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Abstract. Wildfires impact vegetation mortality and produc-
tivity and are increasing in intensity, frequency, and spa-
tial area in the western United States. The rates of vege-
tation recovery after fires play a major role in the reestab-
lishment of biomass and ecosystem functioning (e.g., struc-
ture, resilience, and productivity), but such recovery rates are
poorly understood. Here we use remotely sensed data prod-
ucts from the Moderate Resolution Imaging Spectroradiome-
ter (MODIS) to quantify the resistance and resilience of leaf
area index (LAI), gross primary production (GPP), and evap-
otranspiration (ET) to 138 wildfires of various burn severity
across the Columbia River basin (CRB) of the Pacific North-
west in 2015. Increasing burn severity caused lower resis-
tance and resilience for all three variables. Resistance and
resilience are highest in grasslands, intermediate in savanna,
and lowest in needleleaf evergreen forests, consistent with
the adaptation of these vegetation types to fire. LAI has con-
sistently lower resistance and resilience than GPP and ET,
which is consistent with physical and physiological mech-
anisms that compensate for reduced LAI. Resilience is in-
fluenced by precipitation, vapor pressure deficit (VPD), and
burn severity across all three vegetation types; however, burn
severity plays a more minor role in grasslands. Increasing
wildfire severity will reduce the resistance and resilience
and lengthen the recovery time of vegetation structure and
fluxes with climate change, with significant consequences for
the provision of ecosystem functioning and implications for
model predictions.

1 Introduction

While agricultural activity changes reduce the global burned
area (Andela et al., 2017), climate change increases the fre-
quency and severity of wildfires (Burton et al., 2024; Jones et
al., 2020; Pechony and Shindell, 2010). The western United
States is experiencing increasing numbers of fire events, with
the growth in burned areas and number of severe fires over
the past 40 years (Juang et al., 2022; Parks and Abatzoglou,
2020; Schoennagel et al., 2017; Westerling, 2016). Wildfires
cause large impacts on ecosystem carbon and water cycles
that last for decades (Adams et al., 2012; Bart et al., 2020).
They change ecosystem structure and species composition,
and they modify soil properties, resource availability, the
energy budget, and carbon storage (Anderegg et al., 2022;
Bart et al., 2020; Lasslop et al., 2020; Turner, 2010). These
changes manifest in vegetation-driven hydrologic changes in
evaporation, transpiration, canopy interception, and they in-
directly alter infiltration, runoff, groundwater recharge, and
streamflow (Adams et al., 2012; Partington et al., 2022). The
ecohydrological impacts of wildfires are expected to increase
due to the consistently observed (Williams et al., 2019) and
predicted (Rammer et al., 2021; Wimberly and Liu, 2014)
increase in wildfire frequency and severity under climate
change.

A primary mechanism underlying the ecohydrologic
changes from wildfire is the loss of ecosystem-scale leaf area
i.e., leaf area index (LAI) (Shrestha et al., 2024), that reduces
gross primary production (GPP) and evapotranspiration (ET)
through the loss of photosynthetic and transpiring surface
area and microclimate shifts (Collar et al., 2021; Li et al.,
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2018; Hu et al., 2008). The scale changes in LAI, GPP, and
ET cascade down to numerous consequences, including re-
duced carbon storage and altered streamflow (McDowell et
al., 2023; Seidl et al., 2014). Regional studies indicate that
fire severity and post-fire plant community composition are
essential to the spatial and temporal variations in ET (Col-
lar et al., 2021; Poulos et al., 2021), where GPP and ET are
tightly coupled in determining the ecohydrological processes
(McDowell et al., 2023).

Resistance and resilience are the two metrics broadly used
in ecology to evaluate recovery after disturbances. Resis-
tance represents the ability of an ecosystem to withstand dis-
turbance, while resilience represents the capacity of a sys-
tem to recover its structure and function after a disturbance
(Holling, 1973). Previous studies have used ecosystem traits,
such as diameter at breast height, canopy height, live saplings
(Proença et al., 2010), individual survival in fire, and pre-
and post-fire bark thickness (Rodman et al., 2021), to esti-
mate resistance and resilience due to fire-induced disturbance
in forest plots. Wu and Liang (2020) explore both fire- and
drought-determined resilience using two LAI products in dif-
ferent biomes at the global scale, suggesting the highest re-
silience in evergreen broadleaf forest. A study based on the
continental United States implies that higher burn severities
are consistently correlated with greater reductions in the ET-
to-precipitation ratio (ET / P ), while the biggest magnitude
of ET changes and percent of ET / P reductions often occur
in evergreen forests and in shrublands (Collar et al., 2021).
Using the Moderate Resolution Imaging Spectroradiometer
(MODIS) GPP product, a Hurricane Rita-based study sug-
gests the difference in GPP recovery rates and resilience in-
dex between different vegetation types (Frazier et al., 2013).
All these studies provide profound insights into disturbance
impacts on ecosystem changes and regrowth (Albrich et al.,
2020; DeSoto et al., 2020), implying that different vegeta-
tion types (VTs) may have different resistance and resilience
determined by various disturbance intensity.

There have also been studies on the ecosystem-scale im-
pacts and recovery of wildfires by using several different
variables characterizing the ecosystem features (Jin et al.,
2012; Mills et al., 2015). For example, a boreal-forest-based
study indicates that aboveground biomass recovers more
slowly than LAI and GPP, while GPP recovers more quickly
than LAI (Yu et al., 2023). Using different MODIS products,
Marcos et al. (2023) show that vegetation and soil water con-
tent has a higher resistance but slower and more gradual re-
coveries than production. In general, the recovery processes
can be regulated by post-fire environmental conditions. For
example, using a predictive machine learning model of time
to recover, Rifai et al. (2024) reveal that the leaf area recovery
of forests is strongly accelerated by a high post-fire precip-
itation anomaly. Currently, the immediate change and post-
fire recovery of different ecosystem features (i.e., LAI, GPP,
and ET) caused by the same fire events and their interactions
with various burn severities (e.g., different burn severity cat-

egories; Eidenshink et al., 2007) have not been thoroughly
quantified and compared, particularly at large scales (e.g.,
in river basins). Furthermore, the influence of environmen-
tal factors on post-fire ecosystem recovery, as characterized
by LAI, GPP, and ET, remains inadequately quantified. This
lack of clarity is closely linked to the uncertainties in predic-
tions made by Earth system models (ESMs; Lawrence et al.,
2016). Thus, it is essential to evaluate the post-fire carbon and
water fluxes, which are essential to ecosystem recovery (i.e.,
returning to pre-fire carbon storage levels; Sun et al., 2020)
and water resources (e.g., transpiration, streamflow; McDow-
ell et al., 2023), respectively. An improved understanding of
LAI, GPP, and ET responses to wildfire can benefit ESMs in
term of reducing prediction uncertainties of wildfire impacts
on the carbon and water cycles.

This study aims to comprehensively investigate the post-
fire ecosystem features (e.g., canopy carbon status versus the
carbon and water fluxes) characterized by resistance and re-
silience in the featured VTs of the Columbia River basin
(CRB) across 138 fires with different burn severities in 2015.
Previous studies document the findings regarding the differ-
ent recovery features between VTs (DeSoto et al., 2020),
the varied recovery features characterized by different vari-
ables (e.g., LAI, GPP, and ET) (Marcos et al., 2023; Yu et
al., 2023), and the different responses of GPP to various en-
vironmental factors across VTs (Lu and Yan, 2023). Based
on the existing research, we plan to test four research hy-
potheses: (1) higher burn severity results in lower resistance
and resilience represented by all the three metrics across all
the VTs; (2) with the same burn severity, resistance and re-
silience are highest in grasslands, intermediate in savanna,
and lowest in forests; (3) across all VTs, resistance and re-
silience are highest for GPP and ET and lowest for LAI, a key
factor determining GPP (Saigusa et al., 2005); and (4) precip-
itation and vapor pressure deficit (VPD) are more important
to the resilience in grassland than in other VTs.

To test these hypotheses, we use the MODIS LAI, GPP,
and ET products to quantify fire-induced changes in resis-
tance and resilience, and the random forest feature impor-
tance method (Breiman, 2001) is used to investigate climate
(e.g., precipitation, VPD) dependency. Here, we simultane-
ously and quantitatively examine the responses of LAI, GPP,
and ET to fire disturbances by applying the resistance and
resilience quantification framework discussed in DeSoto et
al. (2020) to the MODIS products in relation to burn sever-
ity and VTs (e.g., forests, savanna, and grasslands) across the
CRB in the Pacific Northwest, USA. Given that the impacts
of wildfires are expected to intensify in the CRB (Halofsky et
al., 2020; Wimberly and Liu, 2014) and globally (Andela et
al., 2017; Bowman et al., 2020; Jones et al., 2024), quantify-
ing fire impacts is essential for both ecosystems and society.
The research framework of this study can be broadly applied
to quantify wildfire-induced ecosystem responses and eval-
uate the impacts of wildfires as revealed by different data
products and represented by ESMs.
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2 Methods

The analyses are performed at spatial resolutions of 500–
1000 m, and our research time frame is 2011–2020, which is
centered around the time of maximum fire occurrence in the
CRB in 2015. We use (1) the MODIS land cover type (LCT;
Sulla-Menashe and Friedl, 2018) to identify surface VTs;
(2) the burn severity product from the Monitoring Trends in
Burn Severity (MTBS) program to classify the location and
severity of fires (Eidenshink et al., 2007); (3) the meteoro-
logical data from ECMWF Reanalysis Version 5 (ERA5) to
quantify annual variation in climate (Hersbach et al., 2020);
and (4) the MODIS LAI (Myneni et al., 2002), GPP, and ET
products (Running et al., 2004) to assess the ecosystem resis-
tance and resilience due to fire disturbance. To interpret the
essential factors controlling the resilience of different VTs,
the random forest feature importance method is used to as-
sess the importance of precipitation, VPD, and burn severity
to the resilience values in 2020 represented by LAI, GPP, and
ET. All the data and scripts for data processing are publicly
available in the Environmental System Science Data Infras-
tructure for a Virtual Ecosystem (ESS-DIVE) repository (Shi
et al., 2025).

2.1 Characterizing surface vegetation types

In this research, we use the annual 500 m MODIS LCT
dataset, MODIS MCD12Q1 version 6.1 (Sulla-Menashe and
Friedl, 2018; Friedl and Sulla-Menashe, 2022), to identify
the surface VT (Supplement Table S1). The VT map in 2015
shows that needleleaf evergreen forest (NEF), woody sa-
vanna (WDS), grassland (GL), and cropland (CL) are the
four dominant vegetation cover types over the CRB (Fig. S1
in the Supplement), and we study the impacts of wildfire over
the NEF, WDS, and GL VTs.

2.2 Identifying the 2015 fire events

We identify all the 2015 fire events in the CRB in order
to have sufficient data pre- and post-fire for calculating re-
sistance and resilience and because 2015 is an extreme fire
year in this region. MTBS (since 1984) maps burn extent and
severity across the United States (Eidenshink et al., 2007;
Picotte et al., 2020). It includes all fires ≥= 4.05 km2 in
the western United States, where burn severity is quantified
as a visible alteration of vegetation, dead biomass, and soil
that occurs within a fire perimeter (Eidenshink et al., 2007).
Changes in vegetation status and biomass resulting from fires
were assessed using the Composite Burn Index (CBI). These
changes are also correlated with remotely sensed estimates
such as the differenced Normalized Burn Ratio (dNBR), a
metric measuring the difference between pre- and post-fire
NBR images (Eidenshink et al., 2007). The burn severity
product from MTBS is widely used as a viable estimate of

burn severity within certain ecosystems in the United States
(Cansler and McKenzie, 2012; Picotte et al., 2020).

The MTBS products include burn perimeters and burn
severity, and we use the burn severity categories to identify
fires and their features (e.g., burned area, burn severity) over
the CRB. The MTBS mapping primarily relies on the differ-
enced normalized burn ratio (dNBR) algorithm and LandSat
imagery in the near-infrared and shortwave infrared bands
(Eidenshink et al., 2007). The same dNBR algorithm is ap-
plied to different VTs. Differenced NBR images – where
post-fire NBR is subtracted from pre-fire NBR – are known
as dNBR images. These dNBR images illustrate fire-related
changes, which are categorized into severity classes, provid-
ing an unbiased foundation for analyzing additional fire ef-
fects (Eidenshink et al., 2007). The MTBS data are at a 30 m
spatial resolution and upscaled to the 500 m spatial resolu-
tion for the comparison with the MODIS data products (Ta-
ble S1). MTBS employs different integers to indicate burn
severity categories, with values ranging from 1 to 4 repre-
senting unburned, low, moderate, and high severity, respec-
tively. Consequently, the upscaling processes using the area-
average remapping method produce floating-point numbers.
Here, the numbers and meanings of burn severity values be-
fore and after the regroup are in Table S2. Based on this
regroup method, the fire events and their burn severity in
the CRB are shown in Fig. S2. To identify the vegetation
type where each fire event occurred, we apply the MTBS fire
boundary (i.e., shape) files, which describe the perimeter of
each fire event, to the VT map (Fig. S1). We use the dom-
inant VT of each fire event, defined as the VT whose area
accounts for more than 50 % of burned area for that event, to
identify the representative landscape type of each fire event
(Fig. S2b). This analysis aims to comprehend which VT(s)
are predominantly affected by fire events across the CRB
(Fig. S2b). However, to precisely estimate the resistance and
resilience of different VTs, we explicitly consider the VTs
and their changes characterized by LAI, GPP, and ET in each
data pixel of each fire event (see more details in Sect. 2.4).
During the fire season of 2015, 138 fire events are identified.
In all these burned areas, we remove the areas that experi-
enced fire in 2011–2014 or in 2016–2020; thus, our resis-
tance and resilience calculations are not confounded by re-
peat fires.

2.3 Interannual climate

We quantify interannual climate throughout the study region
to determine if our resistance and resilience estimates were
influenced by climatic variation. Here, we use precipitation,
surface air temperature, and vapor pressure deficit (VPD)
from ERA5 (2011–2020; Hersbach et al., 2020). The dataset
is originally at the 30 km spatial resolution, and we use the
nearest-neighbor method to downscale the data to the 500 m
spatial resolution to match the spatial resolutions of other
datasets (e.g., MODIS) of this study. The 10-year mean pre-
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cipitation and surface air temperature are shown in Fig. S3.
We then use the MODIS LCT suggested VT and MTBS burn
severity information in each 500 m data pixel to group pre-
cipitation, surface air temperature, and VPD within each fire-
disturbed region to their respective VT and then averaged the
grouped climate variables for each VT. The specific process
is the same to the MODIS LAI, GPP, and ET grouping, and
more details of this method are introduced in the data de-
scription of MODIS data products of LAI, GPP, and ET.

2.4 Quantifying LAI, GPP, and ET

We use the MODIS LAI product at the 4 d interval and 500 m
spatial resolution (Myneni et al., 2002) and the MODIS GPP
and ET products at the 8 d interval and 1000 m spatial res-
olution (Running et al., 2004), which was downscaled to
the 500 m spatial resolution by using the nearest-neighbor
method. To identify LAI, GPP, and ET changes among dif-
ferent VTs and burn severity categories, we apply the MTBS
boundaries and MODIS LCT suggested VTs to the MODIS
LAI, GPP, and ET products. To ensure the calculation ac-
curacy, we evaluate the variations in these metrics by using
MODIS VT pixels within the fire boundaries to group these
variables based on VTs and calculated the means for the
same VTs across all the fire boundaries. Specifically, within
each MTBS fire boundary, the MODIS VT information for
each data pixel is used to derive different VT-determined
LAI, GPP, and ET changes in the corresponding MODIS data
pixels (Table S1). We then average the LAI, GPP, and ET
of the same VT and with the same burn severity across all
the 500 m MODIS data pixels. As discussed above, ERA5
precipitation and temperature data are also grouped between
different VTs by using this method. Thus, instead of consid-
ering the dominant VT in each fire boundary, we accurately
perform the calculation, which could avoid the errors associ-
ated with the weights of each VT in different fire boundaries.
All the abovementioned calculations are performed during
2011–2020.

2.5 LAI-, GPP-, and ET-based resistance and resilience
calculations

Following DeSoto et al. (2020), we define resistance and re-
silience as

resistance=
A2016

A2011–2014
, (1)

resilience=
A2017–2020

A2011–2014
, (2)

where A represents the ecohydrological variables, LAI, GPP,
and ET, used in this study, and the specific years are indi-
cated in Eqs. (1) and (2). We exclude 2015 values of LAI,
GPP, or ET in the calculations because the fires happened
mid-way through the growing season (Fig. S4); thus the 2015
values include both pre- and post-fire, making them inappro-

priate for resistance and resilience calculations. Given that
resilience could exhibit interannual variations due to climate
variations (e.g., DeSoto et al., 2020), we also calculate re-
silience for each individual year for all the VTs with various
burn severity levels. DeSoto et al. (2020) define recovery as
the condition following a disturbance compared to the con-
dition in the year when the disturbance occurred, which can
be represented by the following equation:

recovery=
A2017–2020

A2016
. (3)

Thus, the primary distinction between resilience and recov-
ery lies in the reference conditions: pre-fire versus the dis-
turbed conditions. Resilience is defined as the capacity of a
system to recover its structure and function after a distur-
bance (Holling, 1973). To ensure clarity in our discussions
of recovery status, we use the term resilience throughout this
study.

We use LAI, GPP, and ET observations from the grow-
ing season, which we defined as days with values larger than
30 % of the annual maximum. This threshold number can be
tweaked (Shi et al., 2020), and we choose to use this value
to avoid the MODIS data uncertainty during snow seasons
and minimize data noises. To avoid any error associated with
using only a single observation, we identify the annual peak
value and then averaged that value with records from the pre-
vious and subsequent 8 d to generate the annual maximum
value. This means that, for MODIS LAI, with the 4 d tempo-
ral resolution, we average five contiguous records centered
around the peak value. For MODIS GPP and ET, with the
8 d temporal resolution, we average three records: one be-
fore the peak, the peak itself, and one after the peak. To
obtain the start and end of the growing seasons, we calcu-
late the four-record running mean (i.e., 16 d) of LAI and the
two-record running mean (i.e., 16 d) of GPP and ET over the
entire year. The start of each year’s growing season is deter-
mined when the running mean exceeds 30 % of the annual
maximum value, and the end of the growing season was cal-
culated when the running mean dropped below 30 % of the
annual maximum. The growing season length based on dif-
ferent vegetation types with varied burn severity is shown in
Fig. S5.

2.6 Random forest feature importance

To interpret the factors controlling resilience of different
VTs, the random forest feature importance method (Breiman,
2001) is implemented using the scikit-learn package in
Python. Random forest uses a large collection of decision
trees to predict the target variable based on its relationship
with a specified set of input features. Each tree learns from a
randomly chosen subset of samples and features, while the
final prediction is made by averaging predictions from all
trees. Furthermore, the algorithm reports the relative impor-
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tance of input features by considering the reduction in impu-
rity achieved by each feature during tree construction.

For this analysis, the random forest was trained with a set
of input features that include burn severity in 2015 and total
precipitation and mean VPD between 2017 and 2020 for each
grid in the burned areas. Nine separate models were trained
to predict three target variables: resilience for LAI, GPP, and
ET in the year 2020 for NEF, WDS, and GL. The number
of samples in NEF, WDS, and GL were 11 881, 15 684, and
26 840, respectively.

Random forest hyperparameters, such as the number of
trees and number of features considered at splitting, were
predefined before model training. Here, the number of trees
was set to 100. The GridSearchCV algorithm from the scikit-
learn package was applied to 85 % of randomly chosen sam-
ples to find the optimal number of features considered at
splitting, and it was determined to be 1. Model training and
testing were performed by splitting the samples randomly
with 85 % in training and 15 % in testing. The random forest
model was trained 100 times by performing 100 randomized
splits to reduce any bias from splitting, where the experimen-
tal design with the model trained 100 times was well tested
by previous studies (Juarez-Martinez et al., 2023; Sadler et
al., 2018). From the 100 trained models, the distribution on
train and test R2 scores was obtained and the relative impor-
tance for each feature was averaged.

3 Results

3.1 The meteorological conditions and burn severity in
the CRB

The MTBS- and VT-based analysis shows that August is the
month with the highest fire frequency in 2015 with 91 fire
events (Fig. S2a), where NEF experiences 42, WDS experi-
ences 27, and grassland experiences 67 fire events, respec-
tively (Figs. S1 and S2b). The northern CRB experiences a
higher incidence of forest fires, whereas the southern CRB is
mainly affected by grassland fires (Figs. S1, S2c, and S2c).
There are two fire events in croplands, which were excluded
from further analysis.

The mean precipitation and surface air temperature
over the Columbia River basin are 789± 63 mm yr−1 and
5.7± 0.7 °C during 2011–2020 (Fig. S3). The spatial pat-
tern of precipitation and surface air temperature suggests
relatively warmer and drier conditions in the southern part
of the basin, where the areas are mostly covered by grass-
land (Fig. S1). The western and northeastern areas of
the basin have higher precipitation, ranging from 700 to
1300 mm yr−1, and lower air temperatures, ranging from
−3.0 to 11.0 °C (i.e., from the northernmost part to the
central–southern part of the CRB; Fig. S3b). These areas
have a greater proportion of NEF and WDS (Figs. S1 and
S3). We further examine the climate for each of the 138 fire

locations broken into the three vegetation types. Climate con-
ditions in 2015, the year of high fire activity, are particularly
dry and warm across all vegetation types. There is no sig-
nificant difference in mean annual precipitation and surface
air temperature between 2011–2014 and 2016–2020 (Fig. S4
and Table S3). Therefore, climate variations are not con-
founding resistance and resilience calculations.

3.2 LAI, GPP, and ET 2011–2020

Wildfires reduce LAI, GPP, and ET below the pre-fire mean
in all VTs at the highest burn severity (herein Sburn; Sburn > 3;
Fig. 1; we present results for Sburn below 3 in Fig. S7 and Ta-
ble S2). The 2011–2014 growing season mean LAI values
are 1.87± 0.10, 1.47± 0.04, and 1.16± 0.03 m2 m−2 over
NEF, WDS, and GL, respectively. The growing season LAI
has an increasing trend from 2016 to 2020 in all the VTs,
with 2020 values of 1.18, 1.04, and 0.88 m2 m−2 for NEF,
WDS, and GL, respectively (Fig. 1a). GPP and ET patterns
are similar to those of LAI, with the highest values during
2011–2014 and the lowest values in 2016. GPP and ET in
2020 are not back up to the mean 2011–2014 values (Fig. 1b
and c). Similar but less dramatic declines in LAI, GPP, and
ET are observed in the lower burn severity classes (Table S2
and Fig. S7). We also calculate the standard error across the
burned pixels of each VT by using all three metrics, i.e., LAI,
GPP, and ET (Figs. 1 and S7). The ratio between the standard
error and the spatial mean is highest when Sburn > 3, and this
ratio decreases with burn severity. This ratio also tends to de-
crease with ecosystem complexity, with the highest values in
NEF and the lowest values in GL (figure not shown), and its
ranges across the three VTs are 0.067–0.072 for LAI, 0.090–
0.100 for GPP, and 0.067–0.80 for ET, respectively, where
the lower bounds consistently represent the values for GL.
These results indicate relatively high spatial variations in all
the three metrics when burn severity increases, and, in the
same burn severity category, the spatial variations in LAI are
smaller than those in GPP and ET (Figs. 1 and S7).

3.3 LAI, GPP, and ET resistance and resilience to
wildfire

We first present wildfire resistance and resilience for each
VT (using Eqs. 1 and 2) across the burn severity categories
and present the results as a function of time further below.
Resistance to wildfire declines with increasing burn severity
values for LAI, GPP, and ET, and it is highest for GL, in-
termediate for WDS, and lowest for NEF VTs, regardless of
response parameter (i.e., LAI, GPP, or ET; Fig. 2a, c, and
e). Resilience to wildfire, calculated as the average resilience
value from 2017–2020, is lower with higher burn severity for
LAI, GPP, and ET (Fig. 2b, d, and f). Like the patterns of
resistance values, resilience is highest for GL, intermediate
for WDS, and lowest for NEF. GL resilience is near 1 for all
three variables in GL when burn severities are below 2.
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Figure 1. The growing season (a) LAI, (b) GPP, and (c) ET vari-
ation over needleleaf evergreen forests (NEF), woody savannas
(WDS), and grasslands (GL) with burn severity > 3 during 2011–
2020. See Fig. S7 for these results for fires with burn severities less
than 3. The standard errors are included on the bars to represent the
data variability across data pixels of different VTs.

Resistance and resilience calculated at the annual scale us-
ing Eqs. (1) and (2) show the responses of LAI, GPP, and ET
relative to each other (Fig. 3; Sburn > 3 shown; Sburn values
below 3 are shown in Figs. S8–S10). Within each VT, resis-
tance and resilience are similar for GPP and ET and are lower
for LAI. Resistance and resilience increase for all parameters
with lower burn severities (Figs. S8–S10) and are lowest for
NEF, intermediate for WDS, and highest for GL VTs. The
standard errors obtained from the resistance and resilience
values across different pixels indicate that LAI suggested re-
sistance and resilience have relatively smaller spatial varia-
tions than those represented by GPP and ET. Given that re-
silience is closely related to water availability and burn sever-
ity (Fig. 4 and the description below), the resilience under
the same burn severity shows similar interannual variability

(Fig. 3). Furthermore, the recovery capability (i.e., resilience)
is similar for NEF and WDS when they are disturbed by the
same burn severity (Fig. 3a and b).

To examine the drivers of the interannual variation in re-
silience characterized by LAI, GPP, and ET, we use the ran-
dom forest feature importance method to identify the con-
tributions of precipitation, VPD, and burn severity to influ-
encing ecosystem resilience. Burn severity is more impor-
tant for NEF and WDS VTs than for GLs (Fig. 4). In NEF,
precipitation and VPD have importance scores of 0.3 for
LAI resilience, while that of burn severity is 0.4 (Fig. 4a).
Similarly, in WDS, the importance scores of precipitation
and VPD are 0.28 and 0.29, while that of burn severity is
0.43 (Fig. 4b). Precipitation and VPD have relatively simi-
lar importance scores within VTs but were higher for GLs.
In GL, the scores of precipitation, VPD, and burn severity
to LAI-represented resilience are 0.43, 0.40, and 0.16, which
shows the reduced importance of burn severity to GL. The
importance scores for GPP- and ET-represented resilience
show variations. However, the overall conclusion regarding
the contributions of these three metrics to resilience values
remains consistent across the VTs. The train and test scores
of different resilience values are included in Fig. S11. The
median R2 scores for train and test datasets over 100 iter-
ations ranged between 0.68–0.71 and 0.62–0.67, 0.61–0.66
and 0.54–0.61, and 0.57–0.68 and 0.57–0.64 for LAI, ET,
and GPP, respectively, for the three VTs. As the median R2

scores for train and test datasets are close, this suggests the
model is not significantly overfitting and learning the under-
lying patterns in the dataset (Yang et al., 2024; Yildirim et
al., 2021).

4 Discussion

This study examines the immediate impacts and subsequent
recovery of vegetation to 138 CRB wildfires in 2015 with
multiple burn severity levels by using remotely sensed met-
rics of LAI, GPP, and ET within a formal resistance and re-
silience framework (DeSoto et al., 2020). The random for-
est feature importance algorithm is used to quantify the con-
tributions of different factors, i.e., precipitation, VPD, and
burn severity, to resilience. This study quantitatively assesses
the post-fire resistance and resilience determined by differ-
ent MTBS burn severity categories in different VTs through
simultaneously using the three MODIS products (i.e., LAI,
GPP, and ET). Overall, resistance and resilience reductions
are closely related to burn severity increase, which matters
more to the forest VT. Resilience is influenced by precip-
itation, VPD, and burn severity across all three VTs; burn
severity plays a more important role in the resilience of for-
est and savanna VTs, while precipitation and VPD are more
essential to the resilience of grassland.
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Figure 2. LAI (a) resistance and (b) resilience, GPP (c) resistance and (d) resilience, and ET (e) resistance and (f) resilience in needleleaf
evergreen forests (NEF), woody savannas (WDS), and grasslands (GL) with different burn severities (Table S2). Resistance is calculated
using the 2016 data. The 2016 resistances are the same as those shown for Sburn > 3 in Fig. 3 and are retained here to show the trends. The
resilience calculation uses the mean of 2017–2020. The standard errors are included to represent the data variability across data pixels.

4.1 Burn severity controls on ecosystem recovery

In all the studied VTs with burn severity larger than 3, the
ecosystem status (i.e., LAI) and fluxes (i.e., GPP and ET) did
not recover to pre-fire conditions within the post-fire study
period (Fig. 1). Figure 2 also shows that the increase in burn
severity will reduce resistance and resilience across all the
VTs, implying the lengthened recovery time of vegetation
structure and fluxes. Among the three VTs, resistance and
resilience are highest in grasslands, intermediate in woody
savanna, and lowest in needleleaf forests. By exploring plant
diversity and measured productivity across a variety of grass-
land sites in Europe and North America, Isbell et al. (2015)
demonstrated full recovery 1 year after some drought dis-
turbances. These trends can be attributed to the evolution
of ecosystems to tolerate various disturbances, where grass-
lands are adapted to more frequent fires and droughts in part
through resprouting from their extensive root systems and
can regrow leaf area far more rapidly than forests (Ratajczak

et al., 2014; Isbell et al., 2015). These results support our
first and second hypotheses that (1) higher burn severity re-
sults in lower resistance and resilience across all VTs and,
(2) with the same burn severity, resistance and resilience are
highest in grasslands, intermediate in savanna, and lowest in
forests. Here, we estimate resistance by using the values of
these three metrics in the first post-fire year (i.e., 2016) for
all the VTs. When burn severity is 1, some ecosystems, such
as grasslands, can recover rapidly, and the values in 2016
may exceed those in 2015 or in 2011–2014 (see Fig. S7).
These variations (Fig. S7c, f, and i) are primarily influenced
by the minimum disturbance intensity, which could facilitate
a quick recovery under favorable climate conditions.

It has been suggested by previous studies that severe fires
can induce VT changes and ecosystem degradation (e.g.,
Karavani et al., 2018; Kumar et al., 2024). To further investi-
gate the role of VT changes in ecosystem resilience over the
CRB, we apply the burn severity map (Fig. S2c) to both the
2014 and 2020 VT maps (i.e., the regions without fire dis-
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Figure 3. LAI, GPP, and ET temporal trends in wildfire resistance
(2016) and resilience (years 2017–2020) for (a) needleleaf ever-
green forests, (b) woody savannas, and (c) grasslands with burn
severity (Sburn) larger than 3. The standard errors are included to
represent the data variability across data pixels.

Figure 4. The feature importance of precipitation, VPD, and burn
severity to resilience values in 2020 for LAI (a–c) NEF, WDS, and
GL; GPP (d–f); and ET (g–i).

turbance are excluded), and the results show that, among the
67 090 fire-disturbed data pixels in the CRB, 13 363 (20 %)
NEF, 7832 (12 %) WDS, and 706 (1 %) GL pixels experi-
ence VT changes (Figs. 5 and S12). In other words, most
of the fire-disturbed pixels with VT changes contain wood-
lands. This finding further justified that grasslands are better
adapted to wildfires (Isbell et al., 2015). Figure 2 shows that
the resilience values of WDS are comparable to those of GL
at high burn severities (i.e., Sburn > 3), while, at relatively low
severities, they align more closely with those of NEF. Since
WDS is an ecosystem that combines elements of woodland
and grassland, this result implies that the grass component
can recover quickly even under high burn severity, despite
the potential damage to both trees and grass. Furthermore, it
is shown by previous studies that it can take decades to over
100 years for the recovery of needleleaf trees (e.g., Turner et
al., 2019). Thus, the existing observational time frame (e.g.,
until 2024) is not long enough for quantifying the forest re-
covery, and whether trees can grow back in NEF and WDS is
uncertain. The low resilience values in Fig. 2, especially un-
der high burn severity categories, could also be associated
with fire-induced VT shifts (e.g., tree to grass). One pos-
sible scenario is that, in the next a few decades, NEF will
regenerate, and the dominance of grass will decrease with
the reestablishment of trees, which will compete with grass-
land for light and nutrients. This assumption can be tested
by dynamic global vegetation models (DGVMs), such as the
Energy Exascale Earth System Model Land Model (ELM-
FATES; Koven et al., 2020), which can be used to perform
long-term simulations. Thus, using DGVMs to further un-
derstand the post-fire vegetation dynamics in the CRB and
other regions with similar climate conditions could be our
future research direction.

4.2 The interactions between the carbon pools and
ecosystem fluxes

In all the resistance and resilience calculations based on dif-
ferent MODIS products, LAI has the lowest resistance and
resilience values, whereas GPP and ET have similar val-
ues (Fig. 3). In other words, structure (i.e., LAI, a proxy
of canopy biomass) has lower resistance and resilience than
ecosystem fluxes (i.e., GPP and ET). The results are consis-
tent with the previous studies showing that forests tend to
increase stomatal conductance and hydraulic efficiency, pro-
moting the return of tree-scale transpiration after fires (Nolan
et al., 2014). Cooper et al. (2019) also show the enhanced
transpiration rates for forests with moderate burn severity.
All these findings support the relatively quicker recovery of
GPP and ET than that of LAI.

GPP is an indicator of “ecosystem wellness” (Frazier et
al., 2013), and ET is a water budget component mostly sen-
sitive to vegetation changes (DeBano et al., 1998). The resis-
tance and resilience value differences (Figs. 1, 2, and 3) also
show the different recovery features of these two variables
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Figure 5. The spatial distribution of (a) the burn severity of data pixels experiencing the 2015 fires and (b) the pre-fire (i.e., 2014) VTs in the
corresponding pixels of panel (a). NEF, WDS, and GL represent needleleaf evergreen forest, woody savanna, and grassland, respectively.

in various burn severities and VTs. We acknowledge that
the MODIS GPP and ET products use the MODIS LAI and
fraction of photosynthetically active radiation (fPAR) and the
same meteorological data for their estimates (Running et al.,
2004). Specifically, the MODIS GPP algorithm uses the fol-
lowing to estimate GPP: (1) the MODIS fraction of photo-
synthetically active radiation (fPAR) retrieved at the same
time with LAI, (2) the MODIS daily mean photosynthetically
active radiation (PAR), and (3) the biome-specific radiation
use efficiency parameters that are extracted from the Biome
Property Look-Up Table (BPLUT) and adjusted by the tem-
perature and VPD scalars (Running and Zhao, 2019). The
estimates of MODIS ET use the Penman–Monteith equation,
which considers many environmental factors, including ra-
diation components, air temperature, and relative humidity.
Here, LAI is used to estimate wet canopy resistance to sen-
sible heat and resistance to latent heat transfer, which will be
used to calculate evaporation on wet canopy surfaces (Run-
ning et al., 2019). Thus, the recovery of GPP and ET are also
affected by post-fire environmental factors, which do not re-
spond to burn severity and have large daily, seasonal, and
interannual variabilities. The similar responses of GPP and
ET to fires could be associated with the tight coupling be-
tween these two fluxes, which is governed by stomatal con-
ductance. Stomatal conductance regulates both photosynthe-
sis and transpiration (Knauer et al., 2020; Stoy et al., 2019)
and the correlations between GPP and ET (Running et al.,
2004). Partitioning the contributions of GPP and ET cou-
pling, and the methods used to derive GPP and ET data, is
beyond the scope of this study. Here, our third hypothesis is
supported, and it suggests that resistance and resilience are
highest for GPP and ET and lowest for LAI across all VTs.

4.3 The environmental controls on resilience

It is shown by Lu and Yan (2023) that GPP can decrease with
the increase in VPD in a grassland ecosystem, where this
VPD limitation on GPP is not obviously shown in a nearby
forest ecosystem. Since both precipitation and VPD largely
influence vegetation growth in the semi-arid region, we ex-
plicitly test the fourth hypothesis to further understand the
contributions of environmental factors (i.e., precipitation and
VPD) and burn severity in determining the post-fire ecosys-
tem recovery between VTs. The random forest feature impor-
tance study reveals that precipitation, VPD, and burn severity
have various impacts on resilience represented by different
variables across VTs. Even though burn severity is less im-
portant to grassland resilience (Fig. 4), the forest and savanna
VTs show a stronger influence of burn severity on resilience
in terms of LAI. Together, these results point to the interac-
tion of precipitation, VPD, and burn severity in regulating
ecosystem resilience and the higher and longer-lasting im-
pacts of wildfires on VTs with higher biomass. The results
also show that our fourth hypothesis, anticipating higher im-
portance of precipitation and VPD to resilience in grassland
than in other VTs, is testable. The post-disturbance biotic
factor determining slow recovery of the forest ecosystems is
also identified by Shi et al. (2017), who perform numerical
simulations based on the 2005 Amazonian drought with the
Community Land Model (CLM), revealing the limited influ-
ence of environmental factors to the forest recovery.

The random forest feature importance study implies that
hydraulics are influenced almost equally by water supply
(i.e., precipitation) and demand (i.e., VPD). Here, Figs. 1
and 3 show similar recovery trends across NEF, WDS, and
GL, while Fig. 4 implies various importance scores of dif-
ferent factors in determining water dynamics and burn sever-
ity. We notice the differences in precipitation and tempera-
ture among these three VTs (Fig. S4), with relatively drier
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and hotter conditions in GL, which underscores the role of
climate in shaping the distribution of different VTs (Mather
and Yoshioka, 1968). In other words, the importance scores
highlight the roles of different factors in recovery across VTs,
which adapt to specific environmental conditions (Figs. S1,
S3, and S4) and exhibit their respective recovery rates. Ad-
vanced studies are needed to investigate the varied impacts
of precipitation and VPD on resilience in different ecosys-
tems with various types of disturbance (e.g., droughts and
heat waves), which will further imply ecosystem recovery
capacity and functionality shifts due to disturbance and is
beyond the scope of this study. In addition, the post-fire in-
teractions between LAI, GPP, and ET, and the sensitivity
of these variables to burn severity and environmental fac-
tors during the recovery process, can be further evaluated
by using ESMs. Research toward this direction can be used
to guide model parameterization and enhance process-based
representation in reasonably characterizing impacts of fires
in different ecosystem types in ESMs.

4.4 Data uncertainty and application limitations

It is shown by previous studies that spectral observations
of forests’ canopy characteristics (e.g., leaf area) tend to be
biased, resulting from clouds and aerosols along the mea-
surement pathways (Asner and Alencar, 2010; Samanta et
al., 2013; Xu et al., 2011). Therefore, the application of this
research framework to other regions with fire disturbance,
especially in the tropics with dense vegetation coverage, is
limited by the observational capacity of spectral-based mea-
surements. This also implies that intensified airborne mea-
surements and lidar measurements can be extremely useful
for enhancing the fundamental understanding of ecosystem
processes after disturbances.

5 Conclusions

The results of this study suggest the decrease in resistance
and resilience to burn severity increases and the higher re-
silience of grassland compared to forest and savanna VTs,
which is largely regulated by precipitation and VPD dur-
ing the recovery processes. Our research affirms the findings
from plot-based measurements and shows a strong potential
for using satellite observations to investigate ecohydrologi-
cal processes and resistance and resilience to different types
of disturbance in regions with reasonable data quality con-
trols (i.e., with the remote-sensing quality control flags con-
sidered). The data revealed recovery feature differences be-
tween LAI, GPP, and ET and their variations between VTs,
which, determined by varied burn severity, can largely be
used to interpret fire-induced carbon and water cycle changes
in terrestrial biosphere models (TBMs) and enhance the pa-
rameterization of models. The findings obtained from the
random forest feature importance study can also be used to

guide sensitivity tests (e.g., precipitation perturbation tests)
and advance physical-based understanding in TBMs.

With anticipated hotter and drier fire seasons with ex-
tended duration in the Pacific Northwest according to future
climate projections (Wimberly and Liu, 2014), we expect
that the fire frequency and burn severity of wildfires will in-
crease with the changing climate patterns. This study implies
that, with these changes, some ecosystems may need long
time frames to achieve full recovery. This prolonged recovery
could keep carbon stocks at relatively low levels for decades
to 1 century (Turner et al., 2019) and affect the ecosystem
function and ecosystem–atmosphere interactions (Harris et
al., 2016). Thus, both data-oriented studies and the enhanced
model capacity in reasonably predicting fire frequency and
burn severity and properly characterizing impacts of fires in
different ecosystem types are essential to the research of the
carbon cycle, ecosystem functioning, and climate change.
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