

Supplement of

Ocean alkalinity enhancement in an open-ocean ecosystem: biogeochemical responses and carbon storage durability

Allanah Joy Paul et al.

Correspondence to: Allanah Joy Paul (allanah.paul@gmail.com)

The copyright of individual parts of the supplement might differ from the article licence.

Contents

Table S1: Overview on linear regression analyses

Table S2: Carbonate chemistry treatment and phase means

Table S3: Overview of data included in Fig. 8 in manuscript

Figure S1: Photo of mesocosm set up at pier

Figure S2: Photo of white particles attached to mesocosm walls in OAE2400

Figure S3: FTIR spectrum of mesocosm precipitates and calcite/aragonite standard materials

Figure S4: Long-term changes in alkalinity (TA) and aragonite saturation state (Ω_{ar}) from extended incubations

Table S1: Overview on linear regression analyses for all variables included in the summary table (Table 1) in the main manuscript. Phase 0 refers to before alkalinity addition, Phase I corresponds to Days 7-19 (short-term response), and Phase II corresponds to Days 21-33 (longer-term response). Bold data indicate significant positive impact of OAE detected, and italics indicates significant negative impact of OAE was detected.

Group of variables	Variable	Phase	F- Statistic (df = 7)	p value	Multiple R²	Estimate (intercept)	Estimate (x-coefficient)	Data transformation
	Nitrate +	0	0.975	0.3563		-0.9211	0.0001	none
nutrients	nitrite	I.	0.204	0.6655	0.028	-0.0667	0.0000	none
	[NO _x -]	П	2.10	0.1275	0.299	-0.0331	0.0000	log(y + 1)
	Inorganic	0	1.54	0.2548		0.1383	0.0000	none
	phosphate	I	0.123	0.7357	0.017	0.0454	0.0000	log(y + 1)
	[PO ₄ ³⁻]	П	3.56	0.1012	0.337	0.0438	0.0000	none
	Dissolved	0	5.337	0.0537		0.4067	0.0000	log(y + 1)
	silicate	I	1.64	0.2416	0.189	0.2233	0.0000	log(y + 1)
	[Si(OH)₄⁻]	П	0.096	0.7662	0.057	0.2626	0.0000	log(y + 1)
		0	0.375	0.5594		2.4030	0.0000	log(y)
	Chl a	I.	1.58	0.2487	0.184	13.6721	-0.0003	² V(y+1)
		П	0.269	0.6199	0.037	7.1817	0.0005	³ √(y+1)
		0	0.295	0.6040		89.7057	-0.0024	none
	POC	I	4.82	0.0642	0.408	76.1748	-0.0042	none
		П	0.009	0.9262	0.001	4.3100	0.0000	³ √(v+1)
POM		0	1.12	0.3100		1.1570	0.0000	none
	PON	Ī	11.3	0.0121	0.617	11.8449	-0.0009	none
		II	0.099	0.7620	0.014	1.1460	0.0000	
		0	3.33	0.1109	0.322	0.0000	0.0000	
	РОР	ı	3 24	0.1151	0.316	0.0000	0.0000	y V ⁴
		II	0.041	0.8452	0.006	0.0027	0.0000	y v ²
	POC:PON	0	0.514	0 4965	0.000	6 2026	0.0002	none
		Ĩ	3.52	0.1027	0.335	6.3983	0.0002	none
		П	62.1	0.0001	0.899	5.5810	0.0005	none
	POC:POP	0	1.685	0.2354	0.194	160.5000	0.0053	none
		I	0.717	0.4252	0.093	161.5000	0.0026	none
POM		П	0.434	0.5308	0.058	134.3000	0.0065	none
stoichiometry		0	0.829	0.4136	0.097	19.8492	0.0011	none
	PON:POP	I.	0.022	0.7535	0.015	21.7250	-0.0002	none
		II	0.030	0.8201	0.008	20.2446	-0.0003	none
		0	1.91	0.2090		0.0191	0.0000	1/y²
	PON:BSi		0.024	0.8819	0.003	78.5541	-0.0059	y ²
			1.45	0.2670	0.172	16.8356	0.0038	none
	5.01	0	0.345	0.5754	0.064	0.1694	0.0000	none
Biomineralisation -	BSI	1	0.457	0.5208	0.061	0.5058	0.0000	none
		0	0.828	0.3927	0.106	1.0950	0.0000	³ V(y)
	ыс	U	0.490	0.5003	0.015	1.9852	0.0002	°V(Y) 3√(√+5)
	FIC		0.107	0.7330	0.015	0.6581	0.0000	$\frac{2}{2}(x)$
		0	0.155	0.7207	0.000	0.0301	0.0001	log(y + 1)
	PIC:POC	ĩ	7.32	0.0304	0.511	0.0012	0.0001	none
		II.	1.13	0.3237	0.139	0.6655	0.0000	⁴ √(∨)
	POC:BSi	0	0.982	0.3547		0.0000	0.0000	1/y ³
		I	0.009	0.9267	0.001	65.9248	-0.0007	none
		П	1.997	0.2005	0.222	115.4953	0.0353	none
		0	4.54	0.0707	0.393	20.6250	-0.0043	у ²
	δ^{15} N-PON	I	0.580	0.4712	0.077	41760.69	-8.9000	10 ^(y+1)
		П	0.416	0.5395	0.056	80.2658	-0.0183	y ³

		OAE								
		0	300	600	900	1200	1500	1800	2100	2400
Phase	Variable									
Pre-treatment	TA (μmol kg ⁻¹)	2393.1 ± 6.5	2395.0 ± 3.5	2398.3 ± 3.1	2398.1 ± 1.2	2399.3 ± 2.1	2399.4 ± 2.6	2397.4 ± 3.8	2400.3 ± 3.5	2398.7 ± 1.4
	DIC (µmol kg ⁻¹)	2110.0 ± 10.2	2107.9 ± 5.7	2121.2 ± 9.9	2114.5 ± 5.1	2117.4 ± 7.1	2115.3 ± 5.1	2117.7 ± 7.8	2113.1 ± 7.3	2115.0 ± 4.2
	pCO2 (µatm)	448 ± 11	441 ± 11	464 ± 18	449 ± 13	453 ± 15	449 ± 12	458 ± 14	443 ± 21	449 ± 7
	Ω_{Ar}	3.17 ± 0.06	3.21 ± 0.08	3.11 ± 0.12	3.18 ± 0.09	3.16 ± 0.10	3.18 ± 0.09	3.14 ± 0.09	3.21 ± 0.17	3.18 ± 0.04
Short term	TA (μmol kg ⁻¹)	2415.0 ± 14.2	2693.4 ± 9.5	2988.2 ± 12.5	3282.7 ± 9.2	3587.7 ± 13.3	3865.8± 18.5	4139.9 ± 17.2	4439.2 ± 17.8	4707.3 ± 15.7
	DIC (µmol kg ⁻¹)	2114.4 ± 11.7	2344.4 ± 12.7	2588.1 ± 17.1	2830.6 ± 20.3	3076.4 ± 20.3	3296.5 ± 29.6	3508.1 ± 31-0	3743.6 ± 25.2	3951.3 ± 27.3
	pCO ₂ (µatm)	421 ± 11	426 ± 16	435 ± 17	445 ± 23	448 ± 18	449 ± 27	444 ± 24	446 ± 15	447 ± 17
	Ω_{Ar}	3.35 ± 0.07	4.00 ± 0.09	4.71 ± 0.11	5.44 ± 0.16	6.27 ± 0.14	7.08 ± 0.23	7.96 ± 0.22	8.88 ± 0.14	9.74 ± 0.15
Longer term	TA (μmol kg ⁻¹)	2440.3 ± 5.6	2699.8 ± 55.2	3017.3 ± 33.8	3310.3 ± 10.7	3618.0 ± 30.7	3895.6± 35.6	4174.0 ± 42.9	4469.3 ± 29.5	4615.8 ± 92.2
	DIC (µmol kg ⁻¹)	2124.1 ± 12.5	2352.0 ± 12.3	2598.3 ± 19.1	2829.1 ± 16.2	3082.4 ± 19.0	3294.9 ± 24.0	3502.9 ± 25.8	3754.0 ± 30.1	3892.2 ± 52.2
	pCO ₂ (µatm)	412 ± 8	443 ± 86	419 ± 29	415 ± 29	428 ± 19	422 ± 35	417 ± 32	436 ± 30	464 ± 40
	Ω_{Ar}	3.47 ± 0.05	3.98 ± 0.50	4.91 ± 0.28	5.76 ± 0.26	6.54 ± 0.24	7.44 ± 0.43	8.37 ± 0.46	9.10 ± 0.36	9.28 ± 0.67

Table S2: Overview of carbonate system variables as mean \pm S.D. for each OAE treatment level for the experiment phases. "Short-term" refers to Days 7-19 (short-term response), and "longer term" refers to Days 21-33 with "Pre-treatment" corresponding to days prior to alkalinity addition.

Table S3: Overview of experiment information for unpublished data sets included in Fig. 8. For KOSMOS2016 and KOSMOS2017, pH was calculated on the total scale from measured TA and DIC using CO2SYS as described in the methods. NO_x was determined spectrophotometrically and Chlorophyll a fluorometrically.

Experiment name	Location	Experiment description	Mesocosms/time period selected		
KOSMOS2014 (published)	Gran Canaria (Gando Bay)	Ocean acidification with simulated upwelling of deep water. See Taucher et al. (2018) for more information	All mesocosms on all sampling days before deep water addition (Day 27). [NO _x] < 0.20 μΜ		
KOSMOS2016 (unpublished)	Gran Canaria (Taliarte Harbour)	Ocean acidification with simulated upwelling of deep water.	All mesocosms on all sampling days before deep water addition (Day 19). [NO _x] < 0.20 μΜ		
KOSMOS2017 (unpublished)	Gran Canaria (Taliarte Harbour)	Ocean artificial upwelling simulated upwelling of deep water.	Only controls mesocosms (M1, M6 - no nutrient addition) on all sampling days (Days 1-29) included. [NO _x] < 0.12 μM		
KOSMOS2021 (this study)	Gran Canaria (Taliarte Harbour)	Ocean Alkalinity Enhancement	All mesocosms on all sampling days included. [NO _x] < 0.10 μM		

Fig. S1: Photo showing two deployed mesocosms with the lids open at the pier in Taliarte Harbour, Gran Canaria, Spain (A) and an underwater photo showing the deployed mesocosms and the attached sediment trap (B).

Fig. S2: Photo of white particles attached to mesocosm walls in OAE2400 on Day 28.

Fig. S3: Analysis of two mesocosm wall precipitates (samples A/B) by FTIR (Bruker Vertex 70 FTIR, University of Hamburg) against a pure anhydrous aragonite reference material, and a calcite reference. Overlap of the sample peaks at with the aragonite standard at 854 cm⁻¹, 1083 cm⁻¹ and 1424-1474 cm⁻¹ confirm aragonite as the primary crystal polymorph in the mesocosm particles (Chakrabarty and Mahapatra, 1999; Jovanovski et al., 2002). Peaks around 3500 cm⁻¹ are water (H₂O).

Fig. S4: Measured change in alkalinity (TA) and aragonite saturation state (Ω_{ar}) for up to 150 days after the end of the incubation experiment. Dashed lines refer "fresh" seawater with solid lines for mesocosm water. Error bars indicate the standard deviation of treatment duplicates. Sampling was continued in Gran Canaria until Day 45. Thereafter the bottles were sealed and transported by container back to Hamburg where sampling and analysis was continued on Day 81, 125, 195. These incubations were not temperature controlled so there is some uncertainty in the pH correction applied (Badocco et al., 2021) that was used to calculate saturation states for aragonite (Ω_{ar}). Hence, the Ω_{ar} values have a higher uncertainty associated with them but the general trends over time are considered representative of changes over time.

