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Abstract. Methylmercury (MeHg), accumulated in rice
grains, is highly toxic for humans. Its production is largely
driven by microbial methylation in paddy soils; however, dis-
solved organic matter (DOM) is a critical component of the
soil biogeochemistry process, yet its interactions with mi-
croorganisms involved in MeHg production remain poorly
understood. Here, we conducted hgcA gene sequencing and a
genome-resolved metagenomic analysis to identify core Hg-
methylating microbiomes and investigate the effect of DOM
on core Hg-methylating microbiomes in paddy soils across
a Hg contamination gradient. In general, the Hg-methylating
microbial communities varied largely with the degree of Hg
contamination in soils. Surprisingly, a core Hg-methylating
microbiome was identified that was exclusively associated
with MeHg concentration. The partial Mantel test revealed
strong linkages among core Hg-methylating microbiome
composition, DOM, and MeHg concentration. Structural
equation models further indicated that core Hg-methylating
microbiome composition significantly impacted soil MeHg
concentration, contributing 89 % of the observed variation,
while DOM plays a crucial role in determining core Hg-
methylating microbiome composition, accounting for 65 %.
These results suggested that DOM regulates MeHg produc-
tion by altering the composition of core Hg-methylating mi-
crobiomes. The presence of various genes associated with
carbon metabolism in the metagenome-assembled genome
of core Hg-methylating microorganisms suggests that dif-

ferent DOM stimulates the activity of core Hg-methylating
microorganisms to methylate Hg, which was confirmed by a
pure incubation experiment with Geobacter sulfurreducens
PCA (a core Hg-methylating microorganism) amended with
a natural DOM solution extracted from investigated soils.
Overall, DOM simultaneously changes core Hg-methylating
microbiome composition and functional activity and thus en-
hances MeHg production in paddy soils.

1 Introduction

Mercury (Hg) is a toxic contaminant since it can be trans-
formed into neurotoxic methylmercury (MeHg) and biomag-
nified in food chains (Driscoll et al., 2013). Human expo-
sure to MeHg can cause neurocognitive deficits and cardio-
vascular effects (Oulhote et al., 2017; Roman et al., 2011).
It is generally accepted that seafood consumption is the ma-
jor route of exposure to MeHg in humans (Schartup et al.,
2019). However, recent studies have demonstrated that rice
consumption is another important route of human exposure
to MeHg (Feng et al., 2008), with 3.5 billion individuals re-
lying on rice as a principal dietary component (Muthayya et
al., 2014).

Compared to other environments such as wetlands and
aquatic sediments, paddy fields present unique ecological
conditions that make them significant hotspots for Hg methy-
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lation. The frequent flooding and draining cycles, high or-
ganic matter content, and dynamic redox conditions in paddy
soils create an environment that supports high levels of mi-
crobial activity, particularly Hg-methylating microorganisms
(Yin et al., 2013). These conditions not only enhance MeHg
production but also increase the likelihood of MeHg entering
the food web through rice consumption, posing significant
health risks (Zhang et al., 2010). Understanding Hg methy-
lation in paddy fields is therefore crucial, as rice is a critical
exposure route for MeHg in humans.

The accumulation of MeHg in rice is mostly attributed
to microbial methylation of inorganic Hg in paddy soils
(Meng et al., 2011). In situ methylation and demethyla-
tion are deemed to be important processes controlling the
net MeHg concentration in environments (Barkay and Gu,
2022; Helmrich et al., 2021; Li and Cai, 2012). Our re-
cent study showed that Hg transformation processes, such
as methylation, demethylation, oxidation, and reduction, oc-
curred simultaneously in paddy soils, with Hg methylation
being the most active (Liu et al., 2023). Therefore, paddy soil
is a typical “hotspot” for Hg methylation, which is mainly
a biotic process mediated by many abiotic factors, such as
Hg bioavailability and redox conditions (Li and Cai, 2012).
The diversity and activity of Hg-methylating microorgan-
isms in paddy soils control MeHg production (Gilmour et
al., 2013; Liu et al., 2018). However, among the various Hg-
methylating microorganisms currently known, the core mi-
crobiome controlling MeHg production and its interaction
with environmental variables in paddy soils have yet to be
identified.

Physicochemical factors in soils, such as organic mat-
ter, pH, salinity, redox potential, iron, and sulfur, have been
shown to regulate the activity of Hg-methylating microorgan-
isms and play an important role in controlling MeHg pro-
duction in rice fields (Ullrich et al., 2001). Among the dif-
ferent variables, soil organic matter, which is ubiquitous in
paddy soils (Li et al., 2018), plays a vital role in Hg methy-
lation (Yin et al., 2013). Dissolved organic matter (DOM),
the most mobile organic matter fraction, increases MeHg
production under sulfidic conditions (Graham et al., 2012).
DOM increases microbial Hg bioavailability for methylation
by stabilizing β-HgS(s) nanoparticles to prevent aggregation.
In addition, Hg speciation in Hg-polluted paddy soils was
found to be predominantly regulated by organic matter (Liu
et al., 2022), and the high bioavailability of DOM-bound Hg
in rice paddies contributed to an increase in MeHg produc-
tion (Liu et al., 2022). In contrast, other studies reported that
DOM had a high affinity for Hg compounds (Skyllberg et
al., 2006), suppressing MeHg production due to strong Hg–
DOM complexation (Schartup et al., 2015). As a result, the
role of paddy soil DOM on Hg methylation remains elusive.
Our recent study showed a significant and strong relation-
ship between MeHg production and low-molecular-weight
DOM in paddy soils collected from major rice-producing ar-
eas across China (Abdelhafiz et al., 2023). Given paddy soil

DOM’s significant chemodiversity (Li et al., 2018), it is rea-
sonable to hypothesize that the effect of DOM on MeHg pro-
duction cannot be assessed solely based on Hg speciation and
bioavailability, suggesting that other factors also play roles in
MeHg production.

MeHg production is controlled by the synergy of Hg
bioavailability and Hg-methylation capacity (Peterson et al.,
2023), indicating that Hg-methylating microbial communi-
ties may also play an important role in DOM-regulated
MeHg production. Concentration and composition of DOM
have been shown to regulate MeHg production via alteration
of the composition of the soil microbial community (Fager-
vold et al., 2014; Hu et al., 2021; Oloo et al., 2016). However,
the core Hg-methylating microorganisms were not identi-
fied within these studies. Zhao et al. (2017) reported that
two model Hg methylators exhibited an opposite response
to DOM at the strain level. Therefore, we hypothesized that
DOM fosters a core Hg-methylating microbiome that regu-
lates MeHg production, since the core microbiome has a piv-
otal role in the functioning of ecosystems (Banerjee et al.,
2018; Chen et al., 2019; Xun et al., 2021).

Thus, an attempt was made within this study to verify the
crucial role of DOM in fostering the core Hg-methylating
microbiome for MeHg production by (1) identifying the core
Hg-methylating microbiome in paddy soils across a gradi-
ent of Hg contamination, (2) quantifying the relevance of
DOM to the core Hg-methylating microbiome and MeHg
production in paddy soils compared with other soil physic-
ochemical parameters, and (3) elucidating the mechanism of
core Hg-methylating microorganisms in response to differ-
ent DOM. These results broaden our understanding of DOM
as the prominent factor in altering Hg-methylating microbial
communities and highlight the contribution of the core Hg-
methylating microbiome to MeHg production in paddy soils.

2 Materials and methods

2.1 Soil sampling and physicochemical analysis

Two field sampling campaigns were conducted in Septem-
ber 2020 and August 2022 in this study. Specifically, paddy
fields from an abandoned Hg mining area (Sikeng, SK), an
artisanal Hg smelting area (Gouxi, GX), and a regional back-
ground area (Huaxi, HX) in Guizhou Province, SW China,
were selected in September 2020 (Tables S1, Samples S1–
27). In each study area (SK, GX, and HX), nine sampling
sites were randomly selected. Similarly, 19 additional sam-
pling sites from the rice-producing areas in 12 provinces
of China were selected in August 2022 (Table S1, Sam-
ples S28–46). At each site, one rice paddy field was ran-
domly selected. Paddy soil was taken from the root zone
(10–20 cm deep) and comprised a composite of three sub-
samples from the same paddy field. A total of 46 soil sam-
ples were obtained in this study to represent different Hg
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contamination levels and bioavailability, net MeHg produc-
tion, DOM concentration and composition, soil microbial
community composition and structure, and other physico-
chemical characteristics. Soil samples were collected in ster-
ile PP bottles (Nalgene®, Thermo Fisher, USA) without any
headspace, immediately shipped back to the laboratory on
ice packs (∼ 4 °C), and divided into two subsamples before
use. One subsample was stored at−20 °C for microbial anal-
ysis, and the other was stored at 4 °C for the analysis of soil
physicochemical properties. Freeze-dried samples (−80 °C;
EYELA FDU-2110, China) were screened to remove gravel
and residue and then ground and evenly mixed using a mortar
and pestle to pass through a 200-mesh sieve. The processed
soil samples were analysed for pH, total carbon (TC), total
nitrogen (TN), various mercury species (water-soluble Hg,
total Hg (THg), and MeHg), water-soluble sulfate (SO2−

4 )
and nitrate (NO−3 ), DOM concentration (measured as water-
soluble dissolved organic carbon), DOM composition (mea-
sured as optical properties of DOM), and low-molecular-
weight organic acids. Fresh soil samples were also cen-
trifuged to obtain pore water for the analysis of iron and
sulfur (measured as Fe2+ and S2− in soil pore water). De-
tailed measurement procedures are provided in Supplement
Text S1. It should be noted that Fe2+ and S2− data were lim-
ited to soil samples obtained in August 2022.

2.2 Soil DNA extraction

We extracted DNA from 0.5 g of soil using the FastDNA Spin
Kit for Soil (MP Biomedicals, France), following the manu-
facturer’s instructions. The quality and concentration of the
isolated DNA were assessed using spectrophotometry (Nan-
odrop ND1000, USA) and 1.0 % agarose gel electrophoresis.
The DNA was then stored at −80 °C for further analysis.

2.3 Amplicon sequencing and bioinformatic analysis

Soil Hg-methylating microbial communities were
characterized by Illumina MiSeq sequencing of the
hgcA gene using the primer pair ORNL-HgcAB-
uni-F (5′-AAYGTCTGGTGYGCNGCVGG-3′) and
the reverse primer ORNL-HgcAB-uni-32R (5′-
CAGGCNCCGCAYTCSATRCA-3′) (Gionfriddo et al.,
2020). Amplicons were equimolarly mixed and sequenced
using the Illumina MiSeq instrument (Illumina Inc., San
Diego) in 2×300 bp mode. Poor-quality reads, adapters, and
primers were trimmed with Sickle and Cutadapt (Joshi and
Fass, 2011; Martin, 2011). USEARCH (version 8.0) was
used to truncate, dereplicate, sort, and remove singletons
(Edgar, 2013). The set of sequences obtained was clustered
at a 60 % similarity cutoff with cd-hit-est (Fu et al., 2012).
Using USEARCH (version 8.0), the sequences were then
mapped to the resulting clusters’ representative sequences
to build a count table. The sequences were annotated with
amino acid sequences from Hg-MATE-Db (V1.01142021)

(Gionfriddo et al., 2021) by using a hidden Markov model
(HMM) based on HMMER (Eddy, 2011). In addition, the
abundance of the Hg-methylating gene hgcA (which encodes
a corrinoid protein essential for methylating inorganic
Hg) was quantified in an Applied Biosystems 7500. The
quantification of the hgcA gene is provided in Supplement
Text S2.

2.4 Metagenomic sequencing and bioinformatic
analysis

DNA from nine randomly selected paddy fields at each site
in September 2020 was equimolarly mixed to obtain > 1 µg
of DNA for shotgun metagenomic sequencing. For paddy
soils collected in August 2022, three replicates of each sam-
ple were utilized to ensure sufficient quantity and quality of
DNA for metagenomic sequencing. A total of 22 samples
were analysed using an Illumina HiSeq 2500 system (Illu-
mina Corp., USA).

The detection and taxonomic identification of the hgcAB
gene (full operon responsible for Hg methylation pathway)
were performed with marky-coco (Capo et al., 2023). The
metagenomic sequences were trimmed to eliminate low-
quality reads using fastp with the following parameters: -
q30-l25 –detect_adapter_for_pe –trim_poly_g –trim_poly_x
(Chen et al., 2018). These high-quality reads were then as-
sembled into contigs using megahit 1.1.2 with default set-
tings (Li et al., 2016). The annotation of the contigs for
prokaryotic protein-coding gene prediction was conducted
using prodigal 2.6.3 (Hyatt et al., 2010). To search for hgc
homologs, a profile of HMM derived from Hg-MATE.db.v1
was applied to an amino acid FASTA file generated from
each assembly with the function hmmsearch from HMMER
3.2.1 (Finn et al., 2011). To eliminate paralogs of hgcA,
we removed the sequences without the conserved putative
cap helix motif [N(V/I)WCA(A/G)GK] reported previously
(Parks et al., 2013). We further filtered the sequences by
retaining only sequences with more than four transmem-
brane domains as identified by TMHMM (v.2.0) (Krogh et
al., 2001). Finally, the obtained contigs with hgcA homologs
were classified taxonomically following a previously de-
scribed method (Zhang et al., 2023). In addition, to estimate
the relative abundance of the hgcA gene, metagenomic reads
were mapped to representative genomes of the hgcA dataset
using Bowtie2 (Capo et al., 2023). The relative abundances
of each gene were calculated by normalizing the total length
of successfully mapped reads by gene length and the total
number of reads in the metagenome.

Contigs of ≥ 1000 bp were used to carry out a binning
analysis with the MetaWRAP pipeline (v1.3.2) (Uritskiy
et al., 2018). The quality of reconstructed metagenome-
assembled genomes (MAGs) was assessed using CheckM
(Parks et al., 2015). High-quality MAGs (completeness
≥ 90 % and contamination ≤ 10 %) were used to detect
hgcA homologs, and taxonomy of these retrieved MAGs
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was conducted using GTDB-tk (v2.1.0) with its reference
database (version release_207V2) (Parks et al., 2022). To
explore what fractions of DOM can be metabolized by
core Hg-methylating microorganisms, core Hg-methylating
microbial-associated MAGs were mapped to the protein se-
quence of the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database using the eggNOG-mapper (Huerta-Cepas
et al., 2017).

2.5 Pure incubation of Geobacter sulfurreducens PCA
with different DOM

To validate that different concentrations and molecular
weights of DOM stimulate the activity of core Hg-
methylating microorganisms, we incubated Geobacter sul-
furreducens PCA (G. sulfurreducens PCA), identified as
a core Hg-methylating microorganism in this study, with
Hg2+, and a natural DOM solution extracted from non-Hg-
polluted soil (NMS), moderately Hg-polluted soil (MMS),
or highly Hg-polluted soil (HMS). Geobacter was selected
for these pure incubation experiments due to its dominant
role in mercury methylation and its ability to isolate the ef-
fects of DOM on methylation rates without the interference
of soil matrix complexity. More details on the descriptions of
the pure incubation experiment can be found in Supplement
Text S3.

2.6 Statistical analysis

All statistical analyses were conducted using the R plat-
form (version 3.6.1). All statistical tests were considered
significant at p<0.05. The Kruskal–Wallis test was used to
compare microbial alpha diversity among all samples. Hg-
methylating microbial communities across differently pol-
luted soils were compared by analysing dissimilarity ma-
trices using the Bray–Curtis distance and visualized using
principal coordinates analysis (PCoA) and Adonis with the
ade4 and vegan packages (Dray and Dufour, 2007; Oksa-
nen et al., 2017). To determine the relationship between THg
and MeHg, Spearman correlation was performed using gg-
pubr and visualized using ggplot2 packages (Kassambara,
2018; Wickham, 2009). Variation partitioning analysis was
performed using the vegan package (Oksanen et al., 2017).
The major predictors of Hg-methylating microbial commu-
nities and their significance were identified using random
forest analysis with randomForest, rfPermute, and A3 pack-
ages (Archer, 2018; Fortmann-Roe, 2015; Liaw and Wiener,
2002). To investigate the co-occurrence patterns among mi-
crobial taxa related to MeHg production, co-occurrence net-
works were established in the R platform using the psych
package (Revelle, 2023), and visualized in Gephi 0.9.2 (Bas-
tian et al., 2009) based on strong (Spearman’s r>0.8) and
significant (p<0.01) correlations (De Cáceres and Legendre,
2009). The modules in Hg-methylating microbial network
were identified using default parameters from Gephi. To ex-

plore the relationship between the modules and environmen-
tal parameters, we correlated dissimilarities of bacterial com-
position in a core Hg-methylating microbiome with those of
environmental factors as previously described (Sunagawa et
al., 2015). The structural equation model (SEM) was con-
ducted using the R platform to evaluate the impacts of DOM
and a core Hg-methylating microbiome on MeHg produc-
tion. A prior model was established based on the known
relationships among drivers impacting MeHg production
(Fig. S1). We further calculated the contribution of ecolog-
ical parameters, including DOM, to the core Hg-methylating
microbiome and the contribution of the core Hg-methylating
microbiome to MeHg production, following the approach de-
scribed by Tao et al. (2015). This calculation was performed
by determining the proportion of the squared path coefficient
of each parameter relative to the sum of the squared path co-
efficients of all parameters influencing the same target vari-
able (Tao et al., 2015).

3 Results

3.1 Mercury production in paddy soils

THg concentrations in paddy soils ranged from 0.03 to
1079.75 µg g−1 dry weight (dw) (Table S1). As reported in
our previous study, dividing paddy soils by THg concen-
tration rather than sampling sites facilitates a comprehen-
sive investigation of the key factors influencing Hg methy-
lation (Abdelhafiz et al., 2023). Therefore, the paddy soils
in this study were divided into three categories according to
THg concentration: non-Hg-polluted soil (NMS, with aver-
age levels of 0.24± 0.18 µg g−1 dw, n= 23), moderately Hg-
polluted soil (MMS, 18.28± 6.77 µg g−1 dw, n= 13), and
highly Hg-polluted soil (HMS, 637.79± 160.93 µg g−1 dw,
n= 10). Furthermore, statistically significant differences
in DOM concentrations (reflected by DOC concentration)
and DOM composition (reflected by SR of DOM) were
found in NMS, MMS, and HMS (Table S2). Specifically,
DOC concentration varied significantly across the three soil
types, with 0.48± 0.13 in NMS, 0.40± 0.07 in MMS, and
0.30± 0.10 in HMS. Similarly, the SR of DOM differed
markedly between NMS (1.40± 0.76), MMS (0.89± 0.09),
and HMS (0.46± 0.09). However, no discernible differences
in physicochemical properties (e.g. pH, S2−, SO2−

4 , NO−3 ,
TN, TC, Fe2+) were observed in NMS, MMS, and HMS (Ta-
ble S3).

In this study, we found MeHg concentrations in
paddy soils in the order of HMS (5.01± 0.77 ng g−1 dw,
n= 10)>MMS (2.54± 0.72 ng g−1 dw, n= 13)>NMS
(0.76± 0.25 ng g−1 dw, n= 23) (Fig. S2). Accordingly, a
positive relationship was observed between total Hg and
MeHg in different paddy soils (Fig. S3).
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3.2 Core mercury-methylating microbiomes as
predictors of MeHg production in paddy soils

Random forest results revealed that hgcA gene abundance,
DOM concentration, DOM composition, water-soluble Hg,
Fe2+, and S2− were significantly (p<0.05) associated with
MeHg concentration (Fig. S4), with the hgcA gene the
strongest predictor. The hgcA-gene-based taxonomic pro-
files of paddy soils reveal changes in Hg-methylating mi-
crobial community compositions across different levels of
Hg pollution (Fig. 1a). Such observations were addition-
ally supported by (1) the Chao1 index revealing the di-
versity of Hg-methylating microorganisms in the order
of MMS (312.57± 44.73)>NMS (268.47± 81.85)>HMS
(187.08± 131.62) (p<0.05; Fig. 1b) and (2) the divergent
patterns of Hg-methylating microbial communities in paddy
soils (p<0.01; Fig. 1c). The shotgun metagenomic results
were consistent in detecting Hg-methylating microbial com-
munity composition and structure (Fig. S5). Proteobacte-
ria, Acidobacteria, and Chloroflexi were the most abundant
phyla in different paddy soils detected by both sequenc-
ing strategies. In summary, using both hgcA gene sequenc-
ing and metagenomic data, a significant difference in Hg-
methylating microbial community structure and diversity
was observed in paddy soils.

Network analysis captured 6, 11, and 11 modules (modu-
larity index > 0.55) in NMS, MMS, and HMS, respectively
(Fig. 2a, Table S4). Among all modules, Hg-methylating mi-
croorganisms in Module 1 in NMS, MMS, and HMS were
identified as a core Hg-methylating microbiome based on
their (1) higher connections to other modules and (2) higher
abundance in total Hg-methylating microbial community
(Table S5). Importantly, the impact of various modules in
the microbial community on MeHg production was anal-
ysed using random forest analysis. The results revealed that
the microbiome in Module 1 is a crucial bacterial group in-
fluencing soil methylmercury concentration (Fig. 2b). This
group is considered the core Hg-methylating microbiome in
this study. Further analysis of the core Hg-methylating mi-
crobiome composition revealed diverse core Hg-methylating
microorganisms in paddy soils. Although most microorgan-
isms are not annotated, the three genera with the high-
est abundance in each soil type are as follows: in NMS,
Geobacter (36.2 %), Syntrophus (1.7 %), and Desulfomonas
(0.4 %) dominate; in MMS, Geobacter (40.5 %), Granuli-
cella (2.9 %), and Olavius (2.9 %) are the most abundant; and
in HMS, Geobacter (56.8 %), Methanoregula (0.6 %), and
Granulicella (2.3 %) prevail (Fig. 2c). It is worth highlight-
ing that, in this study, microorganisms belonging to Geobac-
ter were identified as the most significant core microorgan-
isms for Hg methylation across all paddy soils.

3.3 Dissolved organic matter as indicators of core
mercury-methylating microbiome composition in
paddy soils

Based on an analysis of correlations, the results showed
that there were significant correlations between core Hg-
methylating microbiome composition, MeHg concentration,
DOM concentration, DOM composition, water-soluble Hg,
soil S2−, and Fe2+ (Fig. 3). Among all parameters, DOM
is the most important factor influencing the composition of
the core Hg-methylating microbiome. This was supported
by DOM explaining most core Hg-methylating microbiome
composition (Fig. S6). Random forest analysis also showed
that DOM concentration and composition were the most
important predictors of the composition of the core Hg-
methylating microbiome (Fig. S7). Additionally, SEM re-
sults showed that the core Hg-methylating microbiome com-
position, which is closely linked to hgcA gene abundance,
significantly regulated the soil MeHg concentration (λ=
0.84, p<0.001) (Fig. 4). In comparison, the contributions
of Hg bioavailability and redox conditions to the core Hg-
methylating microbiome composition are 10 % and 25 %, re-
spectively, which are much lower than that of DOM (65 %)
(Fig. 4).

3.4 Dissolved organic matter stimulates activity of core
mercury-methylating microorganisms, enhancing
methylmercury production in paddy soils

The results of metagenomic binning revealed that three
core Hg-methylating microbial-associated metagenome-
assembled genomes (MAGs; completeness ≥ 90 % and con-
tamination ≤ 10 %) carried different carbon utilization genes
(ackA, sdhA, or ppdK genes) (Fig. 5), which are responsi-
ble for acetate kinase, succinate dehydrogenase, and pyruvate
and orthophosphate dikinase. These results indicated that the
low-molecular-weight DOM in soil selectively stimulates the
activity of core Hg-methylating microorganisms that prefer-
entially utilize them for metabolism, leading to the increase
of MeHg concentration.

To validate this hypothesis, Geobacter sulfurreducens
PCA, a core Hg-methylating microorganism identified in this
study, was incubated with HgCl2 and various DOM solutions
extracted from investigated paddy soils. The results showed
distinct patterns in MeHg production (Fig. 6), confirming
that different concentrations of low-molecular-weight DOM
significantly regulate MeHg production by influencing the
activity of core Hg-methylating microorganisms.

4 Discussion

Our study found that MeHg concentration was strongly
linked to hgcA gene abundance even compared to abiotic fac-
tors, which suggested that MeHg production is a microbially
mediated process (Parks et al., 2013; Podar et al., 2015).
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Figure 1. Taxonomic profiles of Hg-methylating microbial communities in paddy soils based on amplicon sequencing. (a) Microbial commu-
nity composition in differently polluted paddy soils. Phyla with low abundance grouped together under “other phyla”. (b) Microbial diversity
(based on the Chao1 index) in differently polluted paddy soils. (c) Principal coordinates analysis (PCoA) based on the Bray–Curtis distance
showing the overall pattern of Hg-methylating microbial communities in differently polluted paddy soils. NMS, non-Hg-polluted paddy soil
(n= 23); MMS, moderately Hg-polluted paddy soil (n= 13); HMS, highly Hg-polluted paddy soil (n= 10).

Our study further revealed that although there are signifi-
cant differences in the Hg-methylating microbial communi-
ties in differently polluted paddy soils, they all have a core
Hg-methylating microbiome, which plays a more important
role than other Hg methylators in regulating MeHg produc-
tion. As illustrated by a previous study, the major module
(also known as the core microbiome) in a microbial com-
munity network contributes to the stability of a soil micro-
biome, enhancing its resistance to climate changes and nu-
trient fertilization (Jiao et al., 2022). These findings estab-
lish the presence of a major module contributing exclusively
to Hg methylation in paddy soils, although there are many
more Hg-methylating microorganisms present. In fact, mi-
croorganisms containing the hgcA gene are able to methylate
Hg, but this does not mean that they are automatically active
in Hg methylation.

The SEM analysis result indicated that although redox
conditions and Hg bioavailability significantly affected the
composition of a core Hg-methylating microbiome, their
contribution to the composition of a core Hg-methylating mi-
crobiome was less and weaker than that of DOM. The expla-
nation for this phenomenon may be the following:

1. The soil collected in the paddy field during the flood-
ing period is in an anaerobic state, so the selection of
redox conditions on core mercury-methylating microor-
ganisms is weakened.

2. Hg is a toxic element to microorganisms and is usu-
ally not involved in microbial metabolism (Wang et al.,
2020). Environmental Hg may induce the persistence
of some microorganisms. Therefore, long-term Hg con-
tamination often only elevates the abundance of specific
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Figure 2. Core Hg-methylating microbiomes in paddy soils. (a) Co-occurrence network of the Hg-methylating microbial community in
differently polluted paddy soils. Each node represents 1 OTU. The node size is proportional to the relative abundance of OTUs. (b) Predictors
of the MeHg production in differently polluted paddy soils based on random forest analysis. Only predictors with significant effects are
denoted by asterisks. (c) Core Hg-methylating microbiome composition at genus level in differently polluted paddy soils. NMS, non-Hg-
polluted paddy soil (n= 23); MMS, moderately Hg-polluted paddy soil (n= 13); HMS, highly Hg-polluted paddy soil (n= 10).

microbial taxa capable of Hg tolerance (Frossard et al.,
2018).

3. DOM, an important carbon source and nutrient
in nature, is involved in microbial respiration and
metabolism (Kujawinski, 2011). Consequently, the con-

centration and composition of DOM contributed signif-
icantly to core Hg-methylating microbiomes.

These results highlight the dominant role of DOM in shap-
ing core Hg-methylating communities, as compared to redox
conditions and Hg bioavailability.

Our study found that Geobacter, Desulfuromonas,
Methanoregular, Syntrophus, Granulicella, and Olavius are
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Figure 3. Pairwise comparisons of environmental factors and community taxonomic composition in the core Hg-methylating microbiome
in differently polluted paddy soils. NMS, non-Hg-polluted paddy soil; MMS, moderately Hg-polluted paddy soil; HMS, highly Hg-polluted
paddy soil.

Figure 4. Structural equation models showing the effects of DOM, redox conditions, and Hg bioavailability on MeHg production. NMDS1
values of the non-metric multidimensional scaling (NMDS) analysis were used for the representation of DOM and redox conditions in the
SEMs. Numbers adjacent to arrows are standardized path coefficients, and numbers in brackets denote p values. “Statistically nonsignificant”
results are not shown in the figure. R2 denotes the proportion of variance explained.
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Figure 5. Analysis of the genetic context of the hgcA gene and genes involved in carbon metabolism in core Hg-methylating microbial-
associated MAGs. The extents and directions of genes are shown by arrows labelled with gene names.

Figure 6. Effect of natural DOM solution extracted from paddy soils on MeHg production by a core Hg methylator (Geobacter sulfurreducens
PCA). (a) The concentration of low-molecular-weight organic acids in paddy soils from non-Hg-polluted soil (NMS), moderately Hg-polluted
soil (MMS), and highly Hg-polluted soil (HMS). (b) MeHg concentration by G. sulfurreducens PCA. Data (n= 3) are presented as the mean
value±SD, with error bars representing standard deviations. Significant differences among different treatments were tested with Tukey’s
honest significance test; different lowercase letters in each bar indicate significant differences among treatments (p<0.05).

core Hg-methylating microorganisms in paddy soils. Previ-
ous studies confirmed that Geobacter, Desulfuromonas, and
Syntrophus have the capability for Hg methylation (Bravo et
al., 2018; Gilmour et al., 2013; Liu et al., 2018; Zhong et al.,
2024). In addition, Methanoregular spp., as methanogenic ar-
chaea, show potential for Hg methylation (Jones et al., 2019).
Granulicella affects the decomposition of complex organic
materials (Pankratov and Dedysh, 2010), while Olavius plays
a role in sulfur and nitrogen cycling (Blazejak et al., 2005).
These roles suggest that both microorganisms could also
be important potential Hg methylators. Although many core
Hg-methylating microorganisms have not been annotated,
our study emphasizes that the annotated Hg-methylating mi-

croorganisms play a much greater role in Hg methylation in
paddy soils than previously thought.

Our study identified various DOM components, including
oxalic acid, tartaric acid, formic acid, acetate acid, fumaric
acid, and citric acid, in paddy soils. These low-molecular-
weight organic acids, particularly abundant in NMS soils,
serve as key carbon sources for Hg-methylating microor-
ganisms and stimulate the growth and activity of the core
Hg-methylating microbiome. Pure incubation of Geobacter
sulfurreducens PCA (a core Hg-methylating microorganism
identified in our paddy soils) further confirmed that dif-
ferent concentrations of low-molecular-weight DOM solu-
tions extracted from natural paddy soils obtained from NMS,
MMS, and HMS had significant effects on MeHg concen-
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tration. These findings demonstrate that DOM composition
strongly influences microbial Hg methylation by stimulating
key metabolic pathways. For instance, Geobacter sulfurre-
ducens and Desulfovibrio desulfuricans use acetate and fu-
marate in the TCA cycle, supporting anaerobic respiration
and electron transport that enhance Hg methylation (Hu et
al., 2013; Liu et al., 2018). Similarly, methanogenic archaea
such as Methanoregula and Methanosarcina utilize formate
and acetate through methanogenesis, further contributing to
Hg methylation (Sakai et al., 2010; Schöne et al., 2022). Al-
though metabolomic data were not included in this study,
future research incorporating such analyses could provide
valuable insights into how specific DOM components influ-
ence microbial metabolism and Hg methylation, revealing
key metabolites and pathways such as acetate fermentation,
methanogenesis, and electron transfer processes. This high-
lights how specific DOM components shape the core Hg-
methylating microbiome and influence its role in MeHg pro-
duction.

In contrast to low-molecular-weight organic acids, other
DOM components such as aromatic compounds and hu-
mic substances may have limited influence on microbial Hg
methylation due to their complex structures and reduced
bioavailability. While aromatic compounds and humic sub-
stances were not directly analysed in this study, their com-
plex structures likely reduce Hg bioavailability or slow mi-
crobial degradation, resulting in weaker effects on Hg methy-
lation compared to low-molecular-weight organic acids. Fu-
ture research could integrate direct Hg speciation measure-
ments with detailed DOM compositional analyses to better
understand how specific DOM components and Hg species
interact to influence microbial Hg methylation.

DOM’s influence on microbial Hg methylation has been
observed in other ecosystems, such as wetlands and sedi-
ments, where DOM shapes microbial community structures
to promote methylmercury (MeHg) production. For instance,
in wetlands, DOM-bound Hg has been found to change the
community assembly of mercury for methylating microbes
(Fagervold et al., 2014). This highlights the broader ecolog-
ical significance of DOM’s role in promoting Hg methyla-
tion and suggests that DOM-driven microbiome modulation
is a critical process across diverse environments. Moreover,
the knowledge gained in this study highlights how variation
in DOM quality due to human activities and climate change
(e.g. changes in molecular weight, aromaticity, and bioac-
tivity) could significantly alter MeHg production in different
environmental compartments (Xenopoulos et al., 2021). For
instance, long-term processes may scatter stable DOM, such
as black carbon, globally through biomass combustion (Qi et
al., 2020), while simpler and more reactive DOM may dom-
inate in aquatic ecosystems (Xenopoulos et al., 2021). These
changes could either enhance or diminish Hg ecotoxicity, de-
pending on the specific conditions. Therefore, future in-depth
studies coupling DOM quality, Hg speciation, and microbial
Hg methylation are essential to deliver more accurate assess-

ments of Hg’s environmental and health impacts, particularly
in the context of the Minamata Convention.

5 Conclusions

This study provides novel evidence that DOM significantly
influences MeHg production by altering the composition
and stimulating the activity of the core Hg-methylating mi-
crobiome. While DOM regulates the composition of other
members of the Hg-methylating microbiome, its impact on
MeHg production is primarily mediated through the core
Hg-methylating microbiome. Using metagenomic binning
and pure incubation experiments, we demonstrated that low-
molecular-weight DOM directly promotes MeHg production
by enhancing the metabolic activity of core Hg-methylating
microorganisms. These findings underscore the central role
of the core Hg-methylating microbiome in Hg cycling and
highlight DOM as a critical driver of microbial Hg methyla-
tion. As human activities and climate change continue to alter
DOM composition and concentration, their influence on Hg
methylation dynamics warrants further investigation to bet-
ter predict and mitigate Hg-related environmental and health
risks.
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