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Abstract. The mass conservation equation in the pres-
ence of boundary fluxes and chemical reactions from non-
equilibrium thermodynamics is used to derive a modified
dynamic energy budget (mDEB) model. Compared to the
standard dynamic energy budget (sDEB) model (Kooijman,
2009), this modified formulation does not place the dilution
effect in the mobilization kinetics of reserve biomass, and it
maintains the partition principle for reserve mobilization dy-
namics for both linear and non-linear kinetics. Overall, the
mDEB model shares most features with the sDEB model.
However, for biological growth that requires multiple nutri-
ents, the mDEB model is computationally much more effi-
cient by not requiring numerical iterations for obtaining the
specific growth rate. In an example of modeling the growth
of Thalassiosira weissflogii in a nitrogen-limiting chemostat,
the mDEB model was found to have almost the same accu-
racy as the sDEB model while requiring almost half of the
computing time of the sDEB model. Since the sDEB model
has been successfully applied in numerous studies, we be-
lieve that the mDEB model can help improve the modeling
of biological growth and the associated ecosystem processes
in various contexts.

1 Introduction

By aid of membranes (and cell walls), biological cells cre-
ate an intracellular environment where substrates taken up
from the environment are concentrated and converted into
new biomass and new cells (Lodish et al., 1999). The sim-
ilarity between the role played by the (membrane-confined)
intracellular environment and the (container-held) aqueous
solution that supports chemical reaction experiments (in the

lab) has motivated the development of variable-internal-store
models to model biological growth (Nev and Van Den Berg,
2017; Grover, 1991; Droop, 1974; Williams, 1967). Among
the many formulations, the dynamic energy budget (DEB)
model has been a very successful example (Kooijman, 2009;
Tolla et al., 2007; Sousa et al., 2010; Matyja and Lech, 2024;
Tang and Riley, 2015).

The key idea of variable-internal-store models is to rep-
resent a biological organism with one structural compart-
ment, which holds one or multiple storage compartments
(Nev and Van Den Berg, 2017; Kooijman, 2009). The pro-
duction of new cells is modeled as the growth of structural
biomass, as driven by the transformation dynamics of stor-
age compartments. These models vary in their formulation
of storage dynamics and how the turnover of storage drives
structural growth. In the DEB framework, storage is termed
“reserve”, whereas in the Droop model, storage is termed
“quota”. Since here we are proposing a modified DEB model
(mDEB), we use the term “reserve” hereafter. Moreover, in
Dynamic Energy Budget Theory for Metabolic Organisation
(Kooijman, 2009), we note that standard DEB model refers
to the simplest non-degenerated DEB model. In this study,
we use the standard dynamic energy budget (sDEB) model
simply to semantically contrast the formulation in Kooijman
(2009) with the mDEB proposed here.

The sDEB model adopts the following three key assump-
tions:

1. The strong homeostasis assumption is abstracted from
observations that almost every biological organism is
made up of several groups of macromolecules, e.g., car-
bohydrates, proteins, lipids, and nucleic acids (Lodish
et al., 1999). This assumption states that the chemical
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composition of reserve(s) and structure(s) is constant,
but their amounts can vary.

2. The weak homeostasis is abstracted from observed sta-
ble whole-organism elemental stoichiometry, such as
the Redfield ratio (Redfield, 1934), which is the foun-
dation for the application of ecological stoichiometry
theory (Sterner and Elser, 2002). This assumption states
that if food density does not change, then reserve den-
sity, defined as the ratio between the amounts of reserve
and structure, becomes constant while growth contin-
ues. That is, reserve and structure grow in harmony, and
the chemical composition of biomass does not change.

3. The principle of merging and partitioning of reserves is
abstracted from the evolution from unicellular to multi-
cellular life forms.

These assumptions combined with Euler’s theorem on homo-
geneous function are used to infer that the reserve turnover
dynamics must be a linear function of reserve density (see
Chap. 2 of Kooijman (2009) for details).

Recently, Tang and Riley (2023) suggested that the lin-
ear reserve dynamics in the sDEB model can be replaced
with more generic nonlinear enzyme kinetics (derived from
law of mass action) without violating the principle of merg-
ing and partitioning of reserves so that a closer link can be
built between the DEB model and models that consider in-
tracellular biochemistry using explicit enzyme kinetics (Eti-
enne et al., 2020; Tadmor and Tlusty, 2008). Tang and Riley
(2023) demonstrated that their revised DEB (rDEB) model
outperformed the sDEB model for a measured time series
of degradation of the herbicide 2,4-dichlorophenoxyacetic
acid, and both DEB models resulted in a better explanation
than the popular compromise model for the empirically ob-
served relationships (1) between specific respiration and spe-
cific growth rate for the marine bacterial data collected by
Vikström and Wikner (2019) and (2) between specific sub-
strate uptake rate and biomass yield for the microbial data
synthesis by Smeaton and Van Cappellen (2018). However,
in further exploration of the rDEB model, Tang and Riley
(2023) noticed (in their Sect. 4.2) that the sDEB model is
paradoxically recovered from the rDEB only when the ri-
bosome effort allocated to growth is zero. Thus, in the fol-
lowing, we derive the reserve dynamics using an alternative
approach that combines the first law of thermodynamics and
law of mass action, which then leads to the mDEB model.
As we show below, the mDEB model remains compatible
with all key assumptions of the sDEB model and can be eas-
ily extended to a non-linear enzyme-kinetics-based model of
intracellular metabolism. Moreover, the mDEB model exten-
sion to multiple-substrate-limited biological growth is com-
putationally much more efficient while maintaining the theo-
retical elegance of the DEB theory. We note that this gained
computational efficiency by the mDEB model will be very
helpful to apply the DEB theory to the modeling of a large

number of concurrently growing organisms (or organs for
plants and animals).

Below we first provide a detailed derivation of the mDEB
model. Then the mDEB model is compared to the sDEB
model for general behaviors. Following this, an application
to the chemostat experiment by Pawlowski (2004) is pre-
sented. Finally, we conclude by discussing how the mDEB
model can be applied to growth problems in ecosystem bio-
geochemistry.

2 Theory

2.1 The mDEB model

We start with the mass conservation equation from the non-
equilibrium thermodynamics (De Groot and Mazur, 1984):

d
dt

∫
V (t)

ρidV =−
∫

�(t)

J i · d�+

∫
V (t)

∑
l
σlirl(ρl)dV , (1)

where subscript i refers to pools internal to the time-
dependent volume V (t); ρi is the mass (or energy) density
of the ith internal pool that is enclosed by the volume V (t),
whose surface is �(t); J i is the outgoing flux of ρi through
the surface �(t); and rl(ρl) is the lth chemical reaction rate
that occurs inside the volume V (t) contributing to the change
of total mass

∫
V (t)

ρidV according to the stoichiometric pa-
rameter σli . In plain language, Eq. (1) states that the changing
rate of total mass

∫
V (t)

ρidV within a volume of space V (t)
(i.e., left-hand side) is determined by the mass flux escaping
through its surface �(t) (i.e., the first term on the right-hand
side) and the net chemical production inside the volume (the
second term in the right-hand side). We define all the sym-
bols in the nomenclature table in the Appendix, and unless
specified otherwise, all variables have ISO units.

When applied to a biological cell, V (t) is its physical vol-
ume, and �(t) is the corresponding exterior surface. The ith
internal reserve is ρi , whose dynamics are governed by sub-
strate uptake (−J i) and intracellular chemical transforma-
tions (by the last term of Eq. 1). Since Eq. (1) imposes no
size restriction on the spatial domain of the integral terms
a priori, as the sDEB model has attempted to achieve, the
mDEB model is applicable to unicellular, multicellular, and
a (sub)population of organisms, as long as some average is
properly taken in the application. (For example, for a popu-
lation of individuals, even though the individuals may have
different reserve densities, the population reserve dynamics
is represented using mean reserve density computed as the
ratio between whole-population reserve biomass and whole-
population structural biomass.) Moreover, as in the sDEB
model, the volume V (t) and surface �(t) here are assumed to
be scaled based on structural biomass (through mass density,
which is constant by the strong homeostasis assumption).

When applying Eq. (1) to a reserve component of a bio-
logical organism or a population of cells, we ignore the loca-
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tion dependence of ρi within the intracellular volume. That
is, ρi is the average value within the volume V (t). Applying
Gauss’s law to the first term of Eq. (1) (e.g., Feynman et al.,
2011) leads to

d
dt
(ρi(t)V (t))=−

∫
V (t)

∇ ·J idV +
∑

l
σlirli(ρl)V (t) , (2)

where “¯” signifies a spatial average for the variable. Equa-
tion (2) will be used to formulate the reserve dynamics for
the mDEB model. Additionally, for simplicity, we henceforth
remove the explicit designation of time dependence in V (t).

In the following, we consider the simplest single-reserve
mDEB model. However, in order to show that the mDEB
model satisfies the merging and partitioning principle of the
reserve dynamics, we partition the reserve (density) as

x =
∑

i
xi . (3)

With Eq. (3), by taking xi = ρi(t), Eq. (2) implies that, while
all reserve molecules are chemically the same, in the model,
they can be tagged with subscript i so that one can differen-
tiate them and model them separately. To some extent, this
tagging is equivalent to isotope labeling if the isotopes are
not metabolically differentiated by the organism.

The application of Eq. (2) to xi leads to

d(V xi)
dt

= jA,iV −V jE,xi = jA,iV −V
vExi/Ki

1+
∑
lxl/Kl

= jA,iV −V
vExi/Ki

1+ x/K
,

(4)

where jA,i is the specific assimilation rate from substrates
contributing to xi , and vE is the maximum specific reserve
mobilization rate (as signified by subscript E). Since all re-
serve compartments xi are metabolically the same, their spe-
cific affinities are also the same: Ki =Kl =K .

In Eq. (4), we formulate the intracellular biochemical re-
action (i.e., jE,xi for the turnover of xi) using the equilibrium
chemistry approximation (ECA) kinetics (which is a first-
order approximation to law of mass action; Tang, 2015; Tang
and Riley, 2013, 2017) and ignore the size contrast effect be-
tween intracellular substrates and enzymes (Tang and Riley,
2019).

By summing up all parts with Eq. (4), we then obtain

d(V x)
dt
= jAV − jE,xV = jAV −

vEx/K

1+ x/K
V , (5)

which (by the chain rule of differentiation) can be written as

dx
dt
= jA− jE,x −µx = jA−

vEx/K

1+ x/K
−µx , (6)

which describes the reserve dynamics of the single-reserve
mDEB model.

The specific growth rate µ is computed from the dynamic
energy budget as

µ=
1
V

dV
dt
= YV jE,x −mV = YV

vEx/K

1+ x/K
−mV , (7)

where YV is the mass yield of converting reserve into
structural biomass when considering the coupling between
catabolism and anabolism, and mV is the specific mainte-
nance rate. Equation (7) suggests that when reserve mobi-
lization is too low, growth rate will become negative. Further,
if mortality from various causes is to be included, Eq. (7) can
be modified by adding the specific mortality rate.

In short, the single-reserve mDEB model is formulated by
Eqs. (6) and (7). When needed, the κ rule for allocation to
soma expense (Sect. 2.4 in Kooijman, 2009) can be incor-
porated by multiplying YV by κ (see Table 1). Moreover, the
compatibility with ECA kinetics suggests that the reserve dy-
namics can be replaced with nonlinear kinetics-based models
of intracellular metabolism (Tadmor and Tlusty, 2008; Eti-
enne et al., 2020) such that the link with flux-balance models
can also be naturally established (which is one major moti-
vation for developing the rDEB model).

Last, we highlight that jE,x in the mDEB model (see Eq. 6)
has no explicit dependence on growth rate µ. In contrast,
in the sDEB model, based on a pure mathematical argu-
ment (see Sect. 2.3.1 in Kooijman, 2009), jE,x +µx is for-
mulated as a linear function of reserve density x such that
jE,x depends linearly on growth rate µ. This difference of-
fers mDEB a significant computational advantage for mod-
eling biological organisms growing on multiple complemen-
tary nutrients, such as carbon, nitrogen, phosphorus, sulfur,
and even silicon (Madigan et al., 2009).

2.2 Growth under weak homeostasis

Under weak homeostasis, as food density is constant, spe-
cific reserve assimilation from external substrates jA is con-
stant, leading to dx

dt = 0. When these conditions are applied
to Eq. (6), one obtains

jE,x =
vEx

K + x
= jA−µx , (8)

which, when substituted into the dynamic energy budget
Eq. (7), leads to

µ= YV (jA−µx)−mV (9)

such that

µ=
YV jA−mV

1+YV x
. (10)

Equation (10) states that under constant food density, the
mDEB model predicts that growth continues with constant
reserve density, just as predicted by the sDEB theory and re-
quired by the assumed weak homeostasis.
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Table 1. Mathematical comparison of the mDEB and the sDEB models, with sDEB symbols annotated by subscript “s”. For both models, the
κ rule for allocation to soma is applied (Kooijman, 2009). Also, it is assumed that structural biomass is proportional to the cellular population.
Additionally, jA and jA,s have incorporated the reserve yield YX from substrate assimilation.

mDEB model sDEB model

Reserve dynamics: Reserve dynamics:
dx
dt
= jA−

vEx/K

1+ x/K
−µx

dxs
dt
= jA,s− vE,sxs

Structural biomass dynamics: Structural biomass dynamics:
dV
dt
= µV

dVs
dt
= µsVs

Specific structural biomass growth rate: Specific structural biomass growth rate:

µ= YV κ
vEx/K

1+ x/K
−mV µs =

κsYV,svE,sxs−mV,s
1+ κsYV,sxs

Weak homeostasis condition:
dx
dt
= 0 for mDEB model, and

dxs
dt
= 0 for sDEB model, respectively.

Specific growth rate: Specific growth rate:

µ=
YV κjA−mV

1+YV κx
µs =

YV,sκsjA,s−mV,s
1+YV,sκsxs

Structural biomass yield vs. growth rate: Structural biomass yield vs. growth rate:

Yµ =
µ

jA
YX

=

(
µ

µ+mV

)(
κYV vE −mV −µ

κYV vE −mV +µ(κYVK − 1)

)
κYV YX

Yµ,s =
µs
jA,s

YX =

(
µs

µs+mV,s

)(
1−

µs
vE,s

)
κsYV,sYX

Total biomass yield vs. growth rate: Total biomass yield vs. growth rate:
YB = Yµ(1+ x)

=

(
µ

µ+mV

)(
κYV vE + (mV +µ)(K − 1)
κYV vE −mV −µ(1− κYVK)

)
κYV YX

YB,s = Yµ,s(1+ xs)

=

(
µs

µs+mV,s

)(
κsYV,svE,s+mV,s+ (1− κsYV,s)µs

vE,s

)
YX

From Eqs. (8) and (9), the reserve density x can be found
as

x =
(µ+mV )K

YV vE −µ−mV
. (11)

When Eq. (11) is entered into Eq. (9), one finds

jA =
µ+mV

YV
+µx

=
µ+mV

YV

YV vE −mV −µ(1−KYV )
YV vE −mV −µ

.

(12)

Equation (12) can be used to derive the yield of structural
biomass (or population) under weak homeostasis:

Yµ =
µ

jA
YX

=

(
µ

µ+mV

)(
YV vE −mV −µ

YV vE −mV −µ+YVKµ

)
YV YX ,

(13)

where YX is the reserve biomass yield for assimilating sub-
strate from the environment.

Accordingly, the yield for total biomass is

YB = Yµ(1+ x)

=

(
µ

µ+mV

)(
YV vE + (mV +µ)(K − 1)
YV vE −mV −µ+YVKµ

)
YV YX .

(14)

Since the mDEB model is compatible with the weak
homeostasis assumption, like the sDEB model, it is naturally
compatible with the Von Bertalanffy growth model that re-
lates the size of an organism to its age at constant specific
food supply (see Sect. 2.6.1 in Kooijman, 2009). Moreover,
under the assumed weak homeostasis, since jA is constant,
the specific growth rate µ can be solved from the equation of
Yµ for the mDEB model in Table 1 (which can be verified to
be a quadratic equation of µ; see its special case in Eq. 21).

2.3 mDEB model for K � x

We next apply the condition K � x to derive some special
case analytical results of the mDEB model. (We note that
the condition K � x corresponds to the high enzyme condi-
tion that is usually satisfied inside biological cells (Tang and
Riley, 2023; Phillips et al., 2012), even though it is not es-
sential for the application of the mDEB model.) Specifically,
we may define ṽE = vE/K so that Eq. (6) becomes

dx
dt
= jA− ṽEx−µx , (15)

and Eq. (7) becomes

µ= YV ṽEx−mV . (16)
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For growth under weak homeostasis (i.e., dx
dt = 0), one

then has

x =
µ+mV

YV ṽE
, (17)

and

jA = (ṽE +µ)x =

(
ṽE +µ

ṽE

)(
µ+mV

YV

)
, (18)

and, accordingly, the structural biomass yield is

Yµ =
µ

jA
YX =

(
µ

µ+mV

)(
ṽE

ṽE +µ

)
YV YX , (19)

and the total biomass yield is

YB = Yµ(1+ x)

=

(
µ

µ+mV

)(
YV ṽE +µ+mV

ṽE +µ

)
YX .

(20)

Additionally, from Eq. (18), one can obtain

µ=
mV + ṽE

2

−1+

√
1+

4ṽE(jAYV −mV )

(mV + ṽE)2

 . (21)

3 Comparisons with the sDEB model

3.1 Biological growth on single reserve

The mDEB model is compared to the sDEB model for
growth from a single reserve pool in Table 1. That com-
parison shows that the two models have the same equation
for specific growth rate (µ vs. µs) only under weak home-
ostasis (when the reserve density reaches steady state and
thus the whole organism is of fixed elemental stoichiometry,
i.e., dxs

dt = 0 for the sDEB model and dx
dt = 0 for the mDEB

model), and, mathematically, the two models are structurally
very similar.

Under the weak homeostasis condition, because reserve
density is time-invariant and depends algebraically on re-
serve assimilate rate (jA), the mDEB and sDEB models pre-
dict the specific structural biomass growth rate as a function
of substrate concentration in a pattern very similar to that pre-
dicted using Monod kinetics (Fig. 1; Monod, 1949). When
the specific reserve turnover rate is much greater than the
specific maintenance rate, the mDEB model for K � x and
the sDEB model predict almost identical growth rates as a
function of substrate availability (lines with vE = 100mV in
Fig. 1).

Moreover, the two models predict very similar rela-
tionships between specific growth rate and both structural
biomass yield and total biomass yield under weak homeosta-
sis (Fig. 2). Specifically, under weak homeostasis conditions,
both the mDEB and sDEB models predict that the struc-
tural biomass yield first increases, then plateaus, and then

Figure 1. Comparison of predicted specific structural biomass
growth rate as a function of normalized substrate availability un-
der weak homeostasis conditions. For cases with vE = 10mV , spe-
cific reserve turnover rate is 10 times the specific structural biomass
maintenance rate. For cases with vE = 100mV , specific reserve
turnover rate is 100 times the specific structural biomass main-
tenance rate. The mDEB model is based on Eq. (21), while the
sDEB model is based on µs =

YV,sjA,s−mV,s
1+YV,sjA,s/vE,s

. In producing the
above results, for both jA and jA,s, the Michaelis–Menten kinet-
ics f (S)= jA,maxS/(S+KS) are used for substrate uptake.

decreases with specific growth rate (Fig. 2a and c), with the
sDEB model predicting a faster decrease at higher growth
rate. The total biomass yield increases almost hyperbolically
with specific growth rate (Fig. 2b and d), with the sDEB
model predicting a faster increase at higher growth rate. We
note that the relationship between total biomass yield and
specific growth rate is consistent with that predicted by the
empirical compromise model (Beeftink et al., 1990; Wang
and Post, 2012). The qualitative difference between struc-
tural biomass yield and total biomass yield suggests that
more analysis is needed of how they may affect simulated
biogeochemistry.

3.2 Biological growth on two reserves

When an organism is growing on two complementary re-
serves (from assimilation two complementary substrates,
e.g., carbon and nitrogen), the growth rate may be computed
using the synthesizing unit kinetics (Kooijman, 2009) such
that

µ=
(
j−1
G,x1
+ j−1

G,x2
− (jG,x1 + jG,x2)

−1
)−1

. (22)

For simplicity, in Eq. (22) we assume that the specific growth
rate µ is positive. Negative growth when reserve fluxes fall
short of maintenance requirements can be considered sepa-
rately (Tolla et al., 2007; Kooijman, 2009).

https://doi.org/10.5194/bg-22-1809-2025 Biogeosciences, 22, 1809–1819, 2025
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Figure 2. Comparison of predicted biomass yield as a function of normalized specific growth rate under weak homeostasis conditions. (a,
c) Predicted relationship between structural biomass yield and specific growth rate. (b, d) Predicted relationship between total biomass yield
and specific growth rate. YX is the reserve biomass yield for substrate assimilation from the environment. For both models, it is assumed that
the structural biomass yield from reserve biomass is 0.6. (a, b) The maximum specific reserve turnover rate is 15 times the specific structural
biomass maintenance rate. (c , d) The maximum specific reserve turnover rate is 100 times the specific structural biomass maintenance rate.

By designating the maintenance flux required for reserve
x1 and x2 as jM,x1 and jM,x2 , one has

jG,xi = yG,xi (jE,xi − jM,xi ) , i = 1,2 , (23)

where yG,xi is the stoichiometric yield of transforming re-
serve xi into structural biomass.

When Eqs. (22) and (23) are applied with the mDEB
model, according to Eq. (4), jE,xi is independent of specific
growth rate µ so that µ is an explicit function of fluxes jE,xi
and jM,xi . (Therefore, the mDEB model never requires iter-
ations for solving µ, whether jE,xi is a linear or nonlinear
function of reserve density xi .) In contrast, when the sDEB
model is applied, jE,xi is a function of µ:

jE,xi = (vE −µ)xi . (24)

Therefore, for the sDEB model, Eqs. (22)–(24) indicate that
µ is an implicit function, whose solution requires numeri-
cal iteration for each calculation of growth rate µ (also see
equation of µg for the sDEB model in Table 2). Further-
more, as the sDEB model strives to include more organisms
and more complementary reserves, e.g., biological growth
that is concurrently regulated by pools of carbon, nitrogen,
and phosphorus (as many existing biogeochemical models
attempt; e.g., Goll et al., 2012; Yu et al., 2020; Zhu et al.,
2019; Mekonnen et al. 2019), the necessity of iteration to ex-
plicitly represent many numbers of biological organisms will
make the growth rate in the sDEB model increasingly more
cumbersome to solve. In contrast, the absence of numerical

iteration in the mDEB model will significantly simplify this
aspect of the modeling processes.

To demonstrate the applicability of mDEB model on bio-
logical growth over multiple complementary substrates, we
constructed a mDEB model for the chemostat experiment
of the diatom Thalassiosira weissflogii (T. weissflogii) from
Pawlowski (2004). Like the sDEB model by Lorena et al.
(2010), the mDEB model (Table 2) makes the following as-
sumptions:

1. When the mobilized reserve fluxes fall short of the de-
mand from maintenance, structural biomass is reduced
proportional to the deficit (as the maximum deficit of
two reserves), and this reduced structural biomass is
mineralized immediately into substrates.

2. The fraction of rejected reserve that is not returned to
reserve is not mineralized to become substrates.

The mDEB model adopts almost identical parameter values
from the sDEB model (compare our Table 3 with their Ta-
ble 2), except that the mDEB model sets the specific reserve
turnover rate (vE) to 0.55 d−1, calculated by manual tuning,
while the sDEB model in Lorena et al. (2010) used a value
of 2.60 d−1. For comparison, we also coded a sDEB model
that differs from the mDEB model only in the computation
of growth rate, which is achieved through the bisection algo-
rithm (Burden and Faires, 1985). Because we adopted a for-
mulation of negative growth rate µd different from Lorena
et al. (2010) (See their Eq. 2.11, where they assumed that
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Table 2. A mDEB model of diatom T. weissflogii growing on CO2 and inorganic nitrogen. For comparison, also given are sDEB model
equations for growth and reserve dynamics.

mDEB model equations Description

jA,N = jAm,N
[N]

[N] +KN
Specific assimilation rate of substrate
N; mol N (molMV )−1 d−1.

jph =
ρPSUI

1/α+ 1/γ (1+β/α)I + (β/γ δ)I2 Photosynthesis.

jCO2 = jAm,CO2

[CO2]

[CO2] +KC
Specific CO2 flux rate for C-reserve
synthesis; mol C (molMV )−1 d−1.

jA,C =

(
1

jCO2

+
1
jph
−

1
jph+ jCO2

)−1

Specific carbon-reserve synthesis rate
from CO2; mol C (molMV )−1 d−1.

dxC
dt
= jA,C− (vE +µ)xC+ κEjR,C Dynamic equation of C-reserve density.

dxN
dt
= jA,N− (vE +µ)xN+ κEjR,N Dynamic equation of N-reserve

density.
jG,i = vExi − jM,i , i = C or N Reserve fluxes to support potential

structural biomass growth.
jR,i = jG,i − yV,iµg , i = C or N Potentially rejected reserve flux in

intracellular metabolism.

µg =max

(( jG,C
yV,C

)−1
+

(
jG,N
yV,N

)−1
−

(
jG,C
yV,C

+
jG,N
yV,N

)−1
)−1

,0

 Synthesizing unit kinetics-based
structural growth rate.

µd =max
(
−
jG,C
yV,C

,−
jG,N
yV,N

,0
)

Structural biomass respired due to
maintenance deficit.

µ= µg −µd Net specific growth rate of structural
biomass.

jX,i =min(vExi ,jM,i)+ (yV,i − nV,i)µg + nV,iµd , i = C or N Respiration flux as CO2 and inorganic
N added to substrate pools.

dMV
dt
= (µ−h)MV Dynamic equation of structural

biomass.
d[CO2]

dt
= h([CO2]r − [CO2])− (jA,C− jX,C)MV Dynamic equation of dissolved CO2.

d[N ]
dt
= h([N]r − [N])− (jA,N− jX,N)MV Dynamic equation of dissolved

inorganic nitrogen.

sDEB model equations

dxC
dt
= jA,C− vExC+ κEjR,C Dynamic equation of C-reserve density.

dxN
dt
= jA,N− vExN+ κEjR,N Dynamic equation of N-reserve

density.
jG,i = (vE −µ)xi − jM,i , i = C or N Reserve fluxes to support potential

structural biomass growth.

µg =

((
jG,C(µg)

yV,C

)−1
+

(
jG,N(µg)

yV,N

)−1
−

(
jG,C(µg)

yV,C
+
jG,N(µg)

yV,N

)−1
)−1

Synthesizing unit kinetics-based
structural growth rate.
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Table 3. Parameters of the mDEB model. The values of vE were found by manual tuning, with the sDEB model value in parentheses. All
other parameters are the same as in Lorena et al. (2010).

Parameter Description Units Value Reference

nV,N N to C ratio of structural biomass mol N (molC)−1 0.04 Geider et al. (1998);
Baklouti et al. (2006)

jAm,N Maximum volume-specific N
assimilation

mol N (molMV )−1 d−1 1.0 Geider et al. (1998)

jAm,CO2 Maximum volume-specific CO2
assimilation

mol C (molMV )−1 d−1 5.1 Geider et al. (1998)

KC Half-saturation concentration for CO2
uptake

µM 0.43 Rost et al. (2003)

KN Half-saturation concentration for N
uptake

µM 3.20 Pawlowski et al. (2002)

jM,C Volume-specific maintenance cost paid
by C reserve

mol EC (molMV )−1 d−1 0.054 Faugeras et al. (2004);
Quigg and Beardall (2003)

jM,N Volume-specific maintenance cost paid
by N reserve

mol EN (molMV )−1 d−1 0.012 Faugeras et al. (2004);
Quigg and Beardall (2003)

vE Specific reserve turnover rate d−1 0.55 (0.95) Calibrated
yV,C Yield factor of C reserve to structure mol EC (molMV )−1 1.25 Baklouti et al. (2006)
yV,N Yield factor of N reserve to structure mol EN (molMV )−1 0.04 Lorena et al. (2010)
κE Fraction of rejection flux incorporated

into C or N reserve
– 0.7 Lorena et al. (2010)

α PSU excitement coefficient (mmolPSUµEm−2)−1 0.0019 Wu and Merchuk (2001)
β PSU inhibition coefficient (mmolPSUµEm−2)−1 5.8× 10−7 Wu and Merchuk (2001)
γ PSU relaxation rate mmolPSU−1 s−1 0.1460 Wu and Merchuk (2001)
δ PSU recovery rate mmolPSU−1 s−1 4.8× 10−4 Wu and Merchuk (2001)
ρPSU PSU density mmolPSU (molMV )−1 0.365 Wu and Merchuk (2001)

Figure 3. Model–data comparison for the chemostat experiment of T. weissflogii from Pawlowski (2004). (a) Photon flux density (PFD) over
the measurement period, (b) particulate organic carbon (reserve plus structural biomass carbon; POC) of the T. weissflogii population, and
(c) particulate organic nitrogen (reserve plus structural biomass nitrogen; PON) of the T. weissflogii population. All panels only show results
over the time period when measurements were available.
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negative growth rates from carbon reserve deficit and nitro-
gen reserve deficit are additive. However, we used the maxi-
mum of the two instead), the sDEB model here used 0.95 d−1

for the specific reserve turnover rate.
By using parameters mostly from the literature, we find

that the mDEB model predictions captured the measured
time series of particulate organic carbon and nitrogen reason-
ably (Fig. 3). While better model–data agreement may be ob-
tained by optimizing more parameters, the results here sug-
gest that the mDEB model is at least as capable as the sDEB
model. Interestingly, the sDEB model here produced almost
identical model–data agreement. Moreover, for the 30 d sim-
ulation period, the mDEB model took about 55 % of the time
of the sDEB model. On an Apple M3 Max machine with
64 GB memory, using MatlabR2020b, the typical execution
times are 0.037 and 0.068 s for the mDEB model and sDEB
model, respectively. (We provide the source code for read-
ers to play with the models.) This significant improvement
in computational efficiency and good model–data agreement
thus suggests the mDEB model is a good replacement for the
sDEB model.

4 Conclusions

Starting with the mass conservation equation from the
nonequilibrium thermodynamics, the law of mass action, and
the basic assumptions of the dynamic energy budget theory,
we derived a modified formulation of the dynamic energy
budget (mDEB) model. The mDEB model is mathematically
very similar to the standard dynamic energy budget (sDEB)
model and is able to recover many of the features of the
sDEB model. However, because it does not require numeri-
cal iterations for the computation of growth rate, particularly
for biological growth that involves multiple complementary
substrates, the mDEB model is computationally much more
efficient. In the example application to a chemostat exper-
iment of T. weissflogii, the mDEB and sDEB models are
found equally accurate, while the former only required al-
most half the computing time of the latter. Moreover, since
the mDEB model is compatible with non-linear kinetics for
reserve turnover, it can be extended to models that con-
sider ribosome allocation explicitly for microbes (Tadmor
and Tlusty, 2008).

With its strong theoretical foundation and easier numer-
ical implementation, we expect that the mDEB model will
consistently formulate biological growth of microbes, plants,
and animals (which are all in the application domain of the
DEB theory; Kooijman, 2009; Yang et al., 2020; Russo et al.,
2022; Matyja and Lech, 2024). Coupled with the reactive
transport-based modeling of substrate transport and aqueous
chemistry, we believe the consistent application of the mDEB
model will significantly alleviate the structural uncertainty of
ecosystem biogeochemical models, as envisioned in Tang et
al. (2024).

Appendix A: Nomenclature

Table A1. This table only includes symbols not defined in Tables 2
and 3.

Symbol Unit Description

jA,i ,jA s−1 Specific reserve assimilate
rate.

jE,x s−1 Specific reserve turnover rate.
mV s−1 Specific structural biomass

maintenance.
rl kgm−3 s−1 Rate of lth reaction.
ṽE s−1 Specific reserve turnover rate.
x,xi kg reserve (kgstructure)−1 Reserve density.
J i kgm−2 Mass flux density.
K,Kl kg reserve (kgstructure)−1 Half saturation parameter
V (t),V m−3 (or kg m−3) Volume (or structural

biomass).
YV kgstructure (kg reserve)−1 Structural biomass yield from

reserve biomass.
Yµ kgstructure (kgsubstrate)−1 Emergent structural biomass

yield from substrate
assimilation.

YB kgbiomass (kgsubstrate)−1 Emergent total biomass yield
from substrate assimilation.

ρi ,ρl kgm−3 Mass density.
ρi ,ρl kgm−3 Space-averaged mass density.
σli kgkg−1 Stoichiometry coefficient for

substrate i due to reaction l.
µ s−1 Specific growth rate.
κ kgkg−1 Fraction of reserve turnover

for soma development.
�(t) m2 Surface area of volume V (t).
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licly accessible in a GitHub repository at https://github.
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