



## Supplement of

# Ensemble estimates of global wetland methane emissions over 2000–2020

Zhen Zhang et al.

Correspondence to: Zhen Zhang (yuisheng@gmail.com)

The copyright of individual parts of the supplement might differ from the article licence.



- Model - WAD2M - GIEMS2

Figure S1. Temporal variations in wetland anomalies in model ensemble in comparison with satellite-based products WAD2M and GIEMS2. The wetland areal anomalies were calculated relative to the mean of 2000-2006 level and then standardized using a Z score. The shaded areas are the 1-standard deviation of model ensemble estimates. The solid lines are the 12-month running means of the anomalies. The correlations in the trend between model ensemble mean and satellite-based products are listed.



Figure S2. Time series of annual total CH<sub>4</sub> emissions from the prognostic runs. Note that 11 of the 16 models have prognostic estimates. Note that the diagnostic results are not used in interpreting temporal changes due to a discontinuity issue in a few tropical hotspots, which exists in some of the models (see Methods).



Figure S3. Regional changes in the seasonal cycle of  $\Delta$ eCH<sub>4</sub> and corresponding mean seasonal cycle. The boxplots represent mean  $\Delta$ eCH<sub>4</sub> in the seasonal cycle during 2010-2019 relative to the average of 2000-2009. The black whiskers extend to the most extreme data points not considered outliers, which are denoted as dots. The colored lines represent the average seasonal cycle of 2000-2009 from the simulations grouped by two climate datasets, CRU and GSWP3-W5E5. Region Abbreviations: NAm, North America; SAm, South America; Eur, Europe; Afr, Africa; NAs, North Asia; CAs, Central Asia, EAs, East Asia; Sas, South Asia; SEAs, Southeast Asia; Oz, Oceania.





Figure S4. Spatial distribution of  $\Delta eCH_4$  in percentage between the 2010s and 2000s and the level of model agreement. The level of model agreement (%) is defined as the ratio of the number of runs whose estimates fall within the 1- $\sigma$  range of the whole ensemble to the number of total runs (n=22). The regional CH<sub>4</sub> hotspots in Table S3 are shown in red.



Figure S5. Boxplot of mean eCH<sub>4</sub> for regional hotspots from the prognostic runs. The model ensemble means are shown with one standard deviation for 2000-2020. The mask map is shown in Fig. S3. HBL, PPR, and WSL refer to 'Hudson Bay Lowland', 'Prairie Pothole Region', and 'West Siberian Lowland', respectively.



Figure S6. Attribution of mean  $\Delta$ eCH<sub>4</sub> to the temperature (T), precipitation (P), and rising atmospheric CO<sub>2</sub> concentration (CO<sub>2</sub>) based on factorial simulations of a subset of the models.



Figure S7. Time series of differences in eCH<sub>4</sub> between the subset of models from the factorial experiments and the annual mean from the full model ensemble. The mean deviation and one standard deviation are shown in the figure.



Figure S8. Temporal variations of anomaly in precipitation and wetland area relative to the average of 2000-2006 over global wetlands. The precipitation inputs from CRU and GSWP3-W5E5, along with the ensemble mean of simulated wetland areas (black line) with its  $1-\sigma$  uncertainty (grey area) derived from eighteen prognostic estimates by the wetland models, are presented. The statistically significant linear regional trends in wetland area are denoted with a star next to the region name. The Spearman correlations between precipitation and wetland area area across regions are indicated in color corresponding to different precipitation inputs. The wetland mask is defined by maximum areal extent of the wetland product WAD2M. Region Abbreviations: NAm, North America; SAm, South America; Eur, Europe; Afr, Africa; NAs, North Asia; CAs, Central Asia, EAs, East Asia; Sas, South Asia; SEAs, Southeast Asia; Oz, Oceania.



Figure S9. simulated seasonal eCH<sub>4</sub> along geographic temperature gradient across locations of FLUXNET-CH<sub>4</sub> sites from individual models for the JJA season.



Figure S10. Map of FLUXNET-CH<sub>4</sub> sites applied in the  $Q_{10}$  calculation. The color of the points (n = 34) represents the average JJA temperature for 2000-2020 for each site. The site info can be found at Table S4.

### Tables

Table S1. List of GCP-CH4 participating wetland models. Not all models contributed results to all experiments. The details on the model set-ups and models' methane flux parameterizations can be found in principal references.

| Model                     | Wetland PFT      | Components of CH <sub>4</sub> Flux | CH <sub>4</sub> Transport Pathway | Temperature Response     | CH <sub>4</sub> Production | Nitrogen | Fire | Spatial    | Forcing Time | Reference       |
|---------------------------|------------------|------------------------------------|-----------------------------------|--------------------------|----------------------------|----------|------|------------|--------------|-----------------|
|                           |                  |                                    |                                   | Functions                | Proxy                      | Cycles   |      | Resolution | Step         |                 |
|                           |                  |                                    |                                   |                          |                            |          |      | (deg)      |              |                 |
| CH4MOD <sub>wetland</sub> | Herbaceous       | Net flux                           | Ebullition and                    | Layered soil temperature | Carbon Substrate           | No       | No   | 0.5        | Monthly      | Li et al., 2020 |
|                           | wetland PFTs and |                                    | Diffusion, and Plant              |                          |                            |          |      |            |              |                 |
|                           | Woody wetland    |                                    | mediated transport                |                          |                            |          |      |            |              |                 |

|           | PFTs                                                                                                                                                    |                                                                                                                                                                                         |                                                                     |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                           |     |                                  |            |                                                      |                                                |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------------|------------|------------------------------------------------------|------------------------------------------------|
| CLASSIC   | No wetland-<br>specific PFTs                                                                                                                            | Net flux                                                                                                                                                                                | No specific transport<br>pathways                                   | Indirectly through Rh (see<br>Section A3.2 in Melton and<br>Arora 2016                                                                                                                                                                                                                                   | Rh is scaled to<br>account for CH <sub>4</sub> vs.<br>CO <sub>2</sub> emitted and<br>differences in<br>upland vs. lowland<br>Rh                                                                           | No  | Yes                              | T63 (~2.8) | 30 minutes                                           | Arora et al., 2018                             |
| DLEM      | Generic wetland<br>PFTs                                                                                                                                 | gross production; gross consumption; oxidation;                                                                                                                                         | No specific transport pathways                                      | Layered soil temperature                                                                                                                                                                                                                                                                                 | Carbon Substrate                                                                                                                                                                                          | Yes | No                               | 0.5        | Daily                                                | Tian, 2015; Tian<br>et al., 2016               |
| ELM-ECA   | No wetland-<br>specific PFTs                                                                                                                            | gross production; gross<br>consumption; oxidation;<br>diffusive, aerenchyma, and<br>ebullition fluxes                                                                                   | Ebullition and<br>Diffusion, and Plant<br>mediated transport        | Q10 based on soil T in each soil<br>layer                                                                                                                                                                                                                                                                | Rh in each soil<br>layer is scaled to<br>estimate CH4<br>production                                                                                                                                       | Yes | Yes                              | ~2°        | 6-Hourly                                             | Zhu et al.,<br>2016;2019                       |
| ISAM      | Upland PFTs,<br>generic wetland<br>PFTs, and Woody<br>wetland PFTs                                                                                      | gross production, oxidation,                                                                                                                                                            | Ebullition and Diffusion                                            |                                                                                                                                                                                                                                                                                                          | Heterotrophic<br>respiration                                                                                                                                                                              | Yes | No                               | 0.5        | 6-Hourly                                             | Shu 2020.<br>Xu 2021.                          |
| JSBACH    | Generic wetland<br>PFT with C3<br>grass parameters<br>for vegetation                                                                                    | gross production, oxidation                                                                                                                                                             | Ebullition and<br>Diffusion, and Plant<br>mediated transport        | Layered soil temperature,<br>different temperature responses<br>for production, consumption                                                                                                                                                                                                              | CH4 production<br>depends on anoxic<br>respiration<br>produced by<br>YASSO soil carbon<br>model modified to<br>account for anoxic<br>conditions and<br>coupled to JSBACH                                  | No  | No                               | 1.875°     | Daily                                                | Kleinen et al.,<br>2020; 2021.                 |
| JULES     | No wetland-<br>specific PFTs                                                                                                                            | Net fluxes                                                                                                                                                                              | No specific transport pathways                                      | Layered soil temperature                                                                                                                                                                                                                                                                                 | Net Primary<br>Production                                                                                                                                                                                 | No  | No                               | 0.5        | Daily                                                | Clark 2011.<br>Gedney 2019                     |
| LPJ-MPI   | Upland PFTs,<br>non-vascular<br>PFTs, Hebaceous<br>wetland PFTs                                                                                         | gross production and oxidation                                                                                                                                                          | Ebullition and<br>Diffusion, and Plant<br>mediated transport        | Layered soil temperature,<br>different temperature responses<br>for production, consumption,<br>diffusion                                                                                                                                                                                                | Heterotrophic<br>respiration                                                                                                                                                                              | No  | Yes                              | 0.5        | Monthly                                              | Kleinen et al.,<br>2012                        |
| LPJ-wsl   | No wetland-<br>specific PFTs                                                                                                                            | net flux                                                                                                                                                                                | No specific transport<br>pathways                                   | Soil temperature calculation in<br>LPJ is 12 layers scheme<br>following Wania et al., (2009).<br>Daily average soil temperature<br>for 0-50 cm depth is used for<br>CH4 function.                                                                                                                        | Heterotrophic<br>respiration                                                                                                                                                                              | No  | Yes                              | 0.5        | Monthly                                              | Zhang et al.,<br>2016, 2018                    |
| LPJ-GUESS | High-latitude (><br>40°N): Wetland<br>grass, cushion<br>forbs, lichens,<br>sphagnum moss.<br>South of 40°N:<br>C3 and C4<br>grasses only on<br>wetlands | Net and gross emissions are<br>simulated for high-latitude (><br>40°N) ecosystems. South of<br>40°N: net emissions only<br>based on a simple rescaling of<br>heterotrophic respiration. | Diffusion, plant-<br>mediated, and ebullition<br>pathways for > 40N | Decomposition of litter and<br>SOM uses an empirical<br>relationship for temperature<br>response of soil temperature at<br>25 cm depth (calculated<br>following Wania et al., (2009a))<br>across ecosystems, incorporating<br>damping of Q10 response due to<br>temperature acclimation. CH <sub>4</sub> | CH <sub>4</sub> production<br>depends on soil<br>temperature in each<br>10 cm soil layer, the<br>degree of anoxia<br>and the availability<br>of substrate that<br>consists of a<br>fraction of litter and | Yes | No,<br>not<br>on<br>wetla<br>nds | 0.5        | Monthly,<br>interpolated to<br>quasi-daily<br>values | McGuire et al.,<br>2012; Wania et<br>al., 2010 |

|             |                                                                                                                                                                                                                                                       |                                                                     |                                                              | production, oxidation and<br>transport use temperature<br>dependencies from Wania et al.<br>(2010), from each 10cm layer in<br>the soil.                   | soil carbon<br>decomposition                                                                                                                                                                                                             |     |     |     |         |                                                                                                                                                     |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| LPX-Bern    | wetland PFTs<br>include non-<br>vascular,<br>Herbaceous<br>wetland, and<br>Woody wetland<br>PFTs                                                                                                                                                      | gross production; gross<br>consumption; net flux                    | Ebullition and<br>Diffusion, and Plant<br>mediated transport | Layered soil temperature,<br>different temperature responses<br>for production, consumption,<br>diffusion                                                  | Heterotrophic<br>respiration and<br>carbon substrate                                                                                                                                                                                     | Yes | Yes | 0.5 | Monthly | Spahni et al.,<br>2011; Stocker et<br>al., 2014                                                                                                     |
| ORCHIDEE    | No wetland-<br>specific PFTs                                                                                                                                                                                                                          | gross emission (gross<br>production and oxidation) are<br>simulated | Ebullition and<br>Diffusion, and Plant<br>mediated transport | Microbial activities are not<br>represented directly. Only soil<br>temperature and soil moisture<br>which influence microbial<br>activities are considered | Carbon Substrate                                                                                                                                                                                                                         | No  | No  | 1   | Daily   | Ringeval et al.,<br>2012;<br>Guimberteau<br>2018                                                                                                    |
| SDGVM       | upland PFTs                                                                                                                                                                                                                                           | Net flux                                                            | No specific transport<br>pathways                            | Q10 coefficient using air temperature                                                                                                                      | Heterotrophic<br>respiration                                                                                                                                                                                                             | Yes | Yes | 0.5 | Monthly | SDGVM:<br>Beerling &<br>Woodward<br>2001;Fluxes<br>following:<br>Singarayer et al.,<br>2011; Wetland<br>area foloowing:<br>Hopcroft et al.,<br>2020 |
| TEM-MDM     | Five primary<br>types of wetlands<br>are considered in<br>boreal, temperate<br>and tropical<br>regions (total 15<br>subtypes). They<br>are forested bog,<br>nonforested bog,<br>forested swamp,<br>nonforested<br>swamp and<br>alluvial<br>formations | gross production; gross<br>consumption; net flux                    | Ebullition and<br>Diffusion, and Plant<br>mediated transport | Q10 coefficient is used to<br>account for soil temperature<br>effects on methanotrophy rates<br>within each 1 cm layer<br>of the soil profile              | CH4 production is<br>modeled as an<br>anaerobic process<br>that occurs in the<br>saturated zone of<br>the soil profile,<br>controlled by<br>methanogenic<br>substrate<br>availability, soil<br>temperatures, PH,<br>and redox potential. | Yes | No  | 0.5 | Daily   | Zhuang et al.,<br>2004; Liu et al.,<br>2020                                                                                                         |
| VISIT       | No wetland-<br>specific PFTs                                                                                                                                                                                                                          | gross production; gross consumption; net flux;                      | Ebullition and<br>Diffusion, and Plant<br>mediated transport | Layered soil temperature.                                                                                                                                  | Net Primary<br>Production                                                                                                                                                                                                                | No  | Yes | 0.5 | Monthly | Ito and Inatomi,<br>2012; Ito et al.,<br>2019                                                                                                       |
| TRIPLEX-GHG | a general wetland<br>PFT was added<br>without<br>considering                                                                                                                                                                                          | net flux                                                            | Ebullition and<br>Diffusion, and Plant<br>mediated transport | Soil temperature factor was<br>evaluated with and exponential<br>function that considering soil<br>temperature and optimum soil                            | CH <sub>4</sub> production was<br>calculated as a<br>proportion of<br>heterotrophic                                                                                                                                                      | Yes | No  | 0.5 | Daily   | (Zhu et al., 2015, 2017)                                                                                                                            |

| specific wetland | temperature for CH <sub>4</sub> production. | respiration (CO2-    |  |  |
|------------------|---------------------------------------------|----------------------|--|--|
| plants type      | The Q10 in the temperature                  | C) along with soil   |  |  |
|                  | function for CH <sub>4</sub> production and | temperature,         |  |  |
|                  | CH <sub>4</sub> oxidation could be          | Eh and pH            |  |  |
|                  | calibrated separately.                      | modification factors |  |  |

| Table S2. Factorial simulation setup for 2007-20 |
|--------------------------------------------------|
|--------------------------------------------------|

| Table S2. Factorial simulation        | setup 101 2007-2020.     |                          |                               |  |  |
|---------------------------------------|--------------------------|--------------------------|-------------------------------|--|--|
| Simulation                            | Temperature              | Precipitation            | CO <sub>2</sub> concentration |  |  |
| Transient                             | varying                  | varying                  | varying                       |  |  |
| Baseline                              | climatology of 2000-2006 | climatology of 2000-2006 | 2006 value                    |  |  |
| Temperature Fix run                   | climatology of 2000-2006 | varying                  | varying                       |  |  |
| Precipitation Fix run                 | varying                  | climatology of 2000-2006 | varying                       |  |  |
| CO <sub>2</sub> concentration Fix run | varying                  | varying                  | 2006 value                    |  |  |

Table S3. Modeled CH<sub>4</sub> emissions (Unit: TgCH<sub>4</sub> yr<sup>-1</sup>) and comparison with estimates from bottom-up (BU) and topdown (TD) studies for regional CH<sub>4</sub> hotspots.

| Region   | Emissions<br>(TgCH4 yr <sup>-1</sup> ) | Method        | Reference                  |
|----------|----------------------------------------|---------------|----------------------------|
| Amazon   | 24±11                                  | BU modeling   | This study                 |
|          | 29                                     | BU upscaling  | Melack et al., 2004        |
|          | 47.3-53.0                              | TD inversion* | Bergamaschi et al., 2009   |
|          | 44±4.8                                 | TD inversion* | Ringeval et al., 2014      |
|          | 31.0-42.0                              | TD inversion* | Wilson et al., 2016        |
|          | 35±5.6-<br>41.7±5.9                    | BU upscaling* | Pangala et al., 2017       |
|          | 38.2±5.3-<br>45.6±5.2                  | TD inversion* | Wilson et al., 2021        |
|          | 33.8±10.9                              | TD inversion* | Basso et al., 2021         |
|          | 9.2±1.8                                | TD inversion  | Tunnicliffe et al., 2020   |
|          | 39.4±10.3                              | BU modeling   | Bloom et al., 2017         |
| HBL      | 3±2.1                                  | BU modeling   | This study                 |
|          | 2.3                                    | TD inversion  | Pickett-Heaps et al., 2011 |
| WSL      | 4.7±2.9                                | BU modeling   | This study                 |
|          | 6.1±1.2                                | TD inversion  | Bohn et al., 2015          |
|          | 5.3±0.5                                | BU modeling   | Melton et al., 2013        |
|          | 3.9±1.3                                | BU upscaling  | Glagolev et al., 2011      |
| Alaska   | 1.0±0.65                               | BU modeling   | This study                 |
|          | 2.1±0.5                                | TD inversion  | Chang et al., 2014         |
|          | 1.7±0.3                                | TD inversion  | Miller et al., 2016        |
| Pantanal | 1.3±0.94                               | BU modeling   | This study                 |
|          | 3.3                                    | BU upscaling  | Marani and Alvalá, 2007    |
|          | 2.1-3.6                                | BU modeling   | Gerlein-Safdi et al., 2021 |
|          | 2.0-2.8 or 3.3                         | TD inversion  | Gloor et al., 2021         |

| Sudd | 1.1±1.9   | BU modeling  | This study                 |
|------|-----------|--------------|----------------------------|
|      | 1.1±0.5   | BU modeling  | Bloom et al., 2017         |
|      | 2.5-7**   | TD inversion | Lunt et al., 2019          |
|      | 7.2±3.2** | TD inversion | Pandey et al., 2021        |
|      | 2.1-3.6** | BU modeling  | Gerlein-Safdi et al., 2021 |

\* These numbers do not distinguish generic wetland applied in this study with the estimates from open water system (e.g., rivers, lakes, ponds, and reservoirs)

\*\*These numbers are derived from a short time period (2017-2020) when the strong positive anomaly occurred at Sudd wetlands, while the model ensemble is average of 2000-2020 level.

| Site ID | Site Name                  | Country | LAT    | LON     | Biome          | Ecosystem    | Site PIs                      | DOI/                                     |
|---------|----------------------------|---------|--------|---------|----------------|--------------|-------------------------------|------------------------------------------|
|         |                            |         |        |         |                | Туре         |                               | Dataset                                  |
| CA-Scb  | Scotty Creek Bog           | Canada  | 61.31  | -121.30 | Boreal Forests | Bog          | Oliver Sonnentag              | AmeriFlux                                |
| CA-Scc  | Scotty Creek Peat          | Canada  | 61.31  | -121.30 | Boreal Forests | Peat plateau | Oliver Sonnentag              | doi:10.17190/A MF/1480303                |
|         | plateau/collapse scar      |         |        |         |                |              |                               |                                          |
| DE-Sfn  | Schechenfilz Nord          | Germany | 47.81  | 11.33   | Temperate      | Bog          | Hans Peter Schmid             | European Fluxes Database Cluster         |
| DE-Zrk  | Zarnekow                   | Germany | 53.88  | 12.89   | Temperate      | Fen          | Torsten Sachs                 | European Fluxes Database Cluster         |
| FI-Lom  | Lompolojankka              | Finland | 68.00  | 24.21   | Boreal Forests | Fen          | Annalea Lohila, Mika Aurela   | European Fluxes Database Cluster         |
| FI-Si2  | Siikaneva II               | Finland | 61.84  | 24.17   | Boreal Forests | Bog          | Timo Vesala & Ivan Mammarella | European Fluxes Database Cluster         |
| FI-Sii  | Siikaneva I                | Finland | 61.83  | 24.19   | Boreal Forests | Fen          | Timo Vesala & Ivan Mammarella | European Fluxes Database Cluster         |
| JP-Bby  | Bibai Mire                 | Japan   | 43.32  | 141.81  | Temperate      | Bog          | Masahito Ueyama               | European Fluxes Database Cluster         |
| NZ-Kop  | Kopuatai                   | New     | -37.39 | 175.55  | Temperate      | Bog          | Dave Campbell                 | https://researchc                        |
|         |                            | Zealand |        |         |                |              |                               | ommons.waikato.ac.nz/handle/10 289/11393 |
| RU-Ch2  | Chersky reference          | Russia  | 68.62  | 161.35  | Boreal Forests | Wet tundra   | Matthias Goeckede             | European Fluxes Database Cluster         |
| RU-Che  | Chersky                    | Russia  | 68.61  | 161.34  | Boreal Forests | Wet tundra   | Matthias Goeckede             | European Fluxes Database Cluster         |
| RU-Sam  | Samoylov                   | Russia  | 72.37  | 126.50  | Tundra         | Wet tundra   | Torsten Sachs                 | European Fluxes Database Cluster         |
| RU-Vrk  | Seida/Vorkuta              | Russia  | 67.06  | 62.94   | Tundra         | Wet tundra   | Thomas Friborg                | European Fluxes Database Cluster         |
| SE-Deg  | Degero                     | Sweden  | 64.18  | 19.56   | Boreal Forests | Fen          | Mats Nilsson                  | European Fluxes Database Cluster         |
| SE-St1  | Stordalen grassland (Mire) | Sweden  | 68.35  | 19.05   | Tundra         | Fen          | Thomas Friborg                | European Fluxes Database Cluster         |
| SE-Sto  | Stordalen Palsa Bog        | Sweden  | 68.36  | 19.05   | Tundra         | Bog          | Thomas Friborg                | European Fluxes Database Cluster         |
| US-Atq  | Atqasuk                    | USA     | 70.47  | -157.41 | Tundra         | Wet tundra   | Donatella Zona                | doi:10.17190/A MF/1246029                |
| US-Beo  | Barrow                     | USA     | 71.28  | -156.61 | Tundra         | Wet tundra   | Donatella Zona                | AmeriFlux                                |
| US-Bes  | Barrow                     | USA     | 71.28  | -156.6  | Tundra         | Wet tundra   | Donatella Zona                | AmeriFlux                                |
| US-Bgl  | Bog Lake peatland          | USA     | 47.53  | -93.74  | Temperate      | Fen          | Narasinha Shurpali            | AmeriFlux                                |
| US-Bzb  | Thermokarst collapse bog   | USA     | 64.70  | -148.32 | Boreal Forests | Bog          | Eugenie Euskirchen            | AmeriFlux                                |
| US-Bzf  | Rich Fen                   | USA     | 64.70  | -148.31 | Boreal Forests | Fen          | Eugenie Euskirchen            | AmeriFlux                                |

### Table S4. FLUXNET-CH<sub>4</sub> site used in the temperature dependence analysis.

| US-Ics | Wet sedge tundra            | USA | 68.61 | -149.31 | Tundra    | Wet tundra | Eugenie Euskirchen | doi: 10.17190/AM F/1246130 |
|--------|-----------------------------|-----|-------|---------|-----------|------------|--------------------|----------------------------|
| US-Ivo | Ivotuk                      | USA | 68.49 | -155.75 | Tundra    | Wet tundra | Donatella Zona     | doi:10.17190/A MF/1246067  |
| US-Los | Lost Creek                  | USA | 46.08 | -89.98  | Temperate | Fen        | Ankur Desai        | doi: 10.17190/AM F/1246071 |
| US-Myb | Mayberry Wetland            | USA | 38.05 | -121.77 | Temperate | Marsh      | Dennis Baldocchi   | doi: 10.17190/AM F/1246139 |
| US-NC4 | NC Alligator River          | USA | 35.79 | -75.90  | Temperate | Swamp      | Asko Noormets      | doi:10.17190/A MF/1480314  |
| US-Ngb | NGEE Barrow                 | USA | 71.28 | -156.61 | Tundra    | Wet tundra | Margaret Torn      | doi: 10.17190/AM F/1436326 |
| US-ORv | River Wetland Research Park | USA | 40.02 | -83.02  | Temperate | Marsh      | Gil Bohrer         | doi:10.17190/A MF/1246135  |
| US-Owc | Old Woman Creek             | USA | 41.38 | -82.51  | Temperate | Marsh      | Gil Bohrer         | doi: 10.17190/AM F/1246094 |
| US-Sne | Sherman Island Restored     | USA | 38.04 | -121.76 | Temperate | Marsh      | Dennis Baldocchi   | doi: 10.17190/AM F/1418684 |
|        | Wetland                     |     |       |         |           |            |                    |                            |
| US-Tw1 | Twitchell West Pond Wetland | USA | 38.11 | -121.65 | Temperate | Marsh      | Dennis Baldocchi   | doi: 10.17190/AM F/1246147 |
| US-Tw4 | Twitchell East End Wetland  | USA | 38.10 | -121.64 | Temperate | Marsh      | Dennis Baldocchi   | doi: 10.17190/AM F/1246148 |
| US-Wpt | Winous Point North Marsh    | USA | 41.46 | -83.00  | Temperate | Marsh      | Housen Chu         | doi: 10.17190/AM F/1246155 |

#### References

Arora, V. K., Melton, J. R., and Plummer, D.: An assessment of natural methane fluxes simulated by the CLASS-CTEM model, Biogeosciences, 15, 4683–4709, https://doi.org/10.5194/bg-15-4683-2018, 2018.

- 5 Basso, L. S., Marani, L., Gatti, L. V., Miller, J. B., Gloor, M., Melack, J., Cassol, H. L. G., Tejada, G., Domingues, L. G., Arai, E., Sanchez, A. H., Corrêa, S. M., Anderson, L., Aragão, L. E. O. C., Correia, C. S. C., Crispim, S. P., and Neves, R. A. L.: Amazon methane budget derived from multi-year airborne observations highlights regional variations in emissions, Commun Earth Environ, 2, 1–13, https://doi.org/10.1038/s43247-021-00314-4, 2021.
  - Bloom, A. A., Bowman, K. W., Lee, M., Turner, A. J., Schroeder, R., Worden, J. R., Weidner, R., McDonald, K. C., and
- 10 Jacob, D. J.: A global wetland methane emissions and uncertainty dataset for atmospheric chemical transport models (WetCHARTs version 1.0), Geoscientific Model Development, 10, 2141–2156, https://doi.org/10.5194/gmd-10-2141-2017, 2017.

Bohn, T. J., Melton, J. R., Ito, A., Kleinen, T., Spahni, R., Stocker, B. D., Zhang, B., Zhu, X., Schroeder, R., Glagolev, M. V., Maksyutov, S., Brovkin, V., Chen, G., Denisov, S. N., Eliseev, A. V., Gallego-Sala, A., McDonald, K. C., Rawlins, M.

15 A., Riley, W. J., Subin, Z. M., Tian, H., Zhuang, Q., and Kaplan, J. O.: WETCHIMP-WSL: intercomparison of wetland methane emissions models over West Siberia, Biogeosciences, 12, 3321–3349, https://doi.org/10.5194/bg-12-3321-2015, 2015.

Chang, R. Y.-W., Miller, C. E., Dinardo, S. J., Karion, A., Sweeney, C., Daube, B. C., Henderson, J. M., Mountain, M. E., Eluszkiewicz, J., Miller, J. B., Bruhwiler, L. M. P., and Wofsy, S. C.: Methane emissions from Alaska in 2012 from CARVE

- 16694-16699, 20 airborne observations. Proceedings of the National Academy of Sciences. 111, https://doi.org/10.1073/pnas.1412953111, 2014. Gerlein-Safdi, C., Bloom, A. A., Plant, G., Kort, E. A., and Ruf, C. S.: Improving Representation of Tropical Wetland Methane Emissions With CYGNSS Inundation Maps, Global Biogeochemical Cycles, 35, e2020GB006890, https://doi.org/10.1029/2020GB006890, 2021.
- Glagolev, M., Kleptsova, I., Filippov, I., Maksyutov, S., and Machida, T.: Regional methane emission from West Siberia mire landscapes, Environmental Research Letters, 6, 045214, https://doi.org/10.1088/1748-9326/6/4/045214, 2011. Gloor, M., Gatti, L. V., Wilson, C., Parker, R. J., Boesch, H., Popa, E., Chipperfield, M. P., Poulter, B., Zhang, Z., Basso, L., Miller, J., McNorton, J., Jimenez, C., and Prigent, C.: Large Methane Emissions From the Pantanal During Rising Water-Levels Revealed by Regularly Measured Lower Troposphere CH4 Profiles, Global Biogeochemical Cycles, 35,
- 30 e2021GB006964, https://doi.org/10.1029/2021GB006964, 2021.

Hopcroft, P. O., Ramstein, G., Pugh, T. A. M., Hunter, S. J., Murguia-Flores, F., Quiquet, A., Sun, Y., Tan, N., and Valdes, P. J.: Polar amplification of Pliocene climate by elevated trace gas radiative forcing, PNAS, 117, 23401–23407, https://doi.org/10.1073/pnas.2002320117, 2020.

Ito, A. and Inatomi, M.: Use of a process-based model for assessing the methane budgets of global terrestrial ecosystems and evaluation of uncertainty, Biogeosciences, 9, 759–773, https://doi.org/10.5194/bg-9-759-2012, 2012.

Ito, A., Tohjima, Y., Saito, T., Umezawa, T., Hajima, T., Hirata, R., Saito, M., and Terao, Y.: Methane budget of East Asia, 1990–2015: A bottom-up evaluation, Science of The Total Environment, https://doi.org/10.1016/j.scitotenv.2019.04.263, 2019.

Kleinen, T., Brovkin, V., and Schuldt, R. J.: A dynamic model of wetland extent and peat accumulation: results for the Holocene, Biogeosciences, 9, 235–248, https://doi.org/10.5194/bg-9-235-2012, 2012.

- Li, T., Lu, Y., Yu, L., Sun, W., Zhang, Q., Zhang, W., Wang, G., Qin, Z., Yu, L., Li, H., and Zhang, R.: Evaluation of CH4MODwetland and Terrestrial Ecosystem Model (TEM) used to estimate global CH4 emissions from natural wetlands, Geosci. Model Dev., 13, 3769–3788, https://doi.org/10.5194/gmd-13-3769-2020, 2020.
- Liu, L., Zhuang, Q., Oh, Y., Shurpali, N. J., Kim, S., and Poulter, B.: Uncertainty Quantification of Global Net Methane
  Emissions From Terrestrial Ecosystems Using a Mechanistically Based Biogeochemistry Model, Journal of Geophysical Research: Biogeosciences, 125, e2019JG005428, https://doi.org/10.1029/2019JG005428, 2020.
  Lunt, M. F., Palmer, P. I., Feng, L., Taylor, C. M., Boesch, H., and Parker, R. J.: An increase in methane emissions from
- tropical Africa between 2010 and 2016 inferred from satellite data, Atmospheric Chemistry and Physics, 19, 14721–14740, https://doi.org/10.5194/acp-19-14721-2019, 2019.
- Marani, L. and Alvalá, P. C.: Methane emissions from lakes and floodplains in Pantanal, Brazil, Atmospheric Environment, 41, 1627–1633, https://doi.org/10.1016/j.atmosenv.2006.10.046, 2007.
   McGuire, A. D., Christensen, T. R., Hayes, D., Heroult, A., Euskirchen, E., Kimball, J. S., Koven, C., Lafleur, P., Miller, P. A., Oechel, W., Peylin, P., Williams, M., and Yi, Y.: An assessment of the carbon balance of Arctic tundra: comparisons among observations, process models, and atmospheric inversions, Biogeosciences, 9, 3185–3204, https://doi.org/10.5194/bg-
- 55 9-3185-2012, 2012.

35

40

Melack, J. M., Hess, L. L., Gastil, M., Forsberg, B. R., Hamilton, S. K., Lima, I. B. T., and Novo, E. M. L. M.: Regionalization of methane emissions in the Amazon Basin with microwave remote sensing, Global Change Biology, 10, 530–544, https://doi.org/10.1111/j.1365-2486.2004.00763.x, 2004.

Melton, J. R., Wania, R., Hodson, E. L., Poulter, B., Ringeval, B., Spahni, R., Bohn, T., Avis, C. A., Beerling, D. J., Chen,

60 G., Eliseev, A. V., Denisov, S. N., Hopcroft, P. O., Lettenmaier, D. P., Riley, W. J., Singarayer, J. S., Subin, Z. M., Tian, H., Zürcher, S., Brovkin, V., van Bodegom, P. M., Kleinen, T., Yu, Z. C., and Kaplan, J. O.: Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP), Biogeosciences, 10, 753–788, https://doi.org/10.5194/bg-10-753-2013, 2013. Miller, S. M., Miller, C. E., Commane, R., Chang, R. Y.-W., Dinardo, S. J., Henderson, J. M., Karion, A., Lindaas, J.,

65 Melton, J. R., Miller, J. B., Sweeney, C., Wofsy, S. C., and Michalak, A. M.: A multiyear estimate of methane fluxes in Alaska from CARVE atmospheric observations: METHANE FLUXES FROM ALASKA, Global Biogeochemical Cycles, 30, 1441–1453, https://doi.org/10.1002/2016GB005419, 2016.

Pandey, S., Houweling, S., Lorente, A., Borsdorff, T., Tsivlidou, M., Bloom, A. A., Poulter, B., Zhang, Z., and Aben, I.: Using satellite data to identify the methane emission controls of South Sudan's wetlands, Biogeosciences, 18, 557–572, https://doi.org/10.5194/bg-18-557-2021, 2021.

- Pangala, S. R., Enrich-Prast, A., Basso, L. S., Peixoto, R. B., Bastviken, D., Hornibrook, E. R. C., Gatti, L. V., Marotta, H., Calazans, L. S. B., Sakuragui, C. M., Bastos, W. R., Malm, O., Gloor, E., Miller, J. B., and Gauci, V.: Large emissions from floodplain trees close the Amazon methane budget, Nature, 552, 230–234, https://doi.org/10.1038/nature24639, 2017.
  Pickett-Heaps, C. A., Jacob, D. J., Wecht, K. J., Kort, E. A., Wofsy, S. C., Diskin, G. S., Worthy, D. E. J., Kaplan, J. O.,
- 75 Bey, I., and Drevet, J.: Magnitude and seasonality of wetland methane emissions from the Hudson Bay Lowlands (Canada), Atmospheric Chemistry and Physics, 11, 3773–3779, https://doi.org/10.5194/acp-11-3773-2011, 2011. Ringeval, B., Decharme, B., Piao, S. L., Ciais, P., Papa, F., de Noblet-Ducoudré, N., Prigent, C., Friedlingstein, P., Gouttevin, I., Koven, C., and Ducharne, A.: Modelling sub-grid wetland in the ORCHIDEE global land surface model: evaluation against river discharges and remotely sensed data, Geoscientific Model Development, 5, 941–962,
- 80 https://doi.org/10.5194/gmd-5-941-2012, 2012. Ringeval, B., Houweling, S., van Bodegom, P. M., Spahni, R., van Beek, R., Joos, F., and Röckmann, T.: Methane emissions from floodplains in the Amazon Basin: challenges in developing a process-based model for global applications, Biogeosciences, 11, 1519–1558, https://doi.org/10.5194/bg-11-1519-2014, 2014. Singarayer, J. S., Valdes, P. J., Friedlingstein, P., Nelson, S., and Beerling, D. J.: Late Holocene methane rise caused by
- orbitally controlled increase in tropical sources, Nature, 470, 82–85, https://doi.org/10.1038/nature09739, 2011.
  Spahni, R., Wania, R., Neef, L., van Weele, M., Pison, I., Bousquet, P., Frankenberg, C., Foster, P. N., Joos, F., Prentice, I. C., and van Velthoven, P.: Constraining global methane emissions and uptake by ecosystems, Biogeosciences, 8, 1643–1665, https://doi.org/10.5194/bg-8-1643-2011, 2011.

Stocker, B. D., Spahni, R., and Joos, F.: DYPTOP: a cost-efficient TOPMODEL implementation to simulate sub-grid spatio-

90 temporal dynamics of global wetlands and peatlands, Geoscientific Model Development Discussions, 7, 4875–4930, https://doi.org/10.5194/gmdd-7-4875-2014, 2014.

Tian, B.: Spread of model climate sensitivity linked to double-Intertropical Convergence Zone bias, Geophysical Research Letters, 42, 4133–4141, https://doi.org/10.1002/2015GL064119, 2015.

Tian, H., Lu, C., Ciais, P., Michalak, A. M., Canadell, J. G., Saikawa, E., Huntzinger, D. N., Gurney, K. R., Sitch, S., Zhang,

95 B., Yang, J., Bousquet, P., Bruhwiler, L., Chen, G., Dlugokencky, E., Friedlingstein, P., Melillo, J., Pan, S., Poulter, B., Prinn, R., Saunois, M., Schwalm, C. R., and Wofsy, S. C.: The terrestrial biosphere as a net source of greenhouse gases to the atmosphere, Nature, 531, 225–228, https://doi.org/10.1038/nature16946, 2016. Tunnicliffe, R. L., Ganesan, A. L., Parker, R. J., Boesch, H., Gedney, N., Poulter, B., Zhang, Z., Lavrič, J. V., Walter, D., Rigby, M., Henne, S., Young, D., and O'Doherty, S.: Quantifying sources of Brazil's CH4 emissions between 2010 and

2018 from satellite data, Atmos. Chem. Phys., 20, 13041–13067, https://doi.org/10.5194/acp-20-13041-2020, 2020.
 Wania, R., Ross, I., and Prentice, I. C.: Implementation and evaluation of a new methane model within a dynamic global vegetation model: LPJ-WHyMe v1.3.1, Geoscientific Model Development, 3, 565–584, https://doi.org/10.5194/gmd-3-565-2010, 2010.

Wilson, C., Chipperfield, M. P., Gloor, M., Parker, R. J., Boesch, H., McNorton, J., Gatti, L. V., Miller, J. B., Basso, L. S.,

- and Monks, S. A.: Large and increasing methane emissions from eastern Amazonia derived from satellite data, 2010–2018, Atmospheric Chemistry and Physics, 21, 10643–10669, https://doi.org/10.5194/acp-21-10643-2021, 2021.
  Wilson, D., Farrell, C. A., Fallon, D., Moser, G., Müller, C., and Renou-Wilson, F.: Multiyear greenhouse gas balances at a rewetted temperate peatland, Global Change Biology, 22, 4080–4095, https://doi.org/10.1111/gcb.13325, 2016.
  Zhang, Z., Zimmermann, N. E., Kaplan, J. O., and Poulter, B.: Modeling spatiotemporal dynamics of global wetlands:
- comprehensive evaluation of a new sub-grid TOPMODEL parameterization and uncertainties, Biogeosciences, 13, 1387–1408, https://doi.org/10.5194/bg-13-1387-2016, 2016.
   Zhang, Z., Zimmermann, N. E., Calle, L., Hurtt, G., Chatterjee, A., and Poulter, B.: Enhanced response of global wetland methane emissions to the 2015–2016 El Niño-Southern Oscillation event, Environmental Research Letters, 13, 074009,

https://doi.org/10.1088/1748-9326/aac939, 2018.

- 115 Zhu, Q., Peng, C., Chen, H., Fang, X., Liu, J., Jiang, H., Yang, Y., and Yang, G.: Estimating global natural wetland methane emissions using process modelling: spatio-temporal patterns and contributions to atmospheric methane fluctuations: Global natural wetland methane emissions, Global Ecology and Biogeography, 24, 959–972, https://doi.org/10.1111/geb.12307, 2015.
- Zhu, Q., Iversen, C. M., Riley, W. J., Slette, I. J., and Vander Stel, H. M.: Root traits explain observed tundra vegetation
  nitrogen uptake patterns: Implications for trait-based land models: Tundra N Uptake Model-Data Comparison, Journal of
  Geophysical Research: Biogeosciences, 121, 3101–3112, https://doi.org/10.1002/2016JG003554, 2016.

Zhu, Q., Peng, C., Ciais, P., Jiang, H., Liu, J., Bousquet, P., Li, S., Chang, J., Fang, X., Zhou, X., Chen, H., Liu, S., Lin, G., Gong, P., Wang, M., Wang, H., Xiang, W., and Chen, J.: Interannual variation in methane emissions from tropical wetlands triggered repeated El Niño Southern Oscillation. Global Change Biology. 23. 4706-4716. bv 125 https://doi.org/10.1111/gcb.13726, 2017.

Zhuang, Q., Melillo, J. M., Kicklighter, D. W., Prinn, R. G., McGuire, A. D., Steudler, P. A., Felzer, B. S., and Hu, S.: Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during the past century: A retrospective analysis with a process-based biogeochemistry model, Global Biogeochemical Cycles, 18, https://doi.org/10.1029/2004GB002239, 2004.

130