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Abstract. There is a growing interest in applying machine
learning methods to predict net ecosystem exchange (NEE)
based on site information and climatic variables. We apply
four machine learning models (cubist, random forest, aver-
aged neural networks, and linear regression) to predict the
NEE of boreal forest ecosystems based on climatic and site
variables. We use data sets from two stations in the Finnish
boreal forest (southern site Hyytiälä and northern site Vär-
riö) and model NEE during the peak growing season and
the whole year. For Hyytiälä, all nonlinear models demon-
strated similar results with R2

= 0.88 for the peak grow-
ing season and R2

= 0.90 for the whole year. For Värriö,
nonlinear models gave R2

= 0.73–0.76 for the peak grow-
ing season, whereas random forest and cubist with R2

= 0.74
were somewhat better than averaged neural networks with
R2
= 0.70 for the whole year. Using explainable artificial in-

telligence methods, we show that the most important input
variables during the peak season are photosynthetically ac-
tive radiation, diffuse radiation, and vapor pressure deficit
(or air temperature), whereas, on the whole-year scale, vapor
pressure deficit (or air temperature) is replaced by soil tem-
perature. When the data sets from both stations were mixed,
soil water content, the only variable clearly different between
Hyytiälä and Värriö data sets, emerged as one of the most
important variables, but its importance diminished when in-
put variables labeling sites were added. In addition, we ana-
lyze the dependencies of NEE on input variables against the
existing theoretical understanding of NEE drivers. We show
that even though the statistical scores of some models can

be very good, the results should be treated with caution, es-
pecially when applied to upscaling. In the model setup with
several interdependent variables ubiquitous in atmospheric
measurements, some models display strong opposite depen-
dencies on these variables. This behavior might have adverse
consequences if models are applied to the data sets in fu-
ture climate conditions. Our results highlight the importance
of explainable artificial intelligence methods for interpreting
outcomes from machine learning models, particularly when
a set containing interdependent variables is used as a model
input.

1 Introduction

Forests play an important role in the global carbon cycle be-
cause they remove carbon from the atmosphere through pho-
tosynthesis and store it in the wood biomass and forest soil.
Recent studies suggest that in the past several decades, the
net carbon uptake of the boreal forest has been increasing
and that of the tropical forest has been decreasing, making
the boreal forest the largest terrestrial carbon sink on the
planet (Tagesson et al., 2020). The dynamics of the forest car-
bon cycle and its interaction with various climatic drivers are
generally well understood; however, the complex responses
of forests to climate change and their potential to mitigate
its impacts keep boreal forests at the forefront of multidisci-
plinary research. This ongoing interest spans from observa-

Published by Copernicus Publications on behalf of the European Geosciences Union.



258 E. Ezhova et al.: Explainable machine learning for modeling of NEE in boreal forests

tional studies to global modeling efforts (Artaxo et al., 2022;
Petäjä et al., 2022; Kulmala et al., 2020, 2023; Tang et al.,
2023). There is a growing need for more accurate models of
carbon fluxes, providing reliable results in warming climate
conditions (Kämäräinen et al., 2023). Hence, suitable models
must correctly capture current carbon cycle dynamics using
commonly measured ecosystem-level data and give reason-
able predictions for, e.g., future higher temperatures. In other
words, the models’ performance should be adequate in the
range of values currently underrepresented in the data sets.

In addition to traditional process-based models (Launi-
ainen et al., 2022; Junttila et al., 2023), the use of machine
learning (ML) models has become ubiquitous. ML models
play an important role in providing an alternative for the hy-
pothetic deductive modeling approach, i.e., an inductive ap-
proach. This means no prior assumptions are made about the
data, which are modeled with a purely empirical model with
a general function class. Currently, there are plenty of car-
bon flux data available from the FLUXNET database, as well
as extensive meteorological reanalysis data sets or measure-
ments of many different variables directly from research sta-
tions. Data availability has boosted the application of data-
intensive ML methods to carbon flux modeling (Dou and
Yang, 2018; Zeng et al., 2020).

Using ML, the functional relationship between carbon flux
(net ecosystem exchange, NEE; gross primary production,
GPP; or respiration) and the site and climatic variables, in-
cluding radiation and meteorological and biospheric input
parameters, can be obtained. There exists plenty of litera-
ture featuring the ML approach to quantify different com-
ponents of the carbon cycle using site and climatic variables
as input (Dou and Yang, 2018). In many studies (Cai et al.,
2020; Wood, 2021; Zhu et al., 2023; Zeng et al., 2020), re-
searchers identify “the best model”, which reproduces the
carbon fluxes depending on the available set of input param-
eters better than other models. Statistical accuracy metrics
are typically used as a criterion for model assessment. Many
different ML models have been tested, but random forest has
appeared particularly popular (Liu et al., 2021; Reitz et al.,
2021).

However, these empirical machine learning models are of-
ten a “black box” in the sense that the parameters used by
models to make the predictions can not be directly extracted
from the model to provide a human-understandable way to
interpret them easily. The results, therefore, should be treated
cautiously. Recently, Shirley et al. (2023) demonstrated with
an example from Alaska that the boosted regression tree ML
model gave inaccurate results in current and future carbon
balance estimates at high latitudes. Increasing the data set by
adding more stations from the same area improved the result
for the current carbon sink. Still, future estimates were un-
reliable, ascribed to the fact that the data sets representing
future conditions could not be used for model training.

In response to this need, various methods that attempt
to make ML models more open and interpretable have

emerged. They are called explainable artificial intelligence
(XAI) methods (Dwivedi et al., 2023). With XAI techniques,
researchers can explore and analyze the factors that influence
the model outcomes, making it easier to interpret the results
and enhance the utility of ML approaches, e.g., in the context
of carbon cycle research.

In the present study, we model boreal forest NEE with
subhourly time resolution, using an extensive set of input
variables from two research stations at different latitudes:
Hyytiälä at 61°51′ N and Värriö at 67°46′ N. Using the same
time resolution, we use different data sets considering sep-
arately the peak growing season (defined as the period of
maximum photosynthetic activity of an ecosystem) and the
whole year. The Hyytiälä data set is divided into pre- and
post-thinning data periods because the thinning of a forest
(i.e., cutting down the share of trees) significantly impacts
not only the NEE but also many site variables.

We expect an ML model to learn differently depending on
the seasonality of the time series used for model training. For
example, diffuse radiation is an essential input variable for
photosynthesis on a subhourly scale during the peak growing
season because ecosystem photosynthesis is enhanced under
higher-diffuse-radiation conditions due to better light use ef-
ficiency (Gu et al., 2002; Ezhova et al., 2018). In winter, this
effect is missing, which might make diffuse radiation not as
crucial a variable for the model trained on the whole-year
data set. Instead, other input variables, such as air or soil tem-
perature, can be relevant when focusing on the seasonal cy-
cle of carbon fluxes (Kolari et al., 2009). Moreover, besides
time-related factors, a spatial factor represented by latitude
is also expected to affect the model buildup. The first aim of
this study is to analyze how ML models treat input variables
related to temporal (peak season vs. whole year) and spatial
variability.

The second aim is to use different ML models to under-
stand how the best model’s outcome compares to what we
know from process understanding of the carbon fluxes’ dy-
namics. In addition to that, we compare different ML models
and check if all of them reproduce CO2 flux dynamics ro-
bustly, if they tend to choose the same important input vari-
ables, and if dependences on these variables are similar be-
tween the models.

Finally, we combine data sets from the two latitudes, in-
clude data from a post-thinning period in Hyytiälä, and use
XAI to understand how the models perform on this mixed
data set. We introduce additional variables (the site variables)
distinguishing between the sites and model NEE with and
without these variables.

In this study, we have several research goals:

1. compare the ML models’ performance for two ecosys-
tems from different latitudes but with the same main tree
species using accuracy metrics and XAI (with a linear
regression model as a baseline); assess the reliability of
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results based on the robustness of their reproduction by
different models;

2. analyze the shift in the choice of model variables and
their general performance depending on the seasonality
(i.e., peak growing season or the whole year) and lati-
tude;

3. study how combining the data sets from the two stud-
ied forest ecosystems at different latitudes and including
post-thinning data affects model results.

2 Materials and methods

2.1 Stations and data sets

We used atmospheric observations from the SMEAR II sta-
tion in Hyytiälä, Finland (Hari and Kulmala, 2005), and
the SMEAR I station in Värriö, Finland (Hari et al., 1994).
The stations are located in boreal forests in central Finland
(Hyytiälä: 61°51′ N, 24°17′ E; 80 ma.s.l.) and in the Finnish
subarctic region (Värriö: 67°46′N, 29°36′E; 180 ma.s.l.).
The mean annual air temperature is 3.5 °C in Hyytiälä and
−0.5 °C in Värriö (source: ICOS database). The mean an-
nual precipitation in Hyytiälä is 710 mm, and in Värriö it is
601 mm. Forest stands at both sites are dominated by 60–
65-year-old Scots pines (Pinus sylvestris L.). However, the
average tree height differs, being ca. 19.9 m at SMEAR II
and 10 m at SMEAR I, as measured in 2023. The for-
est canopy at SMEAR II is closed, and at SMEAR I it is
open. Both sites are part of the Integrated Carbon Obser-
vation System (ICOS) and Integrated European Long-Term
Ecosystem, critical zone, and socio-ecological Research (eL-
TER) networks, meaning continuous observations of carbon
fluxes and other ecosystem parameters. Meteorological vari-
ables and radiation are also routinely measured at the sta-
tions. The data are publicly available to download from the
SmartSMEAR database (https://smear.avaa.csc.fi/, last ac-
cess: September 2022; latest updated data sets can be found
at https://etsin.fairdata.fi/datasets/SmartSMEAR, last access:
November 2023).

Data from Hyytiälä were divided into two separate data
sets: pre-thinning, referred to just as Hyytiälä data (prior to
2019), and post-thinning (post 2019), referred to as post-
thinning Hyytiälä data. The separation is due to the thinning
of the forest at Hyytiälä station in 2019, which involved the
removal of smaller trees from the forest understory, and ad-
ditional thinning (from below) conducted from January to
March 2020. In the thinning, 30 % of tree basal area was re-
moved (Aalto et al., 2023), which significantly changed NEE
due to the decrease in biomass. The data set thus had differ-
ences that were too large to be treated as a direct continuation
of the pre-thinning data set. The amount of data points and
the time intervals for each data set can be seen in Table 1.

Table 1. Summary of data sets: time periods and number of obser-
vations.

Site and case Dates N obs.

Hyytiälä, whole year Jul 2008–Sep 2018 39 096
Hyytiälä, peak season Jul–Aug (2008–2018) 11 730
Post-thinned Hyytiälä,
whole year

Feb 2019–May 2021 11 690

Post-thinned Hyytiälä,
peak season

Jul–Aug (2019–2020) 1376

Värriö, whole year May 2013–Oct 2019 26138
Värriö, peak season Jul–Aug (2015–2019) 7172

The data used in this study have a 30 min interval. The high
frequency enables a more detailed study of the daily cycle of
NEE. It allows for the analysis of the impact of such variables
that affect the ecosystem processes on a short timescale, such
as the impact of changes in radiation on photosynthesis. Raw
measurements of the target variable (NEE) were collected
using the eddy covariance technique (Aubinet et al., 2012)
and then processed into NEE through the EddyUH software
(Mammarella et al., 2016). Negative NEE corresponds to the
ecosystem acting as a net carbon sink, while positive NEE
corresponds to the ecosystem acting as a net carbon source.
We model NEE using meteorological variables such as air
temperature, soil temperature, solar radiation, relative hu-
midity, and soil moisture content. The leaf area index (LAI)
is not used here as its seasonal variability in the chosen period
is relatively small (Hyytiälä about 30 %; Värriö 20 %), which
translates to a below 10 % change in canopy light intercep-
tion and roughly the same percentage in GPP. For some input
variables, minor differences exist in how the data are mea-
sured at the two stations (e.g., soil moisture is from different
depths). The data used were non-gap-filled to avoid the in-
fluence of models typically used for gap filling. At Hyytiälä,
photosynthetically active radiation (PAR) was not measured
before 2009, and we used global radiation multiplied by the
PAR quantum efficiency of 2 µmol s−1 W−1 (Ross and Sulev,
2000; Ezhova et al., 2018) to calculate missing values of
PAR. All variables used are listed in Table 2.

In the pre-processing of the data, time points that con-
tained missing values of any studied input variable were dis-
carded. Also, all rows where the PAR value was less than
10 µmol s−1 m−2 were filtered out due to the interest being
solely on modeling daytime NEE. We calculated the diffuse
fraction,

Fdif =
PARdif

PAR
, (1)

and vapor pressure deficit (Monteith and Unsworth, 2013),

VPD= es− ea, where

es = 611exp
(

17.27Tair

237.7+ Tair

)
,ea = es

RH
100

. (2)
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Table 2. List of input variables used for model training.

Abbreviation Name Units Notes

PAR Photosynthetically
active radiation

µmol s−1 m−2 Hyytiälä: measured at 18 m height (radiation tower Dec 2009–Feb 2017)
or 35 m height (35 m tower Feb 2017–May 2021)
Värriö: measured above the canopy

PARdif Diffuse PAR µmol s−1 m−2 Hyytiälä: measured at 18 m height (radiation tower Dec 2009–Feb 2017)
or 35 m height (35 m tower Feb 2017–May 2021)
Värriö: measured above the canopy

Fdif Diffuse fraction – Fdif =
PARdif
PAR

AirTemp Air temperature °C Hyytiälä: measured at 33.6 m height
Värriö: 9 m

SoilTempA Soil temperature °C Hyytiälä: measured 2–5 cm depth in the mineral soil
Värriö: 5 cm

SoilTempB Soil temperature °C Hyytiälä: measured 22–29 cm depth in the mineral soil (only in
Hyytiälä)

VPD Vapor pressure deficit Pa Eq. (2), Sect. 2.1

SoilWatCont Soil water content % Hyytiälä: 22–29 cm depth in the mineral soil
Värriö: within the topmost 10 cm in the organic and mineral soil

RH Relative humidity % Hyytiälä: measured at 16 m height (Apr 1998–Jan 2017) or 35 m height
(Feb 2017–May 2021)
Värriö: 2 m

FricVel Friction velocity ms−1 Hyytiälä: measured at 24 m height, 27 m after 2019
Värriö: measured at 16.6 m height

In Eq. (2), Tair is in degrees Celsius (°C) and es and ea are
in pascals (Pa).

The machine learning models were trained in two sets of
four setups (Table 3), and the results within a set were com-
pared against each other. For both sets, four different ma-
chine learning models were trained for all of the four cases,
meaning a total of 32 models trained. In the first set, mod-
els for data representing entire year and peak growth season
(July and August) were trained using data from either pre-
thinned Hyytiälä or Värriö. In the second set, models were
trained by combining the data from two sites into a single
mixed data set and then training them with and without vari-
ables that denote from which site the data originate from
(“Värriö”, “Hyytiälä” for Hyytiälä pre-thinned, “HyytiäläT”
for Hyytiälä post-thinned). Similarly to Set 1, setups in-
cluded the entire year and peak growing season. A summary
of the configurations for all experiments can be seen in Ta-
ble 3.

In all cases, the data were split into training and test data,
where training data were used to train the models, while
test data were used to evaluate the models’ performance. For
modeling NEE for pre-thinned Hyytiälä and Värriö, 75 % of
their respective data were used for training the model, while
the rest were used as the test data to evaluate the model per-
formance.In case of the mixed model, 80 % of the each re-

spective data set was used to train the model. The processed
data used for training the machine learning are publicly avail-
able at Laanti (2024).

2.2 Machine learning models

To ensure robustness and reduce potential biases, we vali-
date our findings across four distinct ML models, aiming
to identify consistent patterns or insights and provide an
overall picture of how well the models can use these data
to predict NEE. Applying several models to the same data
set provides a context on what input variables are consis-
tently considered important across different models. The four
models used were cubist (Quinlan, 1992), random forest
(Breiman, 2001), averaged neural network (Kuhn, 2008), and
basic linear regression (Kutner et al., 2004). All were imple-
mented in R (v. 4.3.0: https://www.r-project.org/, last access:
November 2023) using R’s “caret” library (v. 6.0.94: https://
github.com/topepo/caret/, last access: November 2023). Lin-
ear regression served as the baseline model, while the other
models were chosen due to their proven competence in solv-
ing various regression problems (Fernández-Delgado et al.,
2019). The code used for training the machine learning mod-
els is publicly available at Laanti (2024).
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Table 3. Overview of the training configurations for ML models across different data sets.

Set Setup Description

Set 1 Hyytiälä all Models trained on the data from pre-thinned Hyytiälä, entire years
Hyytiälä peak Models trained on the data from pre-thinned Hyytiälä, peak growing seasons
Värriö all Models trained on the data from Värriö, entire years
Värriö peak Models trained on the data from Värriö, peak growing seasons

Set 2 All without site Models trained on the mixed data set from both sites, including post-thinned Hyytiälä, entire years,
no site labels

All with site Models trained on the mixed data set from both sites, including post-thinned Hyytiälä, entire years,
sites labels included

Peak without site Models trained on the mixed data set from both sites, including post-thinned Hyytiälä, peak growing
seasons, no site labels

Peak with site Models trained on the mixed data set from both sites, including post-thinned Hyytiälä, peak growing
seasons, site labels included

Table 4. List of the final model hyperparameters with their respective values for each modeling setup. Values of parameters are listed in the
following order corresponding to different setups: Hyytiälä all, Hyytiälä peak, Värriö all, Värriö peak, mixed data sets with site label, and
mixed data sets without site label.

Method Hyperparameter Description Values

Cubist committees Number of committees (models) to be fitted. 100, 90, 100, 100, 100, 100
neighbors Number of nearest neighbors used in prediction. 9, 9, 6, 3, 9, 6

Random forest mtry Number of variables sampled at each split. 3, 3, 6, 2, 11, 8
min node size Minimum size of terminal nodes (leaves). 5, 5, 5, 5, 5, 5

avNNet size Number of units in the hidden layer(s). 13, 13, 13, 13, 13, 13
decay Weight decay parameter for regularization. 0.1, 0.1, 0.1, 0.1, 0.1, 0.1
bag Boolean flag for using bootstrap aggregating (bagging). False, False, False, False, False, False

Random forest (RF) is a popular model that has been
used in previous research (Cai et al., 2020; Liu et al., 2021;
Abbasian et al., 2022; Zhu et al., 2023) due to its ease of
use, high accuracy, and robustness. It is an ensemble model
that uses the averaged output of random regression trees
(Fernández-Delgado et al., 2019) by training different regres-
sion trees on different subsets of the data. The final prediction
is the average result of the different tree predictions. The al-
gorithm is quite robust as the different trees are trained with
the different subsets of the training data. The randomForest
library (Liaw and Wiener, 2002) implements the regression
algorithm of RF used in this study.

Cubist is one of the best-performing regression models
(Fernández-Delgado et al., 2019) across multiple types of
data sets (i.e., type and size of data). Like RF, it is created
from multiple individual regression trees, where each termi-
nal leaf contains a smoothed linear regression model for pre-
diction (Zhou et al., 2019). It creates a series of if–then rules
that can be considered the branches of a tree, while the leaves
are an associated multivariate linear model. The correspond-
ing model is used to calculate the final predicted value as
long as the set of covariates satisfies the conditions of the
corresponding rule. Cubist also uses boosting with its train-

ing committees, which creates a series of trees with different
weights and nearest-neighbor search to adjust the predictions
better.

Model-averaged neural networks (avNNet) are a single-
hidden-layer feed-forward neural network characterized by
its architecture and training approach. The network consists
of interconnected neurons arranged in layers, with the final
layer outputting the prediction (Ripley, 2007). During the
training phase, initial weights, which influence predictions,
are randomly assigned. These weights are then iteratively
updated, enabling the network to capture nonlinear relation-
ships. Given the randomness in predictions due to these ini-
tial weight assignments, avNNet constructs multiple neural
network models and averages their results. This averaging
process promotes a more robust and stable prediction by min-
imizing the impact of any single model’s randomness.

The basic multivariate linear regression (LinRegr) is used
as a baseline to understand how much impact and improved
results more advanced models can provide. LinRegr finds
a linear relationship between the independent and depen-
dent variables determined by minimizing the sum of the
squared differences between the predicted and the actual val-
ues (Hastie et al., 2009).
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2.3 Cross-validation framework, hyperparameter
tuning, and validation metrics

K-fold cross-validation is a resampling method for validat-
ing model efficiency, which generally results in less biased
models (Jung, 2018). The K-fold cross-validation method
shuffles the data set randomly and splits it into K groups or
folds. First, each fold is taken as a holdout, while the model
is fit on the rest of the folds, and then the model is evaluated
on the holdout set. The score is retained, and the model is
discarded. In repeated K-fold cross-validation, this process
is done R times on different splits. K-fold cross-validation
also effectively prevents model overfitting, where a machine
learning model has learned to model the inherent noise of
a data set, to a point where it fails to model for points not
included in the training data set (Berrar, 2019).

During the model training, repeated K-fold cross-
validation was used with caret libraries’ (Kuhn, 2023) grid
hyperparameter search. This method trains and evaluates a
model using all possible combinations of specified hyperpa-
rameter values to identify the combination that yields the best
model performance. It was used to tune the models’ hyper-
parameters and configuration settings that are external to the
model and can be adjusted to optimize performance. Values
R = 5 repeats and K = 10 folds were used to fit each model.
The tuned hyperparameters can be seen in Table 4. The
train and test data as well as the folds of the K-fold cross-
validation were split using a predetermined random split to
ensure repeatability. However, due to technical limitations,
in-depth hyperparameter tuning was not used on the models
that contained data from all sites. Instead, hyperparameters
based on the results from the single-site models were used.

In evaluating the performance of our machine learning
models, we primarily relied on two key metrics to assess the
models’ goodness of fit: the coefficient of determination (R2)
and the root mean squared error (RMSE). RMSE measures
the differences between the values predicted by a model and
the actual values and provides an understanding of the mag-
nitude of error the model might make in its predictions. A
lower RMSE indicates a better fit to the data, implying that
the model’s predictions are more precise. The models’ hy-
perparameters were tuned specifically based on the RMSE
score.

In addition, each model was trained on five different data
splits to account for variability and reduce the influence of
any single fortunate or unfortunate split on the results. The
performance metrics, R2 and RMSE, were averaged across
these splits to ensure a robust and reliable assessment of
model performance.

2.4 Explainable AI methods

As machine learning models have been used more in research
and industry, the demand for more transparent and inter-
pretable models has grown (Dwivedi et al., 2023). As model

accuracy has risen, so has model complexity. The highly ac-
curate and complex models have many hyperparameters that
can not be made human-understandable. To be trustworthy,
the ML model must produce interpretable or transparent re-
sults. Relying on unexplained or inaccurate predictions can
lead to critical errors. Accuracy metrics do not always por-
tray the true prediction capability of a model, so it is vital
to critically evaluate the results against existing knowledge
or theories. XAI methods aim to provide machine learning
models and methods that enable users to better understand,
analyze, and evaluate the models’ decision-making.

In this study, we used two XAI methods: permutation fea-
ture importance and accumulated local effect (ALE) plots
(Molnar, 2020). They provide insight into how the input
variables affect a model’s output. Both are model-agnostic
global methods, meaning they can be used regardless of
the selected model and provide interpretations on the data
set as a whole rather than individual points (Molnar, 2020).
Both of these methods were implemented using R’s “iml” li-
brary (v.0.11.1: https://github.com/christophM/iml/, last ac-
cess: November 2023, Molnar et al., 2018).

2.4.1 Permutation feature importance

Permutation feature importance is a method that aims to mea-
sure the increase in the prediction error of a model after
the input variables (features) are permuted. In permutation
feature importance, the relationship between a specific input
variable and the variable the model tries to predict is deliber-
ately disrupted to understand how the models’ prediction ac-
curacy is affected (Molnar, 2020). If an input variable is im-
portant, randomly rearranging its values increases the model
error, as the model then relies on that specific input variable
for an accurate prediction. The trained model is denoted as f ,
input variable matrix as X, target vector as y, and error mea-
sure as L(y,f (X)). The algorithm works as follows.

1. The original model error e = L(y,f (X)) is estimated.

2. For each input variable with index i ∈ {1, . . .,p}, where
p is the total number of input variables,

2.1 a permutated input variable matrix X̂ is generated
by permuting input variable i in the data X, which
breaks the association between input variable i and
the true outcome y;

2.2 the error caused by the permutation is estimated by
predicting with it ê = L(y,f (X̂)); and

2.3 the permutation input variable importance is calcu-
lated as quotient Impi = ê/e.

3. Input variables are sorted by descending Imp.

Only test data are used to calculate the permutation feature
importance. Assessing feature importance using the training
data might result in scores that are too inflated due to a model
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overfitting on training data. That said, the features with very
high scores might not be as important for making accurate
predictions on new, unseen data. As with the metrics R2 and
RMSE, the permutation feature importance was calculated
on multiple different data splits to ensure robustness of the
results.

2.4.2 ALE plots

Accumulated local effect (ALE) plots describe how input
variables influence the prediction of a machine learning
model on average (Molnar, 2020). ALE reduces a complex
machine learning function to a function that depends on only
one, as in our case, or two input variables and visualizes the
effects between a selected variable and the prediction of the
target variable of a machine learning model. The idea is to re-
move the unwanted effects of other input variables, take par-
tial derivatives (local effects) of the prediction function with
respect to the feature of interest, and integrate (accumulate)
them with respect to the same feature.

The value of ALE at a certain point can be thought of
as the effect of the selected variable at a specific value
compared to the average prediction made on the data. To
calculate the ALE value for input variable s at point x ∈

[min(xs),max(xs)], with xs being the vector of this vari-
able’s values, the input variable values xs are divided into
K intervals, where the start of the first interval is the lowest
value z0 =min(xs), and the differences of predictions be-
tween the sequential intervals are calculated. While the exact
ALE formula requires a model with a derivative, an approx-
imate version is used here that is more widely adopted and
works for models without a derivative. Initially, an uncen-
tered effect is computed:

f s,ALE(x)=

ks (x)∑
k=1

1
ns(k)

∑
i:x

(i)
s ∈]zk−1,s ,zk,s ]

[
f (zk,s,x

(i)
−s)

− f (zk−1,s,x
(i)
−s)

]
.

The values xs of input variable of interest s are replaced
with grid values zs , where the grid values represent the edges
of the intervals. The interval index an input variable value
x ∈ xs falls in is denoted as ks(x), while ns(k) denotes the
number of observations inside the kth interval of xs . A sin-
gle data point is denoted as x(i)

= (x
(i)
s ,x

(i)
−s)), where x

(i)
s

denotes the ith value for the selected input variable, and x
(i)
−s

is the vector of all the other features of a single data point
that are kept constant. The ML predicting function is denoted
as f .

The differences between the predictions f (zk,s,x
(i)
−s)−

f (zk−1,s,x
(i)
−s) are the effect that the input variable s has for

an individual data point for predicting the dependent variable
(NEE in our case) when using the upper and lower values of
an certain interval. The sum

∑
i: x

(i)
s ∈]zk−1,s ,zk,s ]

adds up the

effects of all instances within an interval x
(i)
s ∈]zk−1,s,zk,s].

This is then divided by the number of observations in this
interval ns(k) to obtain the average difference of the predic-
tions of this interval. The sum

∑ks (x)
k=1 accumulates the aver-

age effects across all intervals, meaning that the uncentered
ALE of an input variable of interest is accumulated by all its
previous intervals. After that, the effect is centered, making
the mean effect zero:

fs,ALE(x)= f s,ALE(x)−
1
n

n∑
i=1

f s,ALE(x(i)
s ).

The value of ALE can be thought of as the main effect of
the input variable at a certain value compared to the average
prediction of the data. The ALE plot has the advantage that
it generates valid interpretations even if the variables are cor-
related – an issue that persists in other methods that reduce a
prediction function f to a function that depends on a single
input variable such as partial dependence plots or marginal
plots (Molnar, 2020). As with permutation feature impor-
tance, only the test data set was used to reduce the chance
of inflating scores due to a model overfitting on the training
data set.

3 Results and discussion

3.1 NEE modeling for Hyytiälä and Värriö data sets

In this section, we report the results obtained with differ-
ent models from Set 1 in Table 3 (pre-thinned Hyytiälä and
Värriö, whole year and peak growing season). First, we as-
sess models’ performance with routinely used accuracy met-
rics (R2 and RMSE), visualize diurnal and annual NEE cy-
cles, and then use XAI methods. In each subsection, we start
the discussion with the peak-growing-season results and con-
tinue with the whole-season results.

3.1.1 Assessing model performance using accuracy
metrics

Figures 1 and 2 show coefficients of determination and
RMSE, respectively, for all the models, two stations, the peak
growing season, and the whole year (Set 1 in Table 3). In gen-
eral, the models perform better if trained on the Hyytiälä data
set compared to the Värriö data set, as seen from higher R2

coefficients. If the model is used on the training data set, the
R2 coefficients and RMSE are somewhat better than when
used on the test data set, as expected. This effect is espe-
cially pronounced for RF and cubist models, which achieve
high scores (R2 > 0.85), largely because they are regression-
tree-based models that tend to produce overly optimistic re-
sults on the data they were trained on. These high training
scores do not reflect out-of-bag (OOB) performance, which
typically provides a more accurate estimate of the model’s
true predictive ability on the data it was trained on (Kuhn and
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Figure 1. R2 coefficients for all the models and different setups from Set 1 (Table 3). In each of the four panels, the results for the training
data set are shown on the right (labeled “Train”), and the results for the test data set are shown on the left (dotted bars, labeled “Test”).
Different colors are used to distinguish between the ML models; see legend. “ALL” denotes the scores for the models trained on the whole-
year data sets; “PEAK” denotes the scores for the models trained on the peak-growing-season data sets. The black error bars show the min
and max, and the bars show the mean of the scores trained on different splits of the data.

Johnson, 2013), due to OOB performance measuring not be-
ing available for all the models. The difference between the
train and test scores is larger for Värriö than for Hyytiälä,
as can be expected because the Värriö data set is smaller
(Zhang et al., 2023). LinRegr and avNNet have almost iden-
tical scores on training and test data sets. The difference in
scores between the training and test data sets is called a gen-
eralization error. In some cases, a large generalization er-
ror points to overfitting, i.e., the model learns the training
data set too well and then performs poorly on the test data
set. We applied K-fold cross-validation to avoid overfitting
when choosing hyperparameters; see Sect. 2.3. Additionally,
we tried different splits of the data into training and test data
sets, which showed that the variation of the resulting R2 coef-
ficients and RMSE was small (Figs. 1 and 2). In addition, we
obtained similar accuracy metrics on the test data sets using
different nonlinear ML models, which also suggests that our
results are robust. In what follows, the results are reported for
the test data sets if not stated otherwise.

For the peak growing season, all four models perform
well, including LinRegr, which is only slightly worse than
the more complex models. For Hyytiälä, all nonlinear ML
models give similarly high R2 coefficients, close to 0.9, and
RMSE values almost do not differ between these models. For
Värriö, RF is slightly better than other ML models demon-
strated by both a higher R2 coefficient and a lower RMSE.
Compared to Hyytiälä’s R2

= 0.87, Värriö’s R2 coefficient is
lower, R2

' 0.70–0.74, which could be related to the higher
share of outliers in the data or a smaller range of the pre-
dicted variable. The predictors vary within similar ranges in
Hyytiälä and Värriö, whereas the predicted variable NEE has
a larger value range in Hyytiälä compared to Värriö (corre-
sponding to a weaker carbon sink in Värriö) because the Vär-
riö ecosystem is less productive. It is also possible that the
difference in R2 coefficients could be because the available
predictors have a more significant effect on the forest carbon
balance in Hyytiälä than in Värriö. A decrease in R2 coeffi-
cients for the cases when the predicted variable had a smaller
value range was reported by other ML studies, e.g., Liu et al.
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Figure 2. RMSE for all models and different setups from Set 1 (Table 3). In each of the four panels, the results for the training data set are
shown on the right (labeled “Train”), and the results for the test data set are shown on the left (dotted bars, labeled “Test”). Different colors
are used to distinguish between the ML models; see legend. “ALL” denotes the scores for the models trained on the whole-year data sets;
“PEAK” denotes the scores for the models trained on the peak-growing-season data sets. The black error bars show the min and max, and
the bars show the mean of the scores trained on different splits of the data.

(2021) and Abbasian et al. (2022). Also, for process-based
models, reproducing carbon fluxes at less productive forests
with low leaf area index is challenging (Mäkelä et al., 2019).

Scatter plots of measured vs. modeled data for training
and test data sets are shown in Fig. 3 using one of the best-
performing models, RF. The lowest modeled NEE values
tend to be overestimated, and the highest modeled NEE val-
ues tend to be underestimated. This is seen best in the train-
ing data sets (because they are much larger) deviating from
1 : 1 lines at the extremes of the data. In Fig. 2, it is vis-
ible that RMSE values for Värriö are lower than those for
Hyytiälä, which means that Värriö values in Fig. 3 are closer
to the best-fit lines. Still, it does not mean that the model
is better because the best-fit line of the measured vs. mod-
eled data points is not 1 : 1. With high-accuracy scores, the
mean diurnal cycle of NEE within the peak growing season
is almost perfectly reproduced by the RF model (Fig. 4) with
slightly smaller standard deviations in the modeled compared
to the measured data.

In the case of the whole-year data sets, the performance of
LinRegr drastically decreases when compared to the peak-
growing-season data sets (Figs. 1 and 2). This could be ex-
pected because, on the whole-year scale, NEE dependence
on many variables becomes nonlinear. Especially for the Vär-
riö data set, the LinRegr R2 coefficient falls below 0.5, and
RMSE increases by 40 % compared to the nonlinear ML
models, meaning that more complex models are needed and
justified. Figures 3–5 show scatter plots and annual daytime
NEE cycle for Hyytiälä and Värriö. The same conclusions
as for the peak-growing-season data sets apply here as the
mean values were almost perfectly reproduced and extreme
values were missing. The models captured the essential fea-
tures of the annual NEE cycle, including ecosystem spring
and autumn phenological transitions (Fig. 5).

It is interesting to consider different models’ performance
for the same setup. Here we show an example for the
Hyytiälä all setup (Fig. 6). The test cases for all nonlinear
ML models look similar. Note orange points (test RF) cover-
ing black points (training RF) illustrating the smaller RMSE
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Figure 3. Modeled vs. measured NEE for Hyytiälä and Värriö on the example of the random forest model. Black points indicate training
data sets; orange points indicate test data sets. “ALL” denotes the plots based on the whole-year data sets; “PEAK” denotes the plots based
on the peak-growing-season data sets. The density distributions of the actual NEE and predicted NEE are shown on the top and right side of
the plots, respectively, with colored being the test and translucent being the training data.

for the training data set in Fig. 6. The LinRegr plot is more
scattered, and the points are not organized along one line
(in agreement with reported low R2 coefficients and high
RMSE).

Compared to other studies, Dou and Yang (2018) demon-
strated that in modeling whole-year NEE of forest ecosys-
tems, the R2 coefficients as high as 0.64–0.80 can be reached
on the test data sets for separate evergreen needleleaf forest
ecosystems. Our scores are within this interval for Värriö and
significantly higher (0.90) for Hyytiälä. However, we used a
different, more diverse set of input variables and modeled
30 min fluxes compared to daily fluxes in the study men-

tioned above. On a similar data set (deciduous forest in Ger-
many, summer time, 30 min resolution), Moffat et al. (2010)
got R2

= 0.93 and RMSE of 2.3 µmol s−1 m−2 using an arti-
ficial neural network, which is close to Hyytiälä results.

3.1.2 Which variables explain NEE: feature
importance

We now consider feature importance, allowing us to ana-
lyze how the models rank input variables by their explana-
tory power. For the peak growing season, all nonlinear ML
models agree for both stations (Fig. 7, Table A2) that the
variables with the most explanatory power are PAR and dif-
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Figure 4. Mean diurnal and monthly cycles of daytime NEE as reproduced by random forest compared to actual NEE. Error bars denote
standard deviation.

fuse PAR. Moreover, PAR typically comes first, except for
cubist in the case of Värriö. Overall, during the peak grow-
ing season in boreal forests, a daytime CO2 flux due to pho-
tosynthesis prevails over that due to respiration, at least in
Hyytiälä (Kolari et al., 2009). Therefore, one can expect
that parameters controlling photosynthesis also dominate the
NEE response. PAR is theoretically the most important vari-
able during the peak growing season to explain photosyn-
thesis (Palmroth and Hari, 2001; Moffat et al., 2010), and
the stimulating effect of diffuse radiation on the peak-season
photosynthesis (diffuse radiation fertilization) is also well
known (Gu et al., 2002). Accordingly, the models consider
light-related variables to be the most important. Interestingly,
LinRegr chooses diffuse PAR as the most important variable

to explain NEE, likely because the dependence of photosyn-
thesis on diffuse PAR can be considered closer to linear.

The third variable in importance after PAR and diffuse
PAR, as seen by nonlinear models, is VPD (three cases), air
temperature (two cases), or soil temperature A (one case).
It is good to note that VPD is calculated based on air tem-
perature (see Sect. 2.1), so these variables are not indepen-
dent. PAR, diffuse PAR, and VPD are confirmed as essential
drivers of carbon assimilation in numerous studies on photo-
synthesis in different ecosystems (Gu et al., 2002; Larcher,
2003; Grossiord et al., 2020). Particularly for Hyytiälä dur-
ing the growing season, a statistical model showed that daily
photosynthesis is most sensitive to light and VPD (Pel-
toniemi et al., 2015). However, as NEE is the net result of
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Figure 5. Mean annual cycle of daily NEE as reproduced by random forest compared to actual NEE.

photosynthesis and respiration, and respiration is highly sen-
sitive to temperature, it makes sense that the models pick
either VPD or temperature as the third important variable.
Ecosystem respiration is the sum of aboveground and below-
ground respiration, but soil temperature is sometimes con-
sidered a better parameter for modeling ecosystem respira-
tion than air temperature (Kolari et al., 2009; Lasslop et al.,
2012).

We note that nonlinear ML models typically place sev-
eral variables close to the third position in the feature im-
portance diagram. For Hyytiälä, RF places diffuse fraction

close to VPD, followed by air temperature and RH; cubist
and avNNet place intercorrelated soil temperature A and B
(R = 0.98, Fig. A1) high. For Värriö, cubist and avNNet
place interdependent VPD, RH, and air temperature in the
feature importance diagram within the error bar from each
other. Relatively large error bars for these variables suggest
that the models seem to have difficulties ranking them, as
their order may likely change depending on the data split. At
the same time, the error bars are smallest for RF, which seems
more confident than other nonlinear models in its treatment
of interdependent variables.
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Figure 6. Modeled vs. measured NEE illustrating performance of all the models on the whole-year Hyytiälä data set. Black points indicate
training data sets; orange points indicate test data sets. The density distributions of the actual NEE and predicted NEE are shown on the top
and right side of the plots, respectively, with colored being the test, and translucent being the training data.

Suppose the model chooses one variable before another
correlated one. In that case, the second one can be placed low
in the feature importance diagram, as the model, in principle,
does not need it anymore. This does not mean, however, that
one of the correlated variables explains NEE clearly better
than the other: for example, Moffat et al. (2010) showed, us-
ing an artificial neural network, that intercorrelated diffuse
fraction and diffuse radiation (as well as intercorrelated VPD
and RH) have the same explanatory power for the summer-
time forest NEE and can be used interchangeably. However,
all our models place diffuse PAR higher than diffuse fraction,
and they typically place VPD higher than RH.

Feature importance for the whole-year setups (Fig. 7)
shows another set of most relevant variables lifting soil tem-
perature at the expense of air temperature or VPD (nonlin-
ear models; see Table A2). In many cases, soil temperature
becomes the second important variable – sometimes even
the first (avNNet, Hyytiälä). The increasing importance of
the temperature-related variable is expected because, in the
whole-year case, the model needs to capture the seasonality
of carbon flux (Mäkelä et al., 2004, 2006), and soil temper-
ature grows in summer and decreases in winter. However,
the models’ choice of soil temperature over air temperature
requires additional explanation. Presumably, the soil temper-
ature is positive during the warm season and nearly constant
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Figure 7. Feature importance for all the models and different setups from Set 1 (Table 3). The order of features is in accordance with the
outcome of the random forest model. “ALL” denotes the plots based on the whole-year data sets; “PEAK” denotes the plots based on the
peak-growing-season data sets. The points indicate the mean of the feature importance score across multiple data sets, while the bars show
the min and max, respectively.

during winter in the presence of snow. This behavior is in
line with NEE, which is also inhibited in winter. Air tem-
perature, in contrast, may display significant variability also
in winter. In addition, soil temperature limits plant water use
and photosynthesis in spring and autumn (Wu et al., 2012;
Lintunen et al., 2020). In the case of the LinRegr, PAR is no
longer among the three most important variables, replaced by
another soil temperature or diffuse fraction.

3.1.3 How the models use input variables: ALE

Proceeding with ALE, we discuss dependencies of NEE on
input variables as seen by the models, focusing on the peak
growing season so far. ALE demonstrates that NEE decreases
with increasing PAR and diffuse PAR for all the models
(Fig. 8). Nonlinear models show the nonlinear dependence of
NEE on PAR, which is most pronounced for the RF model.
This model shows that NEE saturates at higher PAR values,
resembling the light response curve, and for the Värriö data
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Figure 8. ALE plots for all the models (see legend); data sets correspond to the peak growing season in Hyytiälä (upper panels) and Värriö
(lower panels).

set, NEE levels off at the largest diffuse PAR. This could be
because high diffuse PAR is observed under a cloudy sky, and
in Värriö, the corresponding PAR level can already be close
to the light saturation point (Ezhova et al., 2018) inhibiting
photosynthesis.

RF and cubist also capture a nonlinear dependence of NEE
on VPD, which has an optimum value between the low and

high values of VPD. At very high VPD, stomatal closure
prevents plants from losing water (Running, 1976), also af-
fecting photosynthesis. Besides, high VPD is often associ-
ated with high temperature, which increases NEE due to in-
creased respiration. At low VPD, when water vapor pressure
at the leaf level and in the atmosphere is about the same,
there is no driving force to sustain transpiration. This in-

https://doi.org/10.5194/bg-22-257-2025 Biogeosciences, 22, 257–288, 2025



272 E. Ezhova et al.: Explainable machine learning for modeling of NEE in boreal forests

hibits water uptake by the roots and generally slows down
plant metabolism, affecting photosynthesis. Moreover, low
VPD is associated with lower PAR and higher diffuse frac-
tion (Fig. A1), pointing at overcast cloudy conditions when
photosynthesis is light-limited.

Note that dependencies of NEE on PAR, diffuse PAR, and
VPD are qualitatively similar in all used nonlinear models,
though quantitatively, sensitivity to the corresponding vari-
ables somewhat differs. However, the dependence of NEE
on air temperature is not the same in all models. In Hyytiälä,
RF and cubist feature an increase in NEE with air tempera-
ture, whereas LinRegr and avNNet demonstrate a decrease.
In Värriö, all models except avNNet suggest a positive de-
pendence of NEE on air temperature. The positive depen-
dence is in line with the stomatal control at high temperatures
(stomatal closure dampening photosynthesis) and higher soil
respiration during the peak growing season.

It is interesting to analyze ALE from different models
trained on the input data sets with several temperature vari-
ables. Both soil and air temperature are typically included in
modeling studies of NEE based on machine learning (Dou
and Yang, 2018; Liu et al., 2021; Abbasian et al., 2022).
Cai et al. (2020) and Wood (2021) include average, mini-
mum, and maximum air and soil temperature in their stud-
ies, adding more interdependent variables in the data sets.
The Hyytiälä’s data set includes air temperature and tem-
perature from A and B soil horizons. In the peak season,
all these temperature-related variables show quite similar dy-
namics. With soil depth, the mean temperature and amplitude
of the diurnal temperature cycle decrease, and the time lag
between the temperature signals increases. However, hori-
zon B is not too deep, and the lag remains generally smaller
than half a day. All the models, besides RF, treat soil tem-
peratures A and B as important variables and demonstrate
strong but opposite dependencies on these variables (Fig.8).
As soil temperatures A and B are correlated (Appendix A,
Fig. A1), opposite NEE dependencies must outweigh each
other. Strong opposite dependencies on correlated variables
should be treated cautiously as the models might use them
to tune towards higher scores on given data sets. In the case
of correlated soil temperatures, there is no guarantee that this
compensation or tuning will work for even higher tempera-
ture, which is currently not represented in the data set. The
same conclusion applies to using the model developed for a
particular site on the data sets from other sites (Peltoniemi
et al., 2015). In contrast, RF shows a strong association of
NEE only with air temperature and a weak association with
two soil temperature variables.

Now we briefly discuss other variables that have a more
minor effect on NEE. Diffuse fraction demonstrates a con-
sistent impact across all models, leading to some increase in
NEE with its rise. This effect likely stems from the reduction
of photosynthesis under an overcast sky with low radiation
and high diffuse fraction. Note that diffuse fraction and dif-
fuse PAR contain the same information provided PAR is in-

cluded in the data set. Gross primary production in Hyytiälä
has its minimum at the low diffuse PAR and a maximum at
the high diffuse PAR compared to the weak parabolic de-
pendence on diffuse fraction (Ezhova et al., 2018; Neimane-
Šroma et al., 2024). That may be why the models choose
diffuse PAR over diffuse fraction. Most models could then
deem the diffuse fraction relatively unimportant as they al-
ready use diffuse PAR.

RH directly influences VPD through a linear relationship
(Eq. 2, Fig. A1). The higher the RH, the closer ambient air
is to saturation, and VPD, in this case, is small. Low RH,
in contrast, favors higher VPD values. Having VPD as one
of the powerful explaining variables should, in principle, di-
minish the role of RH, as is the case for RF and cubist. How-
ever, RH is placed relatively high in the feature importance
for avNNet and LinRegr, which is also reflected in the sig-
nificant range of NEE variability due to RH.

In Hyytiälä, all nonlinear models feature an increase in
NEE with decreasing soil water content. In Värriö, all mod-
els feature an increase in NEE with increasing soil water con-
tent, and in Hyytiälä, cubist and avNNet demonstrate similar
behavior. Note, however, that sensitivity to this variable is
quite low for all models, indicating that soil moisture does
not limit ecosystem functioning in current conditions. How-
ever, this could change in the future, which would perhaps
not be captured by the models.

For friction velocity, all models indicate a consistent trend
in Hyytiälä, where an increase in friction velocity leads to a
decrease in NEE, suggesting that NEE flux is somewhat sen-
sitive to changes in turbulence levels. On the one hand, this
could indicate an eddy covariance problem (Moffat et al.,
2010). On the other hand, this dependence might reflect
physical processes: friction velocity has a weak increasing
trend in Hyytiälä due to trees getting taller, which coincides
with the weak, increasing trend in carbon uptake but not in
respiration (Launiainen et al., 2022). In Värriö, there is no
clear dependence between friction velocity and NEE. Gen-
erally, this variable holds limited importance in the overall
model predictions, which is to be expected as filtering by
friction velocity is applied to the data sets routinely during
quality checks.

We proceed with the whole-year ALE plots: the depen-
dencies of NEE on light variables (PAR, diffuse PAR) re-
main largely similar to those for the peak-growing-season
setup (Fig. A3). Most nonlinear models (except avNNet on
Hyytiälä data set) predict that the NEE dependence on air
temperature has a minimum in the presence of negative tem-
peratures in the data set, suggesting larger NEE during the
cold season and the warmest summer periods. This might re-
flect the absence of photosynthesis in the cold season and the
increased respiration accompanied by inhibited photosynthe-
sis for the highest temperatures. In Hyytiälä, NEE depen-
dence on soil temperature A also has a minimum. In Vär-
riö, NEE decreases with increasing soil temperature until it
plateaus at around 15 °C in the case of RF and avNNet. Note
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that for Hyytiälä, NEE dependencies on soil temperatures B
and A are again of opposite sign for all models except RF.
The LinRegr fails on the Hyytiälä data set, showing a weak
association of NEE with air temperature but featuring lower
NEE and stronger carbon sink at low, even negative, soil
temperatures. The failure of LinRegr on the whole-year data
could be due to its inability to capture the nonlinear depen-
dence of NEE on temperature, which becomes significant on
a whole-season scale.

Considering less critical variables, the dependencies re-
main mainly the same. In some cases, however, avNNet
demonstrates dependencies inconsistent with expected be-
havior, e.g., featuring a stronger carbon sink under low-RH
conditions. It is worth mentioning that the dependence on soil
water content is quite complicated in Hyytiälä, with a mini-
mum and a maximum. This could be related to data contain-
ing subsets with high water content at low temperatures when
photosynthesis is inhibited, e.g., during snowmelt or late au-
tumn. In any case, as for the peak-growing-season setup, the
sensitivity of NEE to this variable is low.

Finally, if the most important input variables for the stud-
ied sites are the same and the dependencies of NEE on these
variables are similar in the case of RF and, to a lesser ex-
tent, cubist, one could expect that it is possible to build a
more generic model, which would be able to give reasonable
results for many different boreal forest sites. We, therefore,
built one model based on all the data in the following section.

3.2 NEE modeling: mixed data set

In this section, we report the results of NEE modeling us-
ing Set 2 (Table 3), which consists of mixed data from pre-
thinning Hyytiälä (referred to just as Hyytiälä), Värriö, and
post-thinning Hyytiälä. We aimed to understand how the
models perform in the following cases: (1) mixed data set,
containing data from both sites without any separation or
benchmarking the data (peak without site and all without site
setups, Table 3); (2) mixed data set, but we introduce three
binary dummy variables that identify the site (peak with site
and all with site setups, Table 3). Three binary variables were
used instead of a single categorical one due to some models
requiring real numbers as input (Hancock and Khoshgoftaar,
2020).

3.2.1 Assessing model performance on a mixed data set
using accuracy metrics

The determination coefficients for mixed data sets are shown
in Fig.9, separately for the model runs with and without
the variables for the site identity. Adding site variables to
the data set slightly improves the correlation coefficient R2

(within 3.5 %), which remains high for the best models, RF
and cubist (0.84–0.87 for the peak season, 0.86–0.89 for the
whole season). Comparing this result to the results for the
separate stations (Fig. 1), we note that the scores are closer to

those for Hyytiälä. This could be because Hyytiälä data pre-
vail in the compiled data set. However, a trial run with equal
inputs from different sets (Hyytiälä pre-thinned+Hyytiälä
post-thinned+Värriö) shows that R2 was only marginally
lower, by 0.02 for the nonlinear ML models (Figs. A5
and A6). This finding suggests that factors other than the
prevalence of the Hyytiälä data set may be important: for ex-
ample, the value range of the data. The Hyytiälä data set has
a larger NEE value range compared to Värriö, and that could
be the reason for the better Hyytiälä R2 coefficient, as men-
tioned in Sect. 3.1.1. Therefore, one could expect larger R2

coefficients for any mixed sets containing a sufficient amount
of Hyytiälä data when compared to the Värriö data set. In-
terestingly, LinRegr performs worse than other models on a
compiled data set, even for the peak growing season. The
LinRegr R2 coefficient on the mixed data set is clearly lower
than on the Hyytiälä data set (drop from 0.85 to 0.80 for the
peak growing season and from 0.76 to 0.68 for the whole
year).

As previously stated, site variables do not have a signif-
icant effect on R2 coefficients, but the advantage is more
evident for RMSE (Fig. 10). RMSE for the peak-growing-
season data is generally larger than for the whole season,
likely because the fluctuations and errors of NEE measure-
ments outside the growing season are relatively small. In ad-
dition, the flux random error increases with the flux mag-
nitude within the growing season. If we compare the mod-
els with and without site variables, we see that adding site
variables reduces RMSE by 10 %–13 %: from about 2.4 to
2.15 µmol s−1 m−2 for the peak growing season and from
about 1.8 to 1.6 µmol s−1 m−2 for the whole year. Consid-
ering models trained on data of separate sites, RMSE scores
in the models with site variables are somewhat smaller com-
pared to the models trained on the Hyytiälä data set, probably
due to the presence of Värriö data with smaller RMSE than
Hyytiälä data (Fig. 2) or due to the larger size of the mixed
data set. Overall, introducing the site variables in the mixed
data set barely improves the correlation between measured
and modeled points but reduces the scatter in the plot pre-
senting measured vs. modeled points.

3.2.2 Feature importance for the mixed data set

We assess the feature importance diagrams provided by the
models on the mixed data sets, paying special attention to
the ranking of the site variables (Fig. 11, Table A2). It fol-
lows quite clearly from Table A2 that the models’ choice of
the most important input parameters becomes more aligned
when they are trained on the mixed data set. For example,
all the models, without exception, choose PAR as the most
important variable in both the peak-season and the whole-
year setups. During the peak season, the second variable in
the feature importance diagrams is diffuse PAR (six setups
out of eight) or VPD (two out of eight). Continuing with the
peak season, site parameter “Värriö” appears only as the third
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Figure 9. R2 coefficients for all the models and different setups from Set 2 (Table 3). In each of the four panels, the results for the training
data set are shown on the right (labeled “Train”), and the results for the test data set are shown on the left (dotted bars, labeled “Test”). “ALL”
denotes the scores for the models using the whole-year data sets; “PEAK” denotes the scores for the models using the peak-growing-season
data sets. “With Site” indicates the input variables contain information about the site; “Without Site” indicates the input variables contain no
information about the site. The black error bars show the min and max, and the bars show the mean of the scores trained on different splits
of the data.

variable in the corresponding setups (replaced in some mod-
els with VPD or diffuse PAR). In the setup without site pa-
rameters, the third important variable is VPD or diffuse PAR
or soil water content in case of RF. The latter observation
is interesting as Värriö has different soil characteristics: soil
moisture is lower there (Fig. A2), and RF might have used it
as a replacement of the site variable.

For the whole-year setups, the second variable after PAR
in the feature importance diagrams is almost always soil tem-
perature A (seven out of eight cases) or diffuse PAR (one out
of eight cases). (Recall that the Hyytiälä feature importance
set contained soil temperature B and not A. Replacement of
this variable by the temperature at A horizon is because soil
temperature B is not in the data set anymore as it was not
measured in Värriö.) The third variable is diffuse PAR (five
out of eight cases) or VPD/soil temperature/air temperature
(one case each). Note that site variables are not among the
three most important in the whole-season setups. Instead, the
models retain NEE dependence on soil temperature, which

allows them to reproduce a seasonal cycle and choose over
the site variables diffuse PAR, VPD, or air temperature. Nev-
ertheless, site variables appear among the six highest input
variables in the feature importance diagrams, and as follows
from Fig.10, they help to reduce the RMSE.

Another observation is that among site variables, the
models put “Värriö” highest in the peak-season setups but
“Hyytiälä” in the whole-year setups. However, as mentioned
before, it should be possible for the models to use them in-
terchangeably.

3.2.3 ALE for the mixed data set

Judging by ALE (Figs. 12, A4), dependencies of NEE on
light variables (PAR and diffuse PAR) for all setups in Set 2
are similar to those for separate stations (Figs. 8 and A3). In
the peak season, the nonlinear models suggest that the third
important variable is “Värriö” for the setups with site param-
eters. From Fig. 12, it can be seen that the modeled NEE
increases if “Värriö” changes from zero to one. The models
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Figure 10. RMSE for all the models and different setups from Set 2 (Table 3). In each of the four panels, the results for the training data
set are shown on the right (labeled “Train”), and the results for the test data set are shown on the left (dotted bars, labeled “Test”). “ALL”
denotes the scores for the models using the whole-year data sets; “PEAK” denotes the scores for the models using the peak-growing-season
data sets. “With Site” indicates the input variables contain information about the site; “Without Site” indicates the input variables contain no
information about the site. The black error bars show the min and max, and the bars show the mean of the scores trained on different splits
of the data.

then use this site variable to make all NEE values at Värriö
somewhat higher than the general mean value for all three
sites, which is the case due to lower tree biomass. Similarly,
models use the variable “Hyytiälä” when it is equal to one
to decrease NEE, and this decrease is less pronounced for
cubist and RF than for the other models. Finally, when the
“HyytiäläT” variable is equal to one, RF and cubist slightly
increase NEE, whereas the other models decrease NEE. Be-
cause the prevailing data set is still Hyytiälä pre-thinned, this
data set likely dictates the base values chosen by the mod-
els. Therefore, a moderate increase in NEE for the Hyytiälä
thinned data set and a stronger NEE increase for the Värriö
station is reasonable. Interestingly, LinRegr does not use the
site variable “Värriö” at all.

In the peak-season setup without site variables, soil water
content is one of the relevant variables chosen by the mod-
els, especially RF. Judging by ALE (Fig. 12), the models
prescribe higher values of NEE to the drier cases, which is
in line with how the ecosystem functions under drier condi-

tions (reduction of photosynthesis). Similarly, for the whole-
season setup without site variables, we note that NEE de-
creases strongly with increasing soil water content (Fig. A4),
in contrast to what was observed when we modeled separate
sites. ALE plots for both the peak-season and whole-season
setups (Figs. 12 an A4) demonstrate clearly how soil water
content loses its strong position when site variables are intro-
duced and how the NEE dependence on this variable again
becomes complex, in line with what is observed for separate
stations.

NEE dependencies on VPD are qualitatively similar for
mixed data sets in those for separate sites. LinRegr and avN-
Net still have strong and opposite NEE dependencies on VPD
and RH, similar to their performance on the Hyytiälä data
set. These models might use variable RH to compensate for
a modeled effect of VPD on NEE that is too strong.

Interestingly, all models display a positive dependence of
NEE on air temperature for the peak growing season and
setup with site variables, unlike avNNet and LinRegr on
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Figure 11. Feature importance for all the models trained on the mixed data sets containing (“With Site”) and not containing (“Without Site”)
site variables. The order of features is in accordance with the outcome of the random forest model. “ALL” denotes the plots based on the
whole-year data sets; “PEAK” denotes the plots based on the peak-growing-season data sets. The points indicate the mean of the feature
importance score across multiple data sets, while the bars show the min and max, respectively.

Hyytiälä data. Positive dependence is in line with theoret-
ical expectations due to increasing respiration and reduced
photosynthesis with increasing temperature within the peak
season. At the same time, NEE somewhat decreases with in-
creasing soil temperature A for all the models except RF;
however, this effect of soil temperature on NEE, as captured
by the models, is much weaker than that of air temperature.

On the whole-year scale, all nonlinear models demonstrate
rather similar NEE dependencies on different variables (ex-
cept strong NEE dependencies on VPD and RH partially out-
weighing each other as modeled by avNNet), which was also
the case for the separate Värriö setup. This could be due to
the data from Värriö that have a long dormant season: one
of the main tasks of the models is to reproduce seasonal cy-
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Figure 12. ALE plots for all the models trained on the mixed data sets containing (“With Site”, lower panels) and not containing (“Without
Site”, upper panels) site variables. The data sets are from the peak growing season.

cle, for which the nonlinear models use soil temperature in a
similar manner.

Generally, RF performed more in line with theoretical ex-
pectations from ecophysiological research than other mod-
els when trained on the data set containing interdependent
variables. LinRegr and the avNNet demonstrate strong de-
pendencies of NEE on VPD, which they likely compensate
for with relatively strong dependencies of NEE on air tem-
perature and RH. Due to that, some ALE may appear coun-

terintuitive (e.g., strengthening of carbon sink with increas-
ing air temperature during the peak season), contradicting the
expectations based on general knowledge of ecosystem func-
tioning. In addition, all models except RF demonstrate strong
opposite associations with soil temperature A and B when
both variables are available (Fig. 8).
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4 Conclusions

We modeled NEE at two sites in boreal forests: one in cen-
tral Finland and one in the Finnish subarctic. We focused
on the peak-growing-season and whole-year data sets. Peak-
growing-season NEE for separate sites can be modeled rea-
sonably well even with a simple linear regression model.
However, linear regression performs significantly worse than
nonlinear ML models in the case of the mixed data sets from
both sites or whole-year data sets.

The most powerful explaining variables in the peak-
growing-season setups are PAR, diffuse PAR, and vapor
pressure deficit (or air temperature); in the case of the whole-
year setups, such variables are PAR, soil temperature, and
diffuse PAR. This is a robust result reproduced by most of
the models used in this study. High vapor pressure deficit
dampens photosynthesis and, hence, makes NEE increase.
This effect is essential during the peak growing season. The
models presumably used soil temperature to account for the
change in NEE within a seasonal cycle.

To build a joint model for several sites, we added site vari-
ables. The model is more sensitive to these variables within
the peak growing season, whereas soil temperature retains
its importance for the whole-year data sets. In the absence
of site-specific variables, random forest ranks soil water con-
tent, the variable that differs most between the sites, as the
third most important in the feature importance diagram. NEE
dependence on soil water content and the importance of this
variable for NEE predictions change drastically for the mod-
els built on the data sets, including and excluding site vari-
ables.

Our ALE results suggest that cubist and especially random
forest display more robust behavior modeling complex non-
linear dependence of net ecosystem exchange on the set of
interconnected variables. They could qualitatively reproduce
the theoretically expected dependencies of NEE on the ma-
jor climatic drivers of ecosystem processes under different
conditions and for several sites. This result aligns with many
studies that used random forest based on its best performance
compared with other models. Additionally, linear regression
and model-averaged neural networks tend to overemphasize
certain variables while compensating with other interdepen-
dent variables. In our modeling study, linear regression and
model-averaged neural networks compensated using vari-
ables like air temperature and relative humidity, which are
highly sensitive to changing climate conditions.

All in all, it should be noted that the models’ performance
changes depending on a given setup, so no single recom-
mendation suggesting or prohibiting a specific model can
be given. This is, instead, a case-by-case issue. Therefore,
we call for broader usage of explainable artificial intelli-
gence methods when applying ML methods, especially when
choosing the most suitable model. Feature importance and
ALE plots together allow for a direct comparison between
ML model functioning and process-based models.

Finally, we showed that even a simple way to account for
the difference between the sites decreases RMSE and im-
proves the model. The next step is to introduce a more suit-
able variable, allowing us to distinguish the ecosystems from
each other. As Hyytiälä data are split into pre-thinned and
post-thinned, we need a variable that could account for this
change in the vegetation. The best candidates for this could
be the satellite-based normalized difference vegetation index
(NDVI) and LAI (Launiainen et al., 2022; Zhu et al., 2023),
which we plan to add to our data set instead of site variables.
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Appendix A

Figure A1. Heat maps illustrating linear correlation between input variables in Hyytiälä and Värriö. Statistically insignificant correlations
are marked with an asterisk (*).

https://doi.org/10.5194/bg-22-257-2025 Biogeosciences, 22, 257–288, 2025



280 E. Ezhova et al.: Explainable machine learning for modeling of NEE in boreal forests

Figure A2. Box plots of input variables comparing Hyytiälä and Värriö data sets on the whole-year timescale. “Hyy” refers to the Hyytiälä
pre-thinned data set, “Hyy Thin” refers to the Hyytiälä post-thinned data set, and “Vär” refers to the Värriö data set.
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Figure A3. ALE plots for all the models trained on the whole-year data sets from Hyytiälä (upper panels) and Värriö (lower panels).
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Figure A4. ALE plots for all the models trained on the mixed data sets containing (“With Site”) and not containing (“Without Site”) site
variables. The data sets are from the whole year.
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Figure A5. R2 coefficients for all the models and different setups from Set 1 (Table 3). Here, the models were trained using equal amount of
data points from Hyytiälä, Värriö, and post-thinning Hyytiälä (balanced data sets). In each of the four panels, the results for the training data
set are shown on the right (labeled “Train”), and the results for the test data set are shown on the left (dotted bars, labeled “Test”). “ALL”
denotes the scores for the models using the whole-year data sets; “PEAK” denotes the scores for the models using the peak-growing-season
data sets. “With Site” indicates the input variables contain information about the site; “Without Site” indicates the input variables contain no
information about the site.
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Figure A6. RMSE for all the models and different setups from Set 1 (Table 3). Here, the models were trained using equal amount of data
points from Hyytiälä, Värriö, and post-thinning Hyytiälä (balanced data sets). In each of the four panels, the results for the training data
set are shown on the right (labeled “Train”), and the results for the test data set are shown on the left (dotted bars, labeled “Test”). “ALL”
denotes the scores for the models using the whole-year data sets; “PEAK” denotes the scores for the models using the peak-growing-season
data sets. “With Site” indicates the input variables contain information about the site; “Without Site” indicates the input variables contain no
information about the site.
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Table A1. Three most important features for different models and Set 1 (Table 3).

Model RF Cubist avNNet LinRegr RF Cubist avNNet LinRegr

Peak Hyytiälä Värriö

P1 PAR PAR PAR PARdif PAR PARdif PAR PARdif
P2 PARdif PARdif PARdif VPD PARdif PAR PARdif PAR
P3 VPD SoilTempA VPD PAR AirTemp AirTemp VPD VPD

All Hyytiälä Värriö

P1 PAR PAR SoilTempB SoilTempB PAR PARdif PAR PARdif
P2 PARdif SoilTempB PAR SoilTempA SoilTempA SoilTempA SoilTempA SoilTempA
P3 SoilTempB PARdif PARdif PARdif PARdif PAR PARdif Fdif

Table A2. Three most important features for different models and Set 2 (Table 3).

Model RF Cubist avNNet LinRegr RF Cubist avNNet LinRegr

Peak Without site With site

P1 PAR PAR PAR PAR PAR PAR PAR PAR
P2 PARdif VPD PARdif PARdif PARdif PARdif VPD PARdif
P3 SoilWatCont PARdif VPD VPD Värriö Värriö PARdif VPD

All Without site With site

P1 PAR PAR PAR PAR PAR PAR PAR PAR
P2 SoilTempA SoilTempA SoilTempA SoilTempA SoilTempA SoilTempA SoilTempA PARdif
P3 PARdif PARdif AirTemp PARdif PARdif PARdif VPD SoilTempA
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