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Abstract. Southern African woodlands (SAW) are the
world’s largest savanna, covering ∼ 3 M km2, but their car-
bon balance and its interactions with climate and distur-
bance are poorly understood. Here we address three issues
that hinder regional efforts to address international climate
agreements: producing a state-of-the-art C budget of the
SAW region; diagnosing C cycle functional variation and
interactions with climate and fire across SAW; and evalu-
ating SAW C cycle representation in land surface models
(LSMs). Using 1506 independent 0.5° pixel model calibra-
tions, each constrained with local Earth observation time se-
ries of woody carbon stocks (Cwood) and leaf area, we pro-
duce a regional SAW C analysis (2006–2017). The regional
net biome production is neutral, i.e. −0.08 Mg C ha−1 yr−1

(95 % uncertainty interval −1.67/1.66), with fire emissions
contributing ∼ 0.88 Mg C ha−1 yr−1 (95 % uncertainty inter-
val 0.36–2.51). Fire-related mortality driving fluxes from the
total Cwood to dead organic matter likely exceeds both fire-
related emissions from Cwood into the atmosphere and non-
fire Cwood mortality. The emergent spatial variation in bio-
genic fluxes and C pools is strongly correlated with mean an-
nual precipitation and burned area. However, there are multi-
ple, potentially confounding, causal pathways through which
variation in environmental drivers impacts the spatial distri-
bution of C stocks and fluxes, which is mediated by spa-
tial variations in functional parameters like allocation, wood
lifespan, and fire resilience. More Cwood in wetter areas is
caused by positive precipitation effects on net primary pro-
duction and on parameters for wood lifespan but is damped

by a negative effect with rising precipitation increasing fire-
related mortality. Compared to this analysis, LSMs showed
marked differences in spatial distributions and magnitudes of
C stocks and fire emissions. The current generation of LSMs
represents savanna as a single plant functional type, missing
important spatial functional variations identified here. Pat-
terns of biomass and C cycling across the region are the
outcome of climate controls on production and vegetation–
fire interactions which determine residence times, which is
linked to spatial variations in key ecosystem functional char-
acteristics.

1 Introduction

Tropical savannas, dominated by trees and grasses, cover
40 % of the vegetated tropics (Pennington et al., 2018), in-
cluding 2.3–3.1 M km2 in southern Africa (Ribeiro et al.,
2020; Ryan et al., 2016). Savanna C stocks and net C
fluxes are substantial in the global carbon cycle (Sitch et al.,
2015) but with major geographical variations. Spatially there
is a strong coupling between precipitation and tree cover
across African savanna, particularly where annual precipi-
tation is < 800 mm (Sankaran et al., 2005). The presence of
substantial, dry fuel loads means that disturbance from fire
is common during the dry season (Andela et al., 2017). Fire
influences decadal C sinks through combustion-related emis-
sions (van der Werf et al., 2017) and disturbance impacts
on both vegetation growth rates (Yin et al., 2020) and tree
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mortality (Levick et al., 2015). Overall, the interactions of
climate and disturbance, particularly from fire, generate dy-
namic conditions for C stocks and fluxes across tropical sa-
vannas and woodlands (Archibald et al., 2013; Lehmann et
al., 2014), which are poorly mapped and understood.

Southern African woodlands (SAW) are the dominant land
cover in the dry tropics of southern Africa (Campbell, 1996)
and form the world’s largest savanna (Mistry, 2014; Ryan et
al., 2016), covering much of Tanzania, Mozambique, Zam-
bia, Zimbabwe, Malawi, Angola, and the southern Demo-
cratic Republic of Congo (DRC). The woodlands of this re-
gion are phylogenetically distinct from other tropical savan-
nas (Dexter et al., 2015) and have biogeochemical and fire
patterns (Alvarado et al., 2020) that are linked to unique
functional traits (Osborne et al., 2018). These woodlands
have long been subjected to, and thus are highly adapted
to, disturbance by people, fire (generally set by people), and
herbivores (Chidumayo, 2002; Chidumayo, 2004). Overall,
the woodland C cycle is often non-steady-state, and anthro-
pogenic change is strengthening this tendency (Ryan et al.,
2016). Fire impacts on the C cycle and vegetation C stocks
are linked to wet seasons moist enough for biological pro-
duction to generate fuel load and dry seasons intense enough
to dry fuel for destructive fires. Wetter areas of the SAW re-
gion may have biomass stimulated by rising production but
limited by rising mortality from fire.

A complete ecosystem C cycle analysis for the SAW re-
gion that spans climatic gradients and resolves process in-
teractions between climate, fire, and the ecological function-
ing of C cycling does not currently exist. There are knowl-
edge gaps in both biosphere–atmosphere exchanges and in-
ternal ecosystem processing of C. Deriving dynamics of C
requires quantification and linkage of relevant processes con-
trolling the biosphere–atmosphere exchange of C, its alloca-
tion or transfer to different C pools, and the turnover of these
pools. Eddy flux data are scarce and short-term in this region
(Merbold et al., 2009). As a result, the net biome exchange
(NBE) of CO2 and its components (e.g. gross primary pro-
duction GPP, ecosystem respiration Reco, and fire emissions
EFire) remains poorly quantified (Ciais et al., 2011; Ernst
et al., 2024). Internal C processes, particularly mortality or
turnover of key pools (linked to mean residence time MRT),
are critical for determination of the C balance but are poorly
quantified (Friend et al., 2014; Smallman et al., 2021). The
MRT is the ratio of C pool size to the total losses from that
pool per unit time. In savanna, MRT is sensitive to external
factors like burning and internal ecosystem properties. Exter-
nal factors like burning are likely to shorten residence times,
but vegetation may adapt to burning with increased tissue re-
silience to fire. Plant tissue (wood or foliage) lifespans may
vary spatially, for instance with climate.

These C cycle knowledge gaps hinder national efforts to
manage savanna carbon stores and meet international actions
like the Paris Agreement of the UNFCCC. Also, these gaps
weaken model projections of trajectories of C for this region

under climate change. Simulation models typically represent
tropical woodlands across the globe using a single plant func-
tional type (PFT), with PFT-specific parameters which may
lead to biased outcomes (Bloom et al., 2016). The functional
differences within the savanna biome (Lehmann et al., 2014;
Moncrieff et al., 2014) mean that region-specific carbon cy-
cle estimates linked to locally valid functional characteris-
tics are required. Even within the SAW region, we expect to
find biological variation and gradients in functional charac-
teristics (Osborne et al., 2018). Understanding this variation
and the links to the environment can underpin more robust
knowledge. This knowledge can improve representation and
therefore forecasts from land surface models, e.g. those used
to study trends in the land carbon cycle, such as the Trends
and Drivers of Regional Scale Terrestrial Sources and Sinks
of Carbon Dioxide (Trendy) experiment (Sitch et al., 2015).

Insights into SAW C cycling are accumulating through in-
tensive studies and extensive observations. Researchers have
developed robust methods for woodland inventory and land-
scape sampling (SEOSAW partnership, 2021). Chronose-
quence studies have documented the biomass recovery rates
of these ecosystems post disturbance (Chidumayo, 2004;
Chidumayo, 2013; Kalaba et al., 2013; Gonçalves et al.,
2017) to provide insights into annual to decadal dynamics.
Earth observations (EOs) of vegetation greening (changes in
leaf area index LAI) have been found to be reliable against
in situ data on canopy phenology (Ryan et al., 2014, 2017)
and hence can map the potential for photosynthesis in time
and space. Radar remote sensing has been identified as an
effective tool for mapping biomass and its changes over
these landscapes (Ryan et al., 2012; Mitchard et al., 2009).
These actions have developed the first regional analyses for
biomass in space and time (McNicol et al., 2018; McNicol et
al., 2023). Long-term observations from satellites track the
burned area across these landscapes (Chuvieco et al., 2019).
These multiple new analyses of the SAW region provide an
opportunity to generate a more robust assessment of the C
cycle from local to regional scales. Mechanistic models cal-
ibrated with these data can provide a complete, constrained,
and probabilistic quantification of the carbon cycle and its
processes.

In the present study, we combine new spatial data prod-
ucts with a model–data fusion system (Carbon Data Model
Framework – CARDAMOM; Bloom and Williams, 2015) to
create the most comprehensive diagnostic analysis to date of
the CO2–C cycle of the SAW region in southern Africa. We
use this analysis to address questions about key processes
controlling the dynamics of major C pools and their varia-
tion with climate and fire disturbance across the region for
2006–2017. We further characterize net CO2 exchanges re-
sulting from different driving factors and variations in plant
processes, including allocation and mortality. Net ecosys-
tem exchange (NEE=Reco−GPP; the sink has a negative
sign) is purely biogenic, i.e. with biological processes driven
by atmospheric conditions. Net biome production (NBP)
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includes human-driven emissions from prescribed factors
such as fire and land use removals (NBP=NEE−fire emis-
sions− biomass removals by external factors; the sink has a
positive sign). Specifically, this study generates a full C cycle
analysis and asks the following research questions (RQs):

1. How do fluxes and resulting net exchanges of CO2 vary
across the SAW region and co-vary with climate, fire,
and functional characteristics?

2. How do carbon stocks and their longevity co-vary with
climate, fire, and functional characteristics?

3. How does data-constrained analysis of ecosystem C cy-
cling compare to Trendy land surface model estimates
for the region?

For RQ1 we hypothesize that biogenic fluxes (GPP, Reco)
will be determined by a positive relationship with precip-
itation, the dominant control on biological metabolism in
SAW (Campbell, 1996). We hypothesize that NBP across
SAW will be determined by a negative relationship with
burned area through EFire. For RQ2 we hypothesize that C
stocks in total coarse wood C (Cwood) will be positively cor-
related with, and their distribution determined by, precipi-
tation. However, we hypothesize that there will be mediat-
ing effects from variations in functional characteristics such
as wood lifespan and fire resilience, as evidenced by broad-
scale gradients in these ecosystem functional characteristics.
For RQ3 we hypothesize that comparisons of land surface
models from Trendy with CARDAMOM analyses will be
more consistent for biosphere–atmosphere fluxes than for
stock estimates because of the challenge of calibrating mod-
elled stocks to observations (Fawcett et al., 2022).

The novelty of this research is threefold. The regional C
budget produced here is the state of the art due to its con-
sistency with locally calibrated estimates of woody biomass
dynamics from Earth observations. Causal inference ap-
proaches disentangle emergent spatial patterns in C dynam-
ics and ecosystem functional characteristics, providing new
biogeographic understanding of ecological functioning and
diversity. The spatially detailed model calibration builds an
emergent map of processes and C cycle variations that al-
lows resolution within biome patterns, enhancing assessment
of land surface models (LSMs).

2 Methods

Multiple EO products of C stocks and LAI, together with a
soil C map, are combined into a pixel-by-pixel regional anal-
ysis through assimilation with an intermediate-complexity
biophysical ecosystem model (Bloom and Williams, 2015)
that is calibrated over the area of interest (Fig. 1) with lo-
cal climate, fire, and forest clearance forcing data. The re-
sult is a rigorous, probabilistic C cycle assessment includ-
ing GPP, NBP, allocation to tissues, pool sizes, ecosystem

processes, fire emissions, fire mortality, and non-fire mortal-
ity. Calibrated parameters and C cycle assessments are pro-
duced independently for each of the 1506 model pixels at
0.5° spatial and monthly temporal resolution for a 12-year
period (2006–2017 inclusive) with uncertainty intervals. The
study domain comprises all of Tanzania, Mozambique, Zam-
bia, Zimbabwe, Malawi, Angola, and the southern DRC and
covers 4.5 M km2, including miombo woodland and a mix of
other woodland and savanna types and land uses (SEOSAW
partnership, 2021; Godlee et al., 2021). Statistical analysis
then relates the spatially independent, data-consistent analyt-
ical outputs of each pixel to climate, fire or human distur-
bance, and outputs of LSMs to address the research ques-
tions.

2.1 Environmental data

2.1.1 Biomass, LAI time series, and soil C data for
calibration

The 25 m resolution L-band radar data from ALOS-PALSAR
were used to estimate above-ground woody carbon (AGC)
based on a calibration with field estimates (McNicol et al.,
2018). We used a scalar linking above- and below-ground
wood C stocks (Cwood = 1.42×AGC; Ryan et al., 2011) to
prepare four annual 0.5° maps of Cwood for the 4-year pe-
riod 2007–2010 based on higher-resolution data from Mc-
Nicol et al. (2018). Uncertainty in the biomass observations
(2.5 tC ha−1) was estimated based on a local characterization
of bias in retrieved biomass (McNicol et al., 2018).

MODIS EO (Myneni et al., 2021) product number
MCD15A2H.061 provided 8 d composite information on
LAI (2006–2017) aggregated to months. Prior information
on soil carbon stocks to a depth of 1.0 m was taken from the
SoilGrids2 database (250 m resolution), a machine-learning-
based interpolation of field inventories (Hengl et al., 2017).
All data were aggregated to the 0.5° model spatial grid reso-
lution. LAI and soil carbon estimates were provided with cor-
responding uncertainty estimates from their respective prod-
ucts. The assimilation makes uses of LAI data available for
all months of the analysis (n= 144), biomass data for 4 of
the 12 years (n= 4), and soil C data as a single value applied
to its initial status (n= 1).

2.1.2 Disturbance and burned-area observations for
driving analyses

MODIS product number MCD64A1.061 provided monthly,
500×500 m burned-area data (Giglio et al., 2018). Tree cover
loss is imposed as a fractional removal of biomass derived
from the 30 m resolution Global Forest Watch data on dis-
turbed areas (Hansen et al., 2013). Both datasets were aggre-
gated to the model 0.5° spatial grid and monthly resolution.
Land use change or vegetation transition was not included in
the dynamics of the modelled ecosystem.

https://doi.org/10.5194/bg-22-1597-2025 Biogeosciences, 22, 1597–1614, 2025



1600 M. Williams et al.: Precipitation–fire functional interactions control biomass stocks

Figure 1. Schematic of the Carbon Data Model Framework (CARDAMOM) methodology (green box) and modelling process (yellow box).
CARDAMOM generates parameter estimates with uncertainty (a) for a process model (b). Independent estimates are made for each location
(pixel) in the analysis. Parameter estimates are constrained to ensure that specific model state variable predictions (c) match independent
observations for those variables at that location (d). Model predictions are made using local forcing data on climate and disturbance (e). The
model has 32 parameters (f) that govern biological processes and fire impacts and includes seven initial conditions, with priors provided for
each (g). A Monte Carlo process explores the parameter space defined by the priors, comparing model estimates (c) with observations (d)
and using ecological and dynamical constraints (EDCs, h) to inform the selection (accept/reject) of parameter combinations. Once parameter
posterior ensembles are generated for each pixel (a), a separate modelling process uses these parameters to generate ensemble C cycle
estimates for each pixel (i) using the model (b) and specified forcing (e).

2.1.3 Woody-biomass chronosequences for model
validation

Chronosequence data provided estimates of the accumulation
rate of woody biomass for two areas in the SAW region. At
N’hambita, Mozambique, we generated estimates of biomass
from 28 plots each of 0.125 ha, with the age since abandon-
ment ranging from 2 to 30 years (Williams et al., 2008). In
Kilwa District, Tanzania, we used estimates from 55 plots
each of 0.2 ha, with an age since abandonment of 2–47 years
(McNicol et al., 2015).

2.1.4 Meteorological and soil physics data for model
forcing and soil parameters

CARDAMOM meteorological drivers were extracted from
the CRU-JRAv2.1 dataset, a 6-hourly 0.5° dataset of pre-
cipitation using the Japanese Reanalysis product (see Harris,
2019), and aggregated to monthly resolutions (Fig. S1 in the
Supplement). Soil sand or clay fractions required to estimate
soil hydraulic properties for input into the ecosystem model
in CARDAMOM are extracted from the SoilGrids2 dataset.

2.2 Modelling the carbon cycle

2.2.1 Terrestrial ecosystem model

An intermediate-complexity ecosystem model, DALEC
(Williams et al., 2005), simulated carbon stored in both live
biomass (labile, foliar, fine roots, and total coarse wood,
which includes stems, branches, and coarse roots) and dead
organic matter (a litter pool and a soil organic matter (SOM)
pool that includes coarse wood debris). See Fig. 3 for the
model structure. The model simulates C flows (allocation
and turnover or mortality) between pools and with the at-
mosphere (photosynthesis and respiration) and requires 25
parameters and seven initial conditions (Table 1). Processes
are sensitive to climate drivers, and pools are sensitive to dis-
turbance drivers (fire and other biomass removal). Photosyn-
thetic uptake (GPP) is estimated by the Aggregated Canopy
Model (ACM2) (Smallman and Williams, 2019) as a func-
tion of temperature, solar radiation, atmospheric CO2, pre-
cipitation, and LAI (LAI is simulated by DALEC). Water
supply to the canopy is generated by a coupled water cy-
cle model which estimates ecosystem water stock and ac-
cessibility as a function of precipitation, soil texture, and
wood and root C stocks. Autotrophic respiration (Ra) is es-
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timated as a fixed fraction of GPP. Net primary production
(NPP=GPP−Ra) is allocated to live pools using fixed frac-
tions. Heterotrophic respiration of litter and soil carbon (Rh)
is estimated as a function of carbon stock, a turnover rate,
and a temperature coefficient. Ecosystem respiration (Reco)
is the sum of Ra and Rh. Canopy phenology is simulated by
a model with pixel-specific fixed times each year for budburst
and leaf senescence. Bud burst leads to allocation of C from
the labile to foliar pools. Leaf senescence initiates turnover
of C from the foliar pool. There is no explicit separation of
tree and grass components in the model.

Fire emissions are determined from the fraction of each
pixel burned following Exbrayat et al. (2018).

Ex = B ·Kx ·Cx (1)

For each model pixel, fire C emissions from pool x (Ex) are a
function of the pixel burned-area fraction (B), a combustion
completeness parameter for pool x (Kx), and the C stock size
of pool x (Fig. 3). Kx is calibrated by CARDAMOM (Ta-
ble 1). Combustion completeness is assumed to vary across
the pools in each pixel, reflecting differences in the structure,
location, and form of each pool. These parameters also vary
spatially across the pixels. Of the non-combusted vegetation
pools in the burned fraction, fire-driven mortality moves a
fraction of C to the SOM pool:

Mx,fire = B · (1−Kx) · (1− r) ·Cx . (2)

For each pixel, the fire-driven mortality of tissue x (Mx,fire)
is the non-combusted component of the fire-impacted pool x,
which is further modified by a vegetation resilience parame-
ter r also calibrated by CARDAMOM (Table 1). Resilience
is assumed to be a holistic property of vegetation rather than
a tissue-specific property, reflecting the vegetation’s evolu-
tionary history in response to fire.

The SOM pool is assumed to include coarse woody de-
bris (CWD), and simulated fire emissions from the SOM
pool therefore include the contribution from CWD. A frac-
tion of the litter pool is converted into SOM because of fire.
For biomass removals linked to land use, C losses are de-
termined by the fraction of each pixel deforested as identi-
fied by Global Forest Watch (GFW) forcing data, with all fo-
liage C transferred to litter pools and 80 % of above-ground
wood biomass removed from the ecosystem (i.e. human ex-
traction). Other pools are not deemed affected by this distur-
bance.

2.2.2 Calibration using model–data fusion

CARDAMOM is a model–data fusion framework (MDF)
which combines local observations, their uncertainties, and
ecological knowledge of the terrestrial C cycle to calibrate
DALEC parameters probabilistically. CARDAMOM uses
a Bayesian approach within an adaptive-proposal Markov
chain Monte Carlo (AP-MCMC) algorithm to retrieve en-
sembles of local parameters for each 0.5° pixel, consistent

with local observations, uncertainties, climate and distur-
bance forcing, and ecological theory embedded in DALEC’s
structure (Bloom et al., 2016).

All DALEC parameters have a specified prior range to
guide calibration (Table 1). Specific prior estimates (i.e.
mean+ uncertainty) are provided based on literature studies
for (i) the fraction of GPP allocated to Ra (Ra: GPP= 0.46±
0.12; Waring et al., 1998; Collalti and Prentice, 2019) and
(ii) the canopy photosynthetic efficiency (Ceff = 21.1± 8.5;
Kattge et al., 2011). CARDAMOM imposes ecological re-
alism, or common sense, on parameter retrievals using eco-
logical and dynamic constraints (EDCs). EDCs set the likeli-
hood of a given parameter proposal to 0 if none of the condi-
tions defined by the EDCs is met. The EDCs are intended
to prevent three kinds of ecologically inconsistent param-
eter proposals: (1) unrealistic combinations, e.g. to ensure
that turnover of fine roots is faster than for wood (in the ab-
sence of disturbance); (2) maintenance of emergent ecosys-
tem ratios within observed ranges, e.g. the fine-root : foliar
ratio; and (3) prevention of inappropriate carbon stock dy-
namics such as exponential carbon stock changes on short
timescales outside disturbance or fire. Fire-related parame-
ters (for combustion and mortality) are constrained by per-
pixel observations of biomass and/or LAI change that coin-
cide with burning in the forcing data. The resultant DALEC
parameter uncertainty encompasses the combined uncertain-
ties of the observational constraints, parameter priors, prior
ranges, and plausible ecological parameter spaces as defined
by the EDCs.

2.2.3 Validation against independent regional products

Once calibrated probabilistically at each pixel, DALEC is
run using the same forcing data to generate local ensem-
bles of C cycle estimates (Fig. 1). The first stage of vali-
dation tests the calibration process by evaluating the sim-
ulated LAI, Cwood, and soil C against the assimilated data
for these variables to test for an unbiased estimate and spa-
tial coherence (random error across pixels) for each variable.
The second test stage evaluates the CARDAMOM analyses
against other regional products. For NBE the reanalyses are
compared against OCO2 v10 MIP estimates (Byrne et al.,
2023); for GPP against the combined estimates from Flux-
COM (Jung et al., 2020), Copernicus (Fuster et al., 2020),
and FluxSatv2 (Joiner and Yoshida, 2021); and for fire emis-
sions against the combined estimates of GFEDv4.1s (van der
Werf et al., 2017) and GFAS (Kaiser et al., 2012). The third
stage of validation uses two SAW locations with chronose-
quence data. The local 0.5° DALEC calibration from the
analysis was used in an experiment, with 90 % of woody
biomass removed in the model, and regrowth followed over
decades using historical climate data and burned-area data.
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Table 1. Parameters for the DALEC model, showing their prior and posterior values for a selected location, the units, and the ratio of the
posterior 95 % uncertainty interval in the prior range. Parameters are categorized according to their role in C dynamics as follows: allocation
(all), residence times (res), foliar traits (fol), rooting depth (root), fire and combustion (fire), and initial conditions (init). TOR is the turnover
rate. IC is the initial condition. Clab is the labile C pool that supports leaf flushing.

Parameter Prior low Prior high Unit Posterior : prior Parameter
ratio type

Decomposition rate 0.00001 0.01 d−1 0.88 res
Fraction of GPP respired 0.2 0.8 Fraction 0.61 all
Fraction of NPP allocated to foliage 0.1 0.5 Fraction 0.63 all
Fraction of NPP after labile allocation to roots 0.1 0.8 Fraction 0.83 all
Leaf lifespan 1.001 6 y 0.09 fol
TOR wood 0.000009 0.001 d−1 0.53 res
TOR roots 0.001368 0.02 d−1 0.90 res
TOR litter 0.0001141 0.02 d−1 at 0 °C 0.94 res
TOR SOM 0.000001368 0.00009126 d−1 at 0 °C 0.82 res
Exponential temperature coefficient for Rh 0.019 0.08 – 0.93 res
Canopy efficiency 10 100 gCm−2 d−1 0.23 fol
Leaf onset day 365.25 1461 Day of year 0.12 fol
Fraction of NPP after leaf allocation to Clab 0.01 0.5 Fraction 0.55 all
Clab release period 10 100 d 0.68 fol
Leaf fall onset day 365.25 1461 Day of year 0.03 fol
Leaf fall period 20 150 d 0.48 fol
LCA (leaf C per area) 20 180 gCm−2 0.75 fol
IC Clab 1 2000 gCm−2 0.03 init
IC Cfol 1 2000 gCm−2 0.13 init
IC Croot 1 2000 gCm−2 0.20 init
IC Cwood 1 30000 gCm−2 0.02 init
IC Clitter 1 2000 gCm−2 0.13 init
IC CSOM 200 250000 gCm−2 0.03 init
IC soil water as a fraction of field capacity 0.5 1 Fraction 0.84 init
Fraction of Cwood which is coarse root 0.15 0.5 Fraction 0.94 root
Coarse-root biomass to reach 50 % of the maximum rooting depth 100 2500 g m−2 0.82 root
Maximum rooting depth 0.35 20 m 0.83 root
Biomass resilience to fire (r) 0.01 0.99 Fraction 0.62 fire
Combustion completeness (K) for foliage 0.01 0.99 Fraction 0.73 fire
Combustion completeness (K) for root and wood 0.01 0.99 Fraction 0.24 fire
Combustion completeness (K) for soil 0.01 0.1 Fraction 0.58 fire
Combustion completeness (K) for litter 0.01 0.99 Fraction 0.90 fire

2.3 Trendy model analysis

Eighteen process-based LSMs were applied in the Trendy
project that supported the Global Carbon Budget 2022
(GCB2022) assessment (Sitch et al., 2015; Friedlingstein et
al., 2022). LSMs are applied in a set of factorial simula-
tions using forcing datasets of observed global CO2 con-
tent, observation-based merged climate forcing from CRU-
JRA, and historical land use and land cover change (LULCC)
(Friedlingstein et al., 2022). For the Trendy experiments,
LSMs are typically applied at 0.5° resolution over the pe-
riod 1700 to 2021. A subset of LSMs includes prognostic fire
models (Table S1 in the Supplement). We analysed the simu-
lation results from the S3 simulation, where all three drivers
vary, for the period 2006–2017.

To compare data-constrained estimates of the terrestrial C
cycle for the region against the Trendy ensemble, we assess

the agreement between domain-aggregated estimates for key
C stocks and fluxes and their seasonality. We also provide an
indication of the spatio-temporal consistency of each LSM
with our CARDAMOM benchmark based on the fraction of
pixels (in space and time) for which each LSM estimate falls
within the CARDAMOM 95 % uncertainty intervals (UIs).
The outputs of the analysis are also evaluated against the
mean of the Trendy ensemble for the region and individual
models using spatial statistics and temporal analysis of sea-
sonal dynamics of net exchanges (NBP) and their component
processes (Ra, Rh, and EFire).

2.4 Spatial carbon cycle variability and determinants

The simulated C dynamics reflect the responses of the
ecosystem model within a multi-variate driver and data
space. In an individual 0.5° pixel, the model structure and
retrieved parameter values determine the temporal C cycle
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response to the environmental drivers. However, across the
model domain, parameters are retrieved independently for
each pixel, generating an emergent map of functional vari-
ation over SAW. This approach is an alternative modelling
paradigm to the approach used by LSMs for which a single
set of model parameters is used to represent a particular plant
functional type. The biogeographic gradients in the C stocks
and fluxes across the SAW determined by our analysis there-
fore represent the combination of effects and interactions be-
tween the spatial variability in environmental drivers and the
spatial variability in ecological functions, as characterized by
the retrieved variations in model parameters.

To understand and explore the spatial sensitivity of the C
cycle and ecological processes to environmental factors, we
used a causal analysis approach similar to previous empirical
studies that have synthesized multiple observation streams
in order to understand biogeographic gradients and their re-
lationship with environmental drivers (e.g. Lehmann et al.,
2014). Like these observation-based studies, our retrieved
biogeographic gradients are not determined by a prior spa-
tial model. However, the model–data fusion approach pro-
vides some key benefits, notably (i) synthesizing multiple
observation streams (and uncertainties) at the pixel level into
an ecologically coherent and internally consistent represen-
tation of C stocks and fluxes (Smallman et al., 2022) and
(ii) explicitly partitioning the C dynamics along particular
process pathways such as production, allocation, and mortal-
ity, thus providing more detailed insights into the functional
variation across the SAW region.

We applied Wright’s path approach (Runge et al., 2015;
Wright, 1921, 1934) to estimate linear direct causal effects
that link the temporally averaged, ensemble-median C di-
agnostics to environmental drivers across SAW. Wright’s
method only applies in the linear case. Here, the direct causal
effect of a variable Xi on a variable Xj is essentially quanti-
fied as the slope of the linear regression of Xi on Xj , where
any source of confoundment is removed prior to the regres-
sion. Environmental drivers that we considered in the causal
analysis include observed meteorological variables (e.g. pre-
cipitation, abbreviated as PPTN) and modelled quantities
(e.g. GPP), which were selected to resolve their causal ef-
fects on C fluxes and stocks and to avoid confoundment.
To account for the influences of climate on fire activity and
productivity limitations on fuel availability, we also included
burned area, which was causally linked to fire-related fluxes
driving mortality, combustion-related emissions, and post-
combustion transfers between pools. To compare linear di-
rect causal effects across variables, variables were standard-
ized prior to the analysis. The total causal effect of Xi on Xj

was then estimated as the sum of the products of all possible
causal pathways from Xi to Xj (Wright, 1934; Runge et al.,
2015). Causal analysis was focused on NBP and the dynam-
ics of the live pools in order to align with data availability
(e.g. LAI and biomass observations) and thus rich informa-
tion for calibration and inference of causation using links to

disturbance and climate data. Note that, when we refer to
causal effects in this work, these are standardized linear di-
rect causal effects. For more details, see the Supplement.

3 Results

3.1 Calibration and validation

The calibration process constrained model parameters to dif-
fering degrees (Table 1). The strongest constraints were for
initial conditions for C pools; foliar parameters related to leaf
lifespan, leaf flush, and leaf fall; combustion completeness
for wood; and canopy efficiency (productive capacity). The
weakest constraints were for residence times for litter, roots,
and SOM; rooting depth parameters; and most fire or com-
bustion parameters. The variation in constraints is consistent
with the proximity of the parameters to the assimilated data,
and thus parameters connected to LAI and Cwood are con-
strained best.

The calibrated model outputs explained much of the ob-
served spatio-temporal variation in MODIS LAI (r = 0.93)
and ALOS biomass (r = 0.99) and the spatial variation in soil
C (r = 0.97) (Fig. S2). The normalized root mean square er-
rors were for LAI= 0.17, biomass= 0.06, and soil C= 0.04.
The calibration bias was 6 % or less in all the cases (regres-
sion slopes LAI= 0.94, biomass= 1.01, and soil C= 1.01).

For NBE, OCO2 inversions suggest a near-neutral
exchange with uncertainty spanning zero (Fig. S3),
which is consistent with CARDAMOM estimates: 0.0
(95 % UI −1.67/1.66) MgC ha−1 yr−1. CARDAMOM’s me-
dian regional GPP estimate was 15.95 (UI 13.02–
18.68) Mg C ha−1 yr−1, within the range of estimates from
the EO-oriented GPP products when scaled to the SAW re-
gion (Fig. S3). CARDAMOM’s median fire emissions were
largely within the range of fire emission products (Fig. S3),
though its uncertainties were much higher than the products’
range.

At the locations in Mozambique and Tanzania, recovery
of Cwood in the model was consistent with the data (Fig. 2).
The uncertainty in the model accumulation rate (95 % uncer-
tainty intervals) was similar in magnitude to the spread of
biomass across the field inventories. Differences in burned
area in the model simulations, rather than climate, explain
the higher steady-state Cwood stock at the Tanzanian site.

3.2 The carbon cycle of the SAW region

CARDAMOM estimated that 49 % of the regional GPP is
respired (Fig. 3), and the remaining NPP is allocated be-
tween foliage (median fraction= 0.18), a labile pool (0.13),
fine roots (0.26), and Cwood (0.37). Each ensemble member
allocation sums to 1, but the ensemble median fractions sum
to < 1 (0.94) at the regional scale because posterior distribu-
tions of allocation in the analysis are not normal.
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Figure 2. Independent test of wood biomass regrowth post disturbance at two locations in southern African woodlands (left panel Tanzania
and right panel Mozambique; note the different scales). For both locations the DALEC model was calibrated at a quasi steady state using
local EO data over the period 2006–2017 and local data on meteorology and burned area; 90 % of the wood steady-state biomass was then
removed (initial vertical green line at age= 0), and the modelled woody biomass accumulation (the green line shows the median and the
shaded interval shows the 95 % UI) is plotted against multiple independent chronosequence estimates based on data from fallow fields (blue
dot).

Figure 3. The C budget of the SAW region based on the CARDAMOM analysis at 0.5× 0.5° with a monthly time step between 2006 and
2017. The numbers show estimates of fluxes (alongside arrows) and stocks (in boxes) using the mean value of all the pixel medians in the
SAW region (MgC ha−1: stocks; MgC ha−1 yr−1: fluxes). The 95 % uncertainty intervals are shown in a fractional form with the 2.5th and
97.5th percentiles as the numerator and denominator. Black fluxes are biogenic, including net primary production (NPP), mortality (Mort),
autotrophic respiration (Ra), and heterotrophic respiration (Rh). NEE=Ra+Rh−GPP. NBE=NEE+Etotal. Red disturbance fluxes are
dominated by fire-driven emissions (E) and fire-driven components of plant tissue mortality or loss of litter to SOM (indicated in the red
figures). Note that not all pools are in a steady state and that the SOM pool includes coarse woody debris. The analysis produced non-normal
distributions, so the budget closure in the summary is not exact, which explains why NEE 6=Rh+Ra−GPP. Individual ensembles have full
budget closure.

The MRTs of the pools are sub-annual for foliage, la-
bile, fine roots, and litter. The MRT for wood is 8 years
(95 % UI 4–20 years), and for CSOM it is 28 years (UI 11–
90 years) (Fig. S4). Disturbance fluxes are 100-fold larger
from fire rather than clearance (Fig. S1). On average, 23 %

of the region’s area is burned annually; this is mostly set by
people. Burning losses from Cwood are transferred to the at-
mosphere (∼ 16 % of the total disturbance flux) or to dead
organic matter (∼ 84 %). Losses from the Cwood pool are
largest through fire disturbance (∼ 59 % of the total mor-
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tality flux), and the remaining non-fire losses encapsulate
pests, diseases, herbivory, plant aging, and degradation not
detected by estimates of tree cover loss (Fig. 3), but un-
certainties are large. For other pools, both live and dead,
non-disturbance flux magnitudes exceed disturbance fluxes.
The regional C balance is approximately neutral (mean NBP
−0.08 (−1.67/1.66) Mg C ha−1 yr−1). However, in the ab-
sence of fire disturbance (i.e. NEE), the region is a potential
sink of 1.04 Mg C ha−1 yr−1.

NBP is a function of changes to total plant biomass (sum
of all live C pools, Cveg) and to dead organic matter (lit-
ter plus soil organic matter C, CDOM), which are dominated
by the two largest pools, Cwood and CSOM. The analysis of
changes to Cveg (1Cveg) is constrained by the assimilation of
multiple biomass maps 2007–2010 (Fig. 4), with the largest
losses in the east (Tanzania and northern Mozambique) and
through western Zambia and southern Angola. There are ar-
eas of positive 1Cveg in the southern DRC, northern Angola,
eastern Zambia, western Zimbabwe, and southern Mozam-
bique. The distribution of 1Cveg is unimodal and evenly dis-
tributed between regions of increasing and decreasing Cveg,
resulting in a regionally neutral stock change for 1Cveg of
0.0 (−0.4/0.43) Mg C ha−1 yr−1. The analysis of 1CDOM is
not directly constrained by observations. 1CDOM is also uni-
modal, with a relatively even split between areas accumulat-
ing and losing C from the soil. Uncertainties in 1CDOM are
approximately 4 times higher than in 1Cveg (note the differ-
ent scales in the panels of Fig. 4).

3.3 Environmental controls on carbon fluxes (RQ1)

The median GPP distribution across the SAW region (Fig. 4)
is skewed unimodal, with a peak at 20 MgC ha−1 yr−1 and
a tail of lower GPP (Fig. S5). Reco is similarly skewed
and strongly spatially correlated (r = 0.95) with GPP, with
a peak in its frequency distribution at 17 MgC ha−1 yr−1.
EFire is non-normal and dominated by low emissions
(< 1 MgC ha−1 yr−1) but with a tail of higher emissions up
to 4 MgC ha−1 yr−1. The distribution of pixel-level median
NBP peaks just below the source–sink boundary and spans
−2–+3 MgC ha−1 yr−1. There is a clear spatial structure in
the fluxes, with higher GPP, Reco, fire emissions, and NBP
concentrated in certain areas (Fig. 4) and correlated with
forcings (Fig. S6).

The causal networks constructed to assess the controls
on the spatial distribution of C fluxes identify the impor-
tance of precipitation, fire, and their interactions (Figs. 5
and S7–S9). Precipitation is the dominant factor determin-
ing the rates of C cycling across the SAW, driving both
the productivity and mortality fluxes, with compensating
effects on the overall C balance. Precipitation dominates
the distribution of GPP, with a standardized effect of 0.94
(0.90/0.98) (95 % uncertainty interval). Radiation is posi-
tively linked to GPP (0.20; 0.16/0.24), while vapour pressure
deficit (VPD) (−0.13; −0.17/− 0.11) and temperature are

Figure 4. Spatial mapping of median gross fluxes, NBP, and tem-
porally averaged rates of changes in the live pools (Cveg = Cwood+
Croots+ Cfoliage+ Clabile) and dead organic matter (CDOM =
CSOM+Clitter) C stocks across the SAW region at 0.5° resolu-
tion for 2006–2017, as determined by diagnostic analysis. The
gaps in the maps relate to areas without biomass observations
due to gaps in the ALOS-PALSAR data. GPP is gross primary
production. Reco is ecosystem respiration. EFire is fire emissions.
NBP=GPP−Reco−EFire− biomass removals by management
(the latter are a relatively small flux compared to the others).

negatively linked (−0.14;−0.17/−0.11). Precipitation is the
dominant environmental driver of NPP (total standardized ef-
fect: 0.86; 0.81/0.91), mediated by an environmental effect
on carbon use efficiency (CUE). Precipitation is also associ-
ated with the largest total standardized causal effects on the
mortality fluxes driven by fire (0.34; 0.31/0.38) and on non-
fire mortality (0.55; 0.50/0.58). The total causal effect of
precipitation on gross fire mortality fluxes includes contribu-
tions of causal pathways linked to the standing Cveg stocks as
well as influences on the fire-driven turnover of C (Figs. S7–
S9). Fire is a key source of C losses in SAW. Burned area in-
creases along the precipitation gradient (0.43; 0.37/0.48) and
with increasing VPD (0.34; 0.27/0.42). Burned area drives
the fire mortality flux from the Cveg pool (0.31; 0.28/0.33),
with a significant mediating effect from the increasing re-
sistance of C stocks to fire in fire-prone areas described by
spatial patterns in parameters (see Fig. S7).
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Figure 5. A summary of the causal effect analysis of spatial pat-
terns in the pixel-median estimates of key fluxes of C across the
SAW region (with error bars for 95 % bootstrapped UIs). Fluxes in-
clude GPP, allocation to biomass (NPP), and mortality caused by
fire and non-fire factors. For each flux the standardized causal ef-
fects of different climate drivers (mean annual precipitation PPTN,
air temperature airT, short-wave radiation SWR, and vapour pres-
sure deficit VPD) and fire (via burned area BA) are compared. Note
that the causal analysis did not include a causal link between BA,
GPP, and NPP.

3.4 Environmental controls on stocks and MRT (RQ2)

C stocks in SAW are primarily in dead organic matter pools
(CDOM) with a mean of 98 MgC ha−1 (95 % uncertainty in-
terval, 57–142), 99 % of which is CSOM to a depth of 1.0 m.
The mean Cveg is 26 MgC ha−1 (22–30), with 87 % in Cwood.
The mean ratio CDOM : Cveg is 4.0 (95 % UI 2.1–12.5). Dis-
tributions of C stocks in live and dead pools are unimodal
(Fig. S10). The spatial patterns of C stocks are similar to the
distributions of biogenic fluxes (Fig. 6).

The spatial distribution of C stocks depends on C as-
similated via NPP and the rate of C turnover (T ) (Figs. 7
and S7). The spatial distribution of Cwood is positively im-
pacted by NPPwood (standardized effect 0.65; 0.61/0.69)
and negatively impacted by turnover rates (Twood,fire: −0.60;
−0.67/− 0.54; Twood,other: −0.54; −0.58/− 0.51). Causal
analysis (Fig. S7) across the spatial dataset indicates that
precipitation (PPTN) impacts Cwood along three mediating
pathways: (a) positively via primary production (total effect
of PPTN mediated by NPPwood = 0.36; 0.32/0.40), (b) neg-
atively via fire mortality rates (total effect of PPTN mediated
by Twood,fire =−0.07; −0.10/−0.04), and (c) positively via
non-fire mortality rates (total effect of PPTN mediated by

Figure 6. Spatial mapping of live C stocks, which are dominated by
Cwood (a) and dead organic C (b) across the SAW region at 0.5° res-
olution, for 2006–2017 as determined by diagnostic analysis. Gaps
in the maps relate to areas without biomass mapping due to gaps in
the ALOS-PALSAR data.

Figure 7. Summary of the causal effects from climate factors on
spatial patterns in the pixel-median estimates of total coarse-wood
C (Cwood) across the SAW region (with error bars for 95 % boot-
strapped UIs). For PPTN, airT, SWR, and VPD, the total standard-
ized causal effect is shown in the leftmost columns of the four pan-
els. The three columns (A–C) show how the total effect for each
factor is the outcome of three aggregated causal pathways: climate
effects operating through (A) changes to the net primary production
of wood, (B) fire-driven turnover, and (C) non-fire turnover. The
total direct effect of fire (through BA) is also shown for reference.

Twood,other = 0.11; 0.08/0.14). The analysis revealed clear
emergent spatial variations in key functional characteristics
across the SAW region (Fig. 8) controlling each of these
pathways, i.e. the fraction of NPP allocated to wood (a),
the fire resistance of ecosystems determined as biomass re-
silience to fire× (1 – combustion completeness for wood) (b)
(Table 1), and the non-fire median turnover rate of Cwood (c).

The productivity pathway (path a) is the dominant con-
trol on the distribution of Cwood across the SAW (total stan-
dardized effect of PPTN on Cwood = 0.40; 0.35/0.47). The
impacts on Cwood of turnover driven by fire and non-fire pro-
cesses are comparable, but they are opposing and spatially
variable (Fig. 8). In higher-precipitation areas the link be-
tween relative fire mortality and burned area is weakened by
a strong compensating effect of higher fire resistance of vege-
tation (Fig. S7). The total standardized impact of fire (burned
area) on Cwood is negative (−0.33; −0.37/− 0.30). The im-
pacts of other meteorological drivers (VPD, short-wave ra-
diation, and air temperature) on Cwood are relatively weaker.
Overall, fire emissions represent a major loss from the Cwood
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Figure 8. Spatial variations in three key ecosystem functional characteristics across southern African woodlands retrieved from the analysis.
These three characteristics connect to the three pathways (Fig. S7) that are hypothesized to link spatial variation in environmental drivers
(Fig. S1) to Cwood (Fig. 6). Panel (a) operates via variation in woody productivity, which is a function of the fraction of the total NPP
allocated to wood. Panel (b) operates through Cwood turnover driven by fire, which is linked to spatial variation in ecosystem fire resistance
characteristics: r (1−Kwood). Panel (c) is linked to variation in the non-fire turnover rate (TORwood), which has inferred spatial variations.

pool (Fig. 3), with burned area driving fire-related turnover
rates (total causal effect: 0.55; 0.48/0.62) and hence MRT.
We conclude that representation of SAW by a single PFT ap-
proach misses important spatial functional variations in resi-
dence times and fire resistance.

The turnover of the fine-root and foliage C pools is domi-
nated by the phenological turnover associated with seasonal
growth and senescence directly tied to the seasonality of
rainfall (Figs. S8–S9). This turnover is linked to the tem-
porally averaged meteorological drivers, although with rel-
atively weak standardized effects. Generally, the turnover
rates (1/MRT) of both pools are negatively impacted by the
annual PPTN and VPD, while annual temperature and short-
wave radiation (SWR) have a positive effect, although there
is no clear dominant term. There is a correlation between
PPTN and SWR (Pearson’s r =−0.51). A higher MRT for
roots and foliage in wetter areas suggests extended phenol-
ogy both above and below the ground and identifies a further
important functional variation within SAW that a single PFT
approach misses.

3.5 Comparison of observation-constrained analysis of
C cycling with land surface model estimates for the
SAW region (RQ3)

The seasonal cycles of GPP from CARDAMOM have
similar amplitudes and phases to the Trendy ensemble
mean, but individual Trendy models had larger variations
in amplitude and phase often outside the CARDAMOM
uncertainty interval (Fig. S11). For GPP, 13 of the 18
Trendy models had regional mean annual estimates within
the 95 % UI of CARDAMOM estimates. The median an-
nual GPP of the Trendy ensemble (15.8 MgC ha−1 yr−1)
was 2 % less than the median CARDAMOM estimate
(16.0 MgC ha−1 yr−1) and comparable to the mean estimate
for GPP of the independent observation-based products for
the region (15.7 MgC ha−1 yr−1) (Fig. S3). CARDAMOM
NBP amplitude was larger than all but three of the Trendy
models, some of which had virtually no amplitude. These dif-

ferences were linked to each major component of emissions
(Fig. S12).

The spatial overlap of GPP between the Trendy ensem-
ble and CARDAMOM 95 % UI was not complete, ranging
from 10 % to 48 % (Table S2; Figs. S13–S14) and typically
lower during each wet season. For net biome production,
the mean estimates of all Trendy models were close to neu-
tral over the region, consistent with the CARDAMOM NBP.
However, there were significant differences in amplitude and
spatial distribution (Table S1, Fig. S14). The consistency of
the spatio-temporal estimates of NBP for each LSM with the
CARDAMOM 95 % UI ranged from 29 % to 68 % (Table S2,
Figs. S15–S16).

Estimates of Cveg varied markedly between the Trendy
LSMs (15–66 MgC ha−1) for the SAW region. Only 3 out
of 18 Trendy models had regional mean Cveg estimates
within the 95 % UI of the CARDAMOM–DALEC esti-
mates (Table S1). The spatial distribution in Cveg stocks
varied markedly between LSMs (Figs. S17–S18), with the
spatio-temporal consistency between individual LSMs and
the CARDAMOM 95 % UI varying from 5 % to 35 % (Ta-
ble S2), suggesting significant spatial biases. Considering the
net change in the live vegetation pools, 1Cveg, for which the
CARDAMOM estimate is more closely constrained by the
assimilated data than NBP, the spatially coherent discord be-
tween the Trendy LSMs and the CARDAMOM benchmark
becomes more apparent (Figs. 9 and S18).

4 Discussion

4.1 Identification of carbon sinks and sources in the
SAW region

The analysis reveals a balance between sources and sinks in
this region from 2006 to 2017 (Fig. 4) that is dependent on
the spatial gradients in productivity driven by precipitation
and mortality, an important component of which is driven
by fire (Figs. 6 and 7). Changes in Cveg across the SAW
have previously been linked to varying patterns of land use
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Figure 9. A comparison the data-constrained estimate of annual mean change in vegetation C stocks (Cveg) from the CARDAMOM analysis
(panel a) with the mean estimate from the Trendy LSM ensemble (panel b). Panel (c) shows the consistency of Trendy data by mapping the
fraction of the 18 ensemble members with estimates within the 95 % uncertainty interval of the CARDAMOM analysis. Data cover the SAW
region and the period 2006–2017.

and wood fuel harvesting and recovery of some woodlands
with reduced human pressures in other areas (McNicol et al.,
2018). The explicit land use flux modelled by CARDAMOM
is dependent on changes in tree cover detected by satel-
lites, which indicated a small areal extent of land use change
(LUC) forcing. Comparatively small disturbances typically
associated with degradation processes, e.g. wood fuel har-
vesting, while potentially widespread (Bailis et al., 2015),
are challenging to detect (Milodowski et al., 2017) and are
maybe missed by the satellite products used in this analy-
sis. Within the CARDAMOM diagnostic analysis, C fluxes
driven either by fire not detected in burned-area data or non-
fire degradation not detected by GFW are implicitly repre-
sented within the non-fire mortality flux, which contributes
strongly to the spatial distribution of 1Cveg. Development
and assimilation of longer time series of wood biomass with
low bias, alongside robust time series estimates of degrada-
tion, extent, and intensity, would help to refine the under-
standing of how anthropogenic activities impact the strength
of the terrestrial C sink.

4.2 What are the environmental controls on exchanges
of C throughout the region?

The analysis supported the hypothesis that precipitation has
the dominant control on GPP across the region (causal ef-
fect PPTN−GPP: 0.94; 95 % UI: 0.90/0.98). This strong
spatial relationship was the result of (i) directly modelled
links between soil moisture and stomatal conductance and
(ii) correlations between LAI observational data (assimilated
by CARDAMOM) and patterns of precipitation. Wetter ar-
eas were thus associated with moister soils and higher LAI,
both stimulating higher GPP, and were indicative of water
availability being the principal limiting factor on GPP, which
is consistent with (limited) eddy covariance data across sub-
Saharan Africa (Merbold et al., 2009).

We expected that productivity would positively impact
burned area (BA) through fuel load. Our results were sup-
portive to an extent (direct standardized causal effect of NPP
on BA: 0.30; 0.21/0.38) (Fig. S7), but burned area was also
positively related to VPD (direct causal effect of VPD on
BA: 0.38; 0.31/0.46), indicating that climate-dependent fuel
moisture limitation may be as important as fuel load. Our re-
sults are consistent with assessments that identified the SAW
region straddling the transition between a fire regime limited
by fuel build-up and one limited by fuel moisture (Archibald
et al., 2009a; Alvarado et al., 2020; Archibald et al., 2009b).

We hypothesized that NBP across SAW would be neg-
atively impacted by the burned-area fraction. The analysis
supported this hypothesis: burned area was a strong driver of
C losses. Without the contribution of fire emissions, the anal-
ysis indicated that the approximately C-neutral SAW would
have likely been a C sink. However, burned area did not drive
the spatial distribution of either 1Cveg or NBP due to concur-
rent spatial gradients in NPP driven by precipitation (Fig. 5)
and mediating impacts across the SAW environmental gra-
dient arising from functional variations, including changes
linked to wood lifespan and effective fire resistance (Fig. 8).
As a result, despite constituting a major driver of C losses,
burned-area fraction is actually positively correlated in space
with NBP across the region (Pearson’s r = 0.28). The emer-
gent picture from the diagnostic analysis is that the carbon
balance of the SAW region is determined by the interplay
between precipitation-driven gradients of productivity and
losses driven by a combination of fire emissions and Rh,
and these fluxes are mediated by spatial variations in plant
function linked to climate gradients. The finding of function–
climate gradients here matches plot-level analysis along pre-
cipitation gradients in western Africa (Zhang-Zheng et al.,
2024).

Fire-driven fluxes (e.g. within Mortwood) are uncertain in
the analysis (Fig. 3) because the posterior parameter esti-
mates for fire-related parameters (r,K) are relatively poorly
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constrained by observations (Table 1). For instance, Kwood is
constrained only by local temporal interactions of observed
burned area and biomass dynamics. r , a vegetation character-
istic, is constrained by observations of burned area, biomass,
and LAI. Thus, equifinality between r and Kwood is reduced
due to their differential constraint from independent obser-
vations. The next step in enhancing the analysis would be
to assimilate further independent observations of fire im-
pacts (e.g. radiative power). The coarse spatial resolution of
our analysis (0.5°) is unable to resolve the fine-scale hetero-
geneities in the landscape. Grass litter is critical fuel for fires
in the region (Archibald et al., 2009b), but our analysis does
not separate tree and grass foliage and litter pools. Our di-
agnostics indicated that the fire resistance of vegetation in-
creased with burned area but secondarily also in wetter areas.
These emergent responses could be explained by direct plant-
level adaptation to fire (e.g. thicker bark) or community-
level feedbacks where fire is excluded due to increasing tree
canopy cover excluding grass (Ryan and Williams, 2011;
Ramo et al., 2021).

4.3 Controls on wood and soil C stocks

We hypothesized that C stocks in soils and biomass would
be spatially correlated and their distribution determined by
precipitation. Our analysis was supportive, with both stocks
positively and most strongly driven by precipitation (total
causal effect: 0.40; 0.35/0.47), despite the mediating im-
pact of precipitation on burned area. Our analysis suggests
that larger Cwood stocks in wetter regions are sustained by
a combination of higher NPP and slower relative rates of
turnover. Our hypothesis that Cwood MRT is inversely related
to burned area is supported by the causal analysis (Fig. S7).
Fire-related mortality from Cwood to CSOM likely exceeds
fire-related emissions from Cwood into the atmosphere and
natural rates of Cwood mortality fluxes into CSOM (Fig. 3).
Without fire disturbance, the MRT of Cwood could more than
double from 8 to 20 years, and this would imply a similar pro-
portional increase in steady-state wood biomass from a mean
of 22 to 55 MgC ha−1, a credible estimate based on fire ex-
clusion experiments in SAW (Ryan and Williams, 2011). Our
conclusions regarding the dynamics of CSOM are necessarily
weaker. We lack robust constraint on CSOM dynamics, either
through repeat mappings or through chronosequence stud-
ies. Chronosequence data from part of the SAW suggest lit-
tle change in soil C stocks after decades of post-disturbance
recovery.

We found support for our hypothesis that spatial variations
in ecosystem functional characteristics influence the distribu-
tion of biomass across SAW. The analysis revealed emergent
regional gradients in ecosystem functional characteristics re-
lated to woody allocation, wood lifespan, and fire resilience
(Fig. 8). Analysis showed strong causal effects from climate
and disturbance drivers on patterns of functional variation
(Fig. S7). Thus, wetter areas of the SAW tend to have live

vegetation stocks with reduced vulnerability to fire, longer
wood lifespans in the absence of fire, and a lower propor-
tional allocation of NPP to wood. There are also impor-
tant functional variations in the dynamics of leaf and fine-
root pools linked to climate and strong phenological patterns
across SAW (Ryan et al., 2017), with impacts on production
patterns.

4.4 Evaluation of land surface models

Our analysis supported the hypothesis that GPP and Reco
fluxes from the Trendy models agree more closely with
CARDAMOM analyses than do Trendy models’ estimates of
C stocks (Table S1). Nevertheless, while the domain aggre-
gate estimates for GPP were comparable between the Trendy
mean and CARDAMOM analyses, this obscures substantial
variation among models (Tables S1 and S2), which showed
strong spatially structured variability inconsistent with CAR-
DAMOM estimates (Figs. S15 and S18) (Teckentrup et al.,
2021). The apparent discrepancies highlight the challenges
faced by the current generation of LSMs when estimating the
sensitivity of GPP to soil moisture variation in water-limited
environments (Paschalis et al., 2020; MacBean et al., 2021).
There was greater disagreement between the Trendy ensem-
ble and the CARDAMOM estimate regarding Cveg stock (Ta-
bles S1 and S2), and there were marked differences in their
estimates of the spatial distribution of Cveg (Fig. S13). On
average, the Trendy Cveg across the SAW was larger than
CARDAMOM estimates (Table S1), in line with Trendy re-
sults over Australian savanna compared with satellite esti-
mates (Teckentrup et al., 2021), although this bias was not
consistent across the ensemble of LSMs.

Both the Trendy models and CARDAMOM analyses sug-
gest that the region was close to a neutral NBP. However,
the Trendy models had lower seasonal variation in NBP than
CARDAMOM. These differences were more related to in-
consistencies in C emissions from respiration and fire rather
than foliar phenology and GPP (Fig. S12). The low amplitude
of NBP in the Trendy models results from a strong tempo-
ral coupling in GPP and Reco. CARDAMOM analyses have
large seasonal amplitudes arising from seasonal divergence
due to litter production occurring at the end of the wet sea-
son, leading to dry-season decomposition coupled with dry
season fires. The DALEC model lacks a soil moisture con-
trol on Rh, whereas most of the Trendy models do include
this relation. This structural difference may explain temporal
differences in Rh (Fig. S12), particularly as the assimilated
data have no direct constraint on Rh.

4.5 Conclusions

Our analysis reveals that the carbon dynamics of SAW are
determined by the interplay between precipitation and fire,
mediated by substantial spatial variations in plant functional
characteristics. Spatial analyses from model–data fusion pro-
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vided insights into SAW C dynamic variation in response to
the regional gradients in climate and disturbance. Precipita-
tion is the dominant control on both GPP and C residence
times. GPP variations are controlled directly by precipitation
through soil moisture limitation on primary production and
indirectly through functional variations in phenology (LAI).
Precipitation gradients impact C residence times indirectly
through correlated variations in related functional character-
istics. For instance, precipitation is linked to patterns of ef-
fective fire resistance in vegetation and variations in the lifes-
pan of Cwood when fire is absent (Fig. 8). Consequently, the
spatial distribution of C stocks across SAW is significantly
determined by the precipitation gradient through multiple in-
teracting pathways.

The full C cycle analysis of the region is the current state
of the art due to its direct incorporation of repeat biomass
maps that are locally calibrated and validated. The analysis
suggests that Cwood mortality driven by fire can be attributed
to the major loss term from Cwood, albeit with large uncer-
tainties (Fig. 3). The fire-driven fall in the Cwood residence
time across the precipitation gradient linked to rising burned
area and fire mortality (Fig. 5) acts to damp positive feed-
backs between increasing GPP and Cwood. If fire effects are
removed, our analysis suggests a ∼ 3-fold increase in Cwood
(Bond et al., 2005). Much larger uncertainties remain in the
analysis of soil C due to sparsity of data compared to above-
ground biomass.

This analysis has mapped variation in functional charac-
teristics, challenging the use of a single PFT for this region.
CARDAMOM suggests substantial variations in functional
characteristics across the SAW, e.g. for wood, foliar and fine-
root lifespans and allocation, and fire resistance. These vari-
ations likely explain why LSM estimates are inconsistent
with the data-constrained estimates from this study. Individ-
ual LSMs deviated inconsistently from CARDAMOM esti-
mates, with individual components of the C cycle varying
in space and between models. Cveg stocks and fire emissions
were the source of the largest discrepancy, alongside the tem-
poral distribution of fluxes.

The C budgets here can also support more robust and ob-
servationally consistent national reporting in the region for
the Paris Agreement of the UNFCCC. The detailed resolu-
tion of the outputs, with locally valid functional characteris-
tics, can enhance national CO2 emission factors for fire dis-
turbance, for instance. Working closely with national agen-
cies, approaches such as those demonstrated could deliver
Tier-3 estimates of national C budgets to support countries
worldwide.
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