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Abstract. The concentration of particulate organic nitrogen
(PON) in seawater plays a central role in ocean biogeochem-
istry. The limited availability of PON data obtained directly
from in situ sampling methods hinders development of a
thorough understanding and characterization of spatiotem-
poral variability in PON and associated source and sink pro-
cesses within the global ocean. Measurements of inherent op-
tical properties (IOPs) of seawater, which can be performed
over extended temporal and spatial scales from various in
situ and remote-sensing platforms, represent a valuable ap-
proach to address this gap. We present the analysis of re-
lationships between PON and particulate IOPs, including the
absorption coefficients of total particulate matter, ap(λ); phy-
toplankton, aph(λ); and non-algal particles, ad(λ), as well as
the particulate backscattering coefficient, bbp(λ). This analy-
sis is based on an extensive field dataset of concurrent mea-
surements of PON and particulate IOPs in the near-surface
oceanic waters and shows that reasonably strong relation-
ships hold across a range of diverse oceanic and coastal ma-
rine environments. The coefficients ap(λ) and aph(λ) show
the best ability to serve as PON proxies over a broad range
of PON from open-ocean oligotrophic to coastal waters. The
particulate backscattering coefficient can also provide a good
proxy for PON in open-ocean environments. The relation-
ships presented here demonstrate a promising means to as-
sess PON from optical measurements conducted from space-
borne and airborne remote-sensing platforms and in situ au-
tonomous platforms. In support of this potential application,
we provide the relationships between PON and spectral IOPs

at light wavelengths consistent with those used by satellite
ocean color sensors.

1 Introduction

Oceanic organic matter consists of dissolved organic matter
(DOM) and particulate organic matter (POM) constituents
that span a wide range of sizes, from the molecular scale
to large particles suspended in water (Verdugo et al., 2004).
POM, defined operationally as organic material captured on
filters with nominal pore sizes ranging from 0.2 to 0.7 µm, in-
cludes large viruses, bacteria, phytoplankton, and zooplank-
ton as well as detrital material (Riley et al., 1971; Eppley
et al., 1977, 1983; Morel and Ahn, 1991; Stramski et al.,
2004; Kharbush et al., 2020). The elemental composition of
the POM pool is made up of, among other constituents, par-
ticulate organic carbon, nitrogen, and phosphorus. Despite
their important roles in ocean biogeochemistry, observations
of mass concentrations of particulate organic carbon (POC),
particulate organic nitrogen (PON), and particulate organic
phosphorus (POP) obtained from direct measurement meth-
ods are relatively scarce, especially in terms of representing
extended temporal and spatial scales of variability within the
global ocean (Martiny et al., 2013).

To overcome these limitations, the seawater inherent opti-
cal properties (IOPs), such as the spectral particulate beam
attenuation, cp(λ); spectral particulate scattering, bp(λ);
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spectral particulate backscattering, bbp(λ); and spectral par-
ticulate absorption, ap(λ), coefficients, measured in situ or
estimated from spaceborne remote-sensing platforms using
Ocean Color Radiometry (OCR), have been used as proxies
for some ocean biogeochemical parameters, including POC
and the mass concentration of suspended particulate matter
(SPM). All these IOP coefficients are in units of m−1, λ rep-
resents the wavelength of light in a vacuum in units of nm,
the subscript “p” indicates that the IOP coefficients are asso-
ciated with suspended particles in water, and the mass con-
centrations of particulate matter or its organic components
are typically expressed in units of mg m−3. To the first or-
der, the variability in particulate IOPs is driven by the to-
tal concentration of suspended particulate matter as well as
the composition and size distribution of suspended particles.
Therefore, relationships between particulate IOPs represent-
ing the effects of all suspended particles and some measures
of concentration of organic particles such as POC exhibit
large variations across diverse water bodies within the global
ocean because of large changes in the composition and size
distribution of particulate matter. For example, large varia-
tions have been demonstrated in the relationships between
POC and bp(λ), bbp(λ), and ap(λ) across marine environ-
ments with highly variable proportions of organic and min-
eral particulate matter (Woźniak et al., 2010; Reynolds et al.,
2016; Koestner et al., 2022; Stramski et al., 2023; Koestner et
al., 2024). These studies indicated a need and proposed some
approaches to account for variations in particulate composi-
tion when particulate IOPs are intended to be used as proxies
for POC, especially when a wide range of aquatic environ-
ments with highly variable characteristics of particulate as-
semblages is considered.

Notwithstanding these challenges, many studies in the past
have used in situ measurements conducted in different geo-
graphically restricted regions of the global ocean to demon-
strate that the relationships between POC and particulate
IOPs can be reasonably good under conditions that are re-
gionally or environmentally constrained in terms of ocean
bio-optical properties. For example, such relationships were
examined between POC and cp(λ) (e.g., Marra et al., 1995;
Loisel and Morel, 1998; Bishop, 1999; Claustre et al., 1999;
Stramska and Stramski, 2005; Gardner et al., 2006; Bishop
and Wood, 2008; Cetinić et al., 2012), between POC and
bbp(λ) (e.g., Stramski et al., 1999, 2008; Allison et al., 2010;
Loisel et al., 2011; Cetinić et al., 2012; Kheireddine et al.,
2020; Qiu et al., 2021; Barbieux et al., 2022), and between
POC and ap(λ) (e.g., Woźniak et al., 2011; Rasse et al.,
2017). While recognizing that single empirical relationships
for estimating POC from particulate IOPs are expected to
work best if they are region-specific or formulated over a re-
stricted range of marine bio-optical environments, it is also
reasonable to assume that such relationships can be useful for
application across vast areas of open-ocean pelagic environ-
ments because the variations in particulate characteristics in
these environments are expected to be constrained to a sig-

nificant degree compared to the variations observed across
all diverse water bodies. For example, these relationships
have been used to assess carbon community production from
in situ cp(λ) or bbp(λ) measurements in the tropical Pacific
(Claustre et al., 1999), the South Pacific Gyre (Claustre et al.,
2008), and the Mediterranean Sea (Loisel et al., 2011; Barbi-
eux et al., 2022). Vertical fluxes of POC have been described
and quantified using POC vs. bbp relationships applied to in
situ bbp(λ) measurements acquired from autonomous plat-
forms during a subpolar North Atlantic spring bloom (Briggs
et al., 2011) and in the Red Sea (Kheireddine et al., 2020).
Based on the POC vs. bbp(λ) relationships, ocean color algo-
rithms have also been developed (e.g., Stramski et al., 1999;
Loisel et al., 2001a, 2002; Stramska and Stramski, 2005; Al-
lison et al., 2010; Duforêt-Gaurier et al., 2010) to enhance
the abilities of and complement other algorithms that have
been used for estimating POC in surface waters of the global
ocean from satellite ocean color observations (Stramski et al.,
2008, 2022).

Considering the interest in developing an ability to esti-
mate PON from optical measurements along with the exist-
ing algorithms that allow the estimation of POC from opti-
cal measurements, it is relevant to comment on the canon-
ical Redfield ratio, which describes a consistent atomic ra-
tio of carbon, C; nitrogen, N; and phosphorus, P, in marine
plankton, namely C : N : P of 106 : 16 : 1 (Redfield, 1934;
Redfield et al., 1963). This ratio could potentially serve as
a means to estimate PON from POC. However, it is well
recognized that the C : N : P ratios for natural particulate or-
ganic matter can vary considerably in the ocean and thus de-
viate from the canonical Redfield ratio (Copin-Montegut and
Copin-Montegut, 1983; Diaz et al., 2001; Körtzinger et al.,
2001; Geider and La Roche, 2002; Weber and Deutsch, 2010;
White et al., 2006). For example, strong latitudinal patterns
in these elemental ratios of marine plankton and particulate
organic matter, including nonliving particles such as detritus
generated from the decay of phytoplankton cells and zoo-
plankton grazing activity, have been documented (Martiny et
al., 2013). Therefore, the subject of estimating PON from op-
tical measurements requires separate dedicated studies, and
this paper is a contribution to this line of research.

Recently, a reasonably good relationship between PON
and bbp has been demonstrated based on field measurements
made in oligotrophic waters of the western tropical South Pa-
cific (Fumenia et al., 2020). Furthermore, this study used the
bbp measurements from Biogeochemical-Argo (BGC-Argo)
floats to quantify new production of phytoplankton biomass
that was likely related to intense biological nitrogen (N2) fix-
ation in this tropical oceanic environment. It is worth noting
that at the scale of the global ocean, biological N2 fixation
is a major source of new nitrogen in the euphotic layer, fol-
lowed by atmospheric and terrestrial deposition (Dugdale et
al., 1961; Karl et al., 2002; Capone et al., 2005). Also, dif-
ferent models utilizing a combination of in situ PON mea-
surements and satellite ocean color observations, including
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satellite-derived ocean remote-sensing reflectance, Rrs(λ), as
well as satellite-derived IOPs such as bbp(λ) and the total
absorption coefficient of seawater, a(λ), have been devel-
oped for application at the global oceanic scale (Wang et al.,
2022). Although the study of Wang et al. (2022) suggests
that PON can be estimated from satellite ocean color prod-
ucts, the PON vs. IOP relationships have not yet been investi-
gated using field measurements collected over a broad range
of oceanic and coastal marine environments.

The main objective of the present study is to examine
the relationships between the PON and particulate IOPs, in-
cluding bbp(λ), ap(λ), aph(λ), and ad(λ), from in situ near-
surface measurements collected over a broad range of marine
bio-optical environments. For this purpose, we assembled
datasets of concurrent PON and IOP measurements from the
open-ocean pelagic environments, Arctic seas, and coastal
waters around Europe. The relationships between PON and
spectral IOPs are presented and discussed in terms of vari-
ability and its sources, as observed in the relationships exam-
ined across the different marine environments. This analysis
provides insights into the potential applicability of different
particulate IOPs to serve as proxies for PON.

2 Materials and methods

2.1 Geographic locations of in situ measurements

A dataset of in situ biogeochemical and optical measure-
ments was assembled from multiple field experiments per-
formed in various open-ocean and coastal regions covering
a broad range of PON, POC, and particulate IOPs collected
at depths between the sea surface and 10 m (Fig. 1; Table 1).
The whole dataset (referred to as WD) consists of three sub-
sets of data collected in different regions that generally rep-
resent different marine bio-optical environments.

The first subset of data (referred to as OOD for the open-
ocean dataset) includes measurements made during three
cruises conducted in open-ocean waters in the Pacific and At-
lantic oceans. The BIOSOPE (Biogeochemistry and Optics
South Pacific Experiment) cruise took place from October to
December 2004 in the eastern South Pacific Ocean along an
east-to-west transect from the Marquesas Islands to the coast
of Chile (Claustre et al., 2008; Stramski et al., 2008). The
KM12-10 cruise was carried out in June 2012 in tropical wa-
ters off the Hawaiian Islands (Johnsen et al., 2014; Reynolds
and Stramski, 2021). The ANTXXVI/4 cruise was conducted
in April and May 2010 along a south-to-north transect in
the Atlantic Ocean between Chile and Germany (Uitz et al.,
2015).

The second subset of data (referred to as AOD for the
Arctic Ocean dataset) includes measurements collected in
the western Arctic seas, specifically in the Chukchi Sea and
western Beaufort Sea, during three cruises, HLY1001 in
June–July 2010, HLY1101 in June–July 2011, and MR17-

05C in August–September 2017 (Arrigo, 2015; Reynolds and
Stramski, 2019; Shiozaki et al., 2019). The data collected
in these high-latitude environments are characterized by the
presence of specific phytoplankton communities and a rela-
tively high contribution of chromophoric dissolved organic
matter (CDOM) and non-algal particulate matter to the IOPs
of seawater (Reynolds and Stramski, 2019).

The third subset of data (referred to as CWD for the
coastal-water dataset) consists of data collected as part of
the COASTlOOC (Coastal Surveillance Through Observa-
tion of Ocean Color) research project, which involved nu-
merous experiments in various coastal waters around Europe
in 1997 and 1998 (Massicotte et al., 2023a). This dataset
represents the bio-optical variability encountered across di-
verse coastal waters, including shelf and relatively shallow
environments in the Baltic Sea, North Sea, Wadden Sea, En-
glish Channel, and Adriatic Sea, as well as waters affected
by many river plumes around Europe (Babin et al., 2003a,
b). A small fraction of CWD (< 3 % of COASTlOOC data)
includes measurements collected in open-ocean waters in the
Atlantic Ocean between the Bay of Biscay and the Canary Is-
lands and off the shelf in the Mediterranean Sea, where the
bio-optical variability is expected to be driven primarily by
phytoplankton and associated material.

The total number of concurrent POC and PON measure-
ments,NPOM, in the whole dataset, WD, is 432 (Table 1). The
contributions of OOD, AOD, and CWD to this total number
are 18.5 %, 24.9 %, and 56.6 %, respectively. These measure-
ments of PON and POC are used to discuss the variability in
the POC /PON ratio in Sect. 3.1. The number of concurrent
measurements of PON and IOPs that are used to examine the
relationships between these variables is smaller than NPOM.
Specifically, the relationship between PON and the backscat-
tering coefficient bbp presented here is based on 284 mea-
surements in the whole dataset, WD (Sect. 3.2.1), and the
relationships between PON and the absorption coefficients,
ap, aph, and ad, are based on 392 measurements (Sect. 3.2.2).

2.2 Measurement methods

The measurement and data processing protocols are de-
scribed in detail in the references cited in Sect. 2.1. Here
we provide a brief summary. Samples for POC and PON de-
termination were collected by filtration of seawater through
pre-combusted 25 mm Whatman GF/F filters. After filtra-
tion, the samples were transferred into glass vials, dried at
55 °C, and stored until post-cruise analysis. The mass of par-
ticulate organic carbon and nitrogen on the sample filters
was determined by high-temperature combustion via stan-
dard carbon–hydrogen–nitrogen (CHN) analysis following
the JGOFS (Joint Global Ocean Flux Study) protocols (Knap
et al., 1996). The samples were acid-treated prior to the CHN
analysis to remove inorganic carbon. The mass concentration
of suspended particulate matter (SPM) was determined gravi-
metrically by measuring the dry mass of particles collected
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Figure 1. (a) Geographical locations of oceanographic stations shown as color-coded symbols according to the three subsets of data from
different oceanic regions. OOD (open-ocean dataset, blue squares), AOD (Arctic Ocean dataset, red triangles), and CWD (coastal-water
dataset, green circles) refer to the datasets for the open-ocean Pacific and Atlantic waters, western Arctic seas, and European coastal waters,
respectively. (b) Near-surface PON measured at all stations in the whole dataset (WD).

on GF/F filters. The filters were pre-rinsed, pre-combusted,
and pre-weighed using a protocol described in Van der Linde
(1998). More details on the methodology of CHN analysis
and SPM determinations are provided in Babin et al. (2003a),
Reynolds et al. (2016), and Stramski et al. (2008).

The spectral particulate absorption coefficient, ap(λ), was
determined from samples collected on 25 mm GF/F filters
using a spectrophotometric filter-pad method. The ap(λ)

spectra included in OOD and AOD were measured mostly
with a PerkinElmer Lambda 18 spectrophotometer equipped
with a 15 cm integrating sphere using the inside integrating
sphere (IS) configuration of measurement, which is consid-
ered to provide the best accuracy of measurements when
using a filter-pad method (Stramski et al., 2015; Roesler et
al., 2018). The exception is the absorption data from the
BIOSOPE cruise, which were measured with a PerkinElmer
Lambda 19 equipped with a 6 cm integrating sphere using
a transmittance (T) configuration of measurement (Bricaud
et al., 2010). The non-algal particulate absorption coeffi-
cient, ad(λ), was also determined using the spectrophotomet-
ric filter-pad method after the extraction of pigments (asso-
ciated primarily with phytoplankton) in methanol (Kishino
et al., 1985). All absorption data in OOD and AOD were
acquired between 300 and 800 nm with a 1 nm step. The
ap(λ) spectra included in CWD were determined from the
transmittance–reflectance (T–R) configuration of the filter-
pad method in the spectral range of 380–750 nm at 1 nm in-
tervals (Babin et al., 2003b). In this dataset, ad(λ) was deter-
mined by pigment bleaching with sodium hypochlorite (Fer-
rari and Tassan, 1999). For all absorption samples consid-

ered in this study, the spectral phytoplankton absorption co-
efficient, aph(λ), was obtained by subtracting the measured
ad(λ) from the measured ap(λ). More details on the absorp-
tion measurement methodology used in our dataset are pro-
vided in Babin et al. (2003b), Bricaud et al. (2010), Uitz et
al. (2015), and Reynolds and Stramski (2019).

The spectral backscattering coefficient, bb(λ), which is
the sum of particulate, bbp(λ), and pure seawater, bbw(λ),
contributions, was calculated from the scattering measure-
ments at a specified backscattering angle (around 140°). Af-
ter subtraction of bbw(λ) from bb(λ), the result was con-
verted to bbp(λ), assuming a coefficient of proportionality
between bbp(λ) and the scattering at 140°. The backscatter-
ing measurements for OOD and AOD were all performed
with HydroScat-6 (HOBI Labs, Inc.) instruments provid-
ing 6 wavelengths (420, 442, 470, 510, 555, 589 nm) dur-
ing the BIOSOPE cruise and 11 wavelengths (394, 420, 442,
510, 532, 550, 589, 620, 640, 671, 730, 852 nm) during the
HLY1001, HLY1101, MR17-05C, ANTXXVI/4, and KM12-
10 cruises. A more detailed description of the procedure to
estimate bbp(λ) from HydroScat-6 measurements is provided
in Stramski et al. (2008) and Reynolds et al. (2016).

No in situ measurements of bbp(λ) were performed during
the COASTlOOC experiments. However, in situ measure-
ments of downwelling, Ed(z, λ), and upwelling, Eu(z, λ),
irradiances were conducted within the surface ocean layer at
each station (where z is depth). From these vertical profiles,
the irradiance reflectance just beneath the sea surface, R(0−,
λ)= Eu(0−, λ)/Ed(0−, λ), and the average attenuation co-
efficient for downwelling irradiance,<Kd(λ)>1 = 1/z1, be-
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Figure 2. (a) Scatterplot of bbp(555) as a function of SPM for CWD, where bbp(555) is estimated from the model of Loisel and Stram-
ski (2000) (referred to as LS model, green circles). The green line refers to the Model-II best linear fit using the log-transformed variables.
For comparison, the bbp(555) vs. SPM relationship of Neukermans et al. (2012), originally developed at 660 nm and recalculated for 555 nm
assuming that bbp(λ) has a mean spectral dependency of λ−0.5 (Babin et al., 2003a), is also shown (black line). (b) Same as (a) but for SPM
as a function of bbp(555) for CWD. For comparison, the SPM vs. bbp(555) relationship of Stramski et al. (2023) is also shown (black line).
The error bars show the expected uncertainties (±9.5 %) associated with the estimation of bbp(555) from the LS model (Loisel et al., 2001b).

tween the surface and the first attenuation depth was calcu-
lated (0− indicates the depth just beneath the sea surface, and
z1 is the first attenuation depth at which the downwelling ir-
radiance is reduced to about 36.8 % of its surface value). For
CWD, bbp(λ) was then estimated from the LS inverse op-
tical model, which uses R(0−, λ), <Kd(λ)>1, and the sun
angle as input parameters (Loisel and Stramski, 2000). As
bbp(λ) is driven largely by the concentration of suspended
particulate matter, SPM, the reliability of LS-derived bbp(λ)

was assessed through the comparison with bbp(555) obtained
from a previously developed empirical relationship (Neuker-
mans et al., 2012) between bbp and SPM (Fig. 2a). The same
intercomparison exercise was performed using the empirical
relationship between SPM and bbp(555) (Fig. 2b) developed
by Stramski et al. (2023). This comparative analysis supports
the use of LS-derived bbp(λ) for the COASTlOOC experi-
ments considered in this study (Fig. 2). We note that similar
support was obtained with the use of the LS2 model (Loisel
et al., 2018) instead of the LS model (not shown), where the
main difference is that the application of LS2 model requires
the input of remote-sensing reflectance, Rrs(λ), rather than
R(0−, λ).

The measurements of PON, POC, and IOPs are subject
to errors that are not amenable to straightforward quantifica-
tion, especially on a sample-by-sample basis. Multiple fac-
tors related to measurement methodology, instrumentation,
environmental conditions, and no knowledge of true values
make it challenging to determine the errors. It is common
to use a series of replicate observations for evaluating one

of the components of measurement uncertainty. The preci-
sion of POC and PON measurements performed during the
BIOSOPE cruise has been determined from the analysis of
duplicate and triplicate samples. The coefficient of variation
(CV) was, on average, about 8.7 % and 7.7 % for POC and
PON, respectively (Stramski et al., 2008). For the different
cruises comprising AOD, the median coefficient of variation
for replicate samples of POC varied between about 2 % and
5 % (Stramski et al., 2023), and a similar range of 3 % to
4 % was observed for PON. For the COASTlOOC exper-
iment, the CV values were 3.7 % and 6.8 % for POC and
PON, respectively (Ferrari et al., 2003). Thus, the precision
of POC and PON measurements is expected to typically re-
main below 10 %. Regarding the particulate absorption mea-
surements, the lowest uncertainties below 10 %, with high
precision typically of a few percent, are expected for the IS
configuration of the filter-pad method, and the highest uncer-
tainties are expected for the T configuration of this method
(Stramski et al., 2015; Roesler et al., 2018). While most ab-
sorption data in the OOD and AOD were obtained using the
IS method, the T method was used during the BIOSOPE
cruise, for which the uncertainty in ap(λ) was estimated at
about 15 %, while the precision based on replicate samples
was at a few percent in the visible spectral range (Bricaud et
al., 2010). For the T–R method used during the COASTlOOC
experiment, the uncertainties are expected to be in between
those for the IS and T methods (Stramski et al., 2015). Earlier
analysis of situ determinations of the backscattering coeffi-
cient indicated that the uncertainty estimates commonly fall
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in the 10 %–20 % range (e.g., Berthon et al., 2007; Doxaran
et al., 2016) but can be reduced to a few percent under certain
circumstances (Sullivan et al., 2013).

2.3 Description of the dataset

The biogeochemical and optical properties exhibit a large
variability in our whole dataset (WD), which is associated
with a range of diverse marine bio-optical and trophic con-
ditions in this dataset (Figs. 3 and 4 and Table 1). Overall,
PON (Fig. 3a) and POC (Fig. 3b) range over 2 orders of
magnitude, from 2.4 to 340.0 and 11.9 to 2470.0 mg m−3,
respectively. Minimum concentrations of these particulate
organic pools are found in the subset of open-ocean data
(OOD), with the smallest values of PON and POC observed
in the oligotrophic waters of subtropical gyres in the Pacific
and Atlantic oceans (Table 1). The OOD is also character-
ized by the highest median value of POC /SPM= 0.53 (Ta-
ble 1), which is indicative of highly organic-dominated par-
ticulate assemblages. Maximum values of PON and POC are
found in the COASTlOOC subset of data (CWD), which also
has the lowest median value of POC /SPM= 0.17 (Table 1).
This indicates that the coastal waters in the CWD generally
have a significantly smaller contribution of organic particles
to SPM compared with the two other subsets of data (OOD
and AOD). The median values of PON and POC in the Euro-
pean coastal environments are about 5 to 10 times higher than
those in the Pacific and Atlantic oceans and twice as high as
in the western Arctic seas (Table 1). Generally, the median
values of biogeochemical variables in the Arctic dataset are
between those in the open-ocean and coastal-water datasets.
The range of variation in PON and POC is largest (about 60-
fold) in the CWD and AOD, whereas OOD has about 30-
fold range of variation. The median value of POC /PON is
5.8 g g−1 (grams per gram) (≈ 6.8 mol mol−1) for the whole
dataset, which is very similar to the canonical molar Red-
field ratio of 6.6 mol mol−1. However, the POC /PON ratio
exhibits a large range of variability (2.0–17.2 g g−1) in our
dataset (Fig. 3c, more details in Sect. 3.1).

The POC /SPM ratio expressed on a g g−1 basis (Fig. 3d)
can be used as a proxy for characterizing the contributions
of organic vs. inorganic particles to SPM. Some threshold
values have been proposed to delimit the organic-dominated,
mixed, and mineral-dominated particulate assemblages in
previous studies (Woźniak et al., 2010; Lubac and Loisel,
2007; Loisel et al., 2023; Stramski et al., 2023). The thresh-
old values established in different studies are similar; for ex-
ample, Stramski et al. (2023) proposed POC /SPM= 0.12 as
a boundary between the mineral-dominated and mixed par-
ticulate assemblages and POC /SPM= 0.28 as a boundary
between the mixed and organic-dominated assemblages. Us-
ing these threshold values, we determined that 43.9 % of our
whole dataset is associated with organic-dominated partic-
ulate assemblages, 27.4 % with mineral-dominated assem-
blages, and 28.7 % with mixed assemblages.

Similar to the biogeochemical parameters, the particulate
IOPs exhibit a large range of variability, which is illustrated
in Fig. 4 for the optical coefficients at selected light wave-
lengths. As expected, the IOP values are generally higher in
the turbid coastal waters included in CWD and smaller in
the subtropical gyres included in OOD (Table 1). The me-
dian value of bbp(555) in the European coastal environments
(CWD) is 1 order of magnitude higher than in the western
Arctic seas (AOD) and 2 orders of magnitude higher than
in the open-ocean waters of the Pacific and Atlantic oceans
(OOD). The median values of ap(510), aph(510), and ad(442)
in the CWD are similar to those in the AOD but are 1 or-
der of magnitude higher than those in the OOD (Table 1).
The aph(510)/ap(510) ratio, which quantifies the proportion
of phytoplankton absorption to the total particulate absorp-
tion at a light wavelength of 510 nm, varies by a factor of
83 within the whole dataset (see WD in Table 1). Very high
variability in this parameter is observed in the Arctic dataset
(a factor of 78), whereas the variation in the open-ocean and
coastal-water datasets is much smaller (about four-fold).

2.4 Statistical indicators

Model-I linear regression can be considered a valid approach
when the primary goal of the analysis is to fit a predictive
model to a dataset of the response (y) and explanatory (x)
variables, i.e., to reduce variance in prediction of y from x

(Legendre and Michaud, 1999; Sokal and Rohlf, 1995). In
this study, the analysis of PON (response variable) vs. IOPs
(explanatory variables) is aimed at establishing the predic-
tive relationships. An alternative linear regression analysis is
Model II, which typically serves to quantify the strength of
the linear relationship between the examined variables but
can also be an adequate option for predictive purposes, espe-
cially when both variables are subject to error and the er-
ror in data of x is not significantly smaller than the error
in data of y (McArdle, 1988). In our study, the uncertain-
ties in the explanatory variables (IOPs) are not necessarily
much smaller than those in PON (see Sect. 2.2), so we tested
both the Model-I and Model-II regressions. Specifically, we
evaluated (i) the ordinary least squares Model-I linear regres-
sion, (ii) the robust least squares Model-I linear regression,
and (iii) the Model-II linear regression using the major-axis
method (Kermack and Haldane, 1950; York, 1966). These re-
gression models were applied to the log10-transformed PON
and IOP data. It should be noted that the Model-II linear re-
gression using the major-axis method is appropriate when
both variables are expressed in the same physical units or
are dimensionless (e.g., log-transformed variables) (Legen-
dre and Legendre, 2012).

This analysis was made for the whole dataset, WD, and
for the three data subsets, OOD, AOD, and CWD. From this
analysis we obtained the best-fit equations in the form of a
power function and the coefficient of determination (R2) be-
tween the log10-transformed variables. The general formula

https://doi.org/10.5194/bg-22-2461-2025 Biogeosciences, 22, 2461–2484, 2025



2468 A. Fumenia et al.: Relationships between the concentration of PON and the IOPs of seawater

Figure 3. Frequency distribution of near-surface values of (a) POC, (b) PON, (c) POC /PON (g g−1, i.e., gram/gram basis), and
(d) POC /SPM (g g−1) for the whole dataset (WD) used in this study. The vertical solid black lines correspond to the median values.
The vertical red lines in panel (d) refer to the threshold values of POC /SPM of 0.12 and 0.28, which delimit the mineral-dominated, mixed,
and organic-dominated particulate assemblages (Stramski et al., 2023). The minimum-to-maximum range (Min–Max), median (Med), and
coefficient of variation (CV) are also indicated. N is the number of data points.

of the power function is

PON= A IOP(λ)B , (1)

where IOP(λ) represents one of the spectral particulate IOPs;
A andB are the best-fit coefficients; and the PON and IOP(λ)
variables are expressed in units of mg m−3 and m−1, respec-
tively. For most cases examined, the general pattern of data
points of PON vs. IOP is consistent with a power function;
however, there is an exception for the relationship of PON vs.
bbp(λ) for the whole dataset, WD. In this case, we also used
a third-degree polynomial function that provided a better fit
to the data than the power function.

To compare the three methods of regression analysis, we
examined the goodness-of-fit of each regression equation
(i.e., each PON algorithm utilizing a given particulate IOP
as input to the algorithm) through the analysis of algorithm-
derived PON vs. measured PON using the algorithm devel-
opment dataset. This evaluation involved the use of Model-
II linear regression based on the major-axis method applied

to data of algorithm-derived vs. measured PON, as well as
the calculation of several statistical metrics that quantify dif-
ferences between the algorithm-derived and measured values
of PON (Table 2). These statistics include the slope (S) and
the intercept (I ) obtained from the Model-II linear regression
applied to log10-transformed variables of algorithm-derived
vs. measured PON. These parameters are useful to reveal the
potential presence of bias across the dynamic range of PON.
The median bias (MdB) and the median ratio (MdR) quan-
tify the aggregate systematic deviations between the (non-
transformed) algorithm-derived and measured values of PON
for the dataset investigated. The median absolute percent-
age difference (MdAPD) and the root-mean-square devia-
tion (RMSD) characterize random deviations between the
algorithm-derived and measured PON. We also use the me-
dian symmetric accuracy (MdSA), which can be interpreted
similarly to MdAPD as a median percentage difference, but,
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Figure 4. Frequency distribution of the near-surface values of (a) bbp(555), (b) ap(510), (c) aph(510), and (d) ad(442) for the whole dataset
(WD) used in this study. The vertical solid black lines correspond to the median values. The minimum-to-maximum range (Min–Max),
median (Med), and coefficient of variation (CV) are indicated. N is the number of data points.

Table 2. Statistical metrics used in the evaluation of the goodness-of-fit of algorithmic formulas.

Symbol Description

yi , xi (mg m−3) Algorithm-derived PON (yi ) and measured PON (xi ) for sample i of N
N Number of samples (data)
R Pearson’s product moment correlation coefficient between the log10-transformed variables used

in Model-II linear regression
S and I Slope and intercept obtained from Model-II linear regression
MdB (mg m−3) Median bias; the median value of (yi − xi )
MdR Median ratio of (yi/xi )
MdAPD (%) Median absolute percentage difference; the median value of 100×[|(yi − xi)/xi |]
MdSA (%) Median symmetric accuracy; 100×[10median[| log(yi/xi )|]− 1]
RMSD (mg m−3) Root-mean-square deviation; [(1/N)

∑N (yi − xi)
2
]
0.5

unlike MdAPD, MdSA does not penalize over- and under-
prediction differently (Morley et al., 2018).

The comparative analysis of algorithm-derived PON vs.
measured PON indicated that some statistics are better for
the predictive regression formulas obtained from the Model-

II regression compared with the predictive formulas obtained
from the Model-I regression analysis. Specifically, this im-
provement was observed for the slope (S) and the intercept
(I ) of the log-transformed algorithm-derived PON vs. mea-
sured PON. Other statistics did not reveal any advantage to
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using Model-II over Model-I regression (or vice versa) for
establishing the empirical algorithms for PON vs. IOPs. As
a result of this analysis, in the remainder of this study, all
PON vs. IOP algorithms presented are based on the Model-II
regression using the major-axis method applied to the log10-
transformed variables.

For the final algorithms based on the Model-II regression
analysis, we further evaluated the relationships between the
algorithm-derived and measured PON using the radar charts
(Tran et al., 2019). For this purpose, MdB, MdAPD, MdSA,
RMSD, S, and R were normalized as follows:

MdBnorm (j)=
|MdB(j)|

max(|MdB(j)| , j = 1,k)

MdAPDnorm (j)=
MdAPD(j)

max(MdAPD(j) , j = 1,k)

MdSAnorm (j)=
MdSA(j)

max(MdSA(j) , j = 1,k)

RMSDnorm (j)=
RMSD(j)

max(RMSD(j) , j = 1,k)

Snorm (j)=
|1− S(j)|

max(|1− S (j)| , j = 1,k)

Rnorm (j)=
min(R (j) , j = 1, k)

R(j)
,

where j represents each individual PON algorithm based on
a given IOP and k is the number of tested algorithms. In addi-
tion, to facilitate the comparison between the goodness-of-fit
of PON algorithms based on different IOPs, the area asso-
ciated with the polygons linking the normalized statistical
indicators was computed as

Area=
1
2
×
π

6
×[RMSDnorm (j)×MdAPDnorm (j)

+MdAPDnorm (j)×MdSAnorm (j)

+MdSAnorm (j)×MdBnorm (j)+MdBnorm (j)

× Snorm (j)+ Snorm (j)×Rnorm (j)

+Rnorm (j)×RMSDnorm (j)].

3 Results and discussion

3.1 POC vs. PON relationship

The carbon-to-nitrogen ratio of the organic particulate mat-
ter, POC /PON, in our dataset and deviations in these data
from the canonical Redfield ratio of 106/16 mol mol−1 (ap-
proximately 6.6) are depicted in Fig. 5. We note that in this
illustration, we present POC and PON in micromolar con-
centration units because such units were used in the origi-
nal work on the Redfield ratio (Redfield, 1934; Redfield et
al., 1963). POC and PON are generally well correlated, with

R = 0.85 for the whole dataset (WD), but the linear regres-
sion fitted to the POC vs. PON data deviates slightly from
the relationship corresponding to the canonical Redfield ratio
(Fig. 5a). For WD, the slope S of the best-fit linear function
is 6.18± 0.18, which is lower than the Redfield ratio value.

When considering the three subsets of data, the open-
ocean data (OOD) exhibit the strongest correlation between
POC and PON (R = 0.99, Fig. 5a) and the lowest vari-
ability in POC /PON (coefficient of variation CV= 15.5 %,
Fig. 5b). The median value of POC /PON for open-ocean
data is 5.8 (Table 1, Fig. 5b), which is significantly lower
than the Redfield ratio. In striking contrast to OOD, the
coastal-water dataset (CWD) has the lowest correlation be-
tween POC and PON (R = 0.75, Fig. 5a) and the highest
variability in POC /PON (CV= 38.7 %, Fig. 5d). Moreover,
the slope of the best-fit function for CWD (S = 8.35± 0.38)
deviates significantly from the relationship corresponding to
the canonical Redfield ratio. It is also notable that the inter-
cept differs significantly from 0 (I =−5.95±2.20, Fig. 5a),
which indicates an excess of PON relative to POC. The
median of POC /PON for CWD is 7.3 (Table 1, Fig. 5d),
which is significantly higher than the Redfield ratio and is
the highest among the three data subsets. For the Arctic
dataset (AOD), POC and PON are highly correlated (R =
0.91, Fig. 5a). The variation in POC /PON is large, with a
CV value of 30.9 % (Fig. 5c), which is twice as high as in the
open-ocean dataset but somewhat lower than in the coastal-
water dataset. The median of POC /PON for AOD is 6.9,
which is closer to the Redfield ratio than the median values
for OOD and CWD.

The results presented in Fig. 5 are consistent with expec-
tations regarding the variability in POC /PON in aquatic en-
vironments and with previous reports on such variability.
For example, Geider and La Roche (2002) compiled data
on oceanic POC /PON from multiple sources and reported
a large range of variation, between 3.4 and 12.5 mol mol−1.
It is also known that the variation in inland waters is even
larger, with POC /PON reaching values that are much higher
than the Redfield ratio (Bauer et al., 2013). The compilation
of data from different inland aquatic environments showed a
POC /PON range of 7.5–22.6 for lake environments (They
et al., 2017) and 6.5–15.7 for rivers (Liu et al., 2020). Many
measurements in our coastal-water dataset (CWD) were col-
lected in areas affected by river plumes and associated in-
put of terrestrial particulate organic matter, which explains
the large variability, including the presence of high values of
POC /PON in this dataset (Fig. 5a, d). The lowest values of
this ratio (< 4) in CWD correspond to data collected in the
northern Adriatic Sea and are consistent with the previously
reported values from this environment (Faganeli et al., 1989).
The observed general trend of an increase in POC /PON
variability from the open-ocean dataset to the coastal-water
dataset reflects the increased complexity of the factors that
drive the variation in the elemental composition of the bulk
particulate organic matter. Different patterns of variability
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Figure 5. (a) Scatterplot of PON as a function of POC, where the data points are color coded to distinguish between the three data subsets,
OOD (blue squares), AOD (red triangles), and CWD (green circles). The solid blue, red, and green lines define the Model-II best-fit linear
regression functions calculated for OOD, AOD and CWD, respectively. The solid black line denotes the best-fit function for the whole dataset,
WD. The dashed black line shows the Redfield ratio (POC /PON= 106/16 mol mol−1). The number of data points, N ; the coefficient of
correlation, R; and the slope, S, and intercept, I , of the best-fit linear functions are indicated. The standard deviation of the slope, S, and
intercept, I , is indicated. (b) Frequency distribution of the POC /PON ratio (mol mol−1) for the open-ocean dataset, OOD. (c) Same as
panel (b) but for the Arctic Ocean dataset, AOD. (d) Same as panel (b) but for the coastal-water dataset, CWD. In panels (b), (c), and (d),
the vertical solid black lines correspond to the median values. The vertical dashed black line refers to the Redfield ratio value of 6.625. The
values for the minimum-to-maximum range (Min–Max), median (Med), and coefficient of variation (CV) are also provided.

and deviations of measured POC /PON from the canonical
Redfield ratio can be attributed to regional variations in envi-
ronmental conditions, plankton biodiversity (Martiny et al.,
2013), and carbon-enriched terrestrial inputs and/or prefer-
ential remineralization of PON relative to POC (Dauby et
al., 1994; Engel et al., 2002; Ferrari et al., 2003). Overall,
the results of the PON /POC variability support the notion
that PON cannot be reliably estimated from POC using the
assumption of the Redfield ratio.

3.2 Development of PON vs. IOP relationships

The particulate IOPs, bbp(λ), ap(λ), aph(λ), and ad(λ), avail-
able in our dataset were measured at multiple light wave-
lengths as described in Sect. 2.2. For the development of the

relationships between PON and IOPs, our primary interest
is in examining the IOPs at selected light wavelengths that
are consistent with the spectral bands used on several past
and current satellite ocean color sensors. Figure 6 depicts the
spectral pattern of the coefficient of determination, R2, be-
tween log10-transformed PON and the four particulate IOPs
at selected light wavelengths. In these calculations, the num-
ber of selected wavelengths is smaller for bbp(λ) (Fig. 6a)
than for the absorption coefficients (Fig. 6b, c, d), which is
associated with the spectral coverage of these measurements
in our dataset. In addition, the results in Fig. 6 are shown
for the whole dataset (WD) and separately for the three data
subsets, OOD, AOD, and CWD. In general, the spectral pat-
terns of R2 for most illustrated cases are relatively flat. A few
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Figure 6. Coefficients of determination (R2) between log10-transformed PON and particulate IOPs as a function of light wavelength. (a) PON
vs. bbp(λ), (b) PON vs. ap(λ), (c) PON vs. aph(λ), and (d) PON vs. ad(λ). The black circles, blue squares, red triangles, and green circles
refer to R2 calculated at selected light wavelengths for the whole dataset (WD) and the open-ocean (OOD), Arctic Ocean (AOD), and
coastal-water (CWD) datasets, respectively. The data points for R2 vs. bbp(λ) in panel (a) are at the following wavelengths: 394, 412, 420,
442, 470, 490, 510, 532, 550, 555, 560, 589, 640, and 665 nm. The selected wavelengths for the absorption coefficients in panels (b), (c), and
(d) are 380, 400, 412, 440, 443, 488, 490, 510, 532, 555, 560, 620, 630, 650, 665, 670, 676, and 689 nm.

exceptions include the spectral variations in R2 for the PON
vs. ad(λ) relationship, especially for the open-ocean dataset
(Fig. 6d), as well as some variations associated with the main
spectral bands of phytoplankton absorption for the relation-
ships involving ap(λ) and aph(λ) (Fig. 6b, c). The R2 val-
ues are generally substantially lower for the coastal-water
dataset, CWD, compared to OOD and AOD. This result is
expected, given that the largest variability in PON and IOPs
is in CWD.

In subsequent sections, we present the relationships be-
tween PON and IOPs for a few selected wavelengths, specif-
ically PON vs. bbp(λ) at 555 nm, and PON vs. ap(λ), aph(λ),
and ad(λ) at 442 and 510 nm. At these wavelengths, the R2

values in Fig. 6 either are close to the maximum or remain
relatively high within the spectral pattern ofR2. A more com-
plete set of the relationships for other wavelengths that are
commonly used on satellite ocean color sensors is provided
in the Supplement (Tables S1 to S3).

3.3 Relationship between PON and the backscattering
coefficient

Figure 7a depicts the relationship between PON and
bbp(555). When the open-ocean dataset (OOD) is considered,
the scatter of data is relatively small (blue squares), and the
pattern of data suggests that the relationship can be reason-

ably well described by a power function (dark-blue line):

PON= 105514.11(±72139.11)bbp(555)1.31(±0.07), (2)

where the values in parentheses indicate the standard devi-
ation of the best-fit coefficients. For this subset of data, the
coefficient of determination between the log10-transformed
data is high (R2

= 0.84). For comparison, Fig. 7a also in-
cludes a recently established relationship in the open-ocean
waters of the western tropical South Pacific using in situ
measurements of bbp from BGC-Argo floats (Fumenia et al.,
2020). While the number of these data is comparatively small
and the data cover a relatively narrow range of PON, from
about 0.28 to 13.3 mg m−3, it is notable that this relationship
is consistent with the relationship described by Eq. (2) for
our larger open-ocean dataset (OOD).

When the Arctic Ocean (AOD) and coastal-water (CWD)
datasets are considered, the scatter of data points is much
larger, and the relationships between PON and bbp(555) are
considerably weaker. The R2 values for these two datasets
drop to 0.57 and 0.47, respectively. As a result, the relation-
ship for the whole dataset (WD) is also relatively weak, with
a moderate R2 of 0.63. Importantly, the overall pattern of all
data in WD no longer suggests that a single power function
of PON vs. bbp(555) can provide a reasonable description of
the general trend of data observed across this whole dataset.
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Figure 7. (a) Relationships between PON and bbp(555) for different datasets, as indicated by dark-blue squares, red triangles, and green
circles corresponding to the open-ocean dataset (OOD), Arctic Ocean dataset (AOD), and coastal-water dataset (CWD), respectively. The
solid dark-blue, red, and green lines represent the best-fit power functions obtained from the Model-II linear regression on log10-transformed
data. The solid black line represents the best-fit third-degree polynomial function for the whole dataset (WD). For comparison, data in light
blue from Fumenia et al. (2020) are shown after the conversion of measured bbp(700) to bbp(555) using a λ−1 spectral dependency. The
standard deviation of the best-fit coefficients, A and B, is indicated. (b) Comparison of algorithm-derived and measured PON, where the
algorithm is the black line in panel (a) for the whole dataset, WD. The solid black line is the best-fit function obtained from the Model-II
linear regression on log10-transformed data. The dashed line represents the 1 : 1 line. (c) Scatterplot of bbp(555) /PON vs. POC /SPM. The
vertical red lines refer to the threshold values of POC /SPM of 0.12 and 0.28, which delimit the mineral-dominated from mixed particulate
assemblages and the mixed from organic-dominated particulate assemblages, respectively (Stramski et al., 2023). Panels (a) and (b) of the
figure include the statistical indicators (see Sect. 2.4 for details).

In this case, the pattern of data suggests that the relationship
can be described reasonably well by a third-degree polyno-
mial function (black line):

PON= 10[2.62+1.32log10(bbp(555))+0.68[log10(bbp(555))]2+0.14[log10(bbp(555))]3]. (3)

A comparison of the algorithm-derived and measured values
of PON is presented in Fig. 7b. This plot and the associated
statistical metrics provide a means to evaluate how the best-
fit third-degree polynomial function of PON vs. bbp(555) for
the whole dataset (WD) from Fig. 7a reproduces the PON
variability for this algorithm development dataset. Figure 7b
shows a deviation between the linear fit to data and the 1 : 1
line, which indicates that the bbp(555)-based algorithm over-

estimates the PON values at low PON and tends to under-
estimate at high PON. Recognizing these biasing effects in
different PON ranges is important, especially as MdR is very
close to 1, indicating that an aggregate bias for the whole
dataset (WD) is very small. Other statistical indicators dis-
played in Fig. 7b are related to significant scatter of data
points around the 1 : 1 line; for example, MdAPD is about
35.9 %.

The results in Fig. 7a, b demonstrate that bbp(555) cannot
be used as a good proxy for PON within the wide range of
PON and bbp(555) variability observed across diverse ma-
rine bio-optical environments. This conclusion also holds for
the backscattering coefficient at other light wavelengths (not
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shown) and is not surprising because the various physical–
chemical characteristics of natural particulate assemblages,
which affect the optical properties of particles, are highly
variable across diverse environments. Also, this conclusion
is consistent with earlier studies that examined the estimation
of POC from optical measurements, including the backscat-
tering coefficient, across a wide range of aquatic environ-
ments. For example, a recent study of measurements from
the western Arctic seas, which exhibit a large range of vari-
ability, demonstrated that the generally poor relationships
based indiscriminately on all data can be improved by ac-
counting for variations in the composition of particulate mat-
ter parameterized in terms of the POC /SPM ratio (Stram-
ski et al., 2023). This is because this ratio can serve as a
proxy for the contribution of organic particles to the to-
tal suspended particulate matter, which also includes min-
eral particles. In turn, the proportion of organic and min-
eral particles is one of the important drivers of variations
in particle optical properties, for example through changes
in the particle refractive index. Whereas other particle char-
acteristics such as size distribution, shape, or degree of ag-
gregation are also important determinants of particle opti-
cal properties, the changes in the compositional parameter
of POC /SPM are useful in explaining, at least partly, the
variability in the relationships between the measures of par-
ticulate organic concentration, such as PON and POC, and
the bulk optical properties of seawater. Figure 7c depicts
the variations in the PON-specific backscattering coefficient,
bbp(555)/PON, as a function of POC /SPM for our whole
dataset. The variations span 2 orders of magnitude, with a
clear trend of a large decrease in the PON-specific backscat-
tering coefficient together with an increase in POC /SPM
(R = 0.85), which represents an increase in the proportion of
organic particles in the suspended particulate matter. For data
corresponding to mineral-dominated particulate assemblages
(POC /SPM < 0.12), the median value is bbp(555)/PON=
9.91×10−4 m2 mg−1. The median drops by a factor of about
9 to a value of 1.07× 10−4 m2 mg−1 for data encompassing
the organic-dominated assemblages (POC /SPM> 0.28). To
the first order, this trend is attributable to the fact that while
organic particles contribute to both PON and bbp, the min-
eral particles contribute only to bbp. Overall, these results
support the notion that, similar to the POC-specific partic-
ulate backscattering coefficient, the PON-specific particulate
backscattering coefficient is also strongly dependent on par-
ticulate composition.

3.4 Relationships between PON and absorption
coefficients

We now turn to relationships between PON and absorption
coefficients, specifically the total particulate absorption coef-
ficient, ap(λ), and its phytoplankton, aph(λ), and non-algal,
ad(λ), components. Figure 8a, b depict data of PON vs. ap(λ)

for two selected wavelengths of light, 442 and 510 nm. In

contrast to results for bbp(555) (Fig. 7a), the best-fit power
functions for PON vs. ap(λ) are similar for the whole dataset,
WD, and for its subsets, OOD, AOD, and CWD, consid-
ered separately. This result indicates a relatively weak sen-
sitivity of ap-based PON algorithms to the natural variabil-
ity observed across diverse marine bio-optical environments.
For WD, the determination coefficient is R2

= 0.82, which is
much higher compared to the 0.63 for the relationship based
on bbp(555). Also, the scatter of all data points around the
best-fit functions of PON vs. ap(442) or ap(510) is largely
reduced compared to the relationship of PON vs. bbp(555).
The best-fit power functions for the whole dataset, WD, are

PON= 152.42(±9.50)ap(442)0.65 (±0.02) (4)

PON= 254.27(±19.62)ap(510)0.64 (±0.02). (5)

It is also notable that if the data subsets OOD, AOD, and
CWD are considered separately, the relationships between
PON vs. ap(λ) are strongest for the open-ocean dataset (R2

=

0.86 or 0.89) and progressively weaken through the Arctic to
the coastal-water dataset (for the latter R2

= 0.60 or 0.58;
Fig. 8a, b).

Figure 8c, d support reasonably good agreement between
PON derived from the ap-based algorithms and PON mea-
sured over the whole range of variability observed within
WD. The best-fit regression functions of algorithm-derived
vs. measured PON do not exhibit large deviations from the 1 :
1 line. The aggregate bias is negligibly small, with MdR= 1
or 1.02. For all data in WD, ap(442) and ap(510) repro-
duce the PON variability, with MdAPD values slightly below
30.5 %, which is an improvement compared with 35.9 % for
the PON estimation from bbp(555).

Figure 8e, f show that the PON-specific particulate absorp-
tion coefficients, ap(442)/PON and ap(510)/PON, exhibit
variations spanning more than 1 order of magnitude with a
decreasing trend associated with an increase in POC /SPM
(R = 0.66 and 0.63 for the two light wavelengths selected,
442 and 510 nm, respectively). The trend is accompanied
by about three-fold decrease in the median value of PON-
specific ap(λ); for example, the median of ap(510)/PON de-
creases from 5.5× 10−2 to 1.6× 10−2 m2 mg−1 as the com-
position of particulate matter changes from mineral domi-
nated to organic dominated. While the variations in PON-
specific ap(λ) have an impact on the ability to predict PON
from ap(λ), these effects are weaker compared to the case of
the particulate backscattering coefficient.

Figure 9 depicts similar results to Fig. 8 but for the phyto-
plankton absorption coefficients, aph(442) and aph(510). Al-
though PON is associated with both phytoplankton and non-
algal organic particles and the experimental determinations
of aph(λ) are intended to represent the light absorption by
phytoplankton pigments only, Fig. 9 shows that aph(λ) has
an ability to predict PON that is comparable to the total par-
ticulate absorption coefficient ap(λ). The best-fit functions
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Figure 8. (a) Relationships between PON and ap(442) for different datasets, as indicated by dark-blue squares, red triangles, and green circles
corresponding to the open-ocean dataset (OOD), Arctic Ocean dataset (AOD), and coastal-water dataset (CWD), respectively. The solid dark-
blue, red, green, and black lines represent the best-fit power functions obtained from the Model-II linear regression on log10-transformed data
for the OOD, AOD, CWD, and the whole dataset (WD), respectively. The standard deviation of the best-fit coefficients,A and B, is indicated.
(b) Same as panel (a) but for ap(510). (c) Comparison of algorithm-derived and measured PON, where the ap(442)-based algorithm is the
black line in panel (a) for the whole dataset, WD. The solid black line is the best-fit function obtained from the Model-II linear regression
on log10-transformed data. The dashed line represents the 1 : 1 line. (d) Same as panel (c) but for the ap(510)-based algorithm. (e) Scatter
plot of ap(442)/PON vs. POC /SPM. The vertical red lines refer to the threshold values of POC /SPM of 0.12 and 0.28, which delimit the
mineral-dominated from mixed particulate assemblages and mixed from organic-dominated particulate assemblages, respectively (Stramski
et al., 2023). (f) Same as panel (e) but for ap(510)/PON. Panels (a), (b), (c), and (d) of the figure include the statistical indicators (see
Sect. 2.4 for details).
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Figure 9. (a) Relationships between PON and aph(442) for different datasets, as indicated by dark-blue squares, red triangles, and green cir-
cles corresponding to the open-ocean dataset (OOD), Arctic Ocean dataset (AOD), and coastal-water dataset (CWD), respectively. The solid
dark-blue, red, green, and black lines represent the best-fit power functions obtained from Model-II linear regression on log10-transformed
data for the OOD, AOD, CWD, and the whole dataset (WD), respectively. The standard deviation of the best-fit coefficients, A and B, is
indicated. (b) Same as panel (a) but for aph(510). (c) Comparison of algorithm-derived and measured PON, where the aph(442)-based algo-
rithm is the black line in panel (a) for the whole dataset, WD. The solid black line is the best-fit function obtained from the Model-II linear
regression on log10-transformed data. The dashed line represents the 1 : 1 line. (d) Same as panel (c) but for the aph(510)-based algorithm.
Each panel of the figure includes the statistical indicators (see Sect. 2.4 for details).

for the whole dataset, WD, are (Fig. 9a, b)

PON= 220.73(±16.96)aph(442)0.67 (±0.02) (6)

PON= 359.60(±31.47)aph(510)0.64 (±0.02). (7)

For these aph-based algorithms, the statistical metrics based
on comparisons of algorithm-derived and measured PON
(Fig. 9c, d) are very similar to those for the ap-based algo-
rithms (Fig. 8c, d). For example, the MdR values remain
very close to 1, and MdAPD is slightly below 30 %. When
separate subsets of data are considered, the relationship be-
tween PON and aph(λ) is strongest for the open-ocean and
Arctic datasets and weaker for the coastal-water dataset. As
expected, the PON-specific phytoplankton absorption coef-
ficient is weakly correlated with the proportion of organic
particles in the suspended particulate matter (R = 0.47 and

0.46 for the two light wavelengths selected, 442 and 510 nm,
respectively, figure not shown).

In contrast to the ap-based and aph-based PON algorithms,
the PON vs. ad(λ) relationships are not as strong, although
they exhibit less inter-dataset variability compared to the bbp-
based relationships (Fig. 10a, b). In particular, the slope of
the best-fit functions for the open-ocean dataset (OOD) dif-
fers significantly from the best-fit functions for AOD and
CWD. The best-fit functions for the whole dataset, WD, are

PON= 223.29(±21.18)ad(442)0.55 (±0.02) (8)

PON= 351.94(±42.41)ad(510)0.57 (±0.02). (9)

but these ad-based algorithms are inferior to the ap-based and
aph-based algorithms for estimating PON across the wide dy-
namic range of PON and IOPs observed within the whole
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Figure 10. Same as Fig. 8 but for the non-algal particulate absorption coefficients ad(442) and ad(510).

dataset. Figure 10c, d show increased uncertainty in PON
predicted from Eqs. (7) and (8) for all data included in WD,
which is manifested in particular through the increased val-
ues of MdB, MdAPD, MdSA, and RMSD. Variations in the
particulate composition parameterized by the POC /SPM ra-
tio exert a similar influence on the ad(λ)/PON ratio (R =
0.67 and 0.61 for the two light wavelengths selected, 442 and

510 nm, respectively, Fig. 10e, f) compared to the case of the
ap(λ)/PON ratio (Fig. 8e, f).

4 Concluding remarks

The analysis of the empirical relationships between PON and
particulate IOPs indicate that the total particulate, ap(λ), and
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Figure 11. Radar plots summarizing the performance of the IOP-based algorithms for deriving PON. The IOP(λ)s considered are the bbp(555)
(blue line), ap(442) (orange line), aph(442) (gray line), and ad(442) (black line). The smallest area of the polygon associated with each
algorithm represented in the radar plot corresponds to the best performance. The coefficient of correlation, R; slope, S; root-mean-square
deviation, RMSD; median bias, MdB; median absolute percentage difference, MdAPD; and median symmetric accuracy, MdSA, subject to
appropriate normalization (see Sect. 2.4), are indicated for (a) WD, (b) OOD, (c) AOD, and (d) CWD.

phytoplankton, aph(λ), absorption coefficients have the po-
tential to be used as predictive variables in IOP-based al-
gorithms for estimating PON over a wide range of oceanic
environments. Specifically, the analysis of near-surface mea-
surements from various open-ocean and coastal regions in-
cluding Arctic waters shows consistent relationships of PON
vs. ap(λ) or vs. aph(λ) across datasets collected in differ-
ent marine bio-optical environments. For the whole dataset
considered in this study to formulate the ap-based and aph-
based algorithms in the form of power functions, the median
absolute percent difference between the algorithm-derived
and measured PON is slightly less than 30 %. The relation-
ships of PON vs. the non-algal particulate absorption coeffi-

cient, ad(λ), or vs. the particulate backscattering coefficient,
bbp(λ), are weaker, especially when a wide dynamic range of
PON and IOPs within the whole dataset is considered. How-
ever, for the subset of data from open-ocean waters, our re-
sults indicate that bbp(555) can serve as a reasonably good
proxy for PON and that this result is consistent with ear-
lier data from a more geographically restricted region of the
western tropical Pacific (Fumenia et al., 2020).

To further support these conclusions, a comparative as-
sessment of the goodness-of-fit associated with the different
versions of the IOP-based algorithms when evaluated with
the whole dataset (WD) as well as its component subsets,
the open-ocean dataset (OOD), Arctic Ocean dataset (AOD),
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and coastal-water dataset (CWD), is presented using radar
plots in Fig. 11. The radar plots are particularly effective for
a synthetical comparison of the performance of algorithms
using multiple statistical metrics simultaneously (e.g., Tran
et al., 2019; Bonelli et al., 2021, 2022). Figure 11 illustrates
the areas of polygons created by six statistical indicators that
include R, S, MdB, MdAPD, MdSA, and RMSD after ap-
propriate normalization (Sect. 2.4). The size of the polygon
area is related to the quality of the goodness-of-fit for a given
algorithm as evaluated using its development dataset. As the
area of the polygon becomes smaller, the overall representa-
tion of PON variability by the algorithm improves, and hence
the algorithm has greater potential for better performance.
Figure 11 supports the conclusion that the ap-based and aph-
based algorithms best represent the PON variability over a
large dynamic range within the whole dataset, WD, as well
as within the separate data subsets, OOD, AOD, and CWD.
The bbp-based algorithm may perform reasonably well only
in open-ocean waters. This result can be relevant to efforts
aiming at the estimation of PON from optical sensors de-
ployed on in situ autonomous platforms such as BGC-Argo
floats.

Given the relative scarcity of concurrent PON and IOP
measurements across a wide range of marine bio-optical en-
vironments, in the present study all available data were used
to examine and formulate the PON vs. IOP relationships, and
no independent data were available for validation. In general,
the performance of the algorithms is limited by the variability
in the relationships between PON and particulate IOPs that,
in turn, is associated with multiple factors, such as variations
in the composition and size distribution of suspended partic-
ulate matter that drive variations in PON-specific IOP coeffi-
cients. In this study, we demonstrate these effects by showing
the variations in PON-specific IOP coefficients with changes
in POC /SPM ratio, providing information about the relative
proportions of organic and mineral particles. Accounting for
such variability appears desirable if further improvements are
to be achieved in the performance of optically based PON al-
gorithms across diverse oceanic environments. This research
avenue has been recently described in relation to POC al-
gorithms (Stramski et al., 2023; Koestner et al., 2024). To
further support this research, there is a clear need to collect
more concurrent measurements of seawater optical proper-
ties and various characteristics of suspended particles in di-
verse aquatic environments, including the measures of par-
ticulate concentration such as PON, POC, and SPM, as well
as some measures of particle size and composition that also
play important roles in bio-optical variability. The availabil-
ity of more extensive datasets can help with both the devel-
opment of improved algorithms and validation with indepen-
dent data.

Given that the seawater constituent IOPs can be esti-
mated from different inverse optical models (e.g., Zheng
and Stramski, 2013; Loisel et al., 2018; Jorge et al., 2021;
Kehrli et al., 2024), in future work it will be desirable to

investigate whether the IOP-based algorithms presented in
this study can provide a means for remote-sensing retrievals
of PON using IOPs derived from satellite ocean color ob-
servations. The potential significance of the estimation of
PON from spaceborne remote-sensing platforms is wide-
ranging. For example, knowledge of the carbon-to-nitrogen
ratio of organic particulate matter, POC /PON, is important
to link the carbon and nitrogen cycles (Martiny et al., 2013).
While the POC /PON Redfield ratio remains a reasonable
approximation for global ocean biogeochemical studies, the
POC /PON ratio can exhibit significant regional and tempo-
ral variability (Geider and La Roche, 2002; Martiny et al.,
2013). Accounting for this variability is critical for advanc-
ing our understanding of the role of phytoplankton in biogeo-
chemistry, for calculating export production, and for refining
ocean productivity models (Falkowski, 2000; Geider and La
Roche, 2002). As the ocean color algorithms for estimating
POC have reached a relatively high level of maturity (Stram-
ski et al., 2022; Kong et al., 2024), combining the existing
POC algorithms with novel PON algorithms offers a tool to
study the variability in the POC /PON ratio over a range of
spatial and temporal scales from satellite remote-sensing ob-
servations.
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Egiert, J.: Inherent optical properties of suspended particulate
matter in the southern Baltic Sea, Oceanologia, 53, 691–729,
https://doi.org/10.5697/oc.53-3.691, 2011.

York, D.: Least-squares fitting of a straight line, Can. J. Phys., 44,
1079–1086, https://doi.org/10.1139/p66-090, 1966.

Zheng, G. and Stramski, D.: A model based on stacked-
constraints approach for partitioning the light absorption coef-
ficient of seawater into phytoplankton and non-phytoplankton
components, J. Geophys. Res.-Oceans, 118, 2155–2174,
https://doi.org/10.1002/jgrc.20115, 2013.

Biogeosciences, 22, 2461–2484, 2025 https://doi.org/10.5194/bg-22-2461-2025

https://doi.org/10.3390/rs11232849
https://doi.org/10.1016/j.rse.2015.09.027
https://doi.org/10.1016/j.marchem.2004.06.017
https://doi.org/10.3389/fmars.2022.943867
https://doi.org/10.1038/nature09403
https://doi.org/10.4319/lo.2006.51.4.1777
https://doi.org/10.1029/2009JC005554
https://doi.org/10.5697/oc.53-3.691
https://doi.org/10.1139/p66-090
https://doi.org/10.1002/jgrc.20115

	Abstract
	Introduction
	Materials and methods
	Geographic locations of in situ measurements
	Measurement methods
	Description of the dataset
	Statistical indicators

	Results and discussion
	POC vs. PON relationship
	Development of PON vs. IOP relationships
	Relationship between PON and the backscattering coefficient
	Relationships between PON and absorption coefficients

	Concluding remarks
	Data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

