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Abstract. Quantifying the capacity and dynamics of urban
carbon dioxide (CO2) emissions and carbon sequestration is
becoming increasingly relevant in the development of inte-
grated monitoring systems for urban greenhouse gas (GHG)
emissions. There are multiple challenges in achieving these
goals, such as the partitioning of atmospheric measurements
of CO2 fluxes to anthropogenic and biospheric processes,
the insufficient understanding of urban biospheric processes,
and the applicability of existing biosphere models to urban
systems. In this study, we applied four biosphere models of
varying complexity – diFUME, JSBACH, SUEWS, VPRM
– in four urban parks in the city of Zurich and evaluated their
performance against in situ measurements collected over al-
most 2 years on park trees and lawns. In addition, we per-
formed an uncertainty analysis of gross primary productiv-
ity (GPP), ecosystem respiration (Reco), and net ecosystem
exchange (NEE) of CO2 based on the differences between
the estimates of the four models and compared the estimated
uncertainties and biospheric fluxes with the monthly anthro-
pogenic CO2 emissions of a wide urban area surrounding the
four parks. The results showed that, despite the large differ-
ences in model architecture, there was considerable agree-
ment in the seasonal and diurnal GPP, Reco, and NEE esti-
mates. Larger discrepancies between the four models were
found for lawn GPP compared to tree GPP, while, for Reco,
the differences between lawns and tree areas were similar. On
an annual scale, all models agreed, on average, that lawns

acted as CO2 sources and tree-covered areas as CO2 sinks
during the simulation period, with the exception of diFUME,
which simulated both tree and lawn areas as CO2 sources. di-
FUME and VPRM were more accurate in capturing the onset
of the tree leaf growth in spring compared to JSBACH and
SUEWS. On the other hand, JSBACH and SUEWS simu-
lated soil water availability more accurately than the satellite-
derived water index used by VPRM. The in situ observations
revealed a very high spatial variability in lawnReco across the
park areas. All models underestimated the lawn Reco during
spring in mowed, sunny locations, whereas the model simu-
lations were closer to the observed Reco in un-mowed, par-
tially shaded locations. The mean monthly uncertainties in
biogenic NEE reached 0.8 µmolm−2 s−1, which is 10.2 % of
the magnitude of the total CO2 balance over the studied area
during the month of June. This balance was composed of a
mean anthropogenic flux of 8.7 µmolm−2 s−1 and a mean
biospheric flux of −0.5 µmolm−2 s−1. Overall, this study
highlights the importance of properly accounting for the bio-
genic CO2 fluxes and their uncertainties in urban CO2 bal-
ance studies, especially during the vegetation growing sea-
son, and shows that even simple models, such as VPRM, can
adequately simulate the urban biospheric fluxes when appro-
priately parameterized.
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1 Introduction

In the battle against the climate crisis, numerous cities have
announced ambitious goals to achieve carbon neutrality in
the coming decades. Their climate action plans include steps
on reducing fossil fuel carbon dioxide (CO2) emissions and
increasing carbon removals by urban green areas. These
plans have raised the need for observation-based monitoring
of urban greenhouse gas (GHG) fluxes in order to follow the
progress towards climate goals. However, the challenge lies
in separating the CO2 fluxes from anthropogenic emissions
and biospheric emissions/uptake, as their signals are rapidly
mixed in the atmosphere (Lauvaux et al., 2020). This is fur-
ther complicated by the fact that both anthropogenic and bio-
genic CO2 fluxes have distinct diurnal and seasonal cycles
and respond to changes in the environment (Järvi et al., 2019;
Stagakis et al., 2023b).

The net CO2 balance or net ecosystem exchange (NEE)
of biogenic CO2 fluxes is the difference between ecosystem
respiration (Reco) and gross photosynthetic CO2 uptake (or
gross primary productivity, GPP). NEE is relatively small on
an annual basis, especially in urban areas where a big fraction
of the land is covered by built structures, but varies signifi-
cantly on diurnal and seasonal scales (Stagakis et al., 2023a,
b; Winbourne et al., 2022) and can significantly alter the at-
mospheric CO2 observations. Recent studies have shown that
urban NEE can offset between 0 % and over 100 % of the
local anthropogenic CO2 emissions depending on the area
considered, the source/sink composition, the season, the day
type, and the hour (Lauvaux et al., 2020; Stagakis et al.,
2023a, b; Winbourne et al., 2022). A few studies used ob-
servations of isotopes and co-emitted species to discriminate
between biogenic and anthropogenic CO2 in the urban at-
mosphere (Pataki et al., 2003; Wu et al., 2022), but the esti-
mates of biogenic CO2 fluxes are associated with high rela-
tive uncertainties. Field observations, on the other hand, can
provide very valuable information on urban biospheric pro-
cesses but are hampered by the extreme heterogeneity of ur-
ban environments in terms of vegetation types and species,
soil composition, management practices, and local meteorol-
ogy, as well as by technical and logistical restrictions (Lal
and Augustin, 2012). This creates a need to utilize models
of biogenic CO2 exchange to quantify and further partition
the net flux from anthropogenic activities, e.g. via inversion
methods (e.g. Lauvaux et al., 2020; Stagakis et al., 2023a).

In the past, numerous comprehensive models have focused
on carbon exchange processes, including photosynthesis and
soil and vegetation respiration at ecosystem level (Hari et
al., 2017; Mäkelä et al., 2004; Zhao et al., 2016), but these
models were primarily designed for forested or other natural
ecosystems. It still remains a question how well they are able
to represent carbon uptake processes in urban areas due to the
very specific conditions, including high variability in soil and
vegetation types and species, possible limitations in soil wa-
ter availability, increased air pollutant loads, higher evapora-

tive demand resulting from elevated temperatures and vapour
pressure deficits, special light environments, and intensive
management commonly taking place in urban green areas
(Dahlhausen et al., 2018; Decina et al., 2016; Nielsen et
al., 2007; Wohlfahrt et al., 2019). In recent years, differ-
ent modelling approaches customized for urban areas have
emerged with different strengths and weaknesses. Full car-
bon cycling/ecosystem models, such as JSBACH (Trémeau
et al., 2024), can simulate in detail the processes behind car-
bon exchanges and carbon stocks. Their limitation lies in the
fact that, within urban built environments, the soil is often
disturbed and the soil carbon pool is rarely in equilibrium
with the existing vegetation. As a result, the standard initial-
ization methods typically applied to natural ecosystems are
not suitable. Instead, additional information on soil carbon
stocks is needed, and they typically require detailed mete-
orological observations, including precipitation, which are
not always available for the urban area of interest. There
also exists a set of urban land surface or ecosystem mod-
els which can reproduce the urban circumference but do not
solve the whole carbon cycle in great detail (SUEWS, Järvi
et al., 2019; SURFEX, Goret et al., 2019). What is common
to ecosystem and urban models is that they require several
parameters and meteorological inputs to be run. Then there
exists the group of empirical and light use efficiency mod-
els that capture the dynamics of vegetation and soil water
availability based on satellite observations such as VPRM
(Mahadevan et al., 2008) and its urban version Urban-VPRM
(Hardiman et al., 2017; Sargent et al., 2018), diFUME (Sta-
gakis et al., 2023b), and SMUrF (Wu et al., 2021). They
rely on simple ecosystem-specific parameterizations and re-
quire only basic meteorological and remote sensing inputs,
but they might not be able to catch annual balances with
high accuracy, as there is no explicit representation of carbon
stocks. At the same time, the satellite-based models are tied
to present conditions and cannot be used to predict changes
in the carbon sinks or for scenario runs (Havu et al., 2024).

The above models have been already used in simulating
urban CO2 fluxes, but no systematic comparison or evalua-
tion has previously been made. One reason is the sparseness
of observations from urban green areas needed for model
evaluation and testing (Hutyra et al., 2014; Winbourne et al.,
2022). The challenge in generating representative and com-
prehensive observations of biogenic CO2 fluxes in urban ar-
eas stems from the high spatial and temporal variability in
source and sink dynamics and from the increased mixing be-
tween anthropogenic and biogenic sources (Stagakis et al.,
2023a, b). In such heterogeneous environments, discriminat-
ing the biogenic CO2 fluxes from the anthropogenic sources
is very challenging with conventional approaches such as
eddy covariance, especially when considering the observa-
tion uncertainties compared to the relative magnitudes of the
respective sources (Wu et al., 2022). A number of studies
utilizing the eddy covariance technique in urban areas ex-
ist (Davis et al., 2017; Järvi et al., 2012; Peters and Mc-
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Fadden, 2012; Velasco et al., 2016), but these measurements
are most often limited to the station surroundings and also
include some anthropogenic signal even if located in green
areas. The change in vegetation and soil carbon pools (e.g.
Golubiewski, 2006; Kaye et al., 2005) can be used to de-
rive the uptake on annual or decadal scales, but these are
not useful for determining the seasonality and diurnal vari-
ability in the fluxes or short-scale responses to drought con-
ditions or heatwaves. Thus, detailed site-specific observa-
tions are needed to capture the urban ecosystem dynamics.
Direct observations of biogenic CO2 fluxes in urban envi-
ronments have primarily been obtained through flux cham-
ber measurements, but these can only be applied to certain
small-scale biospheric features such as soils, low vegetation,
or individual leaves. Flux chamber measurements have been
performed in urban lawns and soils to derive direct observa-
tions of lawn NEE, Reco, and soil respiration (Rsoil) (Hill et
al., 2021; Karvinen et al., 2024; Liss et al., 2009 Weissert
et al., 2016). The representativeness of such observations is
usually limited due to the large variability in the soil com-
position, plant types, and management practices across the
urban lawns (Lal and Augustin, 2012; Trémeau et al., 2024).
Further technical and logistical restrictions to the flux cham-
ber observations arise in urban areas related to private and
public spaces, accessibility, safety, and aesthetics. Comple-
mentary to the flux chamber measurements, key meteorolog-
ical, physiological, and phenological parameters, which act
as the main environmental drivers or proxies of the biogenic
CO2 fluxes, can be measured in situ. These parameters can
help in the interpretation of the measured fluxes, derive site-
specific environmental control functions of CO2 fluxes, or be
used directly for the evaluation of model intermediate out-
puts (Schäfer et al., 2003; Winbourne et al., 2022). Sap flow
observations have been used to determine the transpiration
of urban trees (Peters et al., 2010; Rahman et al., 2017) and
evaluate model performance (Davis et al., 2017; Järvi et al.,
2012). The strong coupling between transpiration and pho-
tosynthesis can also lead to observation-based estimates of
tree GPP (Schäfer et al., 2003). There are, however, logisti-
cal, technical, and methodological challenges in measuring
sap flow and deriving representative tree-level transpiration
estimates (Ewers and Oren, 2000; Peters et al., 2010). De-
spite these challenges, several studies have highlighted the
value of sap flow measurements to characterize tree physio-
logical responses, especially in diverse and challenging en-
vironments where other measurement approaches are not ap-
plicable (Peters et al., 2010; Rahman et al., 2017; Schäfer et
al., 2003). In conclusion, the number of urban flux observa-
tion studies is still very limited and requires better coverage
over different vegetation zones and climates.

When simulating the urban biogenic and anthropogenic
CO2 fluxes using bottom-up models, it is important to pro-
vide the corresponding uncertainties. Information on un-
certainties is particularly relevant for studies applying in-
verse methods to estimate anthropogenic and biogenic fluxes

across urban areas (e.g. Lauvaux et al., 2016; Stagakis et al.,
2023a). In such methods, the relative uncertainties among
the inversion inputs can significantly affect the inversion out-
comes (Forstmaier et al., 2023; Kunik et al., 2019; Lauvaux
et al., 2016; Lian et al., 2022; Wu et al., 2018). It is there-
fore very important to provide realistic uncertainty ranges
for both anthropogenic and biogenic flux model estimates
to avoid cases of overfitting and biases in source attribu-
tion. Several studies estimated the uncertainties of ecosystem
and surface flux models by performing sensitivity analyses
(e.g. Järvi et al., 2019; Stagakis et al., 2023b) or by applying
data assimilation approaches (e.g. Santaren et al., 2007; Trot-
siuk et al., 2020), but the insights gained from such studies
are difficult to generalize. For example, the sensitivity analy-
sis of diFUME when applied in the centre of the city of Basel
(Stagakis et al., 2023b) showed that annual NEE varied be-
tween−0.5 and 0.1 kg CO2 m−2 a−1, which contributed only
between −2.8 % and 0.5 % to the total CO2 balance when
the anthropogenic emissions are taken into account. Further-
more, the uncertainties in the biospheric fluxes and their rel-
ative magnitudes to the anthropogenic emissions vary tem-
porally and spatially according to the local characteristics.
Since there is still very limited information about biogenic
flux model uncertainties in urban areas, these have so far
been treated in urban atmospheric inversions in a highly sim-
plified way, e.g. by considering a constant absolute (Wu et
al., 2018) or relative uncertainty (Lian et al., 2022). Several
urban flux inversion studies avoided the issue related to bio-
genic fluxes and their uncertainties by only focusing on the
dormant season (Kunik et al., 2019; Lauvaux et al., 2016).

This study applies four biosphere models of varying com-
plexity and sophistication in four urban parks in the city of
Zurich, where in situ measurements were collected over al-
most 2 years. This work is part of the ICOS Cities project
(ICOS-Cities, 2024), which applies and evaluates the most
innovative measurement and modelling approaches of GHG
emissions in densely populated urban areas, targeting the de-
velopment of systematic urban GHG observatories in support
of cities’ climate action planning. The specific objectives of
this study are (i) to understand and quantify urban biogenic
CO2 flux dynamics based on in situ measurements and model
simulations; (ii) to evaluate how state-of-the-art biosphere
models of different complexity are able to represent these dy-
namics; (iii) to identify the differences, advantages, and dis-
advantages between different model types; and (iv) to assess
the relative magnitudes of the biogenic CO2 fluxes and their
uncertainties as compared to the anthropogenic CO2 emis-
sions in an urban area.
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Figure 1. (a) Locations of the study areas, the meteorological stations (Hardau II, Kaserne), and the model domains over the land cover map
of the Zurich region. Locations of the in situ observations in (b) Bullingerhof, (c) Hardaupark, (d) Fritschiwiese, and (e) Heiligfeld over
the land cover map and with the building and tree heights overlaid. All maps are projected in the Swiss CH1903+/LV95 coordinate system
(EPSG: 2056) in a semi-transparent format over a basemap of aerial orthophotos (Orthofoto, 2024).

2 Methods

2.1 Site description

The in situ observations were performed in four public parks
in the city district Hard in Zurich, Switzerland, close to
the Hardau II ICOS Cities tower site (Fig. 1). According
to the climate normal of the period 1991–2020 from the
weather station Fluntern (556 m a.s.l.; 47.38° N, 8.57° E), the
annual total precipitation in Zurich is 1108 mm, with sum-
mer months being rainier than winter months, and the an-
nual mean temperature is 9.8 °C, reaching a 24.3 °C monthly
mean of daily maximum in July and a−1.4 °C monthly mean
of daily minimum in January. The four parks are similar in
size, land cover types, use, and management practices, but
they differ in terms of age, tree species, tree size/age, and tree
cover fractions (Table 1). Bullingerhof was developed in the
1930s and consists of rows of Platanus sp. trees, surround-
ing a large open lawn (Fig. 1b). Hardaupark is a more re-
cently developed park. It features an old tree row of Platanus
sp. in the northern part, which were planted in the 1970s,
but the lawns (the main part of the park) are covered only
by small trees, (Larix x marschlinsii and Robinia pseudoa-
cacia), established in 2010 (Fig. 1c). Part of the lawn was
previously a parking lot. Fritschiwiese was initially devel-

oped as a park in 1921, previously being part of the nearby
cemetery. The northern part was redesigned in the 1970s due
to underground constructions, which include energy genera-
tion units. Trees, featuring mainly Tilia sp., are scattered and
mainly surround the lawn in the centre, and they were planted
between the 1950s and 1970s (Fig. 1d). Heiligfeld was devel-
oped in 1955 and features a diverse array of tree species and
ages, with Carpinus betulus, Betula pendula, Acer sp., Pinus
sp., and Quercus sp. constituting the main park’s tree pop-
ulation. Similarly to the other parks, the central area of the
park consists of an open lawn (Fig. 1e). The four parks are
neither irrigated nor fertilized throughout the year. Grass is
mowed frequently during spring and summer, especially in
the central areas of the parks, which are used by residents for
recreation and sports. Some parts of the parks are not mowed,
such as the eastern part of Heiligfeld.

2.2 In situ observations

2.2.1 Trees

Tree ecophysiological dynamics in the studied parks were
monitored by measuring sap flux density on representative
trees and the leaf area index (LAI) at dense tree stands.
Six trees were equipped with heat pulse sap flow sensors
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Table 1. Main characteristics of the parks used as study areas. The surface cover statistics are based on the land cover product (Sect. 2.4),
and the tree information comes from the city tree inventory (Baumkataster Zurich, 2024).

Bullingerhof Hardaupark Fritschiwiese Heiligfeld

Trees cover fraction (%) 54 29 38 41
Grass cover fraction (%) 39 53 51 52
Paved cover fraction (%) 7 18 11 7
Main tree species Platanus sp. Platanus sp. Tilia sp. Diverse
Mean tree height (m) 29 14 16 20
Park age (years) 94 14 74 59

(3× 3 cm probes, Implexx Sense) in July 2022, providing
continuous measurements at 10 min sampling intervals. The
sensors, along with the boxes containing power and elec-
tronics, were installed on the tree trunks at 2.9–3.5 m height
a.g.l. to avoid vandalism. One sensor per tree was installed,
always facing south and placed beneath the tree branches
(except the northern tree in Bullingerhof, where the sen-
sor is above the lowest branch). Two trees per park – ex-
cept Heiligfeld – were equipped with sap flow sensors: two
Platanus sp. trees in Bullingerhof, two Platanus sp. trees in
Hardaupark, and two Tilia sp. trees in Fritschiwiese (Fig. 1b–
d). For each tree, the trunk diameter and the bark depth at
installation height were measured at the time of installation.
Heat velocity (m s−1) was estimated from each sensor using
the outer and inner needle thermistors at 0.5 and 1.5 cm sap-
wood depth using the heat ratio method and converted to sap
flux densities (cm3 cm−2 h−1), as described in Forster (2019,
2021). The sap flux densities from the outer thermistors were
consistently lower than the inner thermistors. Since sap flux
density was used as a proxy for tree gross photosynthesis in
this study, only the inner thermistor data were used in the
analyses. The 10 min data per tree were averaged to hourly
values per park to extract further statistics in this study. Given
that sap flux density is controlled by similar environmental
parameters to gross photosynthesis, these observations were
treated in this study as a proxy for GPP.

The LAI was measured in dense tree stands, found only in
Bullingerhof and Hardaupark (Fig. 1b, c). It was measured
from April 2022 only during sunny conditions using a cep-
tometer (SS1 SunScan, Delta-T Devices). The measurement
frequency depended on the sky conditions, optimally with
weekly repetitions during leaf-on and leaf-off periods and
biweekly during the rest of the growing period. The pho-
tosynthetically active radiation (PAR) above and below the
tree canopy was sampled sequentially using the ceptome-
ter probe. Above-canopy readings were sampled on the open
lawns near the tree stands. The above-canopy incident total
and diffuse PAR was sampled by casting a small shadow on
part of the probe according to the instrument protocol (Webb
et al., 2016). Between 15 and 20 below-canopy PAR read-
ings were subsequently sampled every∼ 2 m, standing in the
centre of the stand minor axis and moving across the major

axis holding the probe perpendicular to the direction of the
sun. Above-canopy incident PAR was sampled again after
the below-canopy readings to ensure that the light conditions
did not change during each measurement cycle. The LAI of
each stand was estimated according to the instrument soft-
ware (Webb et al., 2016), assuming spherical leaf angle dis-
tribution and leaf PAR absorption of 0.85.

2.2.2 Lawns

The in situ measurements performed to monitor the park
lawn dynamics included the installation of soil temperature
(Tsoil) and soil water content (SWC) sensors and the repeated
measurement of soil and grass respiration. Seven soil sensors
(TEROS 12, METER Group) were installed in May 2022 at
different locations across the parks, with the central needle
(temperature sensor) positioned at∼ 15 cm depth. The sensi-
tivity of the sensors to soil water content is contained within
∼ 1 L of soil volume around each sensor, installed along a
vertical axis to increase the measurement volume along this
axis. According to the installation characteristics and the sen-
sor specifications, the measurement volume of the sensors
was between 9 and 21 cm depth. The sensors were buried in
the soil along with the electronics and communication boxes.
This allowed the selection of the sensor locations without any
restrictions. The communication was achieved through Lo-
RaWAN sensor devices (Decentlab GmbH) with data trans-
mission every 10 min.

Soil and grass respiration were measured near each soil
sensor from July 2022 using a portable CO2 soil efflux sys-
tem equipped with a 20 cm diameter survey chamber (LI-
8200-01S, LI-COR Biosciences) and a CO2/H2O analyser
(LI-870, LI-COR Biosciences). Altogether, 10 soil collars
were permanently installed at the four parks (Fig. 1), allow-
ing repeated measurements at the exact same location under
minimum soil disturbance. The collars were inserted com-
pletely into the ground to avoid any interference with the
park visitors and the maintenance activities (e.g. grass mow-
ing). A removable 20 cm diameter metal adapter of 3.5 cm
height was used as a fixing between the top part of the soil
collar and the survey chamber. Some of the collars were in-
tentionally left undisturbed to measure total grass and soil
respiration (Reco). Conversely, the grass in the rest of the
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collars was removed to enable the isolated measurement of
bare soil respiration (Rsoil). Only Reco was measured dur-
ing the first two campaigns in summer 2022, then, gradually,
grass was removed from eight collars to measure Rsoil. Two
Reco collars were kept throughout winter (1× Hardaupark,
1× Heiligfeld), and two more (2× Bullingerhof) were estab-
lished in June 2023. The aim of the different treatment strate-
gies was to assess both bare soil respiration and lawn Reco
under similar environmental conditions. The CO2 flux was
calculated from the chamber measurements using an expo-
nential fit to the increase in dry CO2 concentration over time,
while the chamber was closed using SoilFluxPro software
(LI-COR Biosciences). The derivation of the CO2 flux equa-
tion is described in detail in the LI-8200-01S manual (LI-
COR, 2024). The total measurement time (chamber closed)
was 2 min, and a deadband of 25 s was applied. At least two
repeated observations were conducted at each collar to ac-
count for potentially problematic measurements. Tsoil and
SWC at 5 cm depth were measured at the same time, with the
chamber measurements next to each collar with the survey
chamber integrated soil probe (HydraProbe, Stevens) addi-
tionally to the permanent soil sensors at 15 cm, to get a more
complete overview of the soil conditions. Measurements of
Reco andRsoil were performed during day campaigns (07:00–
16:00 CET) every 2 weeks. The lawn measurement locations
were selected to account for the variability in the environ-
mental conditions and eventually in the soil and grass respira-
tion fluxes across the parks. Sunny locations were selected in
Bullingerhof, Hardaupark, and Fritschiwiese. Additionally,
shaded or partly shaded locations were selected in Bullinger-
hof, Hardaupark, and Heiligfeld (Fig. 1).

2.3 Model description

Four different types of biosphere models were selected for
this study; a full carbon cycling ecosystem model designed
for natural ecosystems (JSBACH), a land surface model de-
signed for urban areas (SUEWS), a satellite-based semi-
empirical CO2 flux model designed for urban areas (di-
FUME), and a satellite-based light use efficiency model ini-
tially designed for natural ecosystems (VPRM). The ratio-
nale behind the model selection was to investigate if their
performance in simulating the urban CO2 exchanges follows
the level of sophistication (i.e. the model complexity and de-
tail in simulating the processes that govern CO2 exchanges)
and at the same time to explore the advantages of the mod-
els that are specifically designed for urban applications over
the ones designed for natural ecosystems. Furthermore, the
selection of these models allows the comparison of different
model attributes (e.g. satellite-based phenology versus mod-
elled phenology) but also the identification of the challenges
or drawbacks when applying models designed for natural
ecosystems to urban environments. The models are described
below in alphabetical order, and a more detailed overview of
each model can be found in Appendix A.

2.3.1 diFUME

diFUME, taking its name from the project “Urban carbon
dioxide Flux Monitoring using Eddy Covariance and Earth
Observation”, is a recently developed urban CO2 flux model
(Stagakis et al., 2023b), which uses a semi-empirical ap-
proach for modelling the biogenic CO2 fluxes in urban ar-
eas based on the main environmental controlling parame-
ters of photosynthesis and respiration processes (i.e. incom-
ing global radiation, air–soil temperature, vapour pressure
deficit, and soil water content), capturing the spatiotemporal
dynamics of plant phenology using high-resolution satellite
imagery and simulating the effects of urban morphology on
the canopy radiation interception based on a voxel traversal
(ray tracing) algorithm (Fig. A1). The study area is repre-
sented in three dimensions as a 3D grid of voxels of cer-
tain size (5 m in this application) and category (i.e. terrain,
building, vegetation, and air) according to the digital surface
model (DSM) and land cover information. GPP is modelled
for the vegetation voxels of each horizontal layer (i) based
on the PAR reaching the sunlit and shaded fraction of the
LAI in each voxel using a non-rectangular hyperbolic func-
tion and other empirical functions for the simulation of air
temperature, vapour pressure deficit, and soil water content
effects. Reco is separated into the aboveground and below-
ground components: the aboveground component is mod-
elled based on an exponential fixed-Q10 equation using air
temperature, multiplied by the LAI, and the belowground
component is based on a modified Arrhenius equation us-
ing soil temperature and soil water content. The main equa-
tions used by diFUME, along with a model flow diagram, are
presented in Appendix A. The model version applied in this
study contains some modifications compared to the version
described in Stagakis et al. (2023b), such as the addition of
a sky-view factor (SVF) estimation module using the voxel
traversal algorithm, the addition of a module to split global
radiation into its diffuse and direct components, and the sim-
plification of the equations for the estimation of the diffuse
and reflected PAR reaching the leaf surface of each vege-
tation voxel (i.e. directional SVFs and SVFs including tree
canopies are not used in this version).

The model inputs used in this study are the land cover
map, meteorology, and DSMs, as described in Sect. 2.4. The
LAI dynamics come from the Copernicus High Resolution
Vegetation Phenology and Productivity (HR-VPP) product,
which includes four daily vegetation indices (PPI, NDVI,
LAI, and FAPAR) and quality information at 10 m resolu-
tion. The Copernicus LAI product was filtered per pixel ac-
cording to the quality flags for clouds, cloud shadows, prox-
imity to clouds, and cloud shadows and snow, resampled to
5 m according to the land cover information (Stagakis et al.,
2023b), and a 16 d maximum value composite filter was ap-
plied to exclude bad values and gaps. The 16 d product was
then linearly interpolated to derive 5 d LAI values, which are
used as model inputs. The maximum acceptable LAI value
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over grass pixels was set to 3 m2 m−2, since the park grass is
frequently mowed.

2.3.2 JSBACH

JSBACH, standing for “Jena Scheme for Biosphere–
Atmosphere Coupling in Hamburg” (Reick et al., 2013), is
the land component in the Earth system models of the Max
Planck Institute for Meteorology that simulates terrestrial
energy, hydrology, and carbon fluxes utilizing a number of
submodels (Fig. A2). The vegetation is described by plant
functional types (PFTs). In this study, the vegetation was de-
scribed by the C3 grass and broadleaved deciduous tree PFTs.
The carbon assimilation is described by the biochemical pho-
tosynthesis model of Farquhar et al. (1980). The assimilation
rate is limited either by the carboxylation rate (JC,stress) or
by the electron transport rate (JE,stress) (Table A1). JC,stress
is a function of the maximum carboxylation rate (Vmax),
which has an Arrhenius-type temperature dependence, and
JE,stress is a function of PAR (non-rectangular hyperbolic
dependence) and Jmax (maximum electron transport rate),
which has a linear dependence on temperature. Both Vmax
and Jmax are inhibited above 55 °C. Vmax is also scaled with
a factor depending on the canopy depth to account for the
Rubisco profile in the canopy. Dark respiration (rd) is a fixed
fraction of Vmax at 25 °C with an Arrhenius-type temperature
dependence. It is inhibited above 55 °C and decreases with
increasing solar irradiance. The unstressed stomatal conduc-
tance (gH2O

L ) is scaled by the plant available soil water (fws)
to obtain stomatal conductance under water stress (gH2O

L,stress),
which is used to derive JC,stress and JE,stress and then finally
the assimilation rate under water stress (Astress). fws depends
on soil moisture in the root zone and specific humidity. The
seasonal development of the LAI is described by the Lo-
gistic Growth Phenology (LoGro-P) model (Böttcher et al.,
2016). The development of the LAI of broadleaved decidu-
ous trees is described by the summer green phenology (Ta-
ble A1). It has three phases: the growth period in the spring
(k > 0 and p = 0), the vegetative phase during the summer
(k = 0 and small p), and the rest phase starting in autumn
(k = 0 and high p). The transition from the rest phase to the
growth phase is dependent on the evolution of the temper-
ature using the alternating model of Murray et al. (1989),
while the growth phase has a fixed duration. The maximum
LAI is given as a parameter. The grass phenology further
includes soil moisture and net primary productivity (NPP)
as determining factors. In the autumn, the phase transition
occurs when the pseudo-soil temperature (running mean of
air temperature) falls below a critical soil temperature, while
grasses grow when there is sufficient soil moisture and tem-
perature. Leaves are shed when NPP is negative. The soil
hydrology parameters are set on the basis of soil texture. The
soil moisture is simulated with five layers within a multilayer
soil hydrological scheme. The dynamics of litter and soil car-
bon are described by the submodel Yasso07 (Tuomi et al.,

2009, 2011). Five carbon pools are distinguished based on
their chemical properties (acid-hydrolysable, water-soluble,
ethanol-soluble, neither hydrolysable nor soluble, humus).
The first four pools (a, w, e, n) are tracked both above and
below ground, and separate pools are used for woody and
non-woody litter – altogether 18 pools. The litter pools re-
ceive carbon input from vegetation through the litter flux,
faeces from grazing, and losses from the reserve pool (Ta-
ble A1). Decomposition of the litter pools causes carbon to
transfer between the pools and to the atmosphere. The loss
rates depend on temperature, water availability, and the type
of litter elements. JSBACH is forced by air temperature, to-
tal precipitation, short-wave and long-wave radiation, air hu-
midity, wind speed, and CO2 concentration, as described in
Sect. 2.4.3.

2.3.3 SUEWS

The Surface Urban Energy and Water Balance Scheme
(SUEWS; Järvi et al., 2011, 2019) is an urban land sur-
face model jointly simulating the surface energy and wa-
ter balances and carbon dioxide surface exchange at the lo-
cal or neighbourhood scale (Fig. A3). SUEWS encompasses
various submodels, which account for factors like net all-
wave radiation, heat storage (Grimmond et al., 1991; Sun
et al., 2017), anthropogenic heat flux, irrigation, roughness
layer temperature, and relative humidity (Tang et al., 2021).
These submodels are essential for accurately representing ur-
ban characteristics affecting the simulated balances and ex-
changes. Photosynthetic uptake is calculated using an empir-
ical canopy-level photosynthesis model, where the potential
photosynthesis is modified for different environmental fac-
tors (Table A1). The same environmental factors also con-
trol the surface (stomatal) conductance. The seasonal de-
velopment of the LAI depends on the growing degree days
(GDD) and senescence degree days (SDD), which depend
on air temperature. The rates of leaf-on, leaf-off, and max-
imum LAI are given as an input. During the leaf-on pe-
riod, the LAI remains relatively stable and responds slowly
to stress conditions. In contrast, other environmental factors
that regulate surface conductance exhibit more pronounced
responses to stress. Soil and vegetation respiration is calcu-
lated as simple exponential dependence on air temperature.
SUEWS provides a holistic approach to joint energy, water,
and CO2 cycles in urban environments, allowing us to ac-
count, for example, for the influence of elevated air tempera-
tures on water and CO2 cycles. The model relies on standard
meteorological inputs like wind speed, air temperature, air
pressure, precipitation, and short-wave radiation. The forc-
ing air temperature needs to be from above the roughness
sublayer, so, in this study, the measured 2 m air temperature
is scaled to 35 m using a lapse rate of 6.5 °C km−1. SUEWS
is able to calculate 2 m temperature from the forcing temper-
ature (Tang et al., 2021), which is used in the calculations
of photosynthesis and soil and vegetation respiration. Ad-
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ditionally, site-specific data, such as surface cover fractions
and tree and building heights, are needed. SUEWS has ex-
tensively been evaluated in simulating urban CO2 exchanges
in various cities, including Helsinki, Minneapolis, Swindon,
and Beijing (Havu et al., 2022; Järvi et al., 2019; Zheng et al.,
2023). For this study, we employed the latest available ver-
sion, SUEWS V2020a, using the land cover, meteorology,
and surface morphology inputs described in Sect. 2.4.

2.3.4 VPRM

The Vegetation Photosynthesis and Respiration Model
(VPRM) is a satellite-based, data-driven model to estimate
spatial and temporal surface biogenic CO2 fluxes for differ-
ent plant functional types (Mahadevan et al., 2008) (Fig. A4).
VPRM represents the NEE of CO2 as a combination of two
components: GPP and Reco. GPP is a light-dependent term
using remote sensing vegetation indices, including the En-
hanced Vegetation Index (EVI) and Land Surface Water In-
dex (LSWI), combined with short-wave solar radiation to
estimate the carbon uptake from photosynthesis. Reco is a
light-independent part using only temperature at 2 m above
the ground and a linear model to denote the carbon emis-
sion from the ecosystem respiration (Table A1). Addition-
ally, the VPRM requires an accurate vegetation cover map to
provide the spatial distribution of different vegetation types
and utilizes distinct parameters for different vegetation types
to drive the VPRM. These parameters are fitted by using the
NEE observations from eddy covariance towers that mon-
itor specific vegetation types. VPRM has been widely ap-
plied across Europe to estimate the large-scale biogenic CO2
fluxes (Ahmadov et al., 2009; Gerbig and Koch, 2023; Zhao
et al., 2023).

For the vegetation indices, we used the Sentinel-2 MSI
Level-2A (MAJA Tiles) product (10 m spatial resolution)
provided by the German Aerospace Center (DLR, 2019). The
vegetation cover is taken from our self-developed vegetation
land cover product, which is described in Sect. 2.4.1, and
has been resampled to align with the Sentinel-2 image grid.
Temperature and short-wave downward solar radiation data
are sourced from the Zurich Kaserne station (Sect. 2.4.3).
The plant-type-specific parameters for VPRM are those pre-
sented by Zhao et al. (2023).

2.4 Data inputs

2.4.1 Land cover

For the accurate modelling of high-spatial-resolution bio-
genic fluxes, a precise and high-resolution vegetation land
cover map is needed for diFUME, SUEWS, and VPRM
(Table 2). The following high-quality datasets available in
Zurich made this objective possible:

a. Land Use Cadastre of the Canton of Zurich (Amtliche
Vermessung, 2024). This detailed GIS dataset is the of-

ficial land registry of the Canton and the basis for geo-
graphical information in almost all domains from spa-
tial planning to agriculture and tourism. It acted as our
base map, with vegetation types reclassified to distin-
guish between grassland and cropland areas. Note that
the “closed forest” was assigned to grassland, since it
was replaced by more accurate tree cover data later
while also retaining the grassland information within
the forests.

b. Urban Atlas (Urban Atlas, 2018). For deriving the crop-
land coverage, we utilized the Urban Atlas 2018 from
the Copernicus Land Monitoring Service. This dataset
discriminates between crop and grass fields, which was
not possible based on the Canton Cadastre alone.

c. Vegetation Height Model (VHM) from the Swiss federal
forest inventory (Vegetationshöhenmodell LFI, 2019).
This dataset is based on a combination of stereo aerial
images and lidar observations and is available for the
whole country at a resolution of 1 m× 1 m. Pixels in-
dicating trees shorter than 2 m were excluded from this
dataset, as these pixels, based on our observations, are
often noisy signals.

d. Forest Mixture from the Swiss Federal Forest Inven-
tory (Waldmischungsgrad LFI, 2018). This dataset de-
rives the forest mixture ratio based on Sentinel-1 and
Sentinel-2 satellite observations and is available for the
whole country at a resolution of 10 m× 10 m. Two em-
pirical thresholds were used to convert the forest mix-
ture ratio to three tree types: deciduous (greater than
80 %), mixed forest (between 20 % and 80 %), and ever-
green (less than 20 %). Within the city of Zurich, a large
majority of trees are deciduous.

We merged tree classifications with the VHM to produce a
detailed tree species cover map. Areas that were unidentifi-
able, often found in urban regions, were labelled as decid-
uous. The generated tree species cover map was then com-
bined with the other datasets, resulting in our 1 m resolution
land cover map for Zurich.

2.4.2 Digital surface models

The very-high-resolution DSM products (terrain, building,
and tree heights) developed by the Zurich city authori-
ties (Baumhöhen, 2023; Digitales Oberflächenmodell, 2022;
Digitales Terrainmodell, 2022) were used in this study as in-
puts for diFUME and SUEWS (Table 2). The DSM products
are derived from high-resolution laser scanning (lidar; aver-
age point density of 16 points m−2) over the years 2021 and
2022.
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Table 2. Overview of data inputs required by each model during the simulation period January 2022–September 2023.

Input Time step, aggregation Location diFUME JSBACH SUEWS VPRM

Air temperature (Tair), 2 m Hourly, average Kaserne × × × ×

Global radiation Hourly, average Kaserne × × × ×

Downward long-wave radiation Hourly, average Hardau, ERA5 ×

Relative humidity, 2 m Hourly, average Kaserne × × ×

Wind speed, 35 m Hourly, average Kaserne × ×

Air pressure, 2 m Hourly, average Kaserne ×

Precipitation Hourly, total Kaserne × ×

Atmospheric CO2 concentration Monthly, average Hardau, Beromunster, ERA5 ×

Soil temperature (Tsoil) Hourly, average Parks ×

Soil water content (SWC) Hourly, average Parks ×

Land cover map Static City × × ×

DSM Static City × ×

Satellite LAI Daily, linear interpolation City ×

Satellite EVI, LSWI Daily, linear interpolation, Savitzky–Golay filter City ×

2.4.3 Weather driver data

We used meteorological measurements mainly from the site
Zurich Kaserne (January 2022–September 2023), which is
a station of the Swiss National Air Pollution Monitoring
Network (NABEL). The measurements are performed with
the same high-quality instruments as used in the national
weather observation network SwissMetNet. Zurich Kaserne
is located in a large courtyard at a distance of about 1–1.5 km
from the parks analysed in this study (Fig. 1). The measure-
ments from Zurich Kaserne are expected to be representa-
tive for the parks, as it is located in a similar urban setting.
Wind and global radiation are measured on top of a neigh-
bouring four-storey building. Wind is measured at 35 m, and
global radiation is measured at 27 m above ground. Addition-
ally, downward long-wave radiation and atmospheric CO2
concentration data were derived for the period July 2022–
September 2023 from the ICOS Cities Hardau II station
(110 m a.g.l.). For the period prior to the Hardau II instal-
lation (January 2022–June 2022) and for the spin-up pe-
riod of JSBACH (1950–2021), the Copernicus ERA5-Land
dataset was used to derive all missing observations, with the
exception of CO2 concentration, which was derived from
Beromunster station (November 2012–February 2022) and
prior to that from a global gridded monthly dataset of CO2
(Cheng et al., 2022). The CO2 data were used in JSBACH
as monthly means. The meteorological measurements used
as input for the models during the simulation period Jan-
uary 2022–September 2023 are listed in Table 2. diFUME
additionally requires Tsoil and SWC, which were measured
in seven locations across the studied parks as described in
Sect. 2.2.2.

2.5 Model comparison and evaluation

All models were run for the period January 2022–
September 2023 for the four parks using the hourly meteoro-
logical inputs as described in Table 2. diFUME and VPRM
ran spatially at high resolution (5 and 10 m, respectively),

while SUEWS and JSBACH provided integrated simulations
for each land cover type of each park. This intercompari-
son study focuses on the park trees and lawns separately.
To compare between the spatial and integrated model sim-
ulations, the grass and tree pixels of each park from diFUME
and VPRM outputs were selected according to the land cover
map. All pixels covered by at least 90 % by a given land cover
type based on the 1 m land cover map were selected and aver-
aged for each park. Hourly GPP, Reco, and NEE estimates for
each park were then temporally averaged to daily, monthly,
or annual values. CO2 flux units were kept uniform across the
article (µmolm−2 s−1), except for the annual totals, where the
units were converted (to kg m−2 a−1) to facilitate the compar-
ison with the relevant literature. In this study, we kept GPP
and Reco positive for easier plotting and comparison and es-
timated NEE as NEE=Reco−GPP.

Given the available in situ observations, which do not
cover all carbon cycle components and drivers due to techni-
cal and logistical restrictions, we focused on the evaluation of
tree LAI and GPP and of SWC and Reco in the lawns. Mod-
elled LAI can be directly evaluated using the field observa-
tions in the measured tree stands. However, VPRM does not
include the LAI in the light use efficiency equation but uses
EVI as a proxy of vegetation greenness. Therefore, and in or-
der to achieve uniform evaluation across the four models, we
converted EVI to LAI using a linear regression (R2

= 0.86,
slope= 7.03, intercept=−1.26) between the HR-VPP LAI
and Sentinel-2 EVI for all cloud-free acquisitions within the
study period using the mean values over trees of each park. A
similar approach was adopted for the evaluation of tree GPP
using sap flow as a proxy. Since the diurnal behaviour of sap
flow is expected to be quite different from GPP, the evalua-
tion was performed using daily integrated values. The daily
averaged sap flow values (cm3 cm−2 h−1) were converted
to GPP (µmolm−2 s−1) by a linear regression (R2

= 0.81,
slope= 0.77, intercept= 1.93) between the mean GPP by the
four models over the four parks and the mean sap flow of all
sampled trees.
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The SWC observations and model estimates cannot be di-
rectly compared because of different soil layers considered
and different soil parameterizations. Specifically, the obser-
vations were representative of approximately 9 to 21 cm soil
depth, which can be closely compared to one soil layer sim-
ulated by JSBACH but cannot be directly compared with
SUEWS because the latter estimates a bulk SWC value for
the total simulated soil volume. Furthermore, different soil
parameterizations in the models can lead to different abso-
lute maximum and minimum SWC values, which makes the
direct comparison difficult (Fig. B1c). Therefore, the daily
means of SWC observations and model estimates were nor-
malized according to the individual time series maximum
and minimum values to avoid the effects of different model
parameterizations for soil and the effects of different soil
depths measured and modelled. By applying this normaliza-
tion on SWC time series, we focused on the evaluation of
the temporal variability in each model rather than the abso-
lute values. For VPRM, LSWI was used in this analysis as
a proxy of SWC. Finally, lawn Reco was evaluated using the
averages of the in situ measurements for each daily campaign
and the averages of the model outputs for the same days con-
sidering only the hours during the times of the measurements.

For the parameter evaluations, the average simulated value
of the four parks (tree or lawn according to the parameter) of
each model was compared to the average of the available ob-
servations, except for the LAI, for which only simulations
at Bullingerhof and Hardaupark were used, and for Reco, for
which the observations at sunny and shaded locations (see
Sect. 2.2.2) were averaged separately and the average of the
two was regarded as the representative Reco value to be com-
pared with the models. The quantitative evaluation analysis
in this study is presented using Taylor diagrams, combining
three performance metrics: the normalized standard devia-
tion, the correlation coefficient, and the centred root-mean-
square error (Taylor, 2001).

2.6 Uncertainty analysis

As a simple measure of model uncertainty of the different
biogenic CO2 flux components (GPP, Reco, NEE), we com-
puted the standard deviation of each hourly value of the four
models. The hourly time series of standard deviations were
further aggregated to seasonal and diurnal patterns to exam-
ine the magnitude and significance of the biogenic model un-
certainties. In order to address the importance of the biogenic
CO2 fluxes and their uncertainties in relation to the magni-
tude of the anthropogenic emissions, we focused on a central
part of the city of Zurich corresponding to the diFUME do-
main (Fig. 1) and estimated the monthly anthropogenic emis-
sions, considering building heating, industry, vehicle traffic,
and human respiration. The monthly biogenic CO2 fluxes
(GPP,Reco, NEE, averages of the four models) were scaled to
the 2 km× 2 km domain according to the tree and grass land
cover fractions and assuming that the tree and lawn simula-

tions of the four parks are representative of the vegetation
of the domain. The anthropogenic emissions for the specific
area were estimated from the gridded annual inventory of the
city of Zurich (Emiproc, 2024; Emissionskataster, 2024). For
both anthropogenic and biogenic fluxes, the monthly average
of the 2 years of the study was estimated.

3 Results

3.1 In situ observations

Tree LAI and sap flow observations provided detailed in-
formation on tree phenology and physiology (Fig. 2a). The
phenology of the Platanus sp. stands was somewhat dif-
ferent in the 2 study years. In 2022, leaf growth started in
mid-April, and, already by mid-May, the LAI had reached
nearly 4 m2 m−2 (Fig. B1a). The peak was at the end of
June, reaching around 5.5 m2 m−2. Then, the LAI gradually
declined until the end of November when the leaf fall was
completed (Figs. 2a, B1a). In 2023, the leaf growth started
around the same time as in 2022 but was considerably slower.
By mid-May, the LAI had only reached about 2.5 m2 m−2,
and it peaked at the beginning of July at a lower value than
in 2022 (∼ 4.5 m2 m−2). The different phenological patterns
observed in the 2 studied years were also confirmed by the
satellite indices (Fig. B1a).

Sap flux density observations of the Platanus sp. followed
the observed LAI seasonality but were very variable ac-
cording to the environmental conditions, co-varying strongly
with incoming radiation, especially during summer periods
(Fig. 2a). Sap flux density of the Tilia sp. showed similar
seasonal variability but consistently lower values except dur-
ing spring 2023, when Tilia sp. trees had apparently earlier
leaf growth than the Platanus sp. trees. On the other hand,
Tilia sp. trees dropped their leaves a bit earlier than Platanus
sp. trees according to the sap flow observations during Octo-
ber and November 2022 (Fig. 2a). The effects of the drought
periods (Fig. 2c) on the sap flow are not clearly discernible
in Fig. 2a; however, there was an increase in sap flow visible
after the rains at the middle of August 2022.

The measurements at the park lawns provided valuable in-
sights into the seasonal dynamics of grass and soil respira-
tion. Rsoil seasonal variability consistently followed Tsoil and
SWC changes (Fig. 2b, c). Applying a modified Lloyd and
Taylor (1994) equation fit to theRsoil observations, their vari-
ability was explained to 64 %–72 % by the Tsoil and SWC
observations. Rsoil was low during winter, rose in spring,
and reached high values during hot summer days if soil
moisture was available (Fig. 2b). During summer, conditions
were more variable depending on the park location and hour
of measurement; therefore the measured Rsoil varied signif-
icantly. The highest Rsoil was measured during June and
August 2023, reaching values above 10 µmolCO2 m−2 s−1.
The high value in June, which occurred during a rain event,
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Figure 2. Time series of the in situ observations in the study parks (Fig. 1) during the campaigns from May 2022 to September 2023.
(a) Average leaf area index (LAI) from the two Platanus sp. stands, daily averages and standard deviations of the sap flux densities per tree
species, and daily average incoming global radiation. (b) Average and standard deviation of the measured soil respiration (Rsoil), measured
lawn ecosystem respiration (Reco) (sunny and shaded locations in different colours), and daily average air and soil temperatures, where the
shading refers to the standard deviation of the seven soil sensors. (c) Daily average (line) and standard deviation (shade) of the measured soil
water content (SWC) and daily precipitation (bars).

is bracketed by much lower values during the prolonged
drought period in June/July 2023.

Lawn Reco followed roughly the same seasonal pattern as
Rsoil but with consistently higher values (Fig. 2b). Moreover,
the variability observed in Reco between the different collars
was very intense. This was to be expected, since the grass
biomass, which contributed to the measured flux, was vari-
able according to the park location. The general tendency ob-
served on site was that the shaded or partly shaded locations
tended to have less thick and dense grass cover than the sunny
locations. This was confirmed in the measurements by com-
paring shaded Reco with Rsoil. The differences were not very
big in the majority of the cases, indicating that Rsoil was the
main source at these locations. On the other hand, shaded lo-
cations did not dry out as quickly as the sunny locations dur-
ing drought conditions, maintaining the required soil mois-
ture for healthy aboveground leaf biomass. Therefore, it was
observed in the measurements that shaded Reco was some-
times higher than sunny Reco during summer (Fig. 2b). How-
ever, the grass in sunny locations tended to recover quickly
after rain events that restored the SWC during summer and
autumn. Another important parameter to consider when in-
terpreting the Reco observations is the grass mowing. Mow-

ing has been reported to induce high respiration rates (Al-
laire et al., 2008; Kaye et al., 2005), which is the most prob-
able explanation of the very high Reco measured in the sunny
lawn locations since the end of April 2023 and during sum-
mer months (Fig. 2b). The highest Reco values were found
in the sunny location in the Hardaupark, which is the most
recently constructed park in this study. Fitting the modified
Lloyd and Taylor (1994) equation to the Reco measurements
showed that the observed variability can be explained only to
38 % by measured Tsoil and water content.

3.2 Model comparison

The GPP, Reco, and NEE outputs of the four models were
compared for park trees (Fig. 3) and lawns (Fig. 4). Figures 3
and 4 contain time series of daily totals and hourly diurnal
averages of each month for each modelled parameter. Ob-
served tree sap flow and lawn Reco are plotted against mod-
elled tree GPP (Fig. 3a, b) and modelled lawn Reco (Fig. 4c),
respectively. In general, models seemed to better agree for
park trees than lawn. Tree GPP estimates were surprisingly
consistent between the four models (Fig. 3a, b). Exceptions
were the higher VPRM estimates between mid-May and mid-
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Figure 3. Time series of model outputs for park trees (averages of the four parks). Daily averages of (a) gross primary production (GPP),
(c) ecosystem respiration (Reco), and (e) net ecosystem exchange (NEE) estimates and diurnal hourly averages per month of (b) GPP,
(d) Reco, and (f) NEE estimates. Sap flux density observations (averages of all trees) per day and hour are plotted over GPP in panels (a)
and (b).
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July 2022 and the higher JSBACH estimates during mid-
March to mid-May 2023. A considerable deviation between
the models was also observed during August and Septem-
ber 2023, when diFUME and VPRM showed lower GPP than
the other two models. Using sap flow as a GPP proxy, it was
observed that the tree phenological and physiological sea-
sonal dynamics were captured well by the models (Fig. 3a).
The modelled diurnal GPP profiles also agree well with the
sap flow observations, even though there were some differ-
ences in the timing (i.e. sap flow peaked later than GPP)
as expected. However, there was considerable overestimation
of spring GPP, especially during April and the beginning of
May 2023.

Lawn GPP estimations did not match well between the
models (Fig. 4a, b). VPRM and JSBACH showed high
lawn GPP during spring and early summer and strong vari-
ability from day to day according to daylight conditions.
diFUME and SUEWS presented more conservative lawn
GPP estimates, much lower than the other two models, and
not such intense day-to-day variations. During mid-July–
August 2022, all models captured the drop in lawn GPP due
to drought conditions, with JSBACH showing reduced sen-
sitivity of GPP to drought compared to the other models.
During summer 2023, VPRM showed a very intense drop
in lawn GPP from the beginning of June due to drought con-
ditions (see Fig. 2) and only a slight recovery after mid-July
(Fig. 4a). Such intense variability was only captured by JS-
BACH, which simulated intense drops and fast recoveries af-
ter rain events during the whole summer of 2023. GPP sea-
sonality in VPRM is mainly driven by the satellite EVI.

Simulated Reco seasonal variability agreed well between
the four models (Figs. 3c, 4c). diFUME showed distinctly
higher Reco for trees during summer, while SUEWS showed
lower Reco for lawns compared to the other models. di-
FUME showed very similar Reco estimated for lawns and
trees, which was also the case for GPP, because, in contrast
to the other models, the parameterization was the same for all
plant types in the version used in this study. The rest of the
models showed higher Reco for lawns during summer com-
pared to trees. The diurnal patterns of Reco were slightly dif-
ferent between the models (Figs. 3d, 4d). JSBACH peaked
earlier in the day and diFUME peaked later in the afternoon
compared to the other models. Moreover, diFUME tended
to show higher Reco at night compared to the other models,
most probably because Tsoil is the main driver of Rsoil in this
model instead of Tair. None of the models seemed to capture
any distinctive drought effect on lawn Reco (Fig. 4c). When
compared to the lawn Reco observations, it appeared that the
simulated values were closer to the shaded collar observa-
tions, while the sunny collar observations were much higher
than the simulations during most of the time, except during
drought conditions, when simulations were higher than the
observations. It must be noted here that the comparison be-
tween observations and simulations shown in Fig. 4c is not
entirely accurate because the observations were taken during

a specific time of day and the daily averages take into ac-
count only the observation times. More detailed comparisons
between Reco observations and simulations are presented in
Fig. B2d. Overall, it can be deduced that all models were con-
servative in their lawn Reco estimations and underestimated
the full potential of Reco in open sunny park areas with thick
managed lawn under wet and warm conditions.

NEE estimates of each model showed more distinctive
seasonal and diurnal patterns compared to GPP and Reco
alone (Figs. 3e–f and 4e–f). For both trees and lawns, VPRM
showed the strongest (most negative) NEE values during
spring and summer, except during late summer periods for
lawns, when daily NEE turned abruptly to high positive
values. diFUME was the most “conservative” model, with
daily NEE values close to zero during the whole growing
period for trees and lawns, with late summer NEE turning
towards more positive values due to the drop in GPP and
the consistently high Reco. The daily NEE of JSBACH and
SUEWS was intermediate between diFUME and VPRM es-
timates. In contrast to the rest of the models, SUEWS showed
very different NEE estimates between trees and lawns, with
trees estimated as more productive than lawns. The diurnal
NEE patterns were very much alike between the four mod-
els (Figs. 3f, 4f), but diFUME showed distinctively higher
nighttime NEE values during spring and summer, especially
for tree areas, while SUEWS diurnal lawn NEE amplitude
was particularly smaller than the other models.

The annual totals estimated from each model are presented
in Fig. 5. There was good agreement for the total tree GPP
but not for tree Reco, where diFUME estimated the high-
est and SUEWS estimated the lowest total Reco (Fig. 5a).
As a result, diFUME estimated that park tree areas acted as
sources of CO2, while SUEWS estimated them to be sinks.
JSBACH NEE was very close to zero, with a standard de-
viation that spanned between positive and negative values,
while VPRM showed high GPP variability between parks
and the standard deviation of NEE also ranged between posi-
tive and negative values. For the lawns, SUEWS showed dis-
tinctively lower total GPP and Reco compared to the other
models. JSBACH and VPRM agreed well in the totals of
GPP and Reco, but VPRM showed much higher variability
in total GPP. diFUME showed similar total lawn Reco with
JSBACH and VPRM but lower total GPP. In total, all models
agreed that park lawns acted as CO2 sources. However, for
VPRM, the standard deviation was high and ranged between
negative and positive values.

3.3 Model evaluation

The Taylor diagrams provide a comprehensive intercompari-
son of the performance of the four models (Fig. 6). We focus
only on certain parameters according to the available in situ
observations, as described in Sect. 2.5. It can be observed in
Fig. 6a that all models underestimated the tree LAI, but the
two satellite-based models (diFUME and VPRM) captured
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Figure 4. Time series of model outputs for park lawns (averages of the four parks). Daily averages of (a) gross primary production (GPP),
(c) ecosystem respiration (Reco), and (e) net ecosystem exchange (NEE) estimates and diurnal hourly averages per month of (b) GPP,
(d) Reco, and (f) NEE estimates. The observations of lawn Reco (averages of sunny and shaded locations per campaign presented separately)
are plotted over modelled Reco in panel (c).
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Figure 5. Annual totals for gross primary production (GPP), ecosystem respiration (Reco), and net ecosystem exchange (NEE) for (a) trees
and (b) lawns of the study parks. The whiskers express the standard deviation between the four parks. The period used to estimate the totals
is July 2022 to June 2023.

the dynamics of the tree LAI better than the process-based
models (SUEWS, JSBACH), which showed lower correla-
tions with the observations. More specifically, all models un-
derestimated the high LAI values during mid-summer, while
SUEWS consistently overestimated the tree LAI during the
rest of the seasonal cycle (Figs. B1a, B2a). However, the per-
formance with respect to the LAI did not necessarily reflect
on tree GPP simulation performance, since all models cap-
tured the measured daily sap flow variability well (Figs. 6c,
3a), with the best performance demonstrated by SUEWS and
the worst demonstrated by JSBACH, most probably because
of the early onset of GPP in JSBACH during spring 2023
(Fig. 3a). The lawn SWC variability (normalized) was cap-
tured very well by JSBACH and SUEWS (Fig. 6b), with the
latter being a bit slower in the response to dryness and rain
events (Fig. B1c), most probably because SUEWS does not
simulate multiple soil layers as JSBACH does. On the con-
trary, satellite-based SWC estimation by VPRM did not per-
form equally well. Even though LSWI roughly detected the
dry periods during summer, it was not so accurate when it
came to fast responses of SWC to rain events and revealed
unrealistically low SWC during winter (Fig. B1c). All mod-
els underestimated lawn Reco (Fig. 6d), especially SUEWS,
while JSBACH showed better performance compared to the
other models. The reason for the underestimation is mainly
the high values of measuredReco in the fully sunlit park areas
during spring 2023 (Figs. 2b, 4c, B2d).

3.4 Biospheric flux uncertainty based on model spread

The dynamics of the estimated model uncertainties are pre-
sented in Fig. 7. Tree areas clearly showed lower uncertain-
ties compared to lawns, mostly because of the increased in-
consistencies between the models in the estimation of lawn

GPP (Fig. 7b). The uncertainties for lawn GPP were highest
during spring, reaching an average of around 9 µmolm−2 s−1

at midday. Tree GPP uncertainties were highest during sum-
mer, reaching around 4 µmolm−2 s−1 (Fig. 7a). Interestingly,
the monthly diurnal patterns of GPP uncertainties of trees
during the leaf-on period were different from lawns, present-
ing the highest values early in the morning or late in the af-
ternoon rather than at midday. Early-morning peaks in tree
GPP uncertainty appeared in June and July, while, during
the rest of the growing season, the peaks appeared mostly
during the afternoon (Fig. 7a). This pattern is the result of
differences in the diurnal evolution of GPP, with some mod-
els having the maximum earlier in the day or showing wider
peaks than others. Reco uncertainties were similar in mag-
nitude and pattern between trees and lawns (Fig. 7). They
followed the seasonal growth of Reco with higher values dur-
ing warm months. The diurnal variabilities in Reco uncer-
tainties were not so pronounced in most of the cases, with
Reco uncertainty being close to zero during winter and reach-
ing a maximum around 2.5 µmolm−2 s−1 during summer. It
is interesting to note that, during summer, Reco uncertainty
tended to be highest during late-evening hours and lower dur-
ing the day, especially in trees. During the rest of the year,
Reco uncertainties followed the normal Reco diurnal pattern,
with higher values during the day and lower values at night.
As a result of the variable and high GPP uncertainties com-
pared to Reco, NEE uncertainties mainly followed the GPP
uncertainty patterns during the day and the Reco patterns at
night (Fig. 7). This led to low NEE uncertainties at night and
high uncertainties during the day, with more pronounced di-
urnal variabilities for lawns and lower diurnal variabilities for
trees.
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Figure 6. Taylor diagrams describing the model performance in capturing the variabilities in (a) tree leaf area index (LAI), (b) lawn soil
water content (SWC), (c) tree gross primary production (GPP), and (d) ecosystem respiration (Reco) of lawns. The Taylor diagrams combine
three performance metrics: the standard deviation (x and y axes, grey concentric cycles), the correlation coefficient (azimuth angle, grey
lines), and the centred root-mean-square error (dashed orange concentric cycles) (Taylor, 2001). The reference observation is plotted on the
x axis according to its standard deviation (red square), and the distance from this point is inversely related to the performance of each model
(coloured dots).

3.5 Share of biogenic fluxes in the city

The comparison between the monthly biogenic fluxes and
their uncertainties to the total anthropogenic emissions is pre-
sented in Table 3. It is evident that, during the winter, the bio-
genic fluxes and their uncertainties were insignificant com-
pared to the anthropogenic emissions. However, during late
spring, the anthropogenic emissions abruptly decreased due
to the absence of building heating, and, at the same time, the
biogenic components became more active. Therefore, GPP

and Reco are the competing processes, whose magnitudes
reached 30 % to 36 % of the net monthly CO2 balance when
considered individually (Table 3). The contribution of NEE
peaked during May, when both trees and lawns were in their
optimal season, reaching−10.8 % of the monthly net budget.
Even though the contribution was rather small on a monthly
scale due to the trade-off between GPP and Reco, its esti-
mated uncertainty was similar to that of GPP (Table 3). It
appears that the uncertainties associated with NEE can be an
important part of the urban CO2 cycle even in a city centre
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Figure 7. Monthly diurnal hourly averages (dots) and standard deviations (shading) of the estimated GPP, Reco, and NEE uncertainties for
(a) park trees and (b) lawns. The monthly averages consider the years 2022 and 2023 together.

during summer and early autumn, as their magnitudes were
found in this study to range between 6.1 %–10.2 % of the
net monthly balance. It is important to note that the simple
method of estimating the uncertainties of the biogenic flux
components from the model spread may underestimate the
real uncertainties, as the models partially rely on the same in-
puts and on similar assumptions. This is shown, for example,
by the fact that the model spread does not always encompass
the observed values of Reco at the lawn locations.

4 Discussion

4.1 Advantages and disadvantages of different types of
biogenic CO2 exchange models in urban contexts

Even though the models tested were forced with the same
data, it is challenging to establish a clear hierarchy of model
performance using the available measurements, as the per-
formance of individual models seems to differ with different
drivers or proxies for CO2 exchange (Fig. 6). All tested mod-
els agreed on the timing of the spring recovery of trees in
terms of GPP in 2022. However, at the beginning of the 2023
season, SUEWS, VPRM, and diFUME were again consistent
among each other, but their GPP values started to grow ear-
lier than the observed recovery in sap flow and in the LAI
(Figs. 3a–b and B1a). JSBACH simulated an even earlier on-
set. On the other hand, the seasonal dynamics of JSBACH
were found to be accurate in a recent study in hemiboreal
tree-covered urban areas in Helsinki (Thölix et al., 2025),
suggesting that the timing of spring recovery dynamics in
JSBACH should be examined with longer and wider datasets

in different ecosystem types. The overall evaluation of mod-
elled tree GPP based on the sap flow dynamics indicates
that all tested models provide reasonably accurate GPP es-
timates. The Reco values for tree-covered areas by JSBACH,
SUEWS, and VPRM were closer to each other than that of
diFUME (Fig. 3c, d). Unfortunately, the autotrophic respi-
ration of the aboveground tree parts is especially difficult to
measure; therefore, the analysis is unable to reveal the best
model regarding tree Reco.

For lawns, JSBACH successfully estimated soil moisture
and outperformed other models in predicting observed Reco,
which, on the other hand, exhibited much more variability
than the simulations (Fig. 4c). Even though JSBACH simu-
lated slightly higher diurnal variation in Reco, the dynamics
of the simple VPRM and the process-based ecosystem model
JSBACH are comparable (Fig. 4c, d). Compared to VPRM
and JSBACH, diFUME and SUEWS simulated higher and
lowerReco, respectively, and consistently lower GPP. Despite
the dry periods in the summer months, VPRM and JSBACH
also predicted similar annual cycles and day-to-day variabil-
ity in GPP, but, unfortunately, direct measurements of lawn
GPP were not available in this study. Nonetheless, GPP esti-
mates by JSBACH for lawn have been tested and shown to be
sufficient in hemiboreal zones using repeated measurements
for photosynthesis (Trémeau et al., 2024). VPRM was eval-
uated in an urban forest and grassland area using field-based
reference data by Winbourne et al. (2022), who found that
Reco was substantially overestimated during winter months
but that the GPP was approximated with better accuracy. This
is consistent with the present study, which shows higher Reco
values from VPRM compared to the other models in winter.
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Table 3. Monthly average fluxes (µmolCO2 m−2 s−1) of the city’s central 2 km× 2 km domain (Fig. 1), considering the total anthropogenic
emissions (building heating, industry, vehicle traffic, human respiration) and the biogenic CO2 flux components (GPP, Reco, NEE) and
uncertainties (unc., Sect. 3.3). The percentages (%) of the total monthly CO2 balances are given in parentheses. The data are monthly
averages of the years 2022 and 2023.

Total anthr. GPP GPP unc. Reco Reco unc. NEE NEE unc.

Jan 29.1 0.1 (0.4) 0.1 (0.3) 0.6 (1.9) 0.2 (0.6) 0.4 (1.5) 0.2 (0.6)
Feb 27.0 0.3 (1.1) 0.2 (0.6) 0.6 (2.2) 0.2 (0.6) 0.3 (1.1) 0.2 (0.8)
Mar 21.5 0.9 (4.0) 0.5 (2.2) 0.9 (4.0) 0.3 (1.2) 0.0 (0.0) 0.5 (2.2)
Apr 18.4 1.8 (9.9) 0.8 (4.4) 1.2 (6.9) 0.3 (1.6) −0.5 (−3.1) 0.8 (4.2)
May 9.3 2.9 (34.2) 0.9 (10.2) 2.0 (23.3) 0.4 (4.5) −0.9 (−10.8) 0.8 (9.5)
Jun 8.7 2.9 (36.0) 0.8 (9.4) 2.4 (29.9) 0.3 (4.3) −0.5 (−6.1) 0.8 (10.2)
Jul 8.7 2.5 (28.6) 0.7 (8.2) 2.6 (30.1) 0.3 (3.7) 0.1 (1.6) 0.8 (9.2)
Aug 8.7 1.9 (20.7) 0.6 (7.0) 2.5 (27.1) 0.4 (4.1) 0.6 (6.4) 0.7 (7.8)
Sep 9.6 1.9 (19.6) 0.5 (5.3) 2.1 (21.6) 0.4 (4.5) 0.2 (2.1) 0.6 (6.1)
Oct 10.2 1.2 (11.2) 0.4 (3.9) 1.6 (15.5) 0.1 (1.3) 0.5 (4.3) 0.4 (3.9)
Nov 23.0 0.5 (2.2) 0.2 (1.0) 1.1 (4.5) 0.2 (0.8) 0.5 (2.3) 0.3 (1.2)
Dec 29.0 0.1 (0.4) 0.1 (0.3) 0.6 (2.1) 0.2 (0.6) 0.5 (1.7) 0.2 (0.6)

Overall, the four models are different in terms of sophisti-
cation and structure and in the fact that they use different data
streams. Therefore, different advantages and disadvantages
can be expected, depending on the application and context.
All of the models require temperature and radiation inputs.
However, VPRM requires the least number of data streams
among the models (Table 2). diFUME and VPRM use satel-
lite data to track vegetation phenology (Table A1), making
them more suitable for monitoring purposes, especially in
urban areas, where the vegetation type heterogeneity is so
pronounced that it is very difficult to model accurately. As
also demonstrated by the current study, these satellite-based
models are able to detect changes in leaf area due to pheno-
logical shifts or stressful events, such as drought, providing
valuable insights into ecosystem responses to environmental
change. However, these models are not able to predict future
carbon cycling under different climate scenarios or planning
strategies, as they rely heavily on observations.

Despite the different levels of sophistication of the four
models in simulating GPP, all consider some sort of hyper-
bolic function to model the response of gross photosynthe-
sis to light and a bell-shaped dependence on air temperature
(Table A1). On the other hand, the responses of photosynthe-
sis to vapour pressure deficit and soil water availability are
accounted for very differently in each model. VPRM uses
a very simplistic approximation of drought effects on GPP
based on LSWI, diFUME and SUEWS use empirical func-
tions, and JSBACH has the most sophisticated approach to
modelling drought effects (Sect. 2.3, Table A1). The gener-
ally good agreement between the models in simulated tree
GPP seasonally and diurnally indicates that the simple pro-
cess approximations were sufficient, possibly due to the lack
of intense drought effects on tree GPP in this study based on
the sap flow observations (Fig. 3a, b). On the other hand,
drought effects on lawn GPP were captured by all mod-

els during August 2022, with VPRM showing the most in-
tense drought-induced GPP reductions which were repeated
in summer 2023 (Fig. 4a, b). These findings indicate that
VPRM is very sensitive to LSWI and EVI indices (Fig. B1b,
c), which can drive GPP to excessively low values during dry
periods, in contrast to the process-based JSBACH and the
empirical functions of diFUME and SUEWS. Unfortunately,
we do not have any independent measurements of lawn GPP
in this study to evaluate which type of model is closest to the
truth.

Even though there are some similarities between the mod-
els in the representation of the GPP process, the descrip-
tion of Reco significantly differs in terms of approximations
and sophistication. JSBACH is the only model tested that in-
cludes carbon pools, which are essential for studying long-
term temporal dynamics. This feature allows JSBACH to
model the behaviour of soil carbon pools and their changes
over extended periods. For instance, if high decomposition
rates persist, the decreasing soil carbon pool also decreases
heterotrophic emissions, whereas other models tested do not
have such feedbacks and use only empirical environmental
response functions. diFUME uses a more detailed approach
compared to SUEWS and VPRM, separating above- and be-
lowground respiration and using Tair, Tsoil, SWC, and LAI
as proxies, whereas SUEWS and VPRM use an exponen-
tial and a linear response function on Tair, respectively (Ta-
ble A1). Despite the differences in the representation of Reco,
the seasonal and diurnal variabilities were not very different
between the four models (Figs. 3c–d and 4c–d), and the dif-
ferences detected were not clearly related to the level of so-
phistication but rather to the choice in parameterization. For
example, diFUME tree Reco was higher than the other mod-
els because the parameterization was kept the same for lawn
and tree sites. JSBACH showed the best performance in pre-
dicting lawnReco (Fig. 6d), but, on the other hand, ecosystem
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process models such as JSBACH require very detailed input
information (e.g. on soil carbon stocks) and are based on full-
cycle assumptions that are difficult to meet in highly man-
aged and disturbed urban ecosystems where carbon pools
are constantly altered by human interventions (Golubiewski,
2006). Furthermore, process-based models such as JSBACH
require a large number of input parameters compared to sim-
ple light use efficiency models such as VPRM, which has, in
some cases, been found to outperform process-based models
in explaining CO2 variability (Gourdji et al., 2022).

It is important to highlight the limitations of the current
study in terms of evaluating the models in the urban context.
This study focuses on four urban parks where the effects of
buildings and paved surfaces on energy and water exchange
are not as pronounced as in urban canyons. Urban canyon
vegetation and street trees in particular grow in a very dif-
ferent environment compared to urban parks (Dahlhausen et
al., 2018; Nielsen et al., 2007), and their ecophysiological re-
sponses and dynamics can be potentially different from park
trees. In this study, we apply SUEWS and diFUME, which
are specifically designed for urban applications and include
aspects of urban morphology in the simulations of biogenic
CO2 fluxes. Specifically, SUEWS stands out in assessing the
urban energy balance and its effect on local air temperatures.
This model is particularly advantageous in urban contexts
where a detailed understanding of the energy exchanges is
crucial for microclimate. A distinct feature of diFUME is
that it has a 3D radiation module that takes into account
building shading and diffuse radiation extinction within ur-
ban canyons. As the role of buildings, runoff, and local tem-
perature is not as evident in the park applications of the cur-
rent study, it is possible that the additional benefits of these
models are not highlighted in the model intercomparison. In
order to achieve a more thorough evaluation of the models
and their applicability in the urban context, future research is
needed, focusing on different urban environments, including
vegetated street canyons.

4.2 In situ observations and challenges

Despite the technical, logistical, and methodological chal-
lenges in measuring sap flow and estimating tree transpi-
ration in urban areas, such observations can be very valu-
able for monitoring tree physiological dynamics, especially
in areas of extreme heterogeneity, where other techniques,
such as eddy covariance, cannot be applied (Ewers and Oren,
2000; Peters et al., 2010). The sap flux densities measured in
this study were very consistent with the seasonal and diur-
nal variability and magnitude for similar species, presented
in other studies in suburban and urban areas (Bush et al.,
2008; Peters et al., 2010; Rahman et al., 2017). Tilia sp. and
Platanus sp. trees measured in this study, being semi-ring
porous species (Schoch et al., 2004), present relatively con-
stant maximum sap flux densities throughout the growing pe-
riod due to the increased stomatal regulation (Bush et al.,

2008; Peters et al., 2010). This suggests limited stomatal
opening during high VPD and incoming radiation conditions,
which also limit photosynthetic rates. Similarly to the results
of the present study, measured sap flux densities in other
studies responded only marginally to decreases in topsoil wa-
ter content during summer (Peters et al., 2010; Rahman et al.,
2017), indicating that the water availability in deeper soil lay-
ers is more important for maintaining the required hydraulic
conductance of mature trees during summer. In the present
study, we used a simple linear regression approach to derive
reference daily tree GPP values from sap flow observations
rather than a more sophisticated approach (e.g. Schäfer et
al., 2003) to avoid involving a lot of modelling in our refer-
ence dataset. The disadvantage of the approach used is that it
cannot predict the absolute magnitude of the GPP and only
provides information about the daily variability.

Flux chamber Rsoil and lawn Reco observations serve as
a direct reference for model evaluation, but they can greatly
vary across different urban locations, and there are techni-
cal and logistical limitations in their application across urban
spaces. For example, this study focused on large green ar-
eas in Zurich to obtain representative measurements of CO2
flux behaviour of the park lawns under the city’s management
practices. These lawns are very busy public areas; there-
fore long-term installations (e.g. automated chambers) are
not possible and the observations are limited to specific dates
and times of field campaigns. The wealth of information that
can be derived from continuous long-term automated cham-
bers (e.g. Hill et al., 2021) cannot be compared to the spo-
radic field measurements. For example, the sudden increase
inReco on the sunny lawn of Hardaupark in April 2023 would
probably be easier to confirm and explain if we had contin-
uous observations. Moreover, clear chamber measurements
over park lawns were not implemented during this study but
would be considered very helpful for estimating lawn NEE
and partitioning to GPP and Reco. Having this information
during the field campaigns would be valuable for the com-
plete evaluation of the model performance over lawns. Such
measurements are currently implemented in the ICOS Cities
project pilot case study sites of Paris and Munich, comple-
menting the observations presented in this study.

The observations of Rsoil and lawn Reco presented in this
study are comparable with what has been reported in the lit-
erature concerning urban park lawns. Even though it is well
established that the main drivers of Rsoil and Reco are Tsoil
and water content (e.g. Raich and Schlesinger, 1992), the
response functions and magnitudes of respiration in urban
parks can be significantly different from native grasslands
(Kaye et al., 2005). There are several studies that have mea-
sured soil organic carbon (SOC) pools across urban parks
and natural ecosystems (e.g. Golubiewski, 2006; Kaye et al.,
2005; Pouyat et al., 2006; Weissert et al., 2016). SOC pools
vary across urban parks and are an important determinant for
both Rsoil and plant productivity (Golubiewski, 2006; Kaye
et al., 2005). In general, studies suggest that the sequestra-
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tion of soil C in parks dominated with grass increases linearly
with park age (Lal and Augustin, 2012), reaching even higher
biomass productivity and larger SOC pools than native grass-
lands (Golubiewski, 2006; Kaye et al., 2005; Pouyat et al.,
2006; Weissert et al., 2016). However, this process can be
severely affected by management practices, such as mowing,
fertilization, and irrigation, which can also affect the balance
between respiration and photosynthetic rates.

Allaire et al. (2008) compared respiration rates of urban
turfgrass, measured with chambers under different fertiliza-
tion and mowing treatments, and found that mowing fre-
quency had a higher impact on respiration than fertilization
and soil characteristics. Similarly to our observations, the
lawn Reco observed by Allaire et al. (2008) peaked suddenly
in spring at the treatment with frequent mowing, reaching
a maximum at around 14 µmolm−2 s−1. Kaye et al. (2005)
found consistently high Rsoil and belowground C alloca-
tion in intensively mowed and irrigated urban lawns, 2.5
times higher than in adjacent native and agricultural ecosys-
tems. It appears that mowing with return of clippings on the
ground rapidly increases the Reco under wet and warm con-
ditions due to accelerated microbial activity. Furthermore,
mowing alters the microenvironment of the lawn surface,
leading to increased radiation exposure and temperatures of
grass leaves, which can significantly alter leaf respiration
rates (Shen et al., 2013). The Reco observations in this study
during the spring and summer of 2023 were probably af-
fected by mowing, which increased Reco to very high values
in sunny areas, even higher than 20 µmolm−2 s−1 in some
cases. Detailed information on the management practices and
their timing would be very valuable for interpreting the ob-
servations, but unfortunately it was not available. High val-
ues of maximum grass Reco, similar to those in the present
study and Allaire et al. (2008), were also reported by Liss
et al. (2009) and Weissert et al. (2016) over park, residen-
tial, and sports field lawns under warm and moist conditions.
However, the mowing effects were not clear in these studies.

4.3 Possibilities to mitigate climate change via urban C
sequestration

Vegetation is able to sequester part of the anthropogenic
emissions originating from fossil fuel burning. In this study,
the vegetation uptake in central Zurich covered nearly 11 %
of the total carbon budget in the optimal month of May. The
summertime offset in this study is smaller than that observed
in Helsinki (42 %; Havu et al., 2024), New York (20 %–40 %;
Wei et al., 2022), and Florence (26 %; Vaccari et al., 2013),
which is likely due to the fact that the studied area is highly
built, with only 30 % vegetation. The forest-covered hills sur-
rounding the city, for example, are not included in this area.
As photosynthesis is minimal during the winter months, this
results in a small offset of anthropogenic emissions on an an-
nual scale. In central Helsinki, vegetation was found to take
up 3 % of the anthropogenic emissions on an annual scale,

whereas, at the scale of the whole city, the offset was 7 %
(Havu et al., 2024; Järvi et al., 2019). Prior studies have re-
ported annual offsets of 2.1 % in Boston (Hardiman et al.,
2017) and 6.2 % in Florence (Vaccari et al., 2013), but, nat-
urally, the offset is strongly dependent on the strength of an-
thropogenic emissions.

These numbers demonstrate the potential of urban veg-
etation to mitigate climate change. With the anthropogenic
emissions potentially decreasing in the future, the contribu-
tion of biogenic fluxes will increase. It is also important to
remember that the C sequestration of vegetation is highly de-
pendent on its wellbeing; thus it is critical to find natural so-
lutions that are resilient to heat, drought, and pests. Species
diversity plays a crucial role here.

5 Conclusions

This study compared for the first time four different types of
biosphere models (diFUME, JSBACH, SUEWS, VPRM) in
terms of their accuracy in simulating CO2 exchange (GPP,
Reco, NEE) in urban parks. Model simulations were evalu-
ated against in situ observations in order to identify advan-
tages and disadvantages of the different model types. The re-
sults showed a good agreement between all models in terms
of magnitude and seasonality of park tree GPP, but there is
potentially a challenge for process-based models (JSBACH,
SUEWS) to accurately simulate the onset of tree greening in
spring compared to remote-sensing-based models (diFUME,
VPRM). On the other hand, there were larger differences be-
tween the Reco simulations over both trees and lawns, as well
as lawn GPP. However, in situ observations showed that all
models underestimated the high lawn Reco values in spring
and summer, with the effects of grass mowing most likely
being a factor that could not be captured by any model. The
annual NEE estimates of the models agreed that, on average,
park lawns acted as CO2 sources and tree-covered park ar-
eas acted as CO2 sinks during the simulation period, with the
exception of diFUME, which simulated both trees and lawns
as CO2 sources. When compared to the anthropogenic CO2
emissions, the simulated monthly NEE and its uncertainties
were a considerable fraction of the net urban emissions dur-
ing the vegetation growing period, reaching its maximum im-
pact in late spring, with NEE being 10.8 % and its uncertainty
being 10.2 % of the net CO2 balance.

Overall, the results of this study do not provide a clear
indication of the superiority of sophisticated process-based
models, such as JSBACH, over simple light use efficiency
models, such as VPRM, in simulating the dynamics of CO2
fluxes in urban parks. However, this study is restricted to ur-
ban park vegetation, and the presented results cannot be eas-
ily generalized to other urban environments, such as vege-
tated urban canyons. Further research is needed to obtain a
full understanding of the model applicability and efficiency
across the wide heterogeneity of urban areas. The main lim-
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itation towards a more thorough model evaluation is the lack
of urban in situ observations, mainly due to the technical,
methodological, and logistical challenges of deriving rep-
resentative observations across urban vegetation. More de-
tailed, frequent, and spatially extended in situ observations
would be necessary for a full assessment of model appli-
cability. Specifically, grass chamber observations with clear
and opaque chambers and even long-term continuous instal-
lations would be ideal to evaluate the model performance to
simulate park lawn GPP, Reco, and NEE. However, precau-
tions must be taken in the design and implementations of
such observations to avoid changing the microenvironment
of the observation site and to allow the normal management
procedures to be applied (e.g. mowing) so that the observa-
tion sites would still be representative of the park conditions.
Regarding CO2 exchange at tree scale, sap flow observations
are a promising method to monitor tree physiological be-
haviour despite the application challenges. The extreme het-
erogeneity of tree species, age, and environmental conditions
of the urban areas remains a huge challenge for urban model
evaluation studies.

Appendix A: Model architecture and process
representation

Figure A1. Process flow diagram of diFUME. A detailed description of the model can be found in Stagakis et al. (2023b).
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Figure A2. Process flow diagram of JSBACH. A detailed description of the model can be found in Reick et al. (2013).

Figure A3. Process flow diagram of SUEWS. A detailed description of the model can be found in Järvi et al. (2011, 2019).

Figure A4. Process flow diagram of VPRM. A detailed description of the model can be found in Mahadevan et al. (2008).
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Table A1. Overview of the main equations used by each model to estimate gross primary production (GPP), ecosystem respiration (Reco),
and phenology. The original notation of each model was preserved to facilitate the comparison with the relevant publications and the flow
diagrams. The parameters of the equations are explained in the Supplement. The detailed descriptions of each model can be found in the
respective references provided in Sect. 2.3.

GPP Reco Phenology

diFUME GPP=
n∑
i=1

[
LAIsun,iAo

(
1− exp(−aPARsun,i/Ao)

)
+

LAIshade,iAo
(
1− exp(−aPARshade,i/Ao)

) ]
Ao = Amaxf (Tair)f (VPD,θ)
f (Tair)= exp

[
−
(
Tair− Topt

)2
/2W2

]
f (VPD,θ) based on

gs =

(
go+ a1

Anetf (Tair)(
1+VPD

Do

)
(cs−0)

)(
1− (θref−θ)

b1

(θref−θg)
b1

)

Reco = LAIDscRl + λsoilRS,ref exp

[
E0

( 1
Tref,S−T0

−

1
Tsoil−T0

)]
[
(θ−θ0)

b

(θref−θ0)
b

]
Rl = Rl,refQ

Tair−Tref,l
10

10

LAI derived by Copernicus High Resolution Vegetation Phenol-
ogy and Productivity (HR-VPP) product

JSBACH Due to the complexity of the full Farquhar et al. (1980) model
implementation in JSBACH, only an outline is provided here.
GPP= LAIAstress
Astress =min

(
JC,stress,JE,stress

)
− rd

g
H2O
L,stress = fwsg

H2O
L

Reco = Rm+Rg+Rh
Rm = LAIrd/fleaf
Rg = (CC− 1)NPP, when NPP > 0
CC=

(
NPP+Rg

)
/NPP

Rh = (1− ffaeces)Fgrazing+ khCh+Fsoil

dLAI
dt = kLAI

(
LAI

LAImax

)
−pLAI

SUEWS Fpho =
∑
i

(friFpho,max,iLAIi)g(Tair)g(1q)g(1θ)g(K↓)

g (Tair)=
[
(Tair− TL)(TH− Tair)

TC
]
/
[
(G5− TL)(TH−G5)

TC
]

TC = (TH−G5)/(G5− TL)

g (1q)=G3+ (1−G3)G
1q
4

g (1θ)=
[
1− exp(G6(1θ −1θWP))

]
/
[
1− exp(−G61θWP)

]
g
(
K↓
)
=
[
K↓/(G2+K↓)

]
/
[
K↓max/(G2+K↓max)

]

Fres =
∑
i

frimax(ai exp(Tairbi),0.6) LAId,i =



min(LAImax,i ,LAI
ω1,GDD,i
d−1,i GDDd,iω2,GDD,i

+LAId−1,i),
leaf-on,Tbase,GDD,i < Td−1
max(LAImin,i ,LAI

ω1,SDD,i
d−1,i SDDd,iω2,SDD,i

+LAId−1,i),
leaf-off,Td−1 < Tbase,SDD,i

VPRM GEE= (λTscaleWscalePscale)EVI
[
1/(1+PAR/PAR0)

]
PAR

Tscale = (T − Tmin)(T − Tmax)/
[
(T − Tmin)(T − Tmax)

−
(
T − Topt

)2]
Wscale = 1+LSWI/(1+LSWImax)
Pscale = (1+LSWI)/2

Reco = αT +β
T = Tlow, if T ≤ Tlow

Sentinel-2 vegetation indices
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Appendix B: Comparison between in situ observations
and modelled parameters

Figure B1. Time series of daily (a) modelled and observed tree leaf area index (LAI) by diFUME, JSBACH, and SUEWS together with EVI
estimates by VPRM; (b) lawn LAI by diFUME, JSBACH, SUEWS, and VPRM lawn EVI; (c) observed and modelled soil water content in
the lawns by diFUME, JSBACH, and SUEWS together with the Land Surface Water Index (LSWI) by VPRM. In panel (b), the dotted line
shows the original diFUME LAI before the upper threshold of 3 m2 m−2. All datasets are averaged between the four parks, except tree LAI,
where only Bullingerhof and Hardaupark are used.
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Figure B2. Scatterplots between (a) observed and modelled tree leaf area index (LAI), (b) normalized observed and modelled soil water
content (SWC) of lawns, (c) observed and modelled tree gross primary production (GPP), and (d) observed and modelled lawn ecosystem
respiration (Reco). The 1 : 1 lines are thick black lines, and the linear fits for each model are presented with its respective colour. The
evaluation metrics of the comparisons are presented in the Taylor diagram (Fig. 6). For the conversion of VPRM EVI to LAI, VPRM LSWI
to SWC, and tree sap flow observations to tree GPP, see Sect. 2.5.
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