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Abstract. Soil organic carbon (SOC) is the largest terrestrial
carbon pool, but it is still uncertain how it will respond to
climate change. Specifically, the fate of SOC due to con-
current changes in soil temperature and moisture is uncer-
tain. It is generally accepted that microbially driven SOC de-
composition will increase with warming, provided that suffi-
cient soil moisture (and hence sufficient C substrate) is avail-
able for microbial decomposition. We use a mechanistic, mi-
crobially explicit SOC decomposition model, the Jena Soil
Model (JSM), and focus on the depolymerisation of litter
and microbial residues by microbes at different soil depths as
well as the sensitivities of the depolymerisation of litter and
microbial residues to soil warming and different drought in-
tensities. In a series of model experiments, we test the effects
of soil warming and droughts on SOC stocks, in combina-
tion with different temperature sensitivities (Q10 values) for
the half-saturation constantKm (Q10,Km) associated with the
breakdown of litter or microbial residues. We find that soil
warming can lead to SOC losses at a timescale of a century
and that these losses are highest in the topsoil (compared with
the subsoil). Droughts can alleviate the effects of soil warm-
ing and reduce SOC losses, by posing strong microbial lim-
itation on the depolymerisation rates, and even lead to SOC
accumulation, provided that litter inputs remain unchanged.
While absolute SOC losses were highest in the topsoil, we
found that the temperature and moisture sensitivities of Km
were important drivers of SOC losses in the subsoil – where
microbial biomass is low and mineral-associated OC is high.
Furthermore, a combination of drought and differentQ10,Km

values associated with different enzymes for the breakdown
of litter or microbial residues had counteracting effects on the
overall SOC balance. In this study, we show that, while ab-
solute SOC changes driven by soil warming and drought are
highest in the topsoil, SOC in the subsoil is more sensitive to
warming and drought due to the intricate interplay between
Km, temperature, soil moisture, and mineral-associated SOC.

1 Introduction

Soils are an important component of the global carbon (C)
cycle, as they store large quantities of C (e.g. Crowther et al.,
2019; Fan et al., 2020). Soils can act as C sources or sinks,
depending on the balance between C inputs and outputs over
time (Davidson, 2020; Kirschbaum, 2006). Apart from plant
litter inputs, microbial residues are recognised as an impor-
tant precursor for the formation of stable, mineral-associated
soil organic carbon (Cotrufo et al., 2013; Kallenbach et al.,
2016; Liang et al., 2017; Xiao et al., 2023). Therefore, to de-
termine whether soils are a net C source or sink, the speed
at which soil organisms decompose litter inputs and exist-
ing soil organic carbon (SOC) stocks including microbial
residues is of particular importance (Kallenbach et al., 2016).

Soil temperature and soil moisture are two primary
controlling factors of microbial decomposition rates and,
thereby, the carbon turnover rate of soils (Davidson and
Janssens, 2006; Moyano et al., 2013; Yan et al., 2018). Ad-
ditionally, the interaction between microbial SOC decompo-
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sition and the adsorption and desorption of SOC to and from
mineral surfaces is an important controlling factor determin-
ing the fate of SOC stocks (Ahrens et al., 2020; Dwivedi et
al., 2017; Sokol et al., 2022). Given the importance of SOC
stocks and their sensitivities to climate change, a better un-
derstanding and representation of these complex interactions
in coupled C cycle–climate models is extremely important
for a better understanding of the carbon–climate feedback
(Todd-Brown et al., 2014).

Temperature and warming effects on SOC stocks and
soil respiration have been extensively studied (Kirschbaum,
2006; Subke and Bahn, 2010; Tang et al., 2019), both experi-
mentally (e.g. Benbi et al., 2014; Bradford et al., 2019; Carey
et al., 2016; Chen et al., 2024; Conant et al., 2011; Gentsch
et al., 2018; Gillabel et al., 2010; Hao et al., 2023; Hartley et
al., 2021; Hicks Pries et al., 2017; Li et al., 2020; Moinet et
al., 2020; Ofiti et al., 2021; Qin et al., 2019; Reichstein et al.,
2005; Soong et al., 2021; Walker et al., 2018; Wang et al.,
2022a; Yan et al., 2022) and with coupled C cycle–climate
models (e.g. Bauer et al., 2008; Georgiou et al., 2024; Koven
et al., 2017; Todd-Brown et al., 2018; Varney et al., 2020;
Zhang et al., 2022). Most of these coupled C cycle–climate
models, however, have simple process representation, with
conceptual SOC pools that decay according to first-order ki-
netics and rate modifier functions to represent the effects of
soil temperature and soil moisture changes and/or the ef-
fects of soil clay content on SOC decay rates (Le Noë et al.,
2023; Sierra et al., 2015). Since the paradigm shift that SOC
persistence is mediated by microbial activity and organo-
mineral interactions (Schmidt et al., 2011), SOC decomposi-
tion and stabilisation can be more mechanistically described
in models. This was realised by the development of next-
generation soil models (NGSMs) of various complexity (Le
Noë et al., 2023; Sulman et al., 2018). These NGSMs have
the direct representation of microbial biomass (which drives
depolymerisation of SOC pools through enzyme production)
and the representation of mineral-associated organic matter,
which both reduce microbial growth and, thus, depolymeri-
sation by limiting substrate availability (e.g. Abramoff et al.,
2017, 2019; Sulman et al., 2014; Tang and Riley, 2015, 2024;
Wang et al., 2015; Wieder et al., 2014; Yu et al., 2020; Zhang
et al., 2022). Through these mechanistic process represen-
tations in NGSMs, more explicit representations of their in-
dividual temperature and moisture dependencies can be ex-
plored.

According to current process understanding, it is now,
for example, possible to assign microbial depolymerisation
rates a higher temperature sensitivity than SOC sorption and
desorption processes (Ahrens et al., 2020; Tang and Riley,
2015; Wang et al., 2012, 2013). However, of the enzyme-
driven depolymerisation steps, which are often described us-
ing (reverse) Michaelis–Menten kinetics (Tang, 2015), pri-
marily the effects of the temperature dependence of the max-
imum depolymerisation rate (Vmax) have been explored to
date (Fanin et al., 2022; Liu et al., 2022; Nottingham et

Figure 1. Conceptual depiction of the relationship between micro-
bial biomass (CB) and a reverse Michaelis–Menten (MM) term, de-
fined as CB/(Km + CB), to represent microbial limitation of the
depolymerisation rate. In a forward MM term (for e.g. microbial
uptake of dissolved organic carbon), CB can be replaced by the
substrate concentration. Temperature and soil moisture sensitivi-
ties of the half-saturation constant Km can increase or decrease
the MM term: the temperature sensitivity of Km can be negative
(Q10,Km<1) and, thus, increase the MM term (blue line); be absent
(Q10,Km = 1, black line); or be positive (Q10,Km>1) and, thus, de-
crease the MM term (red line). The MM term decreases when the
soil gets drier (red line) or increases when the soil gets wetter (blue
line).

al., 2016; Wang et al., 2012). However, several studies have
shown that the half-saturation constant, Km, is also tempera-
ture sensitive (Davidson et al., 2006; Davidson and Janssens,
2006; Wang et al., 2012, 2013). Although the number of lab-
oratory studies on the Q10 values for Km of soil enzymes is
limited, values have been shown to range between 0.7 and 2.8
for different enzymes (Allison et al., 2018b; Gershenson et
al., 2009; Stone et al., 2012; Wu et al., 2022). When the Q10
value for Km>1, this indicates that the relationship between
temperature and the substrate binding affinity of the enzyme
(Km) is positive, whereas Q10 values<1 indicate a negative
temperature sensitivity of Km (Allison et al., 2018b; Tang et
al., 2019). In the Michaelis–Menten equation (Michaelis and
Menten, 1913), Km is in the denominator, which means that
a positive temperature sensitivity of Km can reduce the en-
zymatic reaction rate, or vice versa, increase the reaction rate
when the temperature sensitivity of Km is negative (Fig. 1;
Abramoff et al., 2019; Davidson et al., 2006; Davidson and
Janssens, 2006).

At high substrate concentrations, the relative importance
of the temperature sensitivity ofKm may be smaller than that
of Vmax (Wang et al., 2012), although this has not been ex-
plored much in modelling studies and only for positive tem-
perature sensitivities of Km (Davidson et al., 2006). In their
study, Davidson et al. (2006) used Q10 values of 2 for Vmax
and values of 1, 1.5, or 2 for Km, and they showed that the
individual temperature sensitivities of Km and Vmax can can-
cel each other out at low substrate concentrations. However,
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Davidson et al. (2006) did not study how dynamic changes
in the substrate would interact with temperature sensitivity of
Km. Furthermore, the soil enzyme kinetic study by Allison et
al. (2018b) showed that the Q10 values of Km for enzymes
primarily associated with the breakdown of plant-derived lit-
ter were generally positive (Q10 values>1), whereas those
for enzymes associated with the breakdown of microbial
residues were negative (Q10 values<1). Such opposing tem-
perature sensitivities ofKm for different substrate types have
not been explored in dynamic modelling studies before.

Besides rising soil temperatures, soil moisture is also ex-
pected to change in the future with an increased risk of
regional droughts (Berg and Sheffield, 2018). Drought can
reduce temperature-induced SOC losses by reducing sub-
strate availability for microbial decomposition (e.g. Schimel,
2018). The moisture sensitivity of the Michaelis–Menten
term depends on soil moisture, with lower soil moisture val-
ues resulting in stronger substrate limitation on microbial up-
take (in the case of forward MM kinetics) or stronger micro-
bial limitation on enzymatic depolymerisation (in the case of
reverse MM kinetics) (Fig. 1; Zhang et al., 2022). At present,
the response to soil moisture changes is less well documented
and implemented in microbially explicit SOC decomposition
models (Wang et al., 2020), although some modelling work
has integrated (semi-)mechanistic moisture sensitivity func-
tions to represent substrate and sometimes also oxygen lim-
itation on decomposition rates using volumetric water con-
tent (Davidson et al., 2012; Yan et al., 2018) or soil ma-
tric potential (Ghezzehei et al., 2019; Manzoni et al., 2014).
In some NGSMs, reduced substrate availability directly af-
fects microbial C uptake/growth and depolymerisation rates
(Abramoff et al., 2017; Wang et al., 2015; Yu et al., 2020).
Not only soil moisture but also organo-mineral interactions
affect substrate availability for microbial depolymerisation,
as microbes and soil minerals compete for the available SOC
(Ahrens et al., 2015). In return, soil moisture and temperature
affect mineral sorption and desorption rates. In NGSMs that
are microbially explicit and include organo-mineral interac-
tions, these temperature and moisture sensitivities can now
also be specifically assigned to each process (Ahrens et al.,
2020) and further explored in the context of climate change.

Albeit at lower concentrations, subsoils store huge
amounts of organic carbon (OC) (e.g. Blume et al., 2016).
Recently, the response of deep soils to climate change has
received increased attention (Hicks Pries et al., 2023), espe-
cially with respect to soil warming (Chen et al., 2024; Hao
et al., 2023; Hicks Pries et al., 2017; Li et al., 2020; Ofiti
et al., 2021; Soong et al., 2021) and the role of mineral-
associated organic matter (Benbi et al., 2014; Gentsch et al.,
2018; Georgiou et al., 2024; Gillabel et al., 2010; Hartley et
al., 2021; Sokol et al., 2022). However, to date, most NGSM
studies have assumed that the soil is only composed of one
homogenous layer (Wieder et al., 2015), thereby omitting the
vertical profile, which displays differences in OC inputs from
plant and roots, substrate availability, and microbial biomass

as well as associated gradients in organo-mineral associa-
tions, temperature, and moisture (Hicks Pries et al., 2023).
As the relevance of Km increases with declining microbial
biomass (Fig. 1), these gradients within the soil profile will
also affect SOC responses to climate change (Pallandt et al.,
2022).

Overall, the climate sensitivities of microbially mediated
SOC decomposition and their potential impacts on SOC
stocks at different soil depths have been partially overlooked
in dynamic modelling studies. In this study, we bridge these
gaps by applying the C cycle version of the Jena Soil Model
(JSM; Yu et al., 2020) to investigate the dynamic interactions
between soil moisture, soil temperature, and C substrates at
different soil depths. JSM is a vertically resolved NGSM with
mechanistic descriptions of microbially driven decomposi-
tion and organo-mineral interactions; thus, C substrate de-
pletion by microbes or sorption can be explicitly simulated at
different soil depths. We use JSM to test the various soil tem-
perature and soil moisture controls on SOC decomposition
either individually or simultaneously. As such, these model
experiments can be particularly helpful to elucidate the im-
portance of these new processes. Specifically, we focus on
the following research questions:

1. How do temperature and soil moisture changes affect
modelled SOC decomposition through Vmax and the
Michaelis–Menten term?

2. Do top- and subsoil layers respond differently to warm-
ing and drought?

In a series of model experiments, we test the effects of soil
warming and different drought intensities on SOC stocks, in
combination with different temperature sensitivities of Km
associated with the depolymerisation of the polymeric litter
pool or of microbial residues.

2 Methods

2.1 Model description

JSM is a vertically explicit soil organic matter (SOM) de-
composition model with microbial interactions and the repre-
sentation of organic matter (de)sorption to mineral surfaces.
For this study, we represent and describe the C cycle, but
JSM is also capable of simulating the coupled C, N, and
P cycles and isotope (13C, 14C, and 15N) tracking. A full
mathematical description of JSM and its coupled nutrient
cycles can be found in the supplementary material of Yu et
al. (2020). Here, we summarise the most important C cycle
processes relevant to this study, with a conceptual overview
given in Fig. 2 and parameters and units listed in Table 1.

The soil profile is divided into multiple layers that receive
vertically distributed root litter inputs or transported C from
other soil layers via advection or bioturbation (Sect. 2.2;
Ahrens et al., 2020). Additionally, the top soil layer receives
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Figure 2. Schematic representation of the C cycle in JSM, following Yu et al. (2020) and Ahrens et al. (2020). Each soil layer (grey
cylinders) receives vertically resolved C litter inputs (brown arrows) from roots, and aboveground litter enters the first soil layer. Carbon can
be transported between soil layers through bioturbation (purple arrows) and downwards with the water flux through advection (blue arrows).
Carbon pools (black rectangles) and C fluxes (black arrows) are considered for each individual soil depth: litter inputs are partitioned into a
polymeric, woody, and soluble litter pools. Polymeric litter and microbial residues can be depolymerised to DOC (dissolved organic carbon)
by microbes. DOC and microbial residues can adsorb to mineral surfaces to form MAOM (mineral-associated organic matter; yellow box)
and desorb through Langmuir sorption, where qmax is the maximum sorption capacity for the sorption of DOC and microbial residues
to mineral surfaces. The dotted lines are heterotrophic respiration (RH) fluxes. The coloured hourglasses represent different soil moisture
controls on SOC decomposition steps: microbial limitation of depolymerisation (red) and oxygen limitation (blue) on microbial C uptake for
growth.

Table 1. Parameter values and constants related to temperature-sensitive processes in JSM.

Parameter/constant Value Unit Reference

Vmax,P 0.1849 yr−1 Yu et al. (2020)
Vmax,R 0.2317 yr−1 Yu et al. (2020)
Vmax,U 95.76 d−1 Yu et al. (2020)
Km,P and Km,R 3.70 mmol C m−3 Yu et al. (2020)
Km,U 85.26 mol C m−3 Yu et al. (2020)
Km,O2 0.001 – Yu et al. (2020)
Q10,Vmax,U 1.98 – Allison et al. (2010)
Q10,Vmax,P and Q10,Vmax,R 2.16 – Wang et al. (2012)
Q10,Km,P 1.31∗ – Allison et al. (2018b)
Q10,Km,R 0.7∗ – Allison et al. (2018b)
Q10,adsorption 1.08 – Wang et al. (2013)
Q10,desorption 1.34 – Wang et al. (2013)
Tref 293.15 K Wang et al. (2012)

All Q10 values are reported for the model’s reference temperature (Tref) of 293.15 K (20 °C), and their
respective activation energies were taken from the literature (Allison et al., 2010; Wang et al., 2012, 2013)
by Ahrens et al. (2020, their Table 1). Q10 values marked with an asterisk (∗) are unique to this study
(taken from Allison et al., 2018b) and were measured at a reference temperature of 289.15 K (16 °C).
Activation energies for JSM were adjusted accordingly using Eq. (3). All units in JSM are SI units
(moles, seconds, and kelvin); however, for table readability and direct cross-referencing, values are
reported directly from the literature.

aboveground plant litter inputs (Fig. 2). Above- and below-
ground non-woody litter inputs are partitioned into soluble
and polymeric litter following Parton et al. (1993). JSM does
not explicitly simulate enzyme production, but this is implic-
itly described using Michaelis–Menten (MM) kinetics. For

the depolymerisation steps, reverse Michaelis–Menten kinet-
ics is used, as Tang and Riley (2019) found these to be more
appropriate than traditional, forward MM kinetics. The de-
polymerisation rate (mmol C m−3 h−1) of litter or microbial
residues into the dissolved organic carbon (DOC) pool (fol-
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lowing Ahrens et al., 2015, 2020) is described as follows:

fdepoly,X = Vmax,X × fVmax,X (Tsoil) ×CX

×
CB

Km,X × fKm,X (Tsoil , θ) + CB
. (1)

Thus, the depolymerisation rate is limited by the size of the
microbial biomass pool (CB) at a certain depth. X is either
the polymeric litter pool (P ) or the microbial residues pool
(R) at a certain depth, Vmax,X is the maximum specific de-
polymerisation rate of X, CX is the respective litter pool X,
and CB is the microbial biomass pool. fVmax,X (Tsoil) is an ex-
ponential function expressed with a Q10 base (Wang et al.,
2012):

fVmax,X (Tsoil) =Q10,Vmax,X

Tsoil−Tref
10 , (2)

where Q10,Vmax,X is the temperature sensitivity of the maxi-
mum specific depolymerisation rate of litter poolX, and Tsoil
and Tref are the soil temperature and reference temperature,
respectively.

TheQ10 coefficient is the ratio of reaction rates when tem-
perature increases by 10 K. For use within JSM, all Q10 val-
ues were converted to apparent activation energies (Ea) for
the model’s reference temperature (Tref) of 293.15 K follow-
ing Eq. (7) from Wang et al. (2012):

Q10 = exp
[

Ea

R× Tref
×

10
Texp

]
, (3)

where R is the universal gas constant and Texp is the tem-
perature at which the experiment was conducted (Table 2).
Inclusion of soil moisture is done through Eq. (4):

fKm,X (Tsoil, θ) =Q10,Km,X
Tsoil−Tref

10 ×

(
θ

θfc

)−3

. (4)

This is a function to describe the sensitivity of the half-
saturation constant (Km,X) to soil moisture and temperature
(Davidson et al., 2012), where Q10,Km,X is the temperature
sensitivity of the half-saturation constant of CX, and θ and
θfc are the volumetric water content and water content at field
capacity, respectively.

Microbial C uptake for growth is described using tradi-
tional forward MM kinetics (Tang and Riley, 2019):

fUptake = Vmax,U × fVmax,X (Tsoil) × CB

×
CDOC

Km,U + CDOC
×

a4/3

Km,O2 + a
4/3 (5)

so that the uptake rate (mmol C m−3 h−1) is limited by the
size of the available substrate (CDOC) and by the air-filled
pore space (a), which is calculated as

a =
θfc − θ

θfc
(6)

and functions as a proxy to describe the amount of oxygen
available for the reaction (Davidson et al., 2012). Vmax,U
is the maximum uptake rate of DOC by CB, CDOC is the
DOC pool, Km,U is the half-saturation constant for the up-
take of DOC byCB, andKm,O2 is the half-saturation constant
of the reaction with oxygen. DOC and microbial residues
can adsorb to mineral surfaces to form MAOC (mineral-
associated organic carbon), which is protected from micro-
bial decomposition (yellow box in Fig. 2). In JSM, adsorp-
tion and desorption rates are temperature dependent (with
literature-based Q10 values, as reported in Table 1), with a
full description of the process implementation and successful
application in Ahrens et al. (2020). The particulate organic
carbon (POC) pool, accessible to microbes for depolymeri-
sation and growth, consists of polymeric litter, DOC, and mi-
crobial residues (Fig. 2). Soil moisture, water fluxes between
soil layers, and the maximum sorption capacity (qmax) are
affected by soil texture (as described in Ahrens et al., 2015,
2020; Thum et al., 2019; and Sect. 2.1 in Yu et al., 2020).

2.2 Vertical process representation in the Jena Soil
Model

JSM requires depth-specific soil temperature, soil moisture,
and litterfall forcing data at a half-hourly time step as input.
Following Thum et al. (2019), these soil forcing data were
generated for a temperate forest site in Germany as a realistic
test bed for in silico model experiments (Hainich, DE-Hai).
First, the QUINCY land surface model was run for 500 years
beforehand to bring the soil C pools into equilibrium, us-
ing site-specific information on soil physical and chemical
parameters (soil texture, bulk density, and pH), plant func-
tional type, rooting depth, and meteorological reanalysis data
from 1901 to 1930. Second, directly following the 500-year
spin-up period, QUINCY was run as a transient simulation
in combination with FLUXNET3 forcing data for Hainich
from 1901 to 2012. These soil forcing data were then used
for the JSM spin-up for 500 years to bring the soil C pools
in equilibrium, where soil forcing data from 2000 to 2012
were used repeatedly. The soil moisture and soil temperature
forcing data from 2000 to 2012 are referred to as ambient
soil moisture and soil temperature data from this point. After
the 500-year spin-up period, JSM was run for 100 simulation
years for each model experiment (Sect. 2.4), again using the
soil forcing data from 2000 to 2012 repeatedly.

JSM works with 15 soil layers up to 9.5 m depth, where
soil layer thickness increases with increasing soil depth (Yu
et al., 2020). In this study we focus on the first six soil lay-
ers between 0 and 50 cm depth, at the following depth in-
tervals: 0–6, 6–13, 13–20, 20–26, 26–36, and 36–50 cm. In
each individual soil layer, all C pools and fluxes and the C
fluxes between the different layers are tracked through time
(Fig. 2, Eqs. 1–6). Through its vertically explicit structure
and input data, the model is capable of considering processes
and variables that vary with soil depth, such as soil mois-
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ture, soil temperature, root litter inputs, SOC content, micro-
bial biomass, and the sorption and desorption of DOC and
microbial residues to mineral surfaces. In the topsoil layers,
microbial biomass is highest and closely follows the distri-
bution of the root litter inputs (Ahrens et al., 2020) generated
by the QUINCY model. In the deeper soil layers, the frac-
tion of C adsorbed to mineral surfaces (MAOM) increases,
and advective and diffusive transport C inputs decrease with
depth (Ahrens et al., 2020). In JSM, all pools are transported
via bioturbation according to the formulation by Jarvis et
al. (2010) as a diffusive process whose diffusion coefficient
decreases as a function of bulk density. The DOC pool is
additionally transported via an advection velocity which rep-
resents the water mass flow between soil layers. A special
feature of JSM is the vertically continuous modelling of po-
tential organic layers and mineral soil layers via an additional
advective transport term that accounts for the accumulation
and decomposition of organic matter on top of and within the
soil profile. This ensures that the build-up of organic matter,
for example, in the form of an organic layer, leads to a con-
current decrease in the mineral soil volumetric fraction and,
thereby, the sorption capacity qmax. For a full description of
JSM, a reference is made to Yu et al. (2020).

2.3 Choice of Q10,Km values for polymeric litter and
microbial residues

Microbes process SOC by depolymerising a wide array of
C substrates derived from plant litter or microbial residues,
which greatly differ with respect to chemistry (Buckeridge
et al., 2022; Cotrufo and Lavallee, 2022), and therefore pro-
duce a variety of different enzymes that target those different
substrate types. In JSM, the polymeric litter and microbial
residues pools are depolymerised by extracellular enzymes
produced by the microbial pool (CB) to enter the DOC pool
(Fig. 2, Eq. 1). Enzyme production is not explicitly simu-
lated, but it is assumed to be proportional to the size of the
microbial biomass pool. The half-saturation constants for the
depolymerisation of polymeric litter and microbial residues
(Km,X; Eq. 1) are temperature dependent, but knowledge
about their value is restricted to laboratory studies of indi-
vidual enzymes. In this study, we explore different temper-
ature sensitivities, expressed as Q10 values, for our model’s
half-saturation constants for the microbial depolymerisation
of polymeric litter (Km,P) and microbial residues (Km,R). We
base these Q10 values on the work of Allison et al. (2018b),
who give an extensive overview of the temperature sensitivi-
ties of different enzymes and their substrate targets. We chose
values from this study that would likely be, or closely re-
semble, the main enzymes involved in the breakdown of our
model’s polymeric litter (CP) and microbial residues (CR)
pools. For the depolymerisation of CP, we targeted a value
measured for the enzymes β-xylosidase and total oxidase, as
these are involved in the degradation of hemicellulose, lignin,
and phenolics. For the depolymerisation of CR, we selected a

Q10,Km,R value measured for the enzyme leucine aminopep-
tidase, which is involved in the degradation of polypeptides,
the main component of microbial cell walls. The selected
value for the depolymerisation of polymeric litter Q10,Km,P
is 1.3 (Table 2), i.e. a positive temperature sensitivity of Km,
and that for the depolymerisation of the microbial residues
Q10,Km,R is 0.7, i.e. a negative temperature sensitivity ofKm.
In the various model experiments (described in more detail in
Sect. 2.4), we explore the effects of these different tempera-
ture sensitivities on SOC decomposition. Because so little is
known about these effects through the temperature sensitiv-
ity of the Michaelis–Menten term, we conduct experiments
in which we assign individual Q10,Km values for the depoly-
merisation of litter and microbial residues, but we also ex-
plore the effect of using only a negative temperature sensi-
tivity of Km (representing a hypothetical situation in which
all available C substrates have a Q10,Km value<1) or only a
positive temperature sensitivity of Km (representing a hypo-
thetical situation in which all available C substrates have a
Q10,Km value>1).

2.4 Ambient model run and model experiments

After the 500-year spin-up period (Sect. 2.2), we conducted
an ambient model run in which the 13 years of half-hourly
ambient soil moisture and soil temperature forcing data (gen-
erated by the QUINCY model, as described in Sect. 2.2) were
recycled for a 100-year simulation. This ambient model run
represents the published C cycle version of JSM with its de-
fault settings (Yu et al., 2020); therefore, the results of the
model experiments with varying temperature and moisture
interactions can be evaluated against this default. To ensure
that all model experiments started from steady-state condi-
tions, we verify that the SOC pools between 0 and 50 cm
depth reached steady state after the 500-year spin-up pe-
riod by applying a simple linear regression on the slope of
the change in SOC pools for the ambient model run. Then,
to investigate the effects of soil warming on SOC decom-
position, we ran several warming experiments in which all
ambient soil temperatures were increased by 4.5 K through-
out the whole soil column over the 100-year simulation pe-
riod, keeping the original seasonality in the ambient input
data intact and without altering the ambient soil moisture
(SM) values. We chose a 4.5 K step increase for soil warm-
ing because soils, including the deep soil up to 1 m, are ex-
pected to warm by 4.5 K by the end of the century under
Representative Concentration Pathway (RCP) 8.5 (Soong et
al., 2020). To test the sensitivity of SOC decomposition to
warming and to investigate the potential feedbacks through
the temperature sensitivity of the half-saturation constants in
the Michaelis–Menten term for microbial depolymerisation
(Eq. 1), we ran four warming experiments using different val-
ues forQ10,Km,P andQ10,Km,R (Table 1). For the first warm-
ing experiment, both theQ10,Km,P andQ10,Km,R values were
1 (i.e. not temperature sensitive, default settings as in Yu et
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al., 2020). For the second warming experiment, we desig-
nated separateQ10 values for the breakdown of the microbial
residues pool and the polymeric litter pool, where Q10,Km,R
was set to 0.7 and Q10,Km,P was set to 1.3 (Sect. 2.3). Then,
to explore the effects of only negative or positiveQ10,Km val-
ues for depolymerisation (i.e. the effect of having different C
substrate compositions), we ran warming experiment three,
in which bothQ10,Km,P andQ10,Km,R were 0.7 (representing
a hypothetical situation in which all available C substrates
would have a Q10,Km value below 1), and warming experi-
ment four, in which both Q10,Km,P and Q10,Km,R were 1.3
(representing a hypothetical situation in which all available
C substrates would have aQ10,Km value above 1). All model
experiment settings are summarised in Table 2.

Then, to investigate the effects of soil warming and drying
on SOC decomposition, we ran the first set of drought exper-
iments; in these experiments, we kept all Q10,Km,X values at
1 and used ambient soil temperature+ 4.5 K. Soil drying is
expected for most of the globe (Wang et al., 2022b, and ref-
erences therein), but drought intensity is uncertain and may
vary locally (Cook et al., 2020; Hsu and Dirmeyer, 2023).
Soil moisture change projections are very uncertain: 60 pro-
jected global lateral and vertical distributions of future soil
moisture were highly diverse in their predicted lateral and
vertical distributions (Berg et al., 2017). The multi-model
mean of this study showed reductions in subsurface and deep
surface soil moisture of up to 30 % by the year 2100. Given
the large divergence between these model projections, we
chose to simulate drought by reducing the depth-specific soil
moisture values from the forcing dataset in steps of 10 %, to
be able to compare the effects of a relatively mild versus in-
creasingly stronger droughts on SOC stocks. Specifically, we
compared three drought scenarios in which the model’s am-
bient SM inputs were reduced by 10 %: each ambient SM
value was multiplied by 0.9, 0.8, or 0.7, respectively (Ta-
ble 2). As with the warming experiments, the original sea-
sonality in the ambient SM input values was kept intact.

As a last step, we investigated the combined effects of soil
warming and drying on SOC decomposition including the
feedback through the half-saturation constants’ temperature
sensitivities. Similar to the first set of three drought exper-
iments, ambient soil temperature was raised by 4.5 K, and
three different drought intensities were simulated (SM× 0.9,
SM× 0.8, and SM× 0.7). Reflecting the most likely real-
istic combination of Q10,Km values for microbial depoly-
merisation, as soil will contain both microbial residues and
polymeric litter for microbes to depolymerise, we used the
two individual Q10,Km values from Allison et al. (2018b)
for the breakdown of the microbial residues pool and the
polymeric litter pool (Q10,Km,R = 0.7 and Q10,Km,P = 1.3,
respectively).

2.5 Model output analyses

Each model experiment was run for 100 simulation years,
yielding daily output files for different soil variables. We cal-
culate SOC stocks as the sum of the soluble litter, polymeric
litter, DOC, microbial residues, adsorbed DOC, and adsorbed
microbial residues pools (Fig. 2). Woody litter is excluded,
as it is considered part of the aboveground litter layer. To
calculate the annual changes in SOC stocks, expressed as
percentage change (%) since the start of the simulation, we
used SOC values from the last day of each simulation year.
All analyses and plots were done using the “tidyverse”, “gg-
plot2”, and “viridis” packages with R version 4.3.1 in RStu-
dio (Garnier et al., 2023; Posit Team, 2024; R Core Team,
2023; Wickham, 2016; Wickham et al., 2019). In Figs. 3, 4,
5, A1, and A2, solely as a visual aid, a smoothed line is added
to the annual data points using the ggplot2 “geom_smooth()”
function.

3 Results

3.1 Warming effects on SOC decomposition

3.1.1 Modelled SOC stock changes at ambient and
elevated soil temperatures

The ambient model run was conducted as a reference with
which we could compare our model experiments. To check
whether JSM reached steady state after spin-up, a linear re-
gression test was carried out and confirmed that the first six
soil layers of the ambient model run (0–50 cm) were in steady
state, as there was no SOC loss or accumulation over the
complete simulation period (dark blue in Fig. 3). The small
interannual variability in modelled SOC stocks reflects the
interannual variability in the litter inputs and other forcing.
Warming the soil by 4.5 K in a model experiment led to SOC
losses for all simulation years (purple in Fig. 3) until 5.1 %
of the initial stock was lost by the end of the simulation pe-
riod (Table 2). The topsoil loses more SOC (−6.2 %) than
the subsoil (−3.9 %), which is related to (1) the fact that
the proportion of mineral-associated organic C (MAOC) in-
creases with depth, leaving less available substrate for mi-
crobes to depolymerise in the subsoil (Fig. A1), and (2) the
lower microbial biomass in these layers, which strongly re-
duces the Michaelis–Menten term for the depolymerisation
rates (Fig. 1). Additionally, the processes of adsorption and
desorption have lower temperature sensitivities than micro-
bial processes in JSM; therefore, warming affects the topsoil
layers more strongly than the deeper layers, where more SOC
is associated with mineral surfaces. The soil warming effect
is strongest at the beginning of the simulation period, and it
decreases towards the end of the 100-year simulation period.

https://doi.org/10.5194/bg-22-1907-2025 Biogeosciences, 22, 1907–1928, 2025



1914 M. Pallandt et al.: Modelling the effect of climate–substrate interactions on SOM decomposition

Figure 3. Temperature effects on long-term changes in modelled SOC stocks (% SOC lost since simulation year 0) in (a) the whole soil
column (0–50 cm), (b) the topsoil layer (0–6 cm), and (c) a subsoil layer (36–50 cm). Each subplot shows an ambient model run (dark
blue) and the results of four warming experiments (soilT+ 4.5 K) with different temperature sensitivities (Q10 values) of the half-saturation
constants (Q10,Km,X ). In all runs, ambient SM (SM× 1.0) was used.

3.1.2 Temperature sensitivity of the half-saturation
constants

To study the effects of temperature on SOC decomposi-
tion through the half-saturation constant for depolymerisa-
tion (Q10,Km,X), the model was run using three different
combinations of Q10,Km,X values for the depolymerisation
of the polymeric litter and microbial residues pools (Table 2):
both Q10,Km,X values were 0.7; both Q10,Km,X values were
1.3; or Q10,Km,R was 0.7 and Q10,Km,P was 1.3. Using a
Q10 value for the half-saturation constantsKm,P andKm,R of
0.7 (reflecting the temperature sensitivity of the depolymeri-
sation of microbial residues) substantially accelerates SOC

losses in response to warming. SOC losses until 50 cm depth
reach 6.8 % (pink points in Fig. 3). The topsoil loses more
SOC than the subsoil (−7.3 % and −5.6 %, respectively);
however, in comparison with the run that uses Q10,Km,X val-
ues of 1, the relative difference in the subsoil is larger than
in the topsoil. This indicates that the relative importance of
Q10,Km,X is larger in the subsoil, where microbial biomass
is lower, than in the topsoil. In contrast, using a Q10 value
for the half-saturation constants Km,P and Km,R of 1.3 (re-
flecting the temperature sensitivity of the depolymerisation
of the polymeric litter pool) counteracts the warming effect
and reduces SOC losses from the soil. The result is still
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Figure 4. Soil moisture and temperature effects on long-term changes in modelled SOC stocks (% SOC lost since simulation year 0) in
(a) the whole soil column (0–50 cm), (b) the topsoil layer (0–6 cm), and (c) a subsoil layer (36–50 cm). In all model runs, the soil was
warmed by 4.5 K. Soil moisture is reduced in 10 % steps from ambient levels (SM× 1.0, purple) to 70 % (SM× 0.7, light blue). In all runs,
Q10,Km,X = 1 (not temperature sensitive). The purple line (SM=SM× 1.0) is included from Fig. 3 for visual comparison.

a net loss: SOC stocks in the top 50 cm decrease by 4 %,
with higher SOC losses from the topsoil compared with the
subsoil (−5.5 % and −2.8 %, respectively; orange points in
Fig. 3). Similar to the model run in which Q10,Km,X is 0.7,
the temperature sensitivity of Km in the model run in which
bothQ10,Km,P andKm,R are 1.3 has a relatively larger impact
on the subsoil compared with the topsoil.

Using an individual Q10 value for the half-saturation con-
stant for the depolymerisation of microbial residues (Km,R)
of 0.7 and a value of 1.3 for the polymeric litter pool (Km,P)
results in SOC losses from the top 50 cm (−5.2 %; yellow
in Fig. 3). In comparison to the run in which Q10,Km,X = 1,
this result is very similar (5.1 % loss from warming alone),
indicating that the opposing temperature sensitivities of the
depolymerisation of the microbial residues and polymeric lit-

ter pools cancel each other out. The topsoil loses more SOC
(−6.4 %) than the subsoil (−3.9 %); however, in comparison
to the run in whichQ10,Km,X = 1, the losses from the topsoil
layer are slightly higher (0.2 % additional SOC loss when
Q10,Km,X = 1) compared with the subsoil (no difference).

3.2 Drought effects on SOC decomposition

Inducing drought strongly dampens the warming effect on
SOC (Fig. 4). For the sake of comparison, Fig. 4 also includes
the purple line from Fig. 3 (no drought, SM=SM× 1). De-
pending on the drought intensity, the top 50 cm of soil loses
less SOC or even acts as a sink and starts accumulating SOC
over the course of the simulation period. A 10 % reduction
in SM results in an SOC loss of 3 %, whereas at 80 % and
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Figure 5. Temperature and soil moisture effects on long-term changes in modelled SOC stocks (% SOC lost since simulation year 0) in
(a) the whole soil column (0–50 cm), (b) the topsoil layer (0–6 cm), and (c) a subsoil layer (36–50 cm). Similar to Fig. 4, the soil was warmed
by 4.5 K in all model runs and soil moisture was reduced in 10 % steps. In contrast to Fig. 4 (no temperature sensitivity of the half-saturation
constants), Q10,Km,P was 1.3 for the depolymerisation of litter and Q10,Km,R was 0.7 for the depolymerisation of microbial residues in
these model runs. For visual comparison, the yellow line (SM=SM× 1.0) is included from Fig. 3.

70 % SM, the soil column accumulates 1.0 % and 6.8 % of
SOC, respectively (Table 2). A stronger drought intensity led
to a larger difference in modelled SOC stocks at 0–50 cm,
from −5.1 % at the original SM to + 6.8 % at 70 % SM, re-
sulting in a difference of 11.9 percentage points. This in-
creased drought response of SOC decomposition is a direct
result of the increase in the value of fKm,X (Tsoil,θ ) with de-
creasing SM (θ ; Eq. 2). Again, the topsoil and subsoil lay-
ers show a different response: in the topsoil, there is high
microbial biomass; therefore, the effect of the drought on
microbial depolymerisation is not as strong as in the sub-
soil. Additionally, drought decreases the amount of MAOC
in the subsoil, while POC accumulates (Fig. A1). As a re-
sult, the POC : MAOC ratio increases, especially in the top-

soil (Fig. A2). In the 0–6 cm layer, SOC losses are 4.4 % at
90 % SM and 1.1 % at 80 % SM, whereas a 3.8 % SOC accu-
mulation is noted at 70 % SM. In the subsoil layer between 36
and 50 cm, there is a loss of 1.9 % SOC at 90 % SM, whereas
there is a 1.6 % and 7.1 % SOC accumulation at 80 % and
70 % SM, respectively. At 80 % SM, the drought has an op-
posite effect in the topsoil (a net source) compared with the
subsoil (a net sink). The whole column response, however, is
a net sink, highlighting the strong contribution of the subsoil
to the overall response.
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Table 2. Model experiments and settings with simulated changes (%) in SOC stocks at three different depth intervals.

Experiment ST SM Q10,Km,R Q10,Km,P 1 SOC (%) 1 SOC (%) 1 SOC (%)
0–50 cm 0–6 cm 36–50 cm

1. Ambient model run +0.0 K SM× 1.0 1 1 0 0 0

2. Warming experiments +4.5 K SM× 1.0 1 1 −5.1 −6.2 −3.9
+4.5 K SM× 1.0 0.7 0.7 −6.8 −7.3 −5.6
+4.5 K SM× 1.0 1.3 1.3 −4.0 −5.5 −2.8
+4.5 K SM× 1.0 0.7 1.3 −5.2 −6.4 −3.9

3. Drought experiments +4.5 K SM× 0.9 1 1 −3.0 −4.4 −1.9
+4.5 K SM× 0.8 1 1 +1.0 −1.1 +1.6
+4.5 K SM× 0.7 1 1 +6.8 +3.8 +7.1

4. Combined experiments +4.5 K SM× 0.9 0.7 1.3 −3.1 −4.6 −2.0
+4.5 K SM× 0.8 0.7 1.3 +0.5 −1.5 +1.2
+4.5 K SM× 0.7 0.7 1.3 +5.8 +3.1 +6.1

3.3 Combined effects of drought and temperature
sensitivity of the half-saturation constants on SOC
decomposition

To investigate the potentially counteracting responses of the
temperature sensitivity of Km and droughts, we also run the
model for the three different drought intensities in conjunc-
tion with a Q10,Km,P value of 1.3 for the polymeric litter
pool and a Q10,Km,R value of 0.7 for the microbial residues
pool. Under ambient SM conditions, the temperature sen-
sitivity of both Km,X values only marginally amplified the
warming effects (the yellow points are identical in Figs. 3
and 5). When SM is reduced, however, this slows down
the decomposition rates (Fig. 5, Table 2): at a 10 % reduc-
tion in available SM, less SOC is lost from the top 50 cm
(−3.1 %) compared with when SM is kept at ambient levels
(−5.2 %). At 80 % and 70 % SM, the soil starts accumulat-
ing SOC (+0.5 % and 5.8 %, respectively). Generally, mod-
elled SOC stocks for this combination of temperature sen-
sitivities of Km and different drought intensities closely re-
semble the simulated drought response (Fig. 4), with the tem-
perature sensitivity of Km counteracting the drought effects:
when Km is sensitive to the temperature, SOC losses are
always higher, and SOC accumulations are always smaller
than whenKm is not sensitive to temperature (Table 2). Sim-
ilar to the drought experiments (Sect. 3.2), the differences
in modelled SOC stocks at 0–50 cm increase with stronger
drought intensity. Interestingly, the temperature sensitivity
effect through Q10,Km,P and Q10,Km,R also increases with
stronger drought intensity; for example, at ambient SM, SOC
stocks decreased by 5.1 % when both Q10,Km,X values were
1, whereas they decreased by 5.2 % when Q10,Km,R = 0.7
and Q10,Km,P = 1.3, which is a difference of only 0.1 per-
centage points (Table 2). However, at 70 % SM, SOC stocks
increased to 6.8 % when bothQ10,Km,X values were 1 and in-
creased to 5.8 % when Q10,Km,R = 0.7 and Q10,Km,P = 1.3,

resulting in a difference of 1.0 percentage point. The same
trend is also visible for both the topsoil (relative differ-
ence from 0.2 percentage points at SM= 1.0 to 0.7 percent-
age points at SM= 0.7) and the subsoil (no difference at
SM= 1.0 to a 1.0-percentage-point difference at SM= 0.7).
At the same time, the POC : MAOC ratio did not change
much compared to the model run in which Km,X was not
temperature sensitive (yellow and pink in Fig. A2). This in-
dicates that, rather than causing a shift in the litter and mi-
crobial residues C pools, microbial limitation is strong under
dry conditions (low CB; Fig. 1), which in turn increases the
importance of Q10,Km,R and Q10,Km,P for the overall SOC
decomposition rates. In contrast to the results from the iso-
lated warming and drought experiments, the differences in
SOC stock changes between the topsoil and subsoil are not
very large: from a −6.4 % SOC loss to a +3.1 % SOC ac-
cumulation, which is a 9.5 percentage point change, in the
topsoil and from a −3.9 SOC loss to a +6.1 SOC accumu-
lation in the subsoil (Table 2). These results indicate that the
combined sensitivity of SOC stocks to moisture and temper-
ature in topsoil and subsoil is similar due to the counteract-
ing effects of temperature and soil moisture on Km (Eq. 4):
higher temperatures promote SOC decomposition rates due
to the stronger influence of the depolymerisation of micro-
bial residues (which have a Q10,Km,R value of 0.7), whereas
drought decreases SOC decomposition rates.

4 Discussion

4.1 Warming effects on SOC decomposition

We find that warming the soil by 4.5 K accelerates SOC
losses and that these losses are proportionally higher in the
topsoil compared with the subsoil. This is expected, as a
higher soil temperature increases the maximum depolymeri-
sation rates and microbial growth rates through Q10,Vmax,X
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(Eq. 2). Our findings are also consistent with other modelling
studies that investigated isolated soil warming effects (Pal-
landt et al., 2022; Sulman et al., 2018; Todd-Brown et al.,
2014; Wieder et al., 2018) as well as with the results of a
recent study inferring space-for-time-substitution SOC esti-
mates from a meta-analysis of profiles (Wang et al., 2022a),
which reported higher losses of SOC stock and SOC content
from topsoil (0–30 cm) compared with subsoils (0.3–1 m). In
our study, during the warming experiments, the topsoil al-
most always lost more SOC than the subsoil, except when
Q10,Km,P and Q10,Km,R were both set to 0.7 and SOC losses
were accelerated in the subsoil (−5.6 % loss). Two depth-
dependent model processes play an important role in these
top- and subsoil differences. Firstly, microbial biomass (Cb)
decreases with depth, and as microbial biomass declines,
the Michaelis–Menten term for depolymerisation decreases
(Fig. 1, Eq. 1), thereby limiting the depolymerisation rates
at lower depths. Secondly, SOC is protected from microbial
decomposition by sorption to mineral surfaces, and the pro-
portion of mineral-associated organic carbon (MAOC, con-
sisting of adsorbed DOC and microbial residues) strongly
increases with soil depth (Fig. A1). The increase in the pro-
portion of MAOC is partly driven by the advective transport
term that represents the downward displacement of the min-
eral matrix and SOC when organic matter builds up in or-
ganic layers and within the soil profile. The lower SOC con-
centrations with increasing soil depth lead to a higher propor-
tion of the soil volume being occupied by minerals compared
with organic matter. The higher mineral soil volume thereby
provides a higher sorption capacity qmax. Adsorption rates
in the subsoil are consequently higher than in the topsoil, as
qmax is farther from saturation. In JSM, the Q10 values of
the mineral-associated C pools are 1.08 for adsorption and
1.34 for desorption, which are much lower than the Q10 val-
ues of the particulate organic carbon (POC) pools: the Q10
value for microbial depolymerisation of polymeric litter and
microbial residues is 2.16, whereas it is 1.98 for microbial
C uptake (Table 1; Allison et al., 2010; Wang et al., 2012,
2013). These literature-based values reflect the current un-
derstanding that MAOM is less temperature sensitive than
POC (Bradford et al., 2016; Tang and Riley, 2015). Thus, as
the ratio of MAOC to POC strongly increases in the subsoil,
this leads to an overall lower apparent temperature sensitivity
of SOC pools in the subsoil. Furthermore, higher adsorption
rates in the subsoil lead to this higher proportion of MAOC
to POC, and as the adsorption rate has the lowest Q10 value
of all the rates in JSM (Table 1), this further contributes to
the emergent lower temperature sensitivity with increasing
depth. Total SOC losses consist of DOC, POC, and MAOC
from the 36–50 cm subsoil layer, so the overall SOC losses
may be relatively small, as the majority of SOC in this layer
consists of protected MAOC – which decreases its overall
temperature sensitivity.

Whether or not the apparent temperature sensitivity of
SOC declines with depth, as we observe in this study, is

still a topic of debate. According to kinetic theory (Bosatta
and Ågren, 1999), subsoils may have lower apparent Q10
values when they contain less complex, necromass-derived
substrates (Davidson and Janssens, 2006; Hicks Pries et al.,
2023). Contrastingly, the same argument is used to explain
higher temperature sensitivities in subsoils when they may
contain molecules with higher activation energies (e.g. Li et
al., 2020). These observed higher temperature sensitivities
could be the result of deriving the apparent Q10 values from
bulk soil samples containing both POC and MAOC, although
several other studies have demonstrated that this trend can
be counteracted by the strong mineral protection of SOC in
subsoils (Gentsch et al., 2018; Gillabel et al., 2010; Qin et
al., 2019) and that reported high apparent Q10 values origi-
nate from the decomposition of POC (Soong et al., 2021). In
a recent review, Hicks Pries et al. (2023) concluded that the
temperature response of deep soils is likely to be context de-
pendent and that subsoils with a high POC content or a low
reactive mineral content are likely to be more susceptible to
warming than soils with limited POC or with highly reactive
mineral surfaces that protect SOC from microbial decompo-
sition. In our model experiments, the relative contribution of
MAOC strongly increased with soil depth, which resulted in
smaller total SOC losses from the subsoil than the topsoil
layer in response to warming.

We observe stronger model responses to different
Q10,Km,X values in subsoils than in topsoils, firstly, because
microbial limitation is stronger in subsoils than in topsoils.
At low microbial biomass (CB), the value of Km,X becomes
increasingly important (Fig. 1, Eq. 1). At the same time, de-
polymerisation rates only affect the POC pools (CP and CR)
and not the MAOC pools (adsorbed DOC and adsorbed mi-
crobial residues). As the POC : MAOC ratio is low in subsoils
(Fig. A2), the total SOC losses from subsoils are lower than
from the topsoil, despite the higher sensitivity to different
Q10,Km,X values. Therefore, when Q10,Km,X <1, SOC losses
can be further accelerated, especially in the deep soil. In our
study, this lower Q10 was associated with the breakdown of
proteins from the microbial residues pool. The contribution
of microbial residues to total SOC in the deep soil is highly
significant and can be up to 54 % in grasslands (Wang et al.,
2021). If free POC in deep soils is indeed more sensitive to
warming as a result of low microbial biomass, our model re-
sults support the finding that deep soils which are rich in mi-
crobial residues are more sensitive to temperature changes
than those that contain less microbially derived POC, due
to the lower Q10,Km value of the breakdown of polypep-
tides. However, compared with plant-derived POC, microbial
residues have a high mineral sorption potential (Buckeridge
et al., 2022; Liu et al., 2021) and could, therefore, be more
protected from decomposition.
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4.2 Drought effects on SOC decomposition

Our results show that soil drying can alleviate the losses of
SOC from soil warming. In our model, this is the result of the
soil moisture sensitivity of the half-saturation constants for
microbial depolymerisation (Km,R and Km,P; Eq. 4): lower
soil moisture reduces the Michaelis–Menten term for de-
polymerisation (Fig. 1), which lowers the SOC decomposi-
tion rates. Microbial C uptake for growth is also sensitive
to changes in soil moisture through changes in the air-filled
pore space (Eqs. 5 and 6), but this would result in faster SOC
decomposition rates, as microbial growth is less affected by
oxygen limitation, which was not the case for any of the
modelled drought experiments. Generally, SOC decomposi-
tion peaks at intermediate soil moisture, but most soils are
below these optimal soil moisture levels; as a result, drying
leads to reduced decomposition rates due to stronger micro-
bial limitation, whereas wetting the soil leads to an accelera-
tion of the decomposition rates until oxygen limitation limits
SOC decomposition rates (Davidson et al., 2012; Moyano
et al., 2018; Pallandt et al., 2022; Skopp et al., 1990; Yan
et al., 2018). In our model framework, substrate and oxy-
gen limitation is split between two processes: we simulate
moisture-driven diffusion limitation on the microbial depoly-
merisation rates (reverse MM kinetics; Eq. 4), and oxygen
and DOC availability affect microbial growth (forward MM
kinetics; Eq. 5). We found that soil drying consistently re-
duced modelled SOC losses compared with SOC losses due
to soil warming alone, indicating that microbial limitation
of depolymerisation is more important than oxygen limita-
tion on microbial growth in our study. Additional support
for strong microbial limitation on SOC decomposition comes
from our observation that particulate organic C (POC) accu-
mulates in both the topsoil and subsoil layers in response to
the most intense drought scenario (SM=SM× 0.7; Fig. A1).
If microbes were not limited by drought, they would degrade
POC quickly in response to warming.

Our finding that microbial SOC decomposition consis-
tently declines in response to drought is in agreement with
other studies that have explored drought effects on SOC de-
composition using microbially explicit models (Liang et al.,
2021; Wang et al., 2020; Zhang et al., 2022). In the topsoil,
we find that the impact of each 10 % reduction in SM has
a relatively small impact on alleviating SOC losses through
warming, compared with the subsoil (Fig. 4). These observed
differences in the drought response between top- and subsoil
can mainly be explained by the vertical differences in the
microbial biomass concentration (CB), which is higher in the
topsoil than in the subsoil. Therefore, at low CB, the relative
impact of drought on the MM term for depolymerisation is
larger in the subsoil than in the topsoil, making the modelled
subsoil SOC stocks more sensitive to drought. For example,
at 80 % SM, modelled SOC stocks in the topsoil decrease in
response to soil warming (from−6.2 % to−1.1 % as SM de-
creases to 80 %, or a net difference of 5.1 percentage points),

whereas subsoil SOC stocks decrease at ambient SM but in-
crease at 80 % SM (from −3.9 % to +1.6 %, or a difference
of 5.5 percentage points). As discussed in Sect. 4.1, the rel-
atively higher sensitivity of the subsoil to not only warm-
ing but also to drought is also related to the strong increase
in MAOC with depth and its lower temperature sensitivity
compared with that of the POC pools. In order to focus com-
pletely on drought effects on microbial SOC decomposition,
adsorption and desorption rates were not sensitive to changes
in soil moisture during our experiments. Drought favours the
stabilisation of SOC on mineral surfaces (Blankinship and
Schimel, 2018), thereby protecting it from microbial depoly-
merisation. Therefore, if we considered the moisture sensi-
tivity of adsorption and desorption rates in our model, we
would expect a further decrease in the SOC decomposition
rates in response to drought. However, to our knowledge, the
formulation of moisture sensitivity of adsorption and desorp-
tion is not well established.

Overall, our model results indicate a potential for net SOC
accumulation at 0–50 cm depth when SM is reduced to 80 %
or 70 % of its original values and that a large part of the
whole soil column response is driven by the subsoil. While
data-driven deep-soil drying studies are rare, our simulation
results are supported by a recent study (Brunn et al., 2023) in
which total annual precipitation throughfall was reduced by
70 % for 5 consecutive years and both SOC stocks and SOC
stability increased between 0 and 30 cm. This prior work
found that the majority of the SOC stock increase occurred
in the top 5 cm as a result of higher root exudates, but we do
not consider this in our model experiments. We found that
the largest SOC stock increase occurred in the subsoil, be-
cause of the higher sensitivity of subsoil to drought at low
microbial biomass concentrations and the strong protection
of MAOC from microbial depolymerisation. Our finding that
SOC stocks can potentially increase with drought, despite
the expected losses through warming, is mainly the result
of lower microbial depolymerisation (Eq. 4, Fig. 1). Indeed,
short-term studies indicate that SOC stocks may increase un-
der drought conditions, as a strong reduction in microbial
activity may dominate over the effect of reduced litter and
root inputs (Brunn et al., 2023; Deng et al., 2021; Moyano
et al., 2013). While results from short-term data-driven stud-
ies support our modelling results, long-term drought studies
generally show a decline in SOC stocks, which can be mainly
attributed to the effects of soil warming and decreased litter
inputs (Deng et al., 2021; Meier and Leuschner, 2010). An
advantage of our stand-alone soil model environment with
prescribed litter inputs is that it allows us to individually test
soil warming and drying effects on long-term SOC stocks,
while eliminating the potentially confounding effects from
changes in plant productivity. Recent research has shown
that the chances of drought coinciding with high soil tem-
peratures will further increase in the future (García-García et
al., 2023). As a result, the counteracting effects of Km and
drought may be at their strongest, and (semiarid) ecosystems
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dominated by infrequent moisture inputs may show strong
sensitivities to soil warming and drought.

4.3 Combined effects of moisture and temperature
sensitivity of the half-saturation constants on SOC
decomposition

Our results indicate that the temperature sensitivity of the
half-saturation constants Q10,Km,R and Q10,Km,P had a rel-
atively smaller impact on the overall SOC stock changes
(Fig. 5c), compared with the large impact of soil warm-
ing on SOC stocks through the temperature sensitivity of
the maximum depolymerisation rate, Q10,Vmax,X (Fig. 3c).
This smaller impact of the half-saturation constants for de-
polymerisation on SOC stocks was theorised by Wang et
al. (2012) if Q10 values for Km are close to 1, as is the case
in our study. Saifuddin et al. (2021) also reported a small im-
pact of Q10,Km versus Q10,Vmax on simulated SOC stocks,
but their model study did not consider multiple soil depths,
the effects of drought, or organo-mineral interactions. In this
study, we show that soil drying in combination with the tem-
perature sensitivity of the half-saturation constants for the de-
polymerisation of polymeric litter and microbial residues can
both increase and decrease SOC stocks and that the direc-
tion and magnitude of the effect on SOC stocks depends on
drought intensity. The combined effects of soil drying and
temperature sensitivity of the half-saturation constants for
depolymerisation on SOC stocks closely resembled that of
the drought response, which indicates that microbial limita-
tion on depolymerisation poses a strong control on modelled
SOC stocks and that drought can indeed alleviate SOC losses
in response to soil warming. While the effect of drought on
modelled SOC stocks is strong, the temperature sensitivity
of Km,X can counteract these effects: compared with the
model runs without temperature sensitivity of Km,X, SOC
losses are higher and SOC accumulations are smaller. This
indicates that the breakdown of microbial residues, which
had a Q10,Km,R value of 0.7, is important for the overall re-
sults, as a Q10 value lower than 1 increases the MM term for
depolymerisation and accelerates SOC decomposition. Fur-
thermore, this counteracting effect of Q10,Km,X is stronger
with increased drought intensity, while the POC :MAOC ra-
tio does not change much when compared to the model run in
which Q10,Km,X is not temperature sensitive. In line with our
results from the isolated drought experiments (Sect. 4.2), this
supports the conclusion that microbial limitation increases
under drought conditions, so that Q10,Km,X becomes more
important for the overall depolymerisation rates.

Unlike the individual warming and drought experiments,
we only find small differences in SOC stock changes be-
tween the top- and subsoil for the combination of drought and
temperature sensitivity of Km,R and Km,P. This shows that
drought and temperature sensitivity can both play a strong
role and can counteract each other so that the overall changes
in SOC stocks appear similar. This is an important result, as

long-term warming can accelerate soil drying, especially at
the soil surface (Berg and Sheffield, 2018; Fan et al., 2022;
García-García et al., 2023). Our results show divergent re-
sponses of top- and subsoil SOC stocks to concurrent soil
warming and drying, in particular at a 20 % SM reduction,
where modelled SOC stocks increase in the topsoil but de-
crease in the subsoil. While we only explored the effects of
evenly drying out the soil column in this study, the long-
term response of SOC stocks to soil moisture changes could
be different, as top- and subsoils may not dry out evenly
(Berg et al., 2017). Using multi-model predictions, Berg et
al. (2017) showed that surface soil moisture decreases by
the end of the century, whereas subsoils, especially in the
Northern Hemisphere, diverge with either less-severe dry-
ing or wetter conditions. On top of soil warming, such dy-
namic vertical changes in soil moisture have a strong poten-
tial to further accelerate or slow down SOC decomposition
rates in the deep soil by microbial limitation or oxygen diffu-
sion limitation (Pallandt et al., 2022). We call for modelling
studies that address such changes simultaneously by running
NGSMs with future climate forcing datasets.

4.4 Microbial response to substrate changes in the
POC–MAOC framework

The duration of our experiments is 100 simulation years,
but the values of Q10,Vmax and Q10,Km,X may not remain
constant over time, as the environment changes and micro-
bial communities adapt. However, in light of our long-term
warming experiments, we feel confident with the choice of
Q10,Km values, as they were measured in microorganisms
that showed no sensitivity to a 6 K increase in average tem-
perature but that did show a strong response to changes in
substrate type (Allison et al., 2018a). In our model exper-
iments, microbes have access to both litter inputs and mi-
crobial residues to depolymerise, which have counteracting
Q10,Km values; thus, Q10,Km can simultaneously accelerate
and slow down microbial SOC decomposition rates. There-
fore, it would be useful to consider soils that are high in
POC versus soils that are high in MAOC: soils with high
MAOC contents and low litter inputs can have lower appar-
ent Q10 values because Q10,sorption is much lower than the
Q10 values of unprotected organic carbon (Table 1; Wang
et al., 2012, 2013). Such soils would have necromass rather
than fresh litter inputs as the dominant C substrate for mi-
crobes. New datasets, such as global maps of necromass C
contributions to total SOC stocks (e.g. Liu et al., 2021), can
provide modellers with information on substrate type or SOC
stabilisation mechanisms and, thereby, help identify the cli-
mate sensitivities of SOC stocks in different regions of the
world. At the moment, however, there are no clear answers as
to which values we should use forQ10,Km,X , as SOC consists
of many different molecules that all have their own specific
temperature sensitivities (Allison et al., 2018b). One possi-
bility to investigate the potential climate–substrate feedbacks
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with a model like JSM would be a further partitioning of the
litter pools into functional groups related to their main de-
grading enzymes. Our current study, which explores differ-
ent values for Q10,Km,X , already provides valuable insights
into what might be possible. For example, soils with high
POC contents, i.e. with a developed organic layer as a result
of high litter inputs, low SOC losses, and low bioturbation,
are likely to have Q10,Km,X values>1, which have the po-
tential to counteract soil warming effects through Q10,Vmax ,
especially in deeper layers where microbial biomass is low
and the temperature sensitivity of the half-saturation con-
stant will have a stronger impact. In combination with soil
drought, this would further enhance microbial limitation for
depolymerisation and could dampen SOC losses in such or-
ganic soil layers over time – if litter inputs remain constant
over time. Peat soils could be an exception, as they usually
have high volumetric water contents, and reduced soil mois-
ture can lift oxygen limitation, thereby increasing SOC de-
composition rates. It can be expected, however, that long-
term soil drying would reduce root and leaf litter inputs as
plant productivity decreases (Deng et al., 2021). Plants and
microbes could also actively compete for nutrients in such a
coupled model environment, which, apart from the climatic
sensitivities investigated in this study, will introduce addi-
tional non-linear feedbacks on future SOC dynamics through
changes in factors such as litter inputs and microbial carbon
use efficiency (Braghiere et al., 2022; Thurner et al., 2024).
Therefore, we recommend that future research focuses on
further studying climate–substrate interactions within a fully
coupled soil–plant model, such as the coupling between land
surface model QUINCY (Thum et al., 2019) and JSM, which
is nearing completion.

5 Conclusions

With our JSM experiments, we show that both soil drying
and warming pose strong controls on SOC decomposition.
The vertically explicit model structure allows us to demon-
strate that subsoil SOC stocks respond differently to warm-
ing and drought through a combination of processes. First
of all, we show that SOC association with mineral surfaces
plays an important role in reducing the overall sensitivity of
SOC stocks to microbial decomposition: MAOC strongly in-
creases with soil depth and has a low apparent temperature
sensitivity, which results in smaller total SOC losses from
the subsoil than the topsoil. At the same time, our model re-
sults indicate that unprotected subsoil SOC is more sensi-
tive to soil warming and drought. Secondly, we show that
drought can alleviate the effects of soil warming through
microbial limitation on depolymerisation rates. As drought
gets stronger, microbially mediated depolymerisation rates
become severely limited so that less SOC is lost from the
soil. In the model experiments with constant litter inputs in
this study, this can even lead to SOC accumulation over time,

despite soil warming. Thirdly, we show that considering the
temperature sensitivities of the half-saturation constants for
different C substrates (litter and microbial residues) is im-
portant, as they can both slow down and accelerate microbial
SOC decomposition rates. Our results highlight the impor-
tance of representing SOC decomposition processes in a ver-
tically resolved model, which includes carbon stabilisation
on mineral surfaces. We recommend that future model de-
velopment focuses on further identifying the (un)importance
of the temperature sensitivities of Vmax and Km,X for differ-
ent C substrates and moisture sensitivities of all microbial–
mineral interactions in the new class of soil organic carbon
models.
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Appendix A

Figure A1. (a) Ratio of mineral-associated organic carbon (MAOC) to SOC (%) and (b) particular organic carbon (POC) to SOC (%) for
different model runs at two different soil depths: topsoil (0–6 cm) and subsoil (36–50 cm). If not indicated otherwise, SM=SM× 1.0 in the
experiment.
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Figure A2. Ratio of particular organic carbon (POC) to mineral-associated carbon (MAOC) for different model runs at two different soil
depths: topsoil (0–6 cm) and subsoil (36–50 cm). If not indicated otherwise, SM=SM× 1.0 in the experiment.

Code availability. The Jena Soil Model (JSM; release01) is fully
described in Yu et al. (2020, https://doi.org/10.5194/gmd-13-
783-2020). The JSM source code is available online (https://
git.bgc-jena.mpg.de/quincy/quincy-model-releases, last access: 21
March 2025, branch “jsm/release01”), but access is restricted to reg-
istered users. Readers interested in running the model should re-
quest a username and password from Sönke Zaehle or via the Git
repository. JSM is developed using the framework of the QUINCY
model (Thum et al., 2019, https://doi.org/10.5194/gmd-12-4781-
2019). The QUINCY model is free software: it can be distributed
and/or modified under the terms of version 3 of the GNU General
Public License (https://www.gnu.org/licenses/gpl-3.0.en.html, last
access: 27 January 2025). The use of the QUINCY model relies
on the application of software developed by the Max Planck Insti-
tute for Meteorology, which is subject to the MPI-M ICON soft-
ware licence (see ICON section: “By using ICON, the user accepts
the individual licence, https://code.mpimet.mpg.de/attachments/
download/20888/MPI-M-ICONLizenzvertragV2.6.pdf, last access:
27 January 2025). Where software is supplied by third parties, such
as the Max Planck Institute for Meteorology, it is indicated in the
header of the file. Model users are strongly encouraged to follow
the fair-use policy stated at https://www.bgc-jena.mpg.de/en/bsi/
projects/quincy/software (last access: 27 January 2025).
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