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Abstract. Semi-arid ecosystems dominate the variability and
trend of the terrestrial carbon sink. They are sensitive to envi-
ronmental changes following anthropogenic influences, such
as an altered ratio of nitrogen (N) to phosphorus (P) due
to increasing N deposition. Semi-arid savannas with differ-
ent vegetation compositions have complex carbon flux dy-
namics, and their responses to environmental change are
not yet well understood. We analyzed a long-term (2016–
2022/2023) dataset of flux, biometeorological, and vegeta-
tion data (satellite and ground measurements) from a ma-
nipulated semi-arid savanna to examine how altered nutrient
levels and stoichiometric balance affect the seasonal sensi-
tivity of net ecosystem exchange (NEE) to its drivers. We
used singular spectrum analysis to extract the seasonal sig-
nals of all variables and assessed the key drivers of NEE over
the study period as a whole and in different seasons, using
Pearson correlation and information theory. We found that
the addition of both N and N+P to the ecosystem increased
seasonal NEE variability, driven by greenness of the herba-
ceous layer. Analyzing 7 years of combined data, we found
that the water limitation in summer and the energy limitation
in winter outcompeted the fertilization effect. We learned
that the effects of nutrient addition on NEE–control relation-
ships became clearer through analyzing different phenolog-
ical seasons. In the summer, N+P addition led to a poten-
tial change in species composition and productivity, result-

ing in a stronger interaction between the herbaceous layer
and NEE. During the transitional seasons (i.e., drydown and
autumn), which mark the senescence and regreening of the
herbaceous layer, we found NEE to be less sensitive towards
meteorological drivers like relative humidity, radiation, and
air temperature with N addition. In the future, the increasing
NEE variability might become even more pronounced with
increasing N deposition and a changing climate.

1 Introduction

Terrestrial ecosystems play a major role in the global car-
bon cycle, with the ability to store significant amounts of
carbon (Friedlingstein et al., 2022). While forests and wet-
lands contribute most to the terrestrial carbon sink, semi-
arid ecosystems dominate its trend and interannual variabil-
ity (Ahlström et al., 2015; Poulter et al., 2014; Zhang et al.,
2016). Semi-arid ecosystems typically take up carbon from
the atmosphere during the wet season and are either dormant
or emit carbon during the dry season (Metz et al., 2023).
Net ecosystem exchange (NEE) describes this balance be-
tween carbon uptake through photosynthesis, typically ex-
pressed as gross primary productivity (GPP), and carbon re-
lease through ecosystem respiration (Reco). NEE in semi-
arid regions varies strongly from year to year, depending on
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the climatic conditions and water availability (Haverd et al.,
2017; Piao et al., 2020).

Despite their important role in the global carbon cycle,
semi-arid ecosystems and their dynamics are still not well
understood. Long-term in situ measurements from these re-
gions are scarce. Particularly, eddy covariance (EC) mea-
surements, which provide high-frequency and continuous
ecosystem trace gas and water flux data (Baldocchi, 2020),
are underrepresented in these regions (Jung et al., 2020).
Consequently, semi-arid ecosystems remain poorly repre-
sented in terrestrial biosphere models (Fawcett et al., 2022;
MacBean et al., 2021) due to their complex structure and
high spatio-temporal variability, which is difficult to gener-
alize.

Recently, efforts have been made to examine drivers of
NEE in semi-arid savannas in order to better understand their
role in the global carbon cycle (Baldocchi and Arias Or-
tiz, 2024; Kannenberg et al., 2024; Ma et al., 2007, 2016;
Zhang et al., 2010). Water-related variables like precipita-
tion and soil moisture availability are amongst the main NEE
drivers (Archibald et al., 2009; Baldocchi and Arias Ortiz,
2024; Del Grosso et al., 2018; Huang et al., 2016b; Morgan
et al., 2016), as they promote plant photosynthesis (Parton et
al., 2012) and enhance heterotrophic respiration rates (Ma et
al., 2016). Furthermore, photosynthetically active radiation
(PAR), vapor pressure deficit (VPD), and air temperatures
can strongly impact NEE (Archibald et al., 2009; Baldocchi
and Arias Ortiz, 2024; Del Grosso et al., 2018). Other biotic
factors, like soil microbial communities and organic matter,
also play an important role in the ecosystem carbon cycle
and contribute to Reco (Austin and Vivanco, 2006; Bastida
et al., 2016; Hu et al., 2014). These drivers can differ for
different vegetation types. In semi-arid regions, savannas are
a typical ecosystem type. They comprise coexisting vegeta-
tion layers (e.g., tree and grass), which interact in complex
ways (Higgins et al., 2000; House et al., 2003). The layers
differ in their rooting depths (Moreno et al., 2005; Rolo and
Moreno, 2012), water use strategies (Cubera and Moreno,
2007; Miller et al., 2010; Steiner et al., 2024), and pheno-
logical and life cycle strategies (Whitecross et al., 2017).
The herbaceous vegetation in two-layer ecosystems is of-
ten underestimated in its importance for the ecosystem wa-
ter and carbon fluxes (Dubbert et al., 2014). On the Iberian
Peninsula, dehesas (or montados in Portuguese) – savanna-
like agroecosystems shaped by long-term human manage-
ment – are widespread (Den Herder et al., 2017). Dehesas
are open oak woodlands with an herbaceous layer that con-
sists mainly of annual grasses and sometimes crops. The tree
layer is evergreen (Moreno, 2008), whereas the herbaceous
layer typically follows an annual cycle of growth, senes-
cence, and regreening (Ma et al., 2007; Perez-Priego et al.,
2015). As savannas are typically characterized by changing
resource limitations throughout the year (Luo et al., 2020;
Ries and Shugart, 2008), limited by water in the dry season
and by nutrients and energy in the wet season (Moreno, 2008;

Morris et al., 2019; Nair et al., 2019; Whitley et al., 2011),
the dominant environmental drivers change with the seasons.
The complex interactions between tree and grass layers, the
dominant environmental drivers of NEE, which change with
the seasons, along with changing limitations, result in highly
complex ecosystem carbon flux dynamics, which remain to
be fully understood.

Semi-arid ecosystems face numerous human-induced en-
vironmental changes, including stoichiometric imbalances
between nitrogen (N) and phosphorus (P). These imbalances
arise from increasing N inputs into ecosystems due to fer-
tilizer use and the combustion of fossil fuels (Steffen et al.,
2015) without a corresponding increase in P inputs (Penue-
las et al., 2013). Few studies so far have dealt with the impact
of altered nutrient levels on NEE and its drivers in semi-arid
regions. The availability and stoichiometric balance of N and
P influence ecosystem functioning and plant traits (Reich-
stein et al., 2014), water use efficiency (El-Madany et al.,
2021; Huang et al., 2016a), canopy structure (Migliavacca
et al., 2017), composition of species (Sardans et al., 2012),
and the seasonality of vegetation activity (Luo et al., 2020).
However, different plant types react differently to changes
in nutrient availability, due to variations in generation times
and buffering capacities (Pardo et al., 2011). Therefore, the
understanding of the response of complex tree–grass ecosys-
tems to changes in N and P availability and their stoichio-
metric balance is still poor.

In this study, we took advantage of the unique long-term
dataset collected in a semi-arid dehesa, Majadas de Tiétar,
in southwestern Spain. A large-scale nutrient addition exper-
iment has been running here since 2015, providing an ex-
ceptional opportunity to study the long-term influence of al-
tered N : P ratios on ecosystem functioning (El-Madany et
al., 2021). Three EC flux towers have been set up, with the
footprint of one tower receiving N fertilization, another one
receiving N+P fertilization, and the third serving as con-
trol. Previous studies found that both treatments increased
the annual carbon uptake of the ecosystem and that N+P
addition increased the water use efficiency of the ecosys-
tem more than N-only addition, which could be attributed
to higher transpiration rates and a changed root strategy in
the N-only-fertilized plot (El-Madany et al., 2021; Nair et al.,
2019). Nutrient addition led to not only a higher seasonal am-
plitude of maximum GPP and a faster increase in GPP dur-
ing the regreening period, but also a faster senescence during
the drydown period, indicating changes in plant structure and
physiology (Luo et al., 2020).

Here, we analyzed a 7-year (2016–2022/23) time series of
daily values of environmental and biogenic variables from
Majadas de Tiétar, combining flux data, meteorological mea-
surements, digital repeat photography, and satellite data to
address the following question: how do altered nutrient lev-
els and stoichiometric balance affect

– annual NEE and its variability,
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– the relationship between NEE and its key controls,

– the relationship between NEE and its key controls in
different seasons, and

– the sensitivity of NEE to its controls over time?

The relationships between NEE and its controls vary
across different timescales (Mahecha et al., 2007). To dis-
entangle these timescales from the time series and elimi-
nate noise from the high-frequency measurements, we can
use decomposition methods (Linscheid et al., 2020). On
short timescales, the NEE sensitivity follows the diurnal cy-
cle of the sun, showing a great dependency on radiation.
Ecosystem-level responses, in contrast, often develop on
scales of months, seasons, or years (Ma et al., 2016). There-
fore, we extracted the seasonal signals of all variables from
the time series with singular spectrum analysis, a data-driven
time series decomposition method. To characterize the rela-
tionship between NEE and its environmental and biogenic
controls on the seasonal scale, we used a conventional cor-
relation metric: the Person’s correlation coefficient. As these
relationships can be quite complex and nonlinear, we addi-
tionally used information-theory-based methods. These non-
parametric metrics, such as mutual information, can iden-
tify non-monotonic couplings as well as leading and lagging
effects and are therefore particularly suited for driver iden-
tification in observational flux data from complex systems
(Chamberlain et al., 2020; Knox et al., 2018; Sturtevant et al.,
2016). As NEE controls vary in their importance throughout
the year due to a high seasonality of the ecosystem, we split
the dataset into phenological seasons defined by vegetation
responses to different limitations.

2 Material and methods

2.1 Site description

The Majadas de Tiétar research site is located in western
Spain (39°56′25′′ N 5°46′29′′W) (Fig. 1a). The local ecosys-
tem consists of an herbaceous stratum and scattered ever-
green oak trees (98 % Quercus ilex). The tree density is
around 20–25 trees per hectare, with a mean diameter at
breast height of 46 cm (El-Madany et al., 2018). The frac-
tional canopy cover of trees is 23 % and canopy height is
on average 8.7 m (Bogdanovich et al., 2021). The tree leaf
area index (LAI) is around 0.35 m2 m−2. Although the grass
layer has a peak LAI in spring, it is quite spatially vari-
able with values between 0.5 and 2.5 m2 m−2 due to the sea-
sonal temporal variability (described in detail below) of grass
growth (Migliavacca et al., 2017). The site is managed and
continuously used for grazing livestock at a low density of
0.3 cows per hectare (El-Madany et al., 2018). In the dri-
est months (July–September), the farmers move the cattle to
nearby mountain grasslands (personal communication).

The climate at the site is semi-arid with an annual precip-
itation of around 650 mm with strong interannual variabil-
ity. Almost 85 % of the annual precipitation falls in the wet
season between October and April, whereas the rest of the
year is dry with occasional rains (Fig. 1c) (El-Madany et al.,
2021). According to Nair et al. (2024), we defined five dif-
ferent seasons. Spring is the main growing season and usu-
ally starts around March and ends in late May. Then the dry-
down period starts and the grasses start to become senescent
due to depletion of soil moisture, increase in temperature,
radiation, and vapor pressure deficit. The summer (typically
between end of June until end of September) is character-
ized by long-lasting dryness and a dormant/dead herbaceous
layer. With the onset of precipitation (usually in October),
the autumn starts and the herbaceous layer regreens (Nair
et al., 2024). The winter months (December–February) are
energy-limited. The onset and offset of the different sea-
sons vary from year to year, depending on water availabil-
ity and winter temperature (Luo et al., 2020). The mean an-
nual temperature is 16.7 °C with an average minimum tem-
perature of −4.7 °C and maximum temperature of 41.1 °C
(2004–2019) (El-Madany et al., 2021). Dominant wind di-
rections are west-southwest and east-northeast (El-Madany
et al., 2018).

Three EC towers at ecosystem level were operated simul-
taneously at the site (Fig. 1b). The ecosystem is heteroge-
neous with a high variability in plant species in the herba-
ceous layer (at a scale of centimeters) and tree cover (at a
scale of meters). It becomes homogeneous on the scale of
a few hundred meters. The daytime flux footprints of the
three towers are homogeneous at the relevant scale and do not
overlap with each other under prevailing meteorological con-
ditions (El-Madany et al., 2018). The control tower (Fluxnet
ID: ES-LMa) has been operated since 2003; it is hereafter re-
ferred to as CT. The north tower (Fluxnet ID: ES-LM1) was
set up at a distance of 450 m from CT in the northwestern
direction and the south tower (Fluxnet ID: ES-LM2) was lo-
cated 630 m in the southern direction from CT (El-Madany
et al., 2018). Since 2015, a large-scale fertilization experi-
ment has been conducted at the site, where N fertilizer is
added in the footprint of the north tower (hereafter referred
to as NT) and N and P fertilizer are applied in the footprint of
the south tower (hereafter referred to as NPT) (El-Madany et
al., 2021). The N and P fertilizations were applied around
similar times at the sites each year, with some exceptions
due to weather or logistics restrictions (e.g., pandemic). N
was added at 100, 20, 50, 24, and 12 kg N ha−1 at both sites
by end of winter 2015, 2016, 2017, 2021, and 2023, respec-
tively, and P was added at 50, 10, 25, 6, 6, and 6 kg P ha−1

at NPT in autumn 2014, 2015, 2016, 2019, 2020, and 2022,
respectively. This timing of the application of N and P was
selected to have maximal possibility for use by vegetation
in the next growing season after each addition. Next to each
flux tower is a radiometric tower setup measuring radiation
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components above the tree and grass layers, alternating every
15 min, providing half-hourly measurements for each layer.

2.2 Eddy covariance and biometeorological data

Each of the three EC towers continuously measures sen-
sible heat flux (H ), latent heat flux (LE), and CO2 flux.
Each system is equipped with an R3-50 sonic anemome-
ter (Gill Instruments Limited, Lymington, UK) to measure
three-dimensional wind components and sonic temperature
and an LI-7200 infrared gas analyzer (LI-COR Bioscience,
Lincoln, Nebraska, USA) to measure CO2 and H2O mix-
ing ratios. The measurement heights are the same at 15 m
above ground (El-Madany et al., 2021). The flux and me-
teorological data were collected as described by El-Madany
et al. (2018). The raw high-frequency data were processed
with EddyPro v.7.0.9 (Fratini and Mauder, 2014). The post-
processing was done in R using the REddyProc package
(Wutzler et al., 2018). The storage corrections of the CO2
flux were made with profile measurements from seven points
on the EC towers. A friction velocity (ustar) threshold was
applied following Papale et al. (2006) and data with ustar val-
ues below the defined threshold were removed. Missing and
low-quality data were gap-filled (Mauder and Foken, 2011;
Reichstein et al., 2005) for calculating the annual budgets.
Additional atmospheric variables that we used are air tem-
perature (Ta) and relative humidity (Rh) measured at two
heights (2 and 15 m), vapor pressure deficit (VPD), air pres-
sure (air_press), and friction velocity (ustar). Furthermore,
we incorporated radiometric components such as longwave
downward radiation (LWDR), shortwave downward radia-
tion (SWDR), and photosynthetically active radiation (PAR).
Soil measurements were comprised of soil temperature mea-
sured from two sensors in open pasture (Tsoil_op) and below
oak tree canopy (Tsoil_bc) and soil heat flux from two sen-
sors in open pasture (SHF_op) and below canopy (SHF_bc).
We used the average measurements of two sensors when both
were available and otherwise the measured values of one sen-
sor. Additionally, to calculate soil water content, we used the
different measurements integrated over the top 20 cm of the
soil and weighted them by canopy a cover of 20 % to obtain
ecosystem soil water content values (SWCn).

Some small data gaps existed in meteorological variables
and were filled with the average of the remaining two tow-
ers and interpolation. However, the PAR sensor at CT had
a long-term malfunction, so we used the PAR time series
from NT as a substitute, since the incoming radiation was
not expected to differ substantially between the towers (El-
Madany et al., 2018). In addition, we calculated evapora-
tive fraction (EF) as the ratio between LE and available en-
ergy (EF=LE / (LE+H )) (Gentine et al., 2007; Tong et al.,
2022). EF is a normalized measure of the surface energy par-
titioning and can serve as a diagnostic of vegetation water
status (Nutini et al., 2014). We calculated it at half-hourly
time steps from only positive LE and H values to avoid in-

troducing extreme outliers into the analysis. EF is strongly
linked to meteorological variables like soil moisture, VPD,
and net radiation (Gentine et al., 2007; Tong et al., 2022), as
well as to vegetation cover and LAI (Gentine et al., 2007). A
full overview of analyzed variables is shown in Table 1.

2.3 Vegetation indices

We used three different vegetation indices to represent veg-
etation greenness: green chromatic coordinates and albedo
(both indices derived from in situ data) and the normal-
ized difference vegetation index (NDVI) (derived from satel-
lite data). Green chromatic coordinates (GCCs) are an ef-
fective measure for describing greenness variation in semi-
arid ecosystems (Luo et al., 2018, 2020). We used daily
mean GCC values extracted from the images collected ev-
ery 30 min by digital cameras (Stardot NetCam 5MP) which
were installed at the top of each ecosystem EC tower fac-
ing north. The cameras were set up according to the proto-
col of the PhenoCam network (https://phenocam.sr.unh.edu/
webcam/tools/, last access: 3 July 2024) and collected red,
blue, and green (RGB) images (Luo et al., 2018). GCC was
computed by dividing green digital numbers (GDN) by the
sum of red (RDN), blue (BDN), and green digital numbers
(Richardson et al., 2009):

GCC=
GDN

RDN+BDN+GDN
. (1)

At each site, we selected two regions of interest in which
we calculated GCC, one capturing the grass layer (gcc_gr)
and one capturing the trees (gcc_tr). The data derived from
RGB images can be found on the website of the PhenoCam
network (IDs: ES-LM1, ES_LMa, and ES_LM2 for the NT,
CT, and NPT, respectively). At each site we chose the masks
GR_1000 for the grass layer and EB_1000 for the tree layer.

We further calculated albedo as the ratio of outgoing short-
wave radiation to incoming shortwave radiation, measured at
the radiometric tower setup at each site. We distinguished
ecosystem albedo (Alb_eco), tree albedo (Alb_tr), and grass
albedo (Alb_gr) to account for reflectance and to use as
another proxy for vegetation greenness and water status of
the plants. We used daily averages from only daytime hours
(11:00–15:00 UTC)to guarantee a high solar zenith angle for
reliable measurements. Furthermore, cloudy days were fil-
tered out and only time steps where the ratio of downward
radiation to extra-terrestrial radiation at the top of the atmo-
sphere was 0.7 or more were kept (Wood et al., 2015).

Finally, we used NDVI from the FluxnetEO dataset as a
proxy describing the amount and health of vegetation cover
(Tucker, 1979). The dataset complements ground measure-
ments by providing satellite-based vegetation indices, sur-
face reflectance, and land surface temperatures for a 2 km
radius around a flux site (Walther et al., 2022). We use
NDVI from MODIS (Moderate Resolution Imaging Spectro-
radiometer) with a daily temporal resolution (Walther et al.,
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Figure 1. (a) Site location on the Iberian Peninsula. (b) Location of the three eddy covariance towers. Nitrogen-added tower (NT) is in
blue, control tower (CT) is in purple, and nitrogen+ phosphorous-added tower (NPT) is in light blue (base map from Google Earth, 2025).
The tower locations were chosen to ensure that, under prevailing wind conditions, their measurement footprints do not overlap. Footprint
climatologies can be found in Fig. 1 in El-Madany et al. (2018). (c) Average monthly precipitation total and average temperature measured
at 15 m over 2016–2023.

2022). NDVI is calculated from the normalized difference
between the reflectance of near-infrared (NIR) and red-light
bands (Tucker, 1979).

2.4 Data analysis

2.4.1 Aggregation to daily data

To make sure that the driver identification is not confounded
by gap-filling techniques based on meteorological measure-
ments, we only use non-gap-filled, measured flux data. To en-
sure that there are only high-quality measured values, we se-
lected data with quality flag= 0 (flagging policy according to
Mauder and Foken, 2004). Consequently, the data coverage
of the measured half-hourly time series is quite low (around
30 %) and especially heterogeneous during the nighttime.
Therefore, we calculated from the biometeorological and flux
data daily mean values by aggregating only daytime mea-
surements to avoid the bias. Daytime includes only values
measured after sunrise and before sunset, identified using the
suncalc package in R (Thieurmel, 2017). This does not ap-
ply to vegetation indices as they were calculated as described
above. GPP and Reco were not assessed in this study as parti-
tioning methods depend on other environmental factors that
would also confound the analysis of NEE controls.

If not stated differently, the following analyses cover the
7-year period from 2016–2022 because during this time all
variables were available. For the assessment of NEE variabil-
ity and budgets, we utilized data spanning 8 years (2016–
2023) because this extended dataset was available and in-
corporating additional years enhances the robustness of ob-
served trends.

2.4.2 Time series decomposition with singular
spectrum analysis

Decomposition methods assume that observed time series
are composed of additively superimposed sub-signals, each
shaped by different scales of variability (Mahecha et al.,
2010). Consequently, the time series represents the sum of
a trend, oscillatory components at various scales, and noise
(Liu et al., 2022).

Here we used singular spectrum analysis (SSA) for the de-
composition. SSA is entirely data-driven and non-parametric
and is therefore free of the bias of function selection (Golyan-
dina et al., 2001; Liu et al., 2022; Mahecha et al., 2007).
This makes it advantageous compared to other decomposi-
tion methods like Fourier and wavelet analysis (Baldocchi
et al., 2021). SSA is more flexible in grouping components
of similar frequencies than wavelet decomposition (Liu et
al., 2022) and able to detect aperiodic or non-harmonic sub-
signals from short and noisy signals (Golyandina and Zhigl-
javsky, 2013; Mahecha et al., 2007). Since it is fully phase–
amplitude modulated and relatively robust to instationarities
of the signal mean and variance, it is suitable for nonstation-
ary signals (Allen and Smith, 1996; Golyandina and Zhigl-
javsky, 2013; Yiou et al., 2000). Even fragmented time series
can be handled with it, as SSA can be used for filling gaps ac-
cording to the first reconstructed component, which is a low-
frequency signal (Kondrashov and Ghil, 2006). This makes
it particularly useful for flux data (Mahecha et al., 2007).

SSA consists of four steps: embedding, decomposition,
grouping, and reconstruction. In the first step, a one-
dimensional time series y(t) is embedded into a two-
dimensional lagged matrix X, by shifting a moving window

https://doi.org/10.5194/bg-22-2935-2025 Biogeosciences, 22, 2935–2958, 2025



2940 L. Nadolski et al.: Altered seasonal sensitivity of net ecosystem exchange

Table
1.Flux,m

eteorological,and
soilvariables

and
vegetation

indices
used

in
this

study.Soilw
atercontentw

as
calculated

based
on

the
shadow

fraction
estim

ated
from

the
solarzenith

angle
and

a
canopy

coverof20
%

.

V
ariable

nam
e

V
ariable

description
U

nit
M

easurem
entdevice

M
easurem

entheight/depth

N
E

E
netecosystem

exchange
on

ecosystem
level

µm
olm
−

2
s
−

1
R

3-50,G
illLT

D
U

K
,L

I-7200
15

m
(N

T,N
PT

),15.5
m

(C
T

)
E

F
evaporative

fraction
R

3-50,G
illLT

D
U

K
,L

I-7200,calculated
15

m
(N

T,N
PT

),15.5
m

(C
T

)
air_press

airpressure
Pa

Y
oung

61302V
15

m
(N

T,N
PT

),15.5
m

(C
T

)
R

h02
relative

hum
idity

at2
m

%
C

PK
1-5

2
m

R
h15

relative
hum

idity
at15

m
%

C
PK

1-5
15

m
Ta02

tem
perature

at2
m

°C
C

PK
1-5

2
m

Ta15
tem

perature
at15

m
°C

C
PK

1-5
15

m
V

PD
w

atervaporpressure
deficit

Pa
calculated

15
m

ustar
friction

velocity
m

s
−

1
R

3-50,G
illLT

D
U

K
15

m
SW

D
R

shortw
ave

dow
nw

ard
radiation

W
m
−

2
C

M
P22/C

N
R

4
9

m
LW

D
R

longw
ave

dow
nw

ard
radiation

W
m
−

2
C

N
R

4
9

m
PA

R
incom

ing
photosynthetically

active
radiation

um
olm
−

2
K

ipp
&

Z
onen

PQ
S1

9
m

SW
C

n
norm

alized
soilm

oisture
contentfortop

20
cm

M
L

2x,D
elat-T

D
evices

L
td

20
cm

SH
F_op

soilheatflux
open

pasture
W

m
−

2
H

P3/C
N

3
R

im
co

5
cm

SH
F_bc

soilheatflux
below

canopy
W

m
−

2
H

P3/C
N

3
R

im
co

5
cm

T
soil _op

soiltem
perature

open
pasture

°C
U

M
S

T
h3-s

10
cm

Tsoil _bc
soiltem

perature
below

canopy
°C

U
M

S
T

h3-s
10

cm
A

lb_eco
ecosystem

albedo
C

N
R

4
15

m
A

lb_gr
grass-levelalbedo

C
N

R
4

9
m

(C
T,N

T
),12

m
(N

PT
)

A
lb_tr

tree-levelalbedo
C

N
R

4
9

m
(C

T,N
T

),12
m

(N
PT

)
gcc_gr

grass-levelgreen
chrom

atic
coordinates

StardotN
etcam

SC
5

15
m

gcc_tr
tree-levelgreen

chrom
atic

coordinates
StardotN

etcam
SC

5
15

m
N

D
V

I
norm

alized
difference

vegetation
index

M
O

D
IS

satellite

Biogeosciences, 22, 2935–2958, 2025 https://doi.org/10.5194/bg-22-2935-2025



L. Nadolski et al.: Altered seasonal sensitivity of net ecosystem exchange 2941

of a certain window length (L) along the time series. In the
second step, a singular value decomposition of X is per-
formed, and it is decomposed into its orthogonal components
by determining eigenvalues and eigenvectors corresponding
to principal components. The eigenvalues of the covariance
matrix X·X′ are then ordered in decreasing magnitude. In the
next step, the components are grouped, as some sub-signals
consist of a set of components with complementary oscilla-
tory frequency. In the last step, by inverting the ranked prin-
cipal components, the reconstructed components of the orig-
inal time series are computed. These reconstructed compo-
nents show how much of the variability of the original time
series is associated with the different timescales. A more de-
tailed description of the method can be found in Golyandina
et al. (2018).

Here we used the Rssa package in R (Golyandina and Ko-
robeynikov, 2014) for our analysis. To support our hypothesis
that daily-scale NEE variations are predominantly influenced
by radiation, with a neglectable effect of nutrient addition, we
conducted a preliminary analysis extracting the daily signals
of NEE and all potential driving variables from half-hourly
measurements. Detailed procedures and results of this analy-
sis are provided in the Supplement (Text S1, Figs. S1, S2).

For our analysis, we extracted the seasonal signals of the
daily time series of all variables shown in Table 1. First, as
required by SSA, we gap-filled the time series with the Rssa
package’s internal function, igapfill, which fills gaps using
the low-frequency component of the time series itself (i.e.,
not based on meteorological measurements). For gap fill-
ing, as a window length (L) of n/2.5 is recommended (Ma-
hecha et al., 2007), we selected a gap-filling window length
of L= 1000 for 2557 data points from 7 years of daily data.
By conducting a sensitivity analysis, we found that adding
a 3-month margin at the beginning and end of a time series
can help to reduce edge effects during the gap-filling process
(details see Text S2).

To extract the seasonal signal, we reconstructed the com-
ponents of the frequency bin from 15 to 366 (days). We se-
lected L= 732 (2 years) based on the criteria that L should
be less than n/2 and ideally an integer multiple of the pe-
riod length to be extracted in order to ensure a clear signal
(Biriukova et al., 2021; Golyandina and Zhigljavsky, 2013).
Frequency contributions of less than 0.2 were defined as
noise (Liu et al., 2022). For the grouping, we used the au-
tomated method provided by the Rssa package, which iden-
tifies groups using a hierarchical clustering algorithm based
on the w-correlation matrix. The w-correlation matrix shows
the weighted correlations between reconstructed components
(von Buttlar, 2014; Golyandina and Korobeynikov, 2014).

For analyzing the changes in seasonal NEE variability and
budgets, we used data from 2016–2023. Accordingly, L was
set at 1169 (L= n/2.5, with n= 3105). To account for sea-
sonal variability, we calculated the standard deviation of the
reconstructed NEE signal for each year to quantify the vari-
ation amplitude.

2.4.3 Pearson correlation coefficient

To identify the key drivers of NEE, we first computed in R
the Pearson correlation coefficients (r) between NEE and all
the investigated variables (Table 1) from the reconstructed
seasonal signal using the daily datasets. It is calculated as
follows:

r =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)
2
∑n
i=1(yi − y)

2
, (2)

with n as the time series length, xi and yi as the single time
step values within the time series, and x and y as the sam-
ple means. We calculated values for each tower and then
ranked r according to their absolute value to identify the
main drivers of NEE.

2.4.4 Information theory

To consider collinear relationships and potential lagging ef-
fects between NEE and its controls, we extended our anal-
ysis using information theory. Metrics of mutual informa-
tion (MI) are powerful tools for understanding nonlinear
and feedback-driven relationships in complex ecosystems
(Chamberlain et al., 2020; Knox et al., 2018). MI is a non-
parametric method that can disentangle interactions on dif-
ferent scales (Chamberlain et al., 2018; Knox et al., 2018;
Sturtevant et al., 2016), by describing the average tendency
for joint states of two variables X and Y to co-occur (Fraser
and Swinney, 1986). This means it quantifies the amount of
information that two variables X and Y hold in common, or
the reduction of uncertainty of one variable, given the knowl-
edge of the other (Chamberlain et al., 2020; Knox et al.,
2021). It is a normalized measure of the statistical depen-
dence of Y on X and no prior knowledge about their rela-
tionship is needed (Liu et al., 2022). Larger values indicate
either higher dependence or a stronger interaction between
the variables. With Shannon entropy (Hx) we can quantify
the uncertainty in a system:

Hx = −
∑

xt
p(xt ) log2p(xt ) , (3)

with p(x) as the marginal probability distribution of X and
Xt as the different states of X in the time series t . Here we
discretized the states of continuous variables into 10 fixed-
interval histogram bins, as Sturtevant et al. (2016) and Rud-
dell and Kumar (2009) showed that 10 histogram bins ensure
sufficient resolution for a robust estimate. MI was then cal-
culated with both the marginal and joint probability distribu-
tions of X and Y , p(x,y):

MI=
∑

xt , yt
p(xt , yt ) log2

p(xt , yt )

p (xt )p(yt )
. (4)

To make the MI between NEE and different potential drivers
comparable, we used a normalized form of MI:

MIsync =
MI
Hy
. (5)
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We refer to this relative MI as synchronous MI (MIsync), as
it depicts the interaction between X and Y at the concurrent
time step. An additional strength of MI lies in its capability
to account for the temporal direction (τ ) of the interaction
between X and Y (Liu et al., 2022):

MImax = max
(

MIsync(τ )

)
=max

∑xt−τ

∑
yt
p(xt−τ , yt ) log2

p(xt−τ , yt )
p(xt−τ ), p(yt )

−
∑
yt
p(yt ) log2p(yt )

. (6)

When τ is positive or negative, the interaction betweenX and
Y is characterized as asynchronous, with τ showing the lead
or lag in Y relative to X, respectively. We chose 60 d as the
maximum value for τ to check if the potential driving vari-
able (Y ) is leading NEE (X) or vice versa (Liu et al., 2022).
We then picked the highest MI value (MImax) in this window
and the respective day of its occurrence. If MIsync>MImax,
the interaction is synchronous. If MIsync<MImax, the inter-
action is asynchronous. If τ<0, Y lags X. If τ>0, Y leads
X and can therefore be characterized as a driver or control
of X. Significance thresholds were calculated from the 95th
percentile (p<0.05) of 1000 Monte Carlo random walks of
the independent variable (Chamberlain et al., 2020; Ruddell
and Kumar, 2009). We calculated MI measures and confi-
dence thresholds in R, based on functions by Chamberlain et
al. (2020).

We determined MIsync and MImax for the 7-year time
series (2016–2022) from the reconstructed seasonal signal.
Gap-filled time steps by SSA were removed before the cal-
culation of both r and MI measures. We kept them only for
NDVI, as the gap filling is based on the original time series
and does not depend on other variables (Walther et al., 2022).
Gap filling therefore does not confound the analysis of poten-
tial drivers.

2.4.5 Phenological seasons

As the NEE controls vary in their importance in different sea-
sons (Baldocchi and Arias Ortiz, 2024), we calculated MIsync
for each season to better capture how the nutrient addition
and stoichiometric balance change the importance of differ-
ent drivers over the study period. As this ecosystem’s strong
seasonality is reflected in vegetation activity, we assigned
seasons using PhenoCam imagery. We defined phenological
seasons following Nair et al. (2024). Phenological transition
dates were extracted using GCC at all three sites according
to changes between stationary and rising or declining green-
ness (Luo et al., 2018). Then, phenological transition dates
averaged across the three sites for each year were calculated.
According to these dates, each day of the 7-year time se-
ries was assigned to one season, describing different phases
of net vegetation activity (i.e., spring, drydown, summer, au-
tumn, and winter). Figure 2 illustrates a typical annual cycle
of the seasons at Majadas de Tiétar.

Figure 2. A typical annual cycle of midday green chromatic co-
ordinates (GCCs) derived from the grass layer at the control plot
in 2018, showing the five phenological seasons – winter, spring,
drydown, summer, and autumn. Spring is the main growing season
(first peak in May), the grasses become senescent during drydown
and dormant in summer, regreening starts in autumn (second peak
around November) with the onset of rains, and winter is radiation
and temperature limited.

We calculated MIsync values for each pair (NEE and po-
tential driving variable) of interest in each season across all
7 years. In addition, we estimated yearly MIsync for each
single season (35 data points) to evaluate how sensitivity of
NEE to drivers developed over time. To isolate the fertiliza-
tion effect on the importance of different drivers for NEE, we
calculated the differences in the MIsync values of each season
in each year between the fertilized plots and the control plot,
i.e., NT–CT and NPT–CT, referred to as MIdiff. We plotted
the MIdiff values for each season along the 7-year period and
calculated linear regressions to confirm whether there are sig-
nificant trends in the importance of drivers. The significance
level was set at p<0.05. Variables with MImax<0.2 were dis-
carded.

3 Results

3.1 Seasonal NEE variability

At CT, the tower not experiencing any manipulation, the an-
nual ecosystem NEE derived from EC measurements was
positive for the 2016–2023 period, with an average an-
nual NEE budget of 90.8± 48.0 gC m−2 yr−1. This indicates
that the ecosystem acted as a CO2 source. With fertiliza-
tion treatment, the measured ecosystem NEE shifted to-
wards CO2 neutrality, with annual averages of 34.1± 66.7
and 23.1± 69.5 gC m−2 yr−1 at NPT and NT, respectively.
Annual NEE budgets fluctuated between positive and neg-
ative values at the fertilized plots, while CT consistently
showed positive NEE every year. In 2017, 2022, and 2023,
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we observed high positive NEE values (i.e., stronger CO2
source) at all three plots. Conversely, in 2016, 2018, and
2021, fertilized areas exhibited higher CO2 uptake, acting as
stronger CO2 sinks (Fig. 3). This illustrates the high interan-
nual variability of the CO2 fluxes in this ecosystem and the
substantial impact of fertilization. The nutrient addition led
to higher seasonal variability of NEE, as shown by the greater
yearly standard deviation of the seasonally reconstructed sig-
nals. The variability at NT and NPT further exhibited an in-
creasing pattern over time (Fig. 3). In 2017, NEE had com-
paratively low seasonal variability at all three sites, which
might be attributed to the extraordinary dryness in that year.

3.2 Key NEE controls

We identified key controls of NEE at the three plots, com-
paring the results of two different statistical methods: Pear-
son correlation coefficient r considers only linear relation-
ships between variables; mutual information (MI) accounts
for collinear relationships. MIsync and r values show syn-
chronous relationships. MImax values can account for leading
and lagging interactions by identifying the day of the high-
est interaction between the potential driver and NEE within
a 60 d window.

For all plots, grass-layer GCC and NDVI (at ecosystem
level) were the most important predictors of NEE (Fig. 4).
Both r and MI identified these proxies representing vegeta-
tion greenness as the most significant drivers. They were fol-
lowed by EF (i.e., the fraction of heat transport that is done by
LE), which is influenced by meteorological variables (such as
soil moisture, net radiation, and VPD) as well as vegetation
properties, like LAI.

At CT, Tsoil_bc and Ta15 further exhibited strong interac-
tions with NEE using both r and MIsync (Fig. 4a, b). Vari-
ables describing water availability (VPD, SWCn, and Rh)
were ranked in the middle ranges by MIsync. The MI analy-
sis provided deeper insights into the interactions between the
environment and NEE by considering leading and lagging ef-
fects, as shown by MImax (Fig. 4c). NDVI showed the highest
interaction with NEE at a time lag of 16 d, and gcc_gr had
a lag of 7 d. When considering leading and lagging effects,
EF became relatively less important. Soil temperatures were
identified amongst the five most important controls. SWCn
was also important with a 20 d lag. Air temperature and VPD
showed the highest interactions with lags of around a month.
Radiation-related variables like PAR and SWDR exhibited
long lag times in their highest interaction with NEE (60 d
and 53 d, respectively). All MI values can be found in the
Supplement (Table S1).

At NT, soil temperatures, VPD, SWCn, and air temper-
atures were among the most significant controls identified
by both synchronous methods, following the primary drivers
vegetation greenness and EF. NDVI showed the highest in-
teraction with NEE with a lag of 12 d, followed by gcc_gr
with a lag of 6 d. Soil temperatures exhibited the highest

interactions with lags of around a month, while air tem-
peratures showed the highest interaction at a lag of 26 d.
Moisture-related variables all showed similar time lags (16–
20 d). EF had the highest interaction with NEE at a lag
of 2 weeks. Shortwave-radiation-related variables showed a
strongly lagged effect (i.e., PAR 59 d, SWDR 57 d) (Fig. 4f).

At NPT, both r and MIsync detected soil temperatures, air
temperatures, and VPD as the most important NEE controls
behind gcc_gr and NDVI (Fig. 4g, h). NDVI and gcc_gr led
NEE interactions with the strongest interactions at lags of 2
weeks and 10 d, respectively, followed by soil temperatures
and air temperatures with the highest interactions at lags of
around a month (Fig. 4i). EF showed the highest interac-
tion at a lag of 12 d. Other moisture-related variables like
VPD, SWCn, and Rh were also detected to be in the middle
ranks by MImax, with time lags of 20–26 d. PAR and SWDR
showed the highest interactions with NEE at time lags of
around 50 d (Fig. 4i).

MI and r agreed in the detection of the most important
drivers, thereby proving that information theory is applica-
ble to our case. Therefore, in the remainder of this paper, we
focus on values obtained using MI, as MI is able to detect
collinear relationships as well as leading and lagging effects.
We discuss variables with MImax>0.2 in the following sec-
tions to concentrate on the information provided by variables
with greater explanatory value.

3.3 Effect of fertilization on NEE sensitivity to its
controls

The relationships between NEE, biogenic, and environ-
mental variables were asynchronous, as indicated by
MIsync<MImax for all variables. Therefore, we focused on
MImax to describe the differences in NEE sensitivity to vari-
ous controls across towers.

N fertilization appeared to shorten the reaction time of
NEE to changes in NDVI. GCC at the grass level showed
higher explanatory value for NEE at NPT and NT (MImax =

0.37) compared to CT (MImax = 0.33). EF showed only
slight differences in interaction strengths among the sites
(Fig. 5, Table S1). Relative humidity at two heights showed
the lowest interaction with NEE at CT (MImax = 0.24), while
the fertilized sites had slightly higher values (0.26–0.27). The
reaction time of NEE to relative humidity appeared to de-
crease with fertilization. VPD appeared to have the higher
explanatory value for NEE at NT and NPT and slightly less
at CT (MImax = 0.27). The interaction between NEE and air
temperatures was slightly higher at the fertilized plots com-
pared to the control.

Regarding radiation variables, PAR seemed to have a
higher interaction with NEE at NT than at NPT and CT. Sim-
ilarly, SWDR showed slightly higher interaction with NEE at
NT, while at NPT and CT it was equally strong.

In terms of soil variables, soil temperatures exhibited the
strongest interaction with NEE. While soil temperatures be-
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Figure 3. Annual net ecosystem exchange (NEE) budgets (gC m−2 yr−1) and yearly standard deviations calculated using the seasonally
reconstructed signals at the three sites for the 2016–2023 period. CT – control site, NT – nitrogen-fertilized site, and NPT – nitrogen and
phosphorus-fertilized site.

low canopy (Tsoil_bc) were almost the same across sites
(MImax= 0.33), the importance of soil temperatures under
open air conditions was lower at CT than at the fertilized
plots. SWCn showed the highest explanatory value for NEE
at NT (Fig. 5, Table S1). An overview plot with all variables
including the ones with MImax<0.2 is provided in the Sup-
plement (Fig. S3).

Nutrient addition did not show a substantial effect on the
sensitivity of ecosystem NEE to different drivers over the 7-
year scale when considering the whole time series together.
In the next step, we examine the different seasons in greater
detail.

3.4 Identifying driver importance in different
phenological seasons

We split the 7-year dataset into five different phenological
seasons based on the grass-layer GCC and calculated MIsync
between NEE and each of the drivers. This analysis showed
that the most important drivers differed between seasons and
treatments (Table 2).

In winter, the water vapor transfers of available energy,
represented by EF, show a strong interaction with NEE at
NPT and CT. Furthermore, NDVI and tree-layer albedo, as
well as radiation parameters PAR and SWDR, were impor-
tant in explaining NEE variations.

In spring (i.e., the main growing season), NDVI and GCC
at grass and tree levels showed the strongest interactions with
NEE, indicating that NEE was dominated by photosynthetic
activity (GPP) during this season. Furthermore, soil temper-
atures showed strong interactions with NEE at CT and NPT,
but not at NT.

During the drydown phase, NEE was dominated by NDVI
across treatments, with gcc_gr also showing strong interac-
tions with NEE at CT and NPT. At NT, VPD exhibited a
strong link with NEE, which was not as dominant at the other
plots.

In summer, soil temperatures showed high interactions
with NEE, possibly relating to soil respiration. Additionally,
SWDR and PAR were important in explaining NEE varia-
tions during this season. At CT and NT, gcc_tr became im-
portant, which was logical as the grass layer becomes senes-
cent in the summer and is dormant in terms of ecosystem
carbon flux. At NPT, gcc_gr showed a higher interaction with
ecosystem NEE than gcc_tr.

In autumn, regreening starts with the onset of rains, and
NDVI and gcc_gr showed strong interactions with NEE, as
GPP starts to dominate NEE again, driven by photosynthetic
activity. Additionally, soil temperatures and air temperatures
show a strong link with NEE in autumn. The strongest link
between soil temperatures and NEE is found at CT.

3.5 Changes in NEE sensitivity over time

Using yearly MIsync for each single season, we observed that
with N addition, NEE became less sensitive to certain vari-
ables during autumn (i.e., the regreening phase), the dry-
down phase, and winter over time (Fig. 6). Specifically, in
autumn the sensitivity of ecosystem NEE to changes in air
temperature (Ta15), shortwave radiation (SWDR and PAR),
and NDVI decreased significantly over the 7-year period.
In the drydown phase, the sensitivity of ecosystem NEE to
changes in relative humidity (Rh02 and Rh15) and soil heat
flux (SHF_op) also decreased significantly. In winter, how-
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Figure 4. Pearson correlation coefficient (r) (a, d, g), synchronous mutual information (MIsync) (b, e, h), and maximum mutual information
within a 60 d window (MImax) (c, f, i) between net ecosystem exchange (NEE) and potential drivers over the 7-year period (2016–2022) at
the control plot CT (a–c), the nitrogen-fertilized plot NT (d–f), and the nitrogen- and phosphorus-fertilized plot NPT (g–i). The color scale
in the MImax plots indicates the day when MImax occurs; positive values indicate that the variable leads NEE, negative values vice versa.

https://doi.org/10.5194/bg-22-2935-2025 Biogeosciences, 22, 2935–2958, 2025



2946 L. Nadolski et al.: Altered seasonal sensitivity of net ecosystem exchange

Figure 5. (a) Synchronous (MIsync, grey) and maximum (MImax, colors) mutual information at the control site (CT), the nitrogen-fertilized
site (NT), and the nitrogen- and phosphorus-fertilized site (NPT) at the seasonal scale. The color scale indicates the day when MImax occurs,
with positive values indicating that the variable leads net ecosystem exchange (NEE) and vice versa. (b) MIsync (dotted lines) and MImax
(solid lines) values at the three sites. Variables with MImax<0.2 are not shown here.

ever, we observed a significant increase in the sensitivity of
NEE to variations in PAR, SWDR, and grass-layer GCC.

With the addition of N+P, significant changes in NEE
sensitivity over time were observed in all seasons except the
drydown phase (Fig. 6). In autumn, the fertilization with N
and P led to a significant decrease in NEE sensitivity to air
and soil temperatures (Ta02 and Tsoil_op), PAR, and VPD.
In spring, which is the main growing season, NEE sensitivity
to variations in PAR increased significantly. In summer, NEE
became significantly more sensitive to changes in grass-layer
GCC. In winter, NEE shows a significant increase in sensi-
tivity to changes in both gcc_gr and SWCn.

4 Discussion

4.1 Nutrient addition increases seasonal NEE
variability, driven by grass layer

The annual NEE average from EC measurements is about
91± 45 gC m−2 yr−1, suggesting the unfertilized site acts as
a carbon source with a high interannual variability. Simi-
lar mean and variability were found in other semi-arid sa-
vannas, such as in Kruger National Park in South Africa
(75± 105 gC m−2 yr−1) (Archibald et al., 2009). However,

semi-arid savannas can also act as carbon sinks. In Califor-
nia, a similar oak savanna (i.e., Tonzi Ranch) was observed
to be a carbon sink (values from−144 to−35 gC m−2 yr−1),
while the neighboring grassland (i.e., Vaira Ranch) was
found to be a carbon source (−88 to 189 gC m−2 yr−1) (Ma et
al., 2007). In Dakar, Senegal, a Sahelian savanna ecosystem
acted as a carbon sink with an average annual NEE budget
of −180± 29 gC m−2 yr−1 (Wieckowski et al., 2024). An-
other natural West African savanna in the south of Burkina
Faso has been found to be a strong sink of CO2 (−864 to
−1299 g CO2 m−2 yr−1), while two degraded sites nearby
were CO2 sources (118 to 605 g CO2 m−2 yr−1) (Berger et
al., 2019). Our results indicate that both nutrient addition
cases enhance seasonal NEE variability compared to the con-
trol. Additionally, seasonal variability increases over time at
the fertilized plots. Looking at the difference between an-
nual NEE maximum and annual NEE minimum, we notice
substantially increasing trends at both sites, with a signifi-
cant trend at the NPT plot (Fig. 7). These trends are slightly
more driven by increasing maximum values. We argue that
this nutrient effect is dominated by grass layer, which sub-
stantially controls the NEE dynamics in this system. Our
analysis supports the fact that grass-layer GCC and NDVI
are most important in explaining NEE variations across treat-
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Table 2. The five most important drivers in each phenological season at each tower derived using synchronous mutual information. CT:
control site, NT: nitrogen-fertilized site, NPT: nitrogen+ phosphorus-fertilized site.

CT NT NPT

Winter
wet and energy limited

1. Alb_tr (0.26) PAR (0.20) EF (0.27)
2. PAR (0.23) Alb_tr (0.20) NDVI (0.24)
3. EF (0.22) SWDR (0.20) PAR (0.23)
4. Tsoil_bc (0.22) NDVI (0.19) SWDR (0.22)
5. Tsoil_op (0.21) SHF_op (0.19) Tsoil_op (0.20)

Spring
main growing season

1. gcc_gr (0.26) NDVI (0.23) NDVI (0.26)
2. NDVI (0.25) gcc_tr (0.22) gcc_gr (0.23)
3. gcc_tr (0.24) gcc_gr (0.22) gcc_tr (0.22)
4. Tsoil_op (0.22) Alb_tr (0.19) Tsoil_op (0.21)
5. Tsoil_bc (0.19) EF (0.18) Tsoil_bc (0.20)

Drydown
senescence of grass layer

1. NDVI (0.46) NDVI (0.46) NDVI (0.49)
2. Tsoil_bc (0.43) Tsoil_op (0.40) gcc_gr (0.47)
3. gcc_gr (0.32) Tsoil_bc (0.37) Tsoil_op (0.37)
4. EF (0.32) VPD (0.36) Tsoil_op (0.37)
5. Tsoil_op (0.29) EF (0.36) EF (0.34)

Summer
Dormant/dead grass layer

1. PAR (0.20) SHF_bc (0.19) Tsoil_op (0.19)
2. Tsoil_op (0.19) PAR (0.18) Tsoil_bc (0.19)
3. SHF_bc (0.19) SWDR (0.18) SHF_op (0.18)
4. gcc_tr (0.18) gcc_tr (0.17) gcc_gr (0.17)
5. SHF_op (0.18) NDVI (0.17) PAR (0.17)

Autumn
Regreening of grass layer
with onset of rains

1. Tsoil_bc (0.33) NDVI (0.34) NDVI (0.33)
2. gcc_gr (0.31) gcc_gr (0.30) gcc_gr (0.33)
3. NDVI (0.25) Tsoil_bc (0.28) Tsoil_bc (0.31)
4. Ta15 (0.25) Ta02 (0.27) Tsoil_op (0.29)
5. Tsoil_op (0.24) Ta15 (0.27) Ta15 (0.28)

ments (Figs. 4, 5). Both indices represent grass-layer green-
ness, as the larger fraction of the surface consists of an-
nual grasses (Bogdanovich et al., 2021) and remotely sensed
NDVI is dominated by the herbaceous layer.

At the study sites, the added nutrients mostly stay in the
herbaceous layer (El-Madany et al., 2021), and it is there-
fore more affected by the nutrient manipulation than the
tree layer. Nutrient addition has been found to increase root
biomass and root length density (Nair et al., 2019) and to
enable greater absorption for and allocation to leaves. In the
leaves, N enhances the photosynthetic capacity (Fleischer et
al., 2013), which supports the faster increase in maximum
GPP and biomass in the fertilized plots, as confirmed by
Luo et al. (2020). NT and NPT show higher productivity and
therefore higher biomass compared to CT (Luo et al., 2020).
As the grass layer is senescent in summer, the higher biomass
results in a greater amount of dead biomass, which will then
be respirated by soil microbes (Manzoni et al., 2020; Moy-
ano et al., 2013) as soon as there is sufficient water available
(Huxman et al., 2004). This indicates that there is a higher
carbon turnover at the fertilized plots, leading to an increased
range of NEE within a year (Fig. 7). It agrees with findings
from Ma et al. (2016), which, at a Californian oak grass sa-

vanna, found that the amount of grass litter determines the
size of the fast carbon pool in consecutive seasons.

Evergreen tree species have relatively constant foliage
amount throughout the year and are able to use their deeper
roots to access lower water resources in the soil (Baldocchi et
al., 2004; Rolo and Moreno, 2012). The herbaceous layer is
strongly dependent on rainfall variations as it accesses water
from the topsoil with a dense near-surface root system (Ward
et al., 2013). This layer is therefore much more sensitive to
intra- and inter-annual climate variations (Luo et al., 2020).
This is probably the reason why the seasonal NEE variability
was very low at all sites in 2017. We attribute this to extraor-
dinary dryness in that year, as dryness can lead to severe de-
creases in both GPP and Reco in this type of ecosystem (Ma
et al., 2007).

4.2 Key controls of seasonal NEE

Our results indicate that proxies for vegetation greenness
(NDVI and GCC at the grass layer derived from satellite
and PhenoCam data, respectively) are the primary factors in-
fluencing the seasonal NEE signal in this ecosystem across
treatments (Fig. 4). However, depending on the season, other
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Figure 6. Linear regressions of the seasonal synchronous mutual information difference (MIdiff) between NT and CT (top four panels) and
between NPT and CT (bottom four panels) in different phenological seasons. CT refers to the control site, NT to the nitrogen-fertilized site,
and NPT to the nitrogen+ phosphorus-fertilized site. Find variable definitions in Table 1. Only the relationships with significant trends are
shown. Significance level is set at p<0.05. Variables with overall MI< 0.2 at all towers are not shown.

Figure 7. Annual range of net ecosystem exchange (NEE) (i.e.,
maximum NEE minus minimum NEE) in gC m−2 yr−1 calculated
using the seasonally reconstructed signals at the control site (CT),
the nitrogen-fertilized site (NT), and the nitrogen+ phosphorus-
fertilized site (NPT). The range at NPT (p value= 0.049) signifi-
cantly increased over 8 years. The ranges at NT (p value= 0.116)
and CT (p value= 0.270) did not significantly increase.

variables such as air temperatures, VPD, moisture-related
variables, and soil temperatures can also be important.

Many studies identify NDVI, a proxy for vegetation green-
ness and photosynthesis, as a primary predictor of NEE (Del
Grosso et al., 2018; Hermance et al., 2015; Morgan et al.,
2016). NDVI, generally derived from satellite data, repre-
sents ecosystem greenness, and its connection with ecosys-
tem CO2 fluxes has been intensively studied (Barnes et al.,

2016; Hermance et al., 2015; Morgan et al., 2016; Running
and Nemani, 1988). However, quantifying the importance of
coexisting vegetation layers is more complex and less under-
stood. Digital repeat cameras and the vegetation greenness
indices derived from them provide a powerful tool for an-
alyzing the greenness of different plant types (Migliavacca
et al., 2011; Petach et al., 2014; Richardson et al., 2009;
Yan et al., 2019) and their influence on ecosystem fluxes
(Luo et al., 2018; Moore et al., 2016, 2017; Wingate et al.,
2015). Our analysis confirms that grass-layer dynamics are
dominant in controlling seasonal ecosystem NEE at this site.
Furthermore, we suggest that alternatively to NDVI, the en-
hanced vegetation index (EVI) can be considered as a rep-
resentation of vegetation greenness, as it is found to covary
closely with carbon flux in semi-arid ecosystems (Maluleke
et al., 2024).

In situ measurements of vegetation greenness, however,
are not available at all EC sites. We found that EF (i.e., evap-
orative fraction), representing the fraction of available en-
ergy transported by LE, is the third most important driver
across treatments and methods on the synchronous scale. EF
is strongly influenced by net radiation and water-related vari-
ables like soil moisture and VPD (Gentine et al., 2007; Tong
et al., 2022). Since it depends on the portion of LE that is
transpired by plants, it is also impacted by LAI (Gentine et
al., 2007). EF therefore serves as a bridge between meteoro-
logical and vegetation controls. We suggest that at semi-arid
sites where GCC measurements are not available, EF, calcu-
lated from measured LE and H, can serve as an important
predictor of NEE.
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In water-limited semi-arid ecosystems, NEE variations are
typically dominated by soil-water-related variables such as
SWCn and precipitation (Archibald et al., 2009; Baldocchi
and Arias Ortiz, 2024; Huang et al., 2016b; Morgan et al.,
2016). These variables usually exert a greater influence than
radiation and temperature (Del Grosso et al., 2018; Kannen-
berg et al., 2024). Water availability promotes plant photo-
synthesis (Parton et al., 2012), but rain pulses can also en-
hance heterotrophic respiration rates (Morgan et al., 2016).
While we do not use precipitation data for the MI analysis, as
the measurements tend to be zero on many days and cannot
be used in MI (Gong et al., 2014), SWCn can capture topsoil
moisture and indicate precipitation pulses. Additionally, EF
can serve as a proxy for these pulses. In our analysis we iden-
tify EF as one of the most important NEE drivers, while other
moisture-related variables (e.g., SWCn, VPD, Rh) are gen-
erally ranked lower in importance compared to air and soil
temperatures (Fig. 4). This might point to the relationship
of EF with LAI being the dominant one in this context, as
the vegetation indices showed greater importance than other
water-related variables.

Air temperature can directly affect the speed of the enzyme
responsible for carbon fixation and the rate of photosynthetic
electron transport (Leuning, 2002; Xu and Baldocchi, 2003).
Additionally, air temperature impacts the availability of pho-
tosynthetic enzymes, membrane fluidity, and the expression
of associated proteins (Yamori et al., 2014). However, our
results show that soil temperatures, both under oak trees and
in open areas, play a significant role in explaining seasonal
ecosystem NEE variations (Fig. 4), exceeding the importance
of air temperatures. Soil respiration, one of the components
in Reco, is highly sensitive to soil temperature (Conant et al.,
2000), and elevated soil temperatures are associated with in-
creased soil respiration in semi-arid ecosystems (Richardson
et al., 2012). Soil temperatures influence heterotrophic res-
piration, which constitutes a substantial part of ecosystem
NEE at our site (Casals et al., 2011). The high importance
of soil temperatures suggests that Reco dominates ecosystem
processes. This is especially relevant as the trend of increas-
ing soil temperatures is stronger than that of air temperatures
in the Mediterranean, particularly in grasslands with low soil
moisture availability (Wang et al., 2024).

Radiation parameters, in particular PAR, do not appear to
play a crucial role at the seasonal scale. While other stud-
ies have identified it as a major control of NEE in semi-
arid ecosystems (Baldocchi and Arias Ortiz, 2024), we ar-
gue that PAR predominantly influences the daily NEE sig-
nal (Fig. S2), but its importance diminishes on seasonal
timescales.

Overall, we observe only marginal differences between the
treatments when considering the 7-year period (2016–2022)
together. The added nutrients, particularly N, are primarily
absorbed by the herbaceous layer (El-Madany et al., 2021)
that senesces annually. Consequently, some of the added nu-
trients may be lost from the system, diminishing the long-

term effect of the fertilization. By calculating MIsync and
MImax for 1 year post-fertilization (March 2016–February
2017), we observe greater differences between the three
plots in MI values and lag times (Fig. S4). Additionally,
the ecosystem is strongly water-limited in the summer and
energy-limited in the winter (Luo et al., 2018; Nair et al.,
2019). These limitations can be more pronounced than nutri-
ent limitations in the respective seasons, overshadowing the
effects of added nutrients when analyzing the entire dataset
together. Therefore, we divided the dataset into five pheno-
logical seasons to gain deeper insights into how added nutri-
ents and altered stoichiometric balance affect seasonal NEE.

4.3 Fertilization effects in different phenological
seasons

Looking into phenological seasons gives a deeper insight into
how environmental variables influence seasonal NEE and
how N : P levels affect this relationship. We find that nutri-
ent addition has an effect on NEE–control relationships when
other limitations are not too strong.

In winter, the ecosystem is energy-limited (Luo et
al., 2018); therefore radiation components (i.e., PAR and
SWDR) are important predictors for NEE. Tree albedo shows
strong interactions with NEE at CT and NT, and NDVI shows
strong interactions with NEE at both fertilized plots. Plant
growth is enhanced by added nutrients (Luo et al., 2020)
and flourishes due to abundant water availability (Lee et al.,
2010) in this season. Also, N+P addition can lead to in-
creased species diversity due to diminished nutrient limita-
tion, facilitating the coexistence of multiple species (Köbel
et al., 2024). Additionally, EF shares high mutual informa-
tion with NEE variations. This is likely because respiration
does not change significantly during this period and VPD is
relatively low, leading to a strong coupling between NEE and
LE. The stomatal conductance of tree transpiration is not too
strong in winter, as soil water is abundant (Klein et al., 2013).

In the primary growing season, spring, NEE is typically
dominated by GPP. The key drivers during this season across
sites are the NDVI and the GCC of both the herbaceous
and tree layers (Table 2). Water is usually abundant pro-
moting plant photosynthesis during moderate temperatures
in this time (Baldocchi and Arias Ortiz, 2024). These con-
ditions are further supported by increased day length and
higher radiation levels (Luo et al., 2018). The rise in incom-
ing radiation, extended daylight hours, and elevated temper-
atures, coupled with the increased atmospheric evaporative
demand (i.e., higher VPD), lead to a strong correlation be-
tween precipitation and both GCC and GPP, as observed in
various Mediterranean ecosystems (Diodato and Bellocchi,
2008; Luo et al., 2018; Ma et al., 2007).

In the water-limited seasons, the nutrient effect is minimal
as the grass layer is dormant and nutrients are not available
due to lack of water. During the drydown period, soil mois-
ture (i.e., SWCn) decreases drastically due to increasing air
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temperatures and scarce rainfall (Battista et al., 2018; Luo
et al., 2018). This induces annual grasses to become senes-
cent, leading to a loss of chlorophyll content (Luo et al.,
2018). The rate of this senescence can determine whether
NEE becomes positive or negative during this time. NDVI
and grass-layer GCC, the most important predictors of NEE
in this season across sites, can provide insights into the dry-
down rate. At NT grass-layer GCC is less important, which
we attribute to a more rapid drydown, causing the grass layer
to enter dormancy earlier than at other sites (Luo et al.,
2020). This is because N addition promotes faster water us-
age (Luo et al., 2020), accelerating the decrease in SWCn and
thereby hampering photosynthesis. It leads to a higher tran-
spiration at NT compared to the other sites, potentially due
to rhizosphere priming to increase P mobilization through
microbes, as adding only N to the system leads to a P defi-
ciency (El-Madany et al., 2021). In addition, N fertilization
can alter species diversity and composition, likely selecting
for species that senesce early (Wang and Tang, 2019). The
higher interaction of soil temperatures with NEE in this sea-
son compared to the wetter seasons shows that Reco starts
dominating NEE, as Reco is strongly connected to soil tem-
peratures (Metz et al., 2023). VPD is a stronger control of
NEE at NT compared to the other two plots. Transpiration
is highest at NT, as plants transpire more to obtain limited
P from the soil (El-Madany et al., 2021; Pang et al., 2018;
Rose et al., 2018). It is therefore more sensitive to changes in
VPD.

In summer, the driest period in the ecosystem, Reco dom-
inates NEE and thus we find a strong interaction between
NEE, soil temperature, and soil heat flux (i.e., SHF_op and
SHF_bc). PAR is important for predicting seasonal NEE,
showing the strongest interaction at CT. The importance of
PAR is lower at NT and lowest at NPT. N+P addition in-
creases the light-use efficiency most because P has a positive
effect on photochemical quenching in leaves and on active
fluorescence measurements (Martini et al., 2019; Singh and
Reddy, 2014), leading to less dependence of NEE on radia-
tion parameters at that site. At CT and NT, tree-layer GCC is
important as the grass layer becomes senescent in the sum-
mer and is dormant in terms of ecosystem carbon flux. Since
the greenness of the oak trees is relatively constant through-
out the year, GPP is mainly determined by the tree layer
in the summer months (Luo et al., 2018). However, gcc_gr
shows a higher interaction with NEE than gcc_tr at NPT.
Even though the majority of the grass layer is mostly dead in
this season, there are some perennial species (e.g., Cynodon
dactylon) remaining green for longer in summer that can re-
green after rain events (personal communication with local
collaborators). Therefore, N+P addition very likely leads to
a consequential change in species composition (Köbel et al.,
2024) with an increase in perennial species or an increase in
their productivity. So far, it has been found that N+P ad-
dition can lead to an increasing number of forbs (Köbel et
al., 2024), which tend to senesce later than other herbaceous

species at the site (Luo et al., 2020). Nevertheless, the occur-
rence of summer-green species following nutrient addition
will have to be investigated further.

During the regreening of the herbaceous layer starting in
autumn, NDVI shows the strongest interaction with NEE at
the fertilized plots – but not at the control plot. This aligns
with previous studies showing that the green-up happens
faster and the maximum GPP is higher at the fertilized plots,
resulting from larger resource utilization at NT and/or im-
proved resource-use efficiency at NPT (Luo et al., 2020).
With the increase in soil moisture in early autumn, a greater
quantity of organic and inorganic nutrients becomes available
to plants (Agehara and Warncke, 2005; Luo et al., 2020). N
availability in the soil is expected to be highest at this time
(Morris et al., 2019), leading to higher net carbon uptake
rates (El-Madany et al., 2021). Leaves quickly expand and
pigments rapidly increase during this green-up period (Croft
et al., 2015). At CT, the green-up happens later than at the
fertilized plots, and NEE is dominated for a longer time by
Reco rather than photosynthetic activity (Luo et al., 2020).
Our results indicate that soil temperatures below oak trees are
more important than those in open areas during this season
(Table 2). The carbon pools under oak trees are the largest,
providing substantial material for heterotrophic decomposi-
tion (Casals et al., 2009). During autumn, after a prolonged
dry season in which a significant amount of litter and or-
ganic material has already been decomposed by microbes,
litter remains available for further heterotrophic decompo-
sition mainly below the trees. This ongoing decomposition
under oak trees contributes to Reco, especially as the onset
of rains enhances microbial activity due to increased water
availability (Borken and Matzner, 2009). Additionally, the
topsoil remains wet for longer after rain pulses under oak
trees compared to open areas, as soil moisture during this
season is primarily influenced by evaporation from the rela-
tively bare soil. Therefore, differences in soil respiration be-
tween open and shaded pastures can also be attributed to vari-
ations in soil moisture.

The analysis of driver importance in different phenologi-
cal seasons provides significant insights into ecosystem pro-
cesses. However, some variables must be interpreted with
caution. The soil properties at this site are highly heteroge-
neous, which affects the representativity of variables like soil
temperature, soil water content, and soil heat flux in the EC
flux footprint (Luo et al., 2018; Paulus et al., 2022). This
is particularly relevant given the substantial differences be-
tween below-canopy and open-air soil conditions. To address
this, we have separated the measurements into areas under
the oak tree canopy and sunlit areas (Tsoil_bc and SHF_bc;
Tsoil_op and SHF_op). Despite this effort, the local soil het-
erogeneity remains complex, influenced by varying propor-
tions of sand, clay, and soil organic carbon (Casals et al.,
2011; Weiner et al., 2018). Therefore, it is important to con-
sider that these measures may not fully capture the sensitivity
differences in the ecosystem.
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4.4 Future implications

In winter, the ecosystem has abundant water availability, and
energy becomes the primary limiting factor after nutrients
were added. With the N-only addition, we observe that NEE
becomes significantly more sensitive to changes in the radi-
ation components, PAR and SWDR (Fig. 6). However, the
addition of N+P results in a significant increase in sensi-
tivity to changes in soil water content rather than to radiation
components. N+P addition enhances water-use efficiency in
the ecosystem (El-Madany et al., 2021; Martini et al., 2019),
and consequently, water can be used more efficiently for pho-
tosynthesis – with similarly low radiation levels – and in-
creased water availability could lead to higher GPP. N fer-
tilization primarily affects the herbaceous layer (El-Madany
et al., 2021), and our results agree with this, showing a sig-
nificantly increased sensitivity of NEE to grass-layer green-
ness in winter at NT and an even steeper increase at NPT
(Fig. 6). At the N+P plot there are more nutrients available
at a higher N : P stoichiometric balance.

In spring, the sensitivity to tree-layer greenness decreases
with N fertilization. An experimental study by Biro et
al. (2024) supports these findings, demonstrating that N ad-
dition results in decreased tree growth due to competition
with grass, which also intensively forages for P. The study
suggests that grasses likely prevail in belowground competi-
tion, primarily due to their substantial root biomass alloca-
tion and investment in nutrient-acquiring enzymes, such as
phosphatase. These adaptations enable grasses to efficiently
sequester both N and P from the soil, thereby outcompeting
trees for these essential nutrients (Biro et al., 2024; Rolo and
Moreno, 2012). With the addition of N+P, we observe that
the NEE sensitivity to PAR increases significantly in spring
(Fig. 6). Water and nutrients are abundant in this season at
NPT, making the availability of energy more crucial.

In water-limited seasons, ecosystem processes behave
quite differently, and we observe less effect of nutrient ad-
dition. With N+P addition, there is no significant trend in
NEE sensitivity to its drivers, except for a significantly in-
creased sensitivity to grass-layer greenness in summer. This
agrees with our previous findings that in summer gcc_gr is
amongst the most important drivers at NPT (Table 2). This
reflects changes in the species composition with N+P fer-
tilization, particularly enhancing the growth and diversity of
forbs and perennial species. We argue that long-term N+P
addition could even lead to an increased productivity, result-
ing in an increasing importance of grass-layer greenness for
ecosystem NEE.

The significant increase of the yearly NEE range at NPT
over time (Fig. 7) is very likely caused by the increased
NEE sensitivity to drivers in spring and summer, as the min-
imum NEE (usually occurring in spring) becomes more neg-
ative and maximum NEE (usually occurring in summer) be-
comes more positive. Consequently, the increased NEE sen-
sitivity to changes in PAR in spring and increased sensitivity

to gcc_gr in summer might enhance the size of this annual
range.

In the drydown phase, we observe that with N addition, the
sensitivity of ecosystem NEE to changes in relative humidity
(i.e., Rh02 and Rh15) and SHF_op decreases significantly.
This indicates that the ecosystem might become more resis-
tant to variations in these variables in the future.

In autumn, both fertilized sites become less sensitive to
changes in atmospheric variables such as the radiation com-
ponents PAR and SWDR, air temperatures, and VPD, com-
pared to the control plot. This indicates that water availability
is predominantly important for NEE with added nutrients,
while sensitivity to other variables decreases. It is possible
that either the vegetation or the microbes become less re-
stricted by these variables.

We conclude that with more N input from human activities
entering terrestrial ecosystems (Peñuelas et al., 2013), savan-
nas may become less sensitive to environmental factors like
humidity, radiation, and temperature during the transitional
seasons (i.e., drydown and regreening). These seasons deter-
mine the start and end of an active grass layer and therefore
dominate the annual carbon balance of the ecosystem. In ad-
dition, we expect the NEE variability to increase even more
in the future with more N deposition and a changing climate.
To note, the results of this study cannot explain how long-
term nutrient addition affects the ecosystem’s resistance to
extreme events. As the timing of the application of N and P
was chosen to increase the possibility that the sites could be
used by vegetation in the next growing season, the observed
changes in NEE and driver importance at NT and NPT might
have been smaller if fertilization had been applied at different
timing.

5 Conclusions

We analyzed a long-term (2016–2022/23) dataset of flux,
biometeorological, satellite, and PhenoCam data from the
semi-arid experimental site, Majadas de Tiétar, to evaluate
the importance of different drivers for NEE across different
nutrient levels and balances. To detect the most important
drivers, we used only daytime daily values of observed data
in order to extract the seasonal signals of all variables using
singular spectrum analysis.

With both Pearson correlation and mutual information
analysis, we show that the grass-layer greenness drives sea-
sonal variations in NEE across all treatments and that the ad-
dition of both N and N+P increases the seasonal NEE vari-
ability. We find that soil temperatures are more important in
explaining NEE variations than previously expected. When
looking into the 7-year data, the water–energy limitation cy-
cles overshadow the nutrient addition effect. Dividing the
dataset into phenological seasons reveals how environmen-
tal variables and nutrient manipulation influenced NEE on
a seasonal scale. Altered nutrient levels affect NEE–control
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relationships when water and energy limitations are not too
strong, particularly during the primary growing season in
spring, where NDVI and grass-layer GCC are key drivers.
In autumn, NDVI shows the strongest interaction with NEE
at fertilized plots, indicating faster green-up and higher GPP
due to enhanced nutrient availability. During drier seasons,
nutrient effects are less pronounced as the grass layer be-
comes dormant.

N and N+P additions significantly alter the sensitivity of
NEE to environmental controls over time. In winter, N addi-
tion increases NEE sensitivity to radiation, while N+P addi-
tion increases its sensitivity to changes in soil water content.
In spring, N+P addition increases sensitivity to PAR. The
herbaceous layer primarily benefits from nutrient additions,
leading to increased sensitivity of NEE to grass-layer green-
ness and decreased sensitivity to tree-layer greenness. During
water-limited seasons, nutrient effects were minimal, except
for increased importance of grass-layer GCC in summer at
NPT, indicating an increase in abundance and/or productiv-
ity with N+P treatment due to changed species composition
and higher biodiversity. We conclude that with increasing an-
thropogenic N deposition, the carbon dynamics of savannas
might become even more variable in the future and might
also become more resistant to variations in some atmospheric
variables in the transitional seasons, which are important pe-
riods in determining the annual carbon balance of the ecosys-
tem. However, their responses to extreme events in the future
remain to be explored.
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