estimate for the Amazon that extends
through at least 2018. The hourly VPRM fluxes also include
two main events which, as suggested by Liu et al. (2017) and
Brando et al. (2020), are increasingly representative of the
Amazon’s future conditions and impacts on the global carbon
balance: the strong El Niño in 2015–2016 and the severe dry
season fires in 2019/2020. In this paper, we additionally eval-
uate model performance during March 2016 by constraining
with OCO-2 land nadir and land glint (LNLG) total columns
and evaluating against CO2 observations from aircraft ver-
tical profiles. The March 2016 case study was selected for
three main reasons: (1) it falls well within the Amazon wet
season such that the biosphere dominates land–atmosphere
CO2 exchange such that model–measurement mismatch can
largely be attributed to the biosphere flux model alone rather
than entangling the influence of fires, (2) it falls at the tail end
of the 2015/2016 severe El Niño and more strongly illustrates
potential strengths and weaknesses in how the various mod-
els capture the impacts of temperature and water stress on
Amazonian land–atmosphere carbon exchange; and (3) there
was distinct and separable fire activity which provides an op-
portunity to evaluate the capacity of the biogenic flux models
to separate NEE from fire fluxes. Figure 1 displays our study
domain along with key modeled and observational datasets
used in top-down constraints and evaluations.

2 Methods

2.1 Data processing tools

We used R v4.2.1 (https://cran.r-project.org/, last access:
14 March 2025) for all data processing and analysis. We used
the Weather Research and Forecasting Model (WRF) version
3.8.1 to model the meteorology driving the Stochastic Time-
Inverted Lagrangian Transport (STILT; WRF-STILT) model.
The WRF v3.8.1 configuration is detailed in Table S1 in the
Supplement.

2.2 VPRM: estimating vegetation CO2 fluxes

VPRM CO2 fluxes from vegetation are modeled as NEE,
GPP, and Reco and reported as micromoles CO2 per square
meter per second (µmolCO2 m−2 s−1; hourly, 12 km resolu-
tion) with the convention of negative fluxes indicating uptake
from the atmosphere and positive fluxes indicating release to
the atmosphere.

2.2.1 Model overview

The traditional and SIF-based VPRM formulations – with-
out (VPRM_TRA, VPRM_SIF) and with (VPRM_TRG,
VPRM_SIFg) respiration term modifications – provide
hourly fluxes of biogenic CO2 NEE partitioned into GPP and

Reco. Equations (1a, b) and (2a, b) describe all VPRM for-
mulations.

NEEVPRM_TRA =

−

λ× Tscale×
1

1+
(

PAR
PAR0

) ×PAR×Pscale×Wscale×EVI


+ (α× T +β) (1a)
NEEVPRM_TRG =

−

λ× Tscale×
1

1+
(

PAR
PAR0

) ×PAR×Pscale×Wscale×EVI


+ ((α× T +β)+ (γ ×EVI)) (1b)

NEEVPRM_SIF =

−

λ× Tscale×Wscale×
1

1+
(

PAR
PAR0

) ×PAR×
SIF

cos(SZA)


+ (α× T +β) (2a)
NEEVPRM_SIFg =

−

λ× Tscale×Wscale×
1

1+
(

PAR
PAR0

) ×PAR×
SIF

cos(SZA)


+

(
(α× T +β)+

(
γ ×

SIF
cos(SZA)

))
(2b)

The parameters λ (ecosystem light use efficiency, units:
µmolCO2 m−2 s−1 per micromole photosynthetically active
radiation (PAR)), PAR0 (ecosystem half-saturation value
of PAR, units: µmolm−2 s−1), α (ecosystem respiration
temperature dependence, units: µmolCO2 m−2 s−1 °C−1), β
(flux-weighted mean size of the respiring carbon pools,
µmolCO2 m−2 s−1), and γ (sensitivity to water stress and
aboveground biomass, µmolCO2 m−2 s−1) are all optimized
from nonlinear least squares (NLS) fits to ground-based
measurements (e.g., Mahadevan et al., 2008; Gourdji et al.,
2022). Domain-wide hourly fluxes are then derived for each
land use category present. Our domain land categories are
based on the International Geosphere–Biosphere Programme
(IGBP) and obtained from the MODIS MCD12Q1 0.05°

gridded product. Calibration and land classification details
are provided in Sect. 2.2.2.

In all formulations, hourly photosynthetically active radi-
ation (PAR, units: µmolm−2 s−1; Eq. 3) drives the diurnal
flux signal, and Tscale (unitless; see Eq. 4) provides ecosys-
tem temperature sensitivity. When scaling fluxes to the entire
domain, ERA5 meteorology (https://registry.opendata.aws/
ecmwf-era5/; last access: 9 August 2023) at 31 km horizontal
resolution provides the hourly downwelling shortwave radi-
ation (SW) used to derive diurnal PAR; 2 m surface air tem-
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perature estimates (Tair) are used to calculate Tscale.

PAR=
SW

0.505
(3)

Tscale =
(Tair− Tmin)× (Tair− Tmax)

[(Tair− Tmin)× (Tair− Tmax)− (Tair− Topt)2]
(4)

As shown in Eq. (4), Tscale modifies the GPP term by weight-
ing the differences between observed Tair and the ecosystem-
specific requirements for minimum (Tmin), maximum (Tmax),
and optimal (Topt) temperatures for photosynthesis. Tmin,
Tmax, and Topt values are informed by literature values rel-
evant to the tropics (Ma et al., 2017; Slot and Winter, 2017;
Tan et al., 2017). For all tropical ecosystems, Tmin is set to
4 °C. Following work by Slot and Winter (2017) we broadly
divide our ecosystem classes into tropical dry and tropical
wet ecosystems. Tropical dry ecosystems (pixels in domain
with IGBP categories of woody savannas, savannas, and
grasslands) are assigned a Tmax of 41.8 °C (SD= 2.1 °C) and
Topt of 30.7 °C (SD= 1.1 °C). Tropical wet ecosystems (pix-
els in domain with IGBP category of evergreen broadleaf) are
assigned a Tmax of 40.1 °C (SD= 1.8°C) and Topt of 29.8 °C
(SD= 0.9°C).

In the traditional formulations (Eq. 1a and b) the unitless
scalars Pscale (phenology; Eq. 5),Wscale (water stress; Eq. 6),
and EVI (surface “greenness”; Eq. 7) modify GPP based on
remotely sensed measurements of surface reflectance in the
near-infrared (ρnir), shortwave infrared (ρswir), blue (ρblue),
and red (ρred) bands.

Pscale,non-evergreen =
1+ ρnir−ρswir

ρnir+ρswir

2
(5a)

Pscale,evergreen = 1 (5b)
Pscale,water = 0 (5c)

Wscale =
1+ ρnir−ρswir

ρnir+ρswir

1+max
(
ρnir−ρswir
ρnir+ρswir

) (6)

EVI= 2.5×
ρnir− ρred

ρnir+ (6× ρred− 7.5× ρblue)+ 1
(7)

The tropical SIF-based VPRM formulations (Eq. 2a and b)
entirely replace the Pscale×EVI quantity with instantaneous
spatially contiguous SIF derived from OCO-2 measurements
(4 d, 0.05° resolution as in Zhang et al., 2018a). However, as
shown in Eq. (7a), raw SIF has a PAR dependence (Zhang
et al., 2018b, 2020) which Luus et al. (2017) previously cor-
rected for by normalizing with the cosine of the solar zenith
angle (SZA) at the local OCO-2 overpass time of 13:30 h
(Eq. 7b).

SIF= PAR× fAPAR×EF (8a)
Top of canopy PAR= cos(SZA) (8b)

In Eq. (8a), fAPAR is the fraction of PAR absorbed by
chlorophyll and EF is the fluorescence efficiency. Daily SZA

data for each calibration site were obtained from the NASA
Horizons portal (https://ssd.jpl.nasa.gov/horizons/app.html;
last accessed: 15 February 2021). When scaling to our do-
main, we use the solarPos package in R to calculate the av-
erage SZA at each pixel at 13:30 local overpass time aver-
aged over each 4 d interval of the contiguous SIF product.
We note an additional caveat here: specifically, SIF normal-
ized by cos(SZA) still potentially risks overcounting PAR
in the GPP equation. Previous work (e.g., Luus et al., 2017)
and this study use SIF/cos(SZA) as a standalone index in a
similar role to the fAPAR-approximating EVI; future devel-
opment of the model should focus on testing the assumption
that SIF/cos(SZA) sufficiently removes the explicit PAR de-
pendence of SIF.

Finally, two of our VPRM formulations (Eqs. 1b and 2b)
also incorporate a γ (µmolCO2 m−2 s−1) term adapting re-
cent modifications that better represent Reco responses as-
sociated with biomass seasonality and/or water stress (Win-
bourne et al., 2022; Gourdji et al., 2022). In the tropics, Clark
et al. (2013) note that temperature sensitivity of nighttime
plant respiration can have a significant control on above-
ground biomass production. As shown in Eq. (7), Gourdji
et al. (2022) apply a quadratic temperature formulation to the
traditional VPRM for Reco which allows for a nonlinear tem-
perature response; furthermore, EVI andWscale are explicitly
incorporated to account for aboveground biomass seasonality
and water stress.

Reco =(α1Tair+β)+
(
α2T

2
air

)
+ (γEVI)+ (θ1Wscale)

+ (θ2WscaleTair)+
(
θ3WscaleT

2
air

)
(9)

However, given both the spatial and temporal limitations of
our Amazon region calibration sites (see Sect. 2.1.2), ap-
plying the Gourdji et al. (2022) respiration parameterization
risks overfitting Amazonian respiration to a small number of
specific sites. Furthermore, Winbourne et al. (2022) found
that the VPRM respiration term approached the traditional
α× T +β linear result during the growing season in a US
urban environment. In tropical environments, where grow-
ing season conditions last year-round, we therefore represent
Reco with the bolded terms in Eq. (8) – i.e., as a linear func-
tion of air temperature with an additional γ term that uses
EVI or SIF/cos(SZA) to incorporate the influence of above-
ground biomass seasonality and water stress.

2.2.2 Domain land use classification, model calibration,
and model evaluation

Prior to generating vegetation carbon fluxes for the entire
study domain, the VPRM is calibrated using NLS to ground-
based flux data collected for each major vegetation class. In
our Amazonian study domain, ground-based data availability
is an ongoing challenge; our calibration data were therefore
restricted to publicly available data from the AmeriFlux and
FLUXNET eddy flux networks. Data from the eight available
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Amazon-relevant eddy flux sites span limited IGBP vegeta-
tion classes and subsets of time from 2001–2015 (Table 1
and Fig. 2). With the exception of the tropical rainforest site
Br-K67 (discussed later in this section), the eddy flux data
are insufficient for separately fitting wet and dry seasons.
Therefore, we perform single NLS fits to calibration data,
which results in constant VPRM parameters for each ecosys-
tem type over the study period. While the calibration dataset
is not dense enough to span both the spatial and temporal ex-
tents of our study, we note that it does provide valuable and
sufficient information to establish reasonable a priori veg-
etation CO2 flux estimates that can be meaningfully con-
strained with OCO-2 CO2 observations for two main reasons.
First, approximately 95 % of the land use in the study do-
main from 2010–2020 is encompassed by the four IGBP cat-
egories for which eddy flux data were available, namely ever-
green broadleaf (50 %), savannas (20 %), grasslands (20 %),
and woody savannas (5 %) (Fig. 2b). Three of the eight sites
represent the evergreen broadleaf category, which is the most
prevalent broad class in the domain. While we recognize the
IGBP “evergreen broadleaf” categorization is an oversimpli-
fication of heterogeneous Amazonian evergreen ecosystems,
we note the value in tuning the VPRM to three separate ever-
green broadleaf sites. Second, while the available eddy flux
data can be offset by up to 13 years prior to the study pe-
riod of 2010–2020, the hourly ecosystem flux variations are
largely captured by Tair, PAR, surface reflectance indices,
and SIF; i.e., while the static ecosystem parameters of λ,
PAR0, α, β, and γ would benefit from tuning to eddy flux
data seasonally and/or over the entire study period to reflect
concurrent ecosystem states most accurately, the real time
variation is dominated by Tair, PAR, surface reflectance in-
dices, and SIF (Dayalu et al., 2018).

As shown in Table 1, each broad ecosystem type is as-
signed a representative calibration and evaluation site. The
exception is site Br-K34, which is the only representative of
primary interior tropical rainforest, and there were insuffi-
cient data to divide the data into calibration and evaluation
years. As the remaining tropical rainforest sites (Br-K67, Br-
K83) are impacted by higher degrees of disturbance and edge
effects, a comparison with Br-K34 was not appropriate. We
therefore manually differentiate two categories of evergreen
broadleaf/IGBP category 2: (1) western Amazon IGBP cat-
egory 2 is designated as primary interior tropical rainforest
and its pixels are represented by NLS parameters obtained
from site Br-K34; (2) remaining IGBP category 2 primary
tropical moist forest occurring in the domain is represented
by NLS parameters obtained from site Br-K67 (Fig. S1 in the
Supplement).

As noted earlier, the long record of Br-K67 – spanning
2002–2011 – enables assessing uncertainty associated with
using annually fit VPRM parameters rather than seasonally
fit ones. We therefore used the Br-K67 record to evaluate the
impact of parameter seasonality on model performance. Ac-
counting for data gaps, a total of 7 years of hourly Br-K67

Figure 2. IGBP land use categories by domain and influences on
measurements. (a) IGBP categories mapped to study domain, with
eddy flux calibration and validation sites and OCO-2 receptors
overlaid. Vertical profiling sites RBA and ALF, their representative
OCO-2 receptors, and their upwind influences are highlighted. (b)
Land use percentages by domain.

observations were randomly separated into wet and dry sea-
son subsets for VPRM calibration (70 % from each of wet
and dry season data) and evaluation (30 % from each of wet
and dry season data). We then performed seasonal NLS fits
for each VPRM version. We used the seasonal and annual fits
in an assessment of model bias for the tropical rainforest/ev-
ergreen broadleaf class relative to observations.

2.3 SiB4

The SiB4 model version 4.2 (SiB4) integrates land cover,
phenology, dynamic carbon allocation, cascading carbon
pools from live biomass to surface litter to soil organic mat-
ter, and NASA MERRA2 meteorology (Haynes et al., 2021).
Unlike the VPRM it is a mechanistic model that is indepen-
dent of satellite indices and site-specific tuning parameters
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Table 1. Eddy flux sites used for VPRM calibration and/or evaluation. Sites used in the evaluation have their associated calibration site listed
in parentheses in the “VPRM role” column.

Site Coordinates Data years Land use (IGBP category) VPRM role Data source

Br-BAN −9.82, −50.1 2003–2006 Seasonally flooded transitional
forest/savanna (8/woody
savannas)

Evaluation (Br-CST) Restrepo-Coupe
et al. (2021)

Br-CST −7.97, −38.4 2014–2015 Tropical dry forest/wet season
cattle grazing (8/woody
savannas)

Calibration Antonino (2022)

Br-FNS −10.8, −62.4 2001–2002 Pasture (10/grasslands) Calibration Restrepo-Coupe
et al. (2021)

Br-K34* −2.61, −60.2 2001–2002 Primary interior tropical
rainforest (2/evergreen
broadleaf)

Calibration Restrepo-Coupe
et al. (2021)

Br-K67 −2.89, −55.0 2002–2011 Primary tropical moist forest
(2/evergreen broadleaf)

Calibration Saleska (2019)

Br-K77 −3.01, −54.5 2001–2005 Pasture/agriculture
(10/grasslands)

Evaluation (Br-FNS) Restrepo-Coupe
et al. (2021)

Br-K83 −3.02, −55.0 2001–2004 Primary tropical moist forest,
selective logging (2/evergreen
broadleaf)

Evaluation (Br-K67) Goulden (2019)

Br-PDG++ −21.6, −47.6 2001–2003 Savanna (9/savannas) Calibration
(Br-PDG-2003);
evaluation
(Br-PDG-2001, 2002)

Restrepo-Coupe
et al. (2021)

* Br-K34 site represents the interior, relatively undisturbed evergreen broadleaf classes; K34 data are unvalidated due to insufficient representative data. ++ Br-PDG was
the only member of IGBP class 9, and separate years were used for calibration (2003) and evaluation (2001–2002).

(Haynes et al., 2019). We obtained SiB4 global hourly car-
bon fluxes partitioned into GPP and Reco at 0.5°

× 0.5° res-
olution from 2000–2018 from the Oak Ridge National Lab-
oratory Distributed Active Archive Center (ORNL DAAC;
Haynes et al., 2021). SiB4 fluxes for each grid cell are dis-
aggregated into 1 of 15 plant functional types (PFTs). We
convert SiB4 fluxes per PFT to total fluxes per grid cell us-
ing the provided area per grid cell. We then subset these grid
cell total SiB4 fluxes over the VPRM domain (Fig. 1) and
regrid them to the VPRM resolution using bilinear interpo-
lation. Additional details and technical description of SiB4
model v4.2 are provided in Haynes et al. (2020).

2.4 Regional inversion methodology

In this study we apply the CarbonTracker–Lagrange re-
gional inverse modeling framework (Hu et al., 2019; Rastogi
et al., 2021a, b). It uses a Bayesian inversion methodology
with a geophysically based simulation of satellite retrievals
of column CO2 profiles (Sect. 2.4.1) and sensitivities of the
satellite observations to upstream surface fluxes (i.e., “foot-
prints”) derived from WRF-STILT (Sect. 2.4.2). The March
2016 period was extracted from a 3-month inversion, span-
ning February 2016 through April 2016, to account for edge
effects. On average, wet season OCO-2 data coverage was
∼ 15% less than dry season coverage.

We use OCO-2 total column CO2 (XCO2) retrievals
to constrain VPRM CO2 flux estimates in a geostatistical
Bayesian framework. In this study, 2644 retrievals (n) are
used over the February to April 2016 time frame and 1266
land grid cells are optimized over the domain, hourly, for
2160 h (m= 2734560). We write the posterior flux solution
as

s = sa+QH
T(R+HQHT)−1

(
Xret

CO2
−Xsim

CO2

)
, (10)

where Xret
CO2

is the n× 1 vector of retrieved XCO2. Xsim
CO2

(Eq. 10) is the n× 1 vector of simulated XCO2. H (Eq. 11)
is the column-weighted sensitivity of XCO2 to surface fluxes
upwind of the measurement, otherwise known as the column-
weighted footprint n×m or Jacobian, and s is the posterior
flux estimate 1×m. R is the model–data mismatch covari-
ance matrix n×n, which ideally includes uncertainty due to
geostatistical measurements, the forward model, model rep-
resentation, and boundary conditions. Given the difficulty in
estimating these uncertainties, in our application, R is esti-
mated from the uncertainty in XCO2 using the methodol-
ogy of Peiro et al. (2022) with some modifications, discussed
next. Q is the prior flux error covariance matrix m×m, and
in our application it is calculated using the standard deviation
of the temporally averaged prior fluxes, a temporal correla-
tion length of 7 d, and a spatial correlation length of 1000 km.
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sa is the prior flux estimate 1×m from the VPRM or SiB4
flux models.

Our methodology follows this methodology for comparing
satellite retrievals to simulated CO2 columns from the Atmo-
spheric CO2 Observations from Space (ACOS) retrieval al-
gorithm v10 (O’Dell et al., 2012). We follow the convolution
method as detailed in Rastogi et al. (2021a) to calculate the
simulated XCO2:

Xsim
CO2
=

∑N

i=1
wi

[
αi ·

(
X

bkg
CO2,i
+Hi(sbio+ sother)

)
+ (1−αi) ·X

pri
CO2,i

]
, (11)

where N is the number of vertical levels. wi is the pressure
weighting function calculated as in Rastogi et al. (2021a).
αi is the retrieval averaging kernel profile. Xbkg

CO2,i
is the

CO2 background profile from NOAA’s CarbonTracker ver-
sion CT2019B (Jacobson et al., 2020). sbio is the biospheric
flux estimate from VPRM or SiB4 models. Xpri

CO2,i
is the

OCO-2 prior CO2 profile. Hi is the sensitivity function or
footprint on discrete levels from WRF-STILT (Sect. 2.5.2):

H =
∑N

i=1
wiαiHi . (12)

In this application, N is 17 levels. This accounts for 14 lev-
els of WRF-STILT footprints, discussed in Sect. 2.5.2, and
3 levels in the upper-atmospheric column where the impact
of surface fluxes are assumed to be negligible and the foot-
prints are set to zero. Thus in the upper atmosphere, theXsim

CO2
calculation is dominated by the CarbonTracker background
profile and OCO-2 prior CO2 profile.

For this study, we assimilate OCO-2 land nadir and land
glint XCO2 retrievals that are averaged to 2 s along-track
(∼ 13.5km) – rather than 10 s averages – to better match
the higher spatial resolution of our inversion domain (12 km)
compared to global model resolutions. We average the OCO-
2 XCO2 2 s data following the methodology from Peiro et al.
(2022), where a 10 s average dataset was used. However, for
the application of 2 s data over land we estimate the uncer-
tainty in 2 s XCO2 (R) using a higher land correlation coef-
ficient of 0.7, compared to 0.3 in Piero et al. (2022). In our
application we also neglect transport model errors, which are
difficult to quantify but can be further explored in the future
using transport ensembles. Errors in WRF-STILT transport
are discussed in Rastogi et al. (2021a) in terms of calculating
Xsim

CO2
for OCO-2 XCO2 retrievals in North America. They

found that low partial column bias relative to independent
vertical profile CO2 data shows that errors in WRF-STILT
transport contribute very minimally to bias in Xsim

CO2
.

2.4.1 Transport model framework

We use WRF v3.8.1 model transport fields to drive the
STILT model dispersion and compute footprints. A foot-
print (Hi), in units of mixing ratio per unit flux (e.g.,

ppmµmol−1 m−2 s−1), quantitatively describes how the sur-
face fluxes upwind of a mixing ratio measurement location
are influencing the measurement. For each OCO-2 XCO2
retrieval location, footprints are computed at 14 individ-
ual levels throughout the column. These 14 footprints are
then convolved with OCO-2’s pressure weighting function
and averaging kernel and interpolated to STILT levels. This
produces one column-weighted footprint (H ) per retrieval,
which quantifies how the OCO-2 XCO2 retrieval is influ-
enced by surface fluxes upwind of the column. The column-
weighted footprint is not to be confused with a satellite foot-
print, which describes the area of earth reflecting the satellite
signal. The computational domains of the two nested WRF
grids are shown in Fig. 1a. Model configuration details are
provided in Table S1.

STILT computes footprints by modeling the dispersion of
500 particles, 10 d back in time from each measurement lo-
cation (in this case the x,y,z, t coordinate of an XCO2 re-
trieval), and in 14 levels from 50 m to 14 km a.g.l. where
each receptor is located at a column measurement latitude
and longitude and on one of 14 levels (50 m to 14 km a.g.l.).
Back trajectories computed by STILT are affected by both re-
solved wind velocities and parameterized subgrid-scale tur-
bulent motions and convective fluxes. The footprint domain
is outlined in Fig. 1b, where footprints are aggregated to 1°
resolution at 1 h intervals, compatible with the VPRM prior
flux resolution used in the inversion.

2.5 Model aircraft vertical profile simulation

We calculate prior and posterior modeled vertical profiles for
SiB4 and each VPRM formulation for our March 2016 op-
timization period at locations roughly corresponding to the
vertical profiling sites RBA and ALF displayed in Fig. 1a.
As the available OCO-2 receptors are not identical in space
and time to locations of RBA and ALF profiling sites, a di-
rect comparison of prior and posterior simulated CO2 vertical
profiles derived from convolving multi-level OCO-2 receptor
footprints and vegetation flux models is not possible. In ad-
dition, RBA and ALF vertical profiles are typically obtained
once or twice a month such that robust measured monthly
averages for a single month are not available. To allow for di-
rect comparison between modeled (prior and posterior) and
measured vertical profiles for all 744 h of March 2016, we
construct pooled datasets that occasionally combine Febru-
ary and March 2016 measurements and/or modeled fields to
develop a dataset that adequately represents a typical 2016
wet season month. Given the seasonal similarities across the
Amazon in February and March, combining data across these
months to create a representative “typical wet season month”
is reasonable. Our method is detailed below.

We first construct a pooled dataset of “typical wet season
2016” measured vertical profiles at each of the RBA and ALF
sites. For RBA, we combine all measurements obtained be-
tween February and March 2016 (2016-02-08 – date format:
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year-month-day – at 16:30 UTC, 2016-02-27 at 16:45 UTC,
and 2016-03-17 at 17:00 UTC), resulting in three measure-
ments at each of 17 vertical levels between 300 and 4500 m
a.s.l. For ALF, we combine all measurements obtained be-
tween February and March 2016 (2016-02-23 at 16:30 UTC,
2016-02-29 at 15:40 UTC, 2016-03-13 at 16:00 UTC, and
2016-03-30 at 15:40 UTC), resulting in four measurements
at each of 12 vertical levels between 450 and 4500 m a.s.l.
For each site, we conduct a Monte Carlo simulation of mea-
surements at each vertical level to obtain measured concen-
tration matrices of 744h× 17 levels (RBA) or 744h× 12
levels (ALF). Second, we assess the availability of OCO-2
footprints in the vicinity of RBA and ALF sites from Febru-
ary to March 2016. Our goal was to obtain footprints suffi-
ciently close to each profiling site to be representative of the
near-field influences on the site but also have a large enough
bounding box so that at least two OCO-2 receptors and their
footprints were present for transport uncertainty calculations.
Figure 2a displays the final selected 5×5km bounding boxes
around each of the RBA and ALF sites and the represen-
tative OCO-2 receptors. RBA and ALF simulated vertical
profiles are then derived from the OCO-2 receptor footprints
bounded in each box (Fig. 2a). Third, we use NOAA’s web-
based HYSPLIT model to assess land surface influences on
each of the measured vertical profile dates and compare them
with the land surface influences on each of the selected OCO-
2 receptors. Figures S2 and S3 in the Supplement show that
the land surfaces influencing both the simulated and actual
profiles at RBA and ALF are comparable with the air mass
trajectories representing typical seasonal prevailing winds
in the February–March 2016 time frame and annually from
2010–2018; the average air mass trajectories are displayed
in Fig. 2a. Fourth, we obtain CT2019 background concen-
trations associated with the vertical level of each air mass
back trajectory before it enters the study domain. We capture
background uncertainty by pooling all CT2019 concentra-
tions at each vertical level and by conducting a Monte Carlo
simulation resulting in a CT2019 matrix of 744h×14 WRF-
STILT vertical levels. Next, we use the March 2016 prior
and posterior hourly fluxes to estimate a “typical wet sea-
son 2016 month of fluxes” and convolve them with WRF-
STILT footprints from each of the six OCO-2 receptors in
the RBA and ALF bounding boxes to obtain a spread of en-
hancements or depletions relative to the incoming CT2019
background CO2 from 10 d prior. This results in a simulated
CO2 concentration at each of 14 WRF-STILT vertical lev-
els over the 744 h in March 2016 (Eq. 12). Finally, we lin-
early interpolate all components from WRF-STILT vertical
grids to each of the RBA and ALF measured vertical pro-
files, which enables us to calculate hourly model–observation
residuals at each vertical level and extract means and 25th
and 75th percentiles. Ultimately, vertical profiles of modeled
and measured residuals for the simulated month typical of
the 2016 wet season incorporate uncertainties in transport,
background, vertical profile measurements, and flux fields.

Figure S6 in the Supplement displays the overall methodol-
ogy in a flow chart.

Simulated CO2,level=z,hour=h(ppm)=

Footprintz,h×Fluxh+CT2019z,h (13)

3 Results and discussion

3.1 VPRM calibration and evaluation

Site-specific values of tuning parameters are provided in Ta-
ble S2 in the Supplement. NLS calibration results are sum-
marized in Table 2. Table 2 provides the root mean square
error (RMSE) of predicted vs. measured NEE from the
NLS fits at each calibration site, along with the interquartile
range (IQR) of measured NEE, which allows for normalizing
RMSE across the varied ecosystems present in the domain.
Generally, relative to the traditional VPRM formulations, the
VPRM_SIF formulations provide improved fits (calibration)
and predictions (evaluation) to hourly NEE observations. Of
the VPRM formulations with SIF, the SIFg formulation is a
slight net improvement over the standard SIF formulation.
An interesting feature of the respiration parameterization –
relative to the typical non-tropical VPRM formulations – is
the estimate of negative values for α in the respiration tem-
perature dependency for the tropical dry forest Br-CST and
interior primary rainforest Br-K34 sites. This is likely a re-
sponse to the strength of temperature as a driver of NEE and
respiration: strong decreases in respiration in certain tropi-
cal ecosystems have previously been observed (Clark et al.,
2013; Gallup et al., 2021).

We note that Br-K83 – the Br-K67 evaluation site – is a se-
lectively logged disturbed forest site (Figueira et al., 2008).
We also note that site Br-K77 is a highly disturbed pasture
and cropland site with a history of forest conversion to crop-
land in the 1990s followed by burning for rice cultivation
in 2001. Br-K77 is therefore limited in its representation of
steady-state cropland and grassland mosaic ecosystems: its
poor performance as an evaluation site for the FNS crop-
land/grassland mosaic reflects its disturbed ecological his-
tory in the limited years for which we have eddy flux data.
Specifically, as we have K77 eddy flux data only for 2001–
2005, we are comparing an unstable ecology with FNS which
began its trajectory to cropland as far back as 1977 (Almeida
et al., 2018).

Given the greater importance of respiration on the NEE
(and NBE) signal in the tropics relative to the extratropics,
we also examine differences in respiration parameterization
across all VPRM formulations. We use nighttime NEE as
a proxy for respiration (i.e., absent confounding effects of
daytime uptake) focusing on the hours from 20:00 LST to
03:00 LST. Overall, we find that annually and by season, the
SIF-based VPRM formulations – and VPRM_SIFg in par-
ticular – have less skewed distributions and lower overall
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bias than the traditional formulations (Fig. 3 and Table S3
in the Supplement). On average, the dry season respiration
bias is lower across all model versions than in the wet sea-
son. In the wet season, while all models tend to underesti-
mate respiration, VPRM_TRA and VPRM_TRG display the
greatest bias, with VPRM_TRG displaying the greatest skew.
In both seasons, the VPRM_SIFg formulation exhibits the
lowest respiration bias with a residual distribution closest to
normal. The underestimate in wet season nighttime respira-
tion also implies that the general underestimate of peak day-
time wet season drawdown in NEE occurs through underesti-
mating GPP rather than through overestimating Reco. Of the
VPRM formulations, the SIF-based formulations have more
instances of overestimating respiration, especially in savanna
ecosystems (Table S3).

Diurnally, the SIF-based formulations consistently per-
form better than the traditional formulations when compared
to observations annually and seasonally (Figs. S4 and S5 in
the Supplement). Notably, for evergreen broadleaf classes –
the dominant domain vegetation type – peak uptake tends to
be underestimated in both seasons but especially in the wet
season. Full details of seasonality are provided in Sect. S1 in
the Supplement, focusing on the Br-K67 site which had the
longest record (Wu et al., 2017, Table S4, Figs. S7 and S8 in
the Supplement). The results from the seasonality case study
suggest that the SIF-based formulations in general – and the
VPRM_SIFg formulation in particular – are better equipped
at estimating biogenic carbon fluxes at both short and longer
timescales. We explore these results further via the wet sea-
son 2016 optimization case study in Sect. 3.2.

Of note, while there can be conflicting evidence on light
limitations and seasonal carbon uptake in the Amazon, sev-
eral studies provide evidence for enhanced dry season car-
bon uptake when cloud cover is reduced and sunlight is more
readily available (Huete et al., 2006; Saleska et al., 2016;
Doughty et al., 2019). But while the GPP constituent of NEE
can be higher in the dry season, wet season aircraft observa-
tions tend to show higher net uptake (Gatti et al., 2010, 2014,
2021).

3.2 Wet season 2016 case study: biogenic model
evaluation and estimates of fire influence

We evaluate the VPRM performance during March 2016,
corresponding to the middle of the wet season immediately
following the peak of the 2015/2016 severe El Niño, and
compare it with SiB4’s performance. We select the March
2016 wet season as it is a valuable natural experiment that
demonstrates the relative importance of biogenic fluxes and
fire fluxes. The severe El Niño corresponded to one of the
hottest periods recorded over Amazonia in the past century;
as shown in Fig. 4a, the 2016 wet season was characterized
by a dipole of extreme drought in the eastern Amazon and
unusual wetting in the western Amazon (Silva Junior et al.,
2019). The anomalously hot and dry conditions in portions

of the Amazon were more conducive to drought-related fire
activity; however, Silva Junior et al. (2019) found the peak in
Amazon area affected by fires during the first quarter of 2016
was approximately 2 %, with fire anomalies concentrated in
the northern state of Roraima. Integrated over February and
March 2016, Aqua satellite fire detections were concentrated
at the northern and southeastern boundaries of the Amazon
basin (TerraBrasilis, 2024). The emissions strength of these
fires (as fire radiative power) was not readily available and
could not be used to weight their relative importance. Dom-
inance of fire emissions relative to biosphere fluxes varied
by location; we use this feature in combination with drought
index information and measured aircraft vertical profiles to
evaluate biogenic flux models and estimate the relative con-
tribution of the biogenic activity and fires to sub-regional
CO2 signal.

3.2.1 Optimization results for biogenic flux models

Figure 4 displays 1°× 1° prior (Fig. 4b) and poste-
rior (Fig. 4c) fluxes and their differences (Fig. 4d) (as
µmolCO2 m−2 s−1) averaged over the month of March 2016.
The optimization suggests that all prior models in wet sea-
son 2016 tended to underestimate carbon uptake in the
western Amazon and particularly in the Amazon lowlands.
The regions of underestimated uptake correspond to the
anomalously wet region identified through the self-calibrated
Palmer drought severity index (scPDSI) by Jimenez-Muñoz
et al. (2016) but also in the case of the VPRM to regions
under-constrained by eddy flux calibration sites (Figs. 2a and
4a). Relative to OCO-2 total column observations, both tra-
ditional VPRM formulations tend to underestimate uptake
throughout the Amazon and strongly underestimate uptake
in the region corresponding to the wetter-than-normal con-
ditions. However, incorporating SIF observations into the
VPRM formulations enhances the model’s ability to capture
uptake in anomalously dry conditions. We note the demon-
strated drought sensitivity of SIF, providing confidence in its
ability to quantify impacts of water availability on carbon up-
take (e.g., Mohammadi et al., 2022).

Overall, our optimization results during the differentially
drought-impacted 2016 wet season suggest that SIF-based
VPRM formulations are better able to capture carbon up-
take during varying tropical light and moisture regimes
than the traditional surface-reflectance-based VPRM formu-
lations. We also find that the posterior solutions of the di-
agnostic SIF-based VPRM formulations – and the SIFg for-
mulation in particular – converge with that of the bottom-up
process-based SiB4 model (Fig. 4d). We further note that the
SIF-based VPRM formulations provide significantly higher
spatial heterogeneity relative to the SiB4 model, suggesting
improved parameterization of the complexity of Amazonian
ecosystems.
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Figure 3. Violin plots of VPRM model–observation (nighttime) respiration residuals annually and by season at eddy flux sites
(µmolCO2 m−2 s−1). Nighttime NEE (where GPP= 0) is used to approximate respiration. Lines are 25th, 50th, and 75th quantiles. All
models tend to underestimate wet season respiration and overestimate dry season respiration. Data skew suggests that VPRM_SIFg respira-
tion residuals are the closest to a normal distribution.

Table 2. Root mean square errors and correlation coefficients (R2) from NLS fits to calibration sites and associated evaluation site predictions.
For evaluation sites, the site used for calibration is provided in the “Cal site” column. Calibration (model fitting) results with R2 > 0.5 are in
regular italics. Evaluation (model predictions) results with R2 values≥ 0.5 are in bold italics. The VPRM model version is shown as one of
TRA, TRG, SIF, or SIFg.

Site Cal site IGBP NEEIQR TRA TRG SIF SIFg
number/ecosystem RMSE (R2) RMSE (R2) RMSE (R2) RMSE (R2)

Br-BAN Br-CST 8/woody savanna 17.2 11.4 (0.29) 11.2 (0.34) 10.48 (0.42) 10.39 (0.43)
Br-CST – 8/woody savanna 4.95 3.88 (0.43) 3.77 (0.45) 3.60 (0.50) 3.36 (0.60)
Br-FNS – 10/grasslands 15.8 8.21 (0.44) 8.18 (0.44) 7.33 (0.60) 7.31 (0.60)
Br-K341 – 2/evergreen broadleaf 21.2 8.30 (0.61) 8.20 (0.62) 8.55 (0.59) 8.28 (0.62)
Br-K67 – 2/evergreen broadleaf 19.9 6.05 (0.69) 5.58 (0.74) 5.67 (0.74) 5.30 (0.77)
Br-K772 Br-FNS 10/grasslands 7.81 6.84 (0.08) 6.63 (0.13) 6.58 (0.15) 6.57 (0.16)
Br-K83 Br-K67 2/evergreen broadleaf 19.4 7.59 (0.60) 7.28 (0.63) 7.00 (0.65) 6.79 (0.67)
Br-PDGa

3 – 9/savannas 8.33 3.89 (0.51) 3.87 (0.51) 3.93 (0.53) 3.91 (0.53)
Br-PDGb

3 Br-PDGa
3 9/savannas 7.46 3.98 (0.58) 4.05 (0.55) 4.01 (0.60) 4.08 (0.58)

1 K34 data are unvalidated due to insufficient representative data.
2 K77 ecological history suggests limitations in its representation of steady-state grasslands.
3 PDG was the only member of IGBP class 9, and separate years were used for calibration (2003, PDGa) and evaluation (2001–2002, PDGb). The IQR of
measured NEE at each site is also provided to normalize RMSE and facilitate comparison across the varied ecosystem types.

3.2.2 Comparison of prior and posterior models at
aircraft vertical profiling locations

We evaluate the prior and posterior performance of the
VPRM and SiB4 models at the RBA and ALF vertical profil-
ing sites, focusing on altitudes where upwind biogenic fluxes
dominated the CO2 signal. After qualitatively accounting for
the likely presence of fire emissions, we examine the impact
of biogenic model optimization through simulating vertical
profiles, diurnal cycles, and total monthly fluxes. Methods
to calculate vertical profiles and total monthly flux are de-
scribed in Sects. 2.6 and 2.7.

Overall, we find the SIF-based VPRM formulations and
the SiB4 simulate vertical profiles have significantly bet-

ter model–observation agreement than the traditional VPRM
formulations. We discuss the details of the analysis below,
noting that the RBA profiling location alone provided ob-
servations at altitudes where the biosphere is dominant. Fire
activity in the region upwind of ALF was determined to be
substantial enough at all altitudes such that biogenic model
evaluation – i.e., evaluation absent other significant and con-
founding sources of CO2 – would not be valid. Figures 5
and 6 display modeled and measured vertical profiles and
their 25th and 75th percentiles for a typical 2016 wet season
month at RBA and ALF, where “typical” is defined using
data across February and March 2016 (Sect. 2.6). At RBA,
this period corresponds to surface influence from across
the northeast and central Amazon basin, which is a strong
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Figure 4. Correlation of March 2016 regional drought patterns with differences between average monthly prior and posterior fluxes. (a) Self-
calibrated Palmer drought severity index (scPDSI) from January through March 2016 exhibiting anomalously wet conditions in the western
Amazon and anomalously dry conditions in the eastern Amazon; (b–d) spatial patterns of average March 2016 fluxes for the (b) prior models,
(c) posterior models, and (d) their differences. The scPDSI data are from Jiminez-Muñoz et al. (2016).

modifier of the background CO2 signal through evergreen
broadleaf uptake (Figs. 2a, S2, and S9). At ALF, however,
the Amazon basin has significantly less influence on the air
masses; savanna and woody savanna ecosystems outside the
basin dominate the surface influences on the advected back-
ground air (Figs. 2a, S3, and S10). As indicated by the IQR
of NEE in Table 2, savannas and woody savannas are weaker
modifiers of the CO2 signal relative to Amazon basin ever-
green broadleaf classes. In addition, during the first quarter
(Q1; January–March) of the calendar year, the typical RBA
influence region (Fig. S2) is ∼ 14% deforested, unlike the
ALF Q1 influence region (Fig. S3) which is ∼ 23% defor-
ested during the same period (Gatti et al., 2021a). The foot-
prints from the four OCO-2 receptors used to simulate ALF
vertical profiles and the back trajectories from measured pro-
filing locations indicate the highest ALF influence is from the

most heavily deforested regions (Figs. 2a, S3, and S10). As
previously noted, numerous upwind fire locations potentially
impact ALF at all altitudes such that the biosphere models
alone cannot sufficiently approximate the observed concen-
trations at any altitude. Table 3 summarizes these results as
differences between measured CO2 vertical profiles and the
modeled background. At altitudes < 2000ma.s.l., ALF Q1
upwind surfaces result in lower background CO2 signal mod-
ification relative to RBA Q1 upwind surfaces due to a com-
bination of fewer ecosystem carbon flux modifications and
higher fire emissions. At altitudes> 2000ma.s.l., the differ-
ences between ALF and RBA measurements are not signifi-
cant, suggesting similar background influences above that al-
titude. At altitudes from∼ 900–1000 ma.s.l., CO/CO2 ratios
from Gatti et al. (2021) indicate fire plume influence domi-
nating the signal at RBA and ALF.
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Figure 5. Modeled and measured vertical profiles for a typical
month during the 2016 wet season at the RBA aircraft site. (a–e)
Prior and posterior residuals of modeled vertical profiles relative to
measured profiles. (f) Measured CO2. Shaded regions are 25th and
75th percentiles of bootstrapped distributions.

The vertically resolved footprints in Figs. 5 and 6 and
Table 3 suggest four distinct upwind CO2 regimes influ-
encing the RBA and ALF measured profiles: (1) biosphere
flux dominance below 900 m a.s.l., (2) fire emission domi-
nance between 900–1000 m a.s.l., (3) dilution of fire emis-
sions by background air between 1000–2000 m a.s.l., and (4)
background tropical marine Atlantic air dominance above
2000 m a.s.l. We note Gatti et al. (2021), whose surface influ-
ence regions are based on integrated back trajectories rang-
ing from 300–3500 m a.s.l.; while their upper threshold of
3500 m a.s.l. defines tropical marine Atlantic background air,
their results were robust across background air designations
from > 1300ma.s.l. (typical regional planetary boundary
layer height) to 3500 m a.s.l.

Figure 6. Modeled and measured vertical profiles for a typical
month during the 2016 wet season at the ALF aircraft site. (a–e)
Prior and posterior residuals of modeled vertical profiles relative to
measured profiles. (f) Measured CO2. Shaded regions are 25th and
75th percentiles of bootstrapped distributions.

At RBA where the Amazon basin biosphere dominates
the signal more than at ALF, the optimization reduces the
model–observation mismatch for all flux models, particularly
below 1000 m a.s.l. Generally, the traditional VPRM formu-
lations are significantly more impacted by the optimization
than the SIF-based VPRM and SiB4 models. The magnitude
at which VPRM_TRA and VPRM_TRG underestimate CO2
uptake across the RBA area of influence results in a model–
observation a priori surface residual of over 10 ppm and a
posterior surface residual of approximately 5 ppm (Fig. 5a
and b). In contrast, the VPRM_SIF, VPRM_SIFg, and SiB4
models are all similarly impacted by the optimization with
a prior model–observation surface residual of approximately
5 ppm, and a posterior model–observation surface residual
of < 2.5ppm. At ALF the February–March 2016 upwind air
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masses are potentially significantly influenced by fire activity
at all altitudes. In addition, with the upwind air masses by-
passing a majority of the Amazon basin and instead primar-
ily influenced by the Cerrado and Caatinga biomes where
the models generally agree (Fig. 4d), all prior and poste-
rior flux models perform similarly with a typical model–
observation residual of −3 to 3 ppm throughout the vertical
column (Fig. 6a–e).

3.3 Summary of VPRM_SIFg prior model decadal
performance

Based on comparison with eddy flux data and results from
the March 2016 optimization case study, the VPRM_SIFg
biogenic flux model shows promise in its ability to cap-
ture Amazonian carbon fluxes across multiple timescale
and moisture regimes, suggesting its suitability for larger
studies evaluating interannual and seasonal carbon trends
in both the fire and biogenic components of the region’s
NBE. In this section, we summarize the decadal perfor-
mance of the VPRM_SIFg prior relative to the VPRM_TRG,
VPRM_TRA, and SiB4 priors. We calculate average sea-
sonal fluxes of the VPRM_SIFg prior (as µmolCO2 m−2 s−2)
from 2010–2020 (2010–2018 for SiB4) over Amazonia and
compare them with the corresponding average fluxes from
the VPRM_TRA, VPRM_TRG, and SiB4 priors (Fig. 7).
In addition, we compare the interannual performance of
VPRM_SIFg and SiB4 and include comparisons with other
studies both in the Amazon (Gatti et al., 2021a) and in the
Cerrado and Caatinga biomes (Mendes et al., 2020; Alves
et al., 2021).

3.3.1 Comparison with traditional VPRM fluxes

Basinwide and across both seasons and all years,
VPRM_SIFg estimates more photosynthetic uptake
than VPRM_TRA and VPRM_TRG in an overall pattern
consistent with model validation and wet season 2016
optimization results. Across both seasons, VPRM_SIFg esti-
mates more respiration in the Br-K34 calibration region and
less respiration across the rest of the basin when compared
to VPRM_TRA and VPRM_TRG.

Outside of the basin, VPRM_SIFg universally estimates
higher photosynthetic uptake and respiration release than the
traditional VPRMs.

3.3.2 Comparison with SiB4 fluxes

When compared to SiB4, VPRM_SIFg estimates less dry
season uptake and respiration in the western Amazon basin
corresponding to the regions calibrated by Br-K34. In the wet
season, VPRM_SIFg generally estimates less uptake and res-
piration than SiB4.

Outside of the basin, VPRM_SIFg generally estimates
more photosynthesis and respiration in the dry season. In the
wet season, higher photosynthesis and respiration relative to

SiB4 are localized to woody savanna and savanna ecosys-
tems (Br-CST, Br-BAN).

Determining the extent to which the differences between
the two models reflect real carbon dynamics requires a multi-
year optimization, including separately optimizing GPP and
Reco.

3.3.3 Comparison with interannual observations

We assessed the performance of VPRM_SIFg and SiB4 from
2010 to 2019 for the Amazon basin (Amazon mask; Fig. 8a
and b) and separately for the region containing the Cerrado
and Caatinga biomes (Cerrado+Caatinga mask; Fig. 8a and
c) and compared it against available observations.

For the Amazon mask, the VPRM_SIFg prior tends to
estimate interannual net release, while the SiB4 model
tends to remain closer to neutral (Fig. 8b). In addition, the
VPRM_SIFg describes greater ecosystem heterogeneity rel-
ative to SiB4: the interquartile range (IQR) over the Amazon
for the VPRM_SIFg is −0.47 to 0.83 gCm−2 d−1. In con-
trast the SiB4 IQR is 0.06 to 0.07 gCm−2 d−1. Meanwhile,
the Gatti et al. (2021) mass balance approach using aircraft
vertical profiles tends to estimate net fluxes closer to neu-
tral that generally track SiB4 interannual estimates with a
few notable exceptions: in 2016, corresponding to the tail
of the severe 2015–2016 El Niño, aircraft profiles suggest
a regional net release of 0.1 gCm−2 d−1 in agreement with
VPRM_SIFg, while the following year shows a net regional
uptake of −0.2 gCm−2 d−1. We note that the VPRM_SIFg
model agrees with the trajectory of the Gatti et al. (2021)
post-El Niño fluxes in that there is more net uptake implied
between 2016 and 2018. Furthermore, we note that the 2010–
2011 El Niño corresponds to a VPRM_SIFg estimate of net
release, while Gatti et al. (2021) and SiB4 estimate carbon
fluxes that are net neutral to uptake. Given the severity of
the associated 2010 drought across the Amazon, particularly
as it was only 5 years after the previous severe drought, it
is worth exploring whether the VPRM_SIFg is better able to
capture the regional carbon effects and impacts of antecedent
environmental stressors.

The performance in the Cerrado and Caatinga region
suggests that the ecosystem heterogeneity exhibited in
the VPRM_SIFg model is realistic. The IQR for the
VPRM_SIFg in the Cerrado and Caatinga region captures the
site diversity exhibited by the Mendes et al. (2020) northern
Caatinga eddy flux site and the Alves et al. (2021) southern
Cerrado converted pasture site. In contrast, the IQR of SiB4
remains closer to neutral. Note that the Gatti et al. (2021)
analysis did not include an assessment of the Cerrado and
Caatinga regions.
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Table 3. Difference between average measured CO2 profiles and CT2019 background CO2. Differences are based on averages pooled across
February and March 2016.

CO2,OBS−CO2,BG (95 % CI), ppm
< 900ma.s.l. ∼ 900–1000ma.s.l.∗ 1200 to < 2000 m a.s.l. > 2000 m a.s.l.

RBA −3.2 (−3.5, −2.9) −0.36 (−0.80, 0.084) −0.46 (−0.72, −0.17) −1.1 (−1.3, −0.97)
ALF −1.7 (−2.0, −1.3) 2.5 (2.0, 3.0) −0.97 (−1.4, −0.56) −0.99 (−1.2, −0.82)
ALF – RBA 1.6 (1.1, 2.1) 2.8 (2.2, 3.5) −0.52 (−1.0, −0.03) −0.15 (−0.39, 0.10)

∗ 1000 m a.s.l. is the approximate location of the peak of a fire plume.

Figure 7. Average GPP and Reco flux differences between VPRM_SIFg relative to traditional VPRM formulations and SiB4. Averaging
period is 2010–2020 (comparison with VPRM formulations) and 2010–2018 (comparison with SiB4). Top panels: dry season differences.
Bottom panels: wet season differences. Blue (red) values indicate instances where SIFg estimates more (less) uptake and release than the
comparison model.

4 Conclusions

Compounded by the impacts of global climate change, the
Amazon is experiencing unprecedented ecological distur-
bance through fires, deforestation, drought, and forest frag-
mentation. Multiple recent studies describe how the increas-
ingly degraded and disturbed Amazon has a lowered car-
bon sink capacity with significant impacts to regional and
global carbon budgets. However, reliable biogenic flux mod-
els that can capture fluxes from hourly to annual timescales
are needed to quantify trends in carbon sink strength, ecolog-

ical health and recovery from disturbance, and estimates of
emissions from increasingly prevalent fires.

Assimilating observational CO2 data from eddy flux sites,
OCO-2 columns, and aircraft vertical profiles, we demon-
strate, construct, and evaluate the ability of four versions
of the VPRM diagnostic light use efficiency model to cap-
ture biogenic carbon fluxes from hourly to seasonal scales.
Of the VPRM versions evaluated, the respiration-modified
VPRM_SIFg exhibits the least bias when compared to eddy
flux observations, including observationally derived respi-
ration estimates. In the tropics – where respiration exerts
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Figure 8. Interannual performance of VPRM_SIFg and SiB4 NEE (gCm−2 d−1) relative to available observations for the decade beginning
in 2010. (a) IGBP land use map overlaid with the Amazon mask, Cerrado+Caatinga mask, and two Cerrado and Caatinga eddy flux sites
used for comparison; (b) VPRM_SIFg and SiB4 median annual NEE (95 % CI of the median) for the Amazon mask along with estimates
from Gatti et al. (2021); (c) VPRM_SIFg and SiB4 median annual NEE (25th, 75th percentiles) for the Cerrado+Caatinga mask along with
annual estimates from two eddy flux sites.

stronger controls on NBE than the extratropics – our work
demonstrates the superior performance of the respiration-
modified VPRM_SIFg diagnostic light use efficiency model
relative to all other VPRM versions. Future work will con-
tinue development of the VPRM_SIFg formulation, includ-
ing further investigating the model structure as it relates to
SIF and PAR as well as exploring the direct use of SIF satel-
lite products rather than derived products such as contiguous
solar-induced fluorescence (CSIF).

Optimization results for March 2016 – the middle of the
wet season corresponding to the tail of the 2015–2016 se-
vere El Niño – demonstrate (1) a significant underestimate
of net uptake by the traditional VPRM formulations rela-
tive to observations and VPRM_SIFg; (2) that relative to the
SiB4 model, the VPRM_SIFg model describes more spatial
heterogeneity in carbon exchange throughout the Amazon;
and (3) the convergence of flux estimates from two distinct
methodologies – namely, the diagnostic VPRM_SIFg and the
process-based bottom-up SiB4 biogenic flux model. While
the convergence of NEE in the distinct VPRM_SIFg and
SiB4 flux estimation methodologies lends confidence to both
models, differences in NEE partitioning (as GPP and Reco)
warrant further exploration. Future work will optimize GPP
andReco separately; in that case, the VPRM can be optimized
in parameter space (e.g., Matross et al., 2006), which will
also account for the uncertainty associated with using car-
bon dynamics from 2000–2010 to describe carbon dynamics
from 2010–2020.

We also find that, despite the paucity of wet season OCO-
2 observations used in top-down constraints, modeled verti-
cal profiles optimized with OCO-2 measurements compare
significantly better with aircraft measurements than their un-
optimized counterparts. We hypothesize that, given the drier-
than-normal conditions experienced by the region influenc-
ing RBA during this time period, the sounding density during
this wet season was higher than normal. Future work focus-
ing on a range of wet season conditions will shed light on
this possible anomaly.

The promising performance of both the prior and poste-
rior VPRM_SIFg model in the wet season 2016 case study
provides confidence in its ability to capture interannual and
seasonal trends in the biogenic carbon component of the
Amazon’s net biome exchange. We note that VPRM_SIFg
would benefit from additional calibration sites, via inclu-
sion of eddy flux data from more recent time periods and/or
greater representation of interior primary moist evergreen
broadleaf classes. Currently, Br-K34 is the only site repre-
senting the interior Amazon; additional eddy flux data for
calibration and/or validation such as from the Amazon Tall
Tower Observatory (ATTO) would be beneficial. In addition,
eddy flux data from the Amazon lowlands would provide
additional constraints to the higher model–observation mis-
match observed in that region. Future work will use the opti-
mized VPRM_SIFg across both wet and dry seasons to eval-
uate interannual and seasonal trends, including assessing the
changing role of fires in the net biome exchange of Amazo-
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nian carbon fluxes, and the changes in the pace of post-fire
ecosystem recovery.
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