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Abstract. Due to ongoing climate change, methane (CH4)
emissions from vegetated wetlands are projected to in-
crease during the 21st century, challenging climate miti-
gation efforts aimed at limiting global warming. However,
despite reports of rising emission trends, a comprehensive
evaluation and attribution of recent changes remains lim-
ited. Here we assessed global wetland CH4 emissions from
2000–2020 based on an ensemble of 16 process-based wet-
land models. Our results estimated global average wetland
CH4 emissions at 158± 24 (mean± 1σ ) Tg CH4 yr−1 over
a total annual average wetland area of 8.0± 2.0× 106 km2

for the period 2010–2020, with an average increase of 6–
7 Tg CH4 yr−1 in 2010–2019 compared to the average for
2000–2009. The increases in the four latitudinal bands of
90–30° S, 30° S–30° N, 30–60° N, and 60–90° N were 0.1–
0.2, 3.6–3.7, 1.8–2.4, and 0.6–0.8 Tg CH4 yr−1, respectively,
over the 2 decades. The modeled CH4 sensitivities to tem-
perature show reasonable consistency with eddy-covariance-
based measurements from 34 sites. Rising temperature was
the primary driver of the increase, while precipitation and ris-
ing atmospheric CO2 concentrations played secondary roles
with high levels of uncertainty. These modeled results sug-
gest that climate change is driving increased wetland CH4
emissions and that direct and sustained measurements are
needed to monitor developments.

1 Introduction

Wetlands are the largest single source in the global methane
(CH4) budget, representing∼ 25–35 % of the total combined
natural and anthropogenic sources (Kirschke et al., 2013;
Saunois et al., 2016, 2020), with an uncertainty range of
100–230 Tg CH4 yr−1 (Cao et al., 1996; Gedney et al., 2004;
Bousquet et al., 2006; Petrescu et al., 2010; Spahni et al.,
2011; Melton et al., 2013; Bridgham et al., 2013; Bloom et
al., 2017; Poulter et al., 2017). Covering 8 %–10 % of the
global land surface (Zhang et al., 2021a), wetland area is

sensitive to climate variations (Zhang et al., 2018; Zhu et
al., 2017). Over the last deglaciation, wetlands played an im-
portant role in driving the rise of atmospheric CH4 concen-
trations (Hopcroft et al., 2017; Nisbet et al., 2023; Kleinen
et al., 2023). In recent decades, wetlands have experienced
unprecedented and ongoing changes, including continuous
thawing of permafrost (Natali et al., 2019; Treat et al., 2018),
land-use change (Fluet-Chouinard et al., 2023), a lengthen-
ing of the growing season in the Arctic (Arndt et al., 2019),
and expansion in tropical areas due to enhanced precipitation
(Fleischmann, 2023). Recent evidence from in situ measure-
ments (Rößger et al., 2022), data-driven estimates (Yuan et
al., 2024; Ying et al., 2024), and satellite observations (Feng
et al., 2022) suggests that these ongoing changes could en-
hance wetland CH4 emissions and thus affect the trajectory
of the atmospheric CH4 concentration. Furthermore, atmo-
spheric δ13C-CH4 records also show a trend toward increased
depletion since the late 2000s (Lan et al., 2021; Nisbet et
al., 2019), indicating that isotopically light biogenic sources,
such as wetlands (Basu et al., 2022; Feng et al., 2022),
agriculture, and waste (Schaefer et al., 2016; Zhang et al.,
2021b), have become dominant contributors to the rise in at-
mospheric CH4. Current estimates of wetland CH4 emissions
(hereafter denoted as eCH4) in response to climate change
are projected to increase by up to 15 %–30 % by 2050 (Koffi
et al., 2020; Zhang et al., 2017), accounting for 25 %–40 %
of the pledged reduction in anthropogenic emissions (Shin-
dell et al., 2019). These trends and projections suggest that
the emerging wetland CH4 climate feedback that influences
atmospheric CH4 concentration requires a better understand-
ing of long-term changes in eCH4.

Directly diagnosing the variations and trends of eCH4 at
large scales is challenging. Site-level measurements, such as
those from chamber and eddy covariance techniques, are use-
ful for identifying underlying mechanisms and monitoring
CH4 fluxes at the landscape scale but are difficult to upscale
due to large uncertainties in extrapolation and the high spatial
heterogeneity of wetland CH4 fluxes (Chu et al., 2021; Kuhn
et al., 2021). Interpreting eCH4 using satellite observations
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and inversions of atmospheric concentration data is also sub-
ject to uncertainties in anthropogenic sources, other natural
sources, atmospheric chemistry, and model errors associated
with atmospheric transport (Gatti et al., 2021; Gloor et al.,
2021; Palmer et al., 2022; Patra et al., 2011; Zhang et al.,
2021c). Global wetland models, integrated within land bio-
sphere models, can serve to bridge our understanding of wet-
land CH4 processes and diagnosing wetland CH4 dynamics
at large scales (Melton et al., 2013; Wania et al., 2013). These
models provide mechanistic explanations for the causes of
changes in eCH4 dynamics. Furthermore, recent advances in
wetland models (Arora et al., 2018; Kaiser et al., 2017; Shu
et al., 2020; Grant, 2017; Chang et al., 2020) show significant
potential for improving our understanding of eCH4 through
the incorporation of complex biogeochemical processes.

Current studies have reached various conclusions on the
change in eCH4 over the last decades. Studies based on sin-
gle biogeochemical models (Zhang et al., 2018; Zhu et al.,
2017) suggest a significant increase in eCH4 from 2000–
2006 to 2007–2017, while atmospheric inversions (Zhang
et al., 2021c; Yin et al., 2021; Basu et al., 2022; Feng et
al., 2022) suggested even higher rate increases from 2 to
3 Tg CH4 yr−1 yr−1 during the post-2010 period. Poulter et
al. (2017) reported no significant change between the 2000–
2006 and 2007–2012 periods based on an ensemble of wet-
land models, while Saunois et al. (2020) show a slight in-
crease (∼ 2 Tg CH4 yr−1) on average for 2007–2017 com-
pared to the 2000–2006 level using a large set of wetland
CH4 models. However, these models demonstrate consider-
able differences in estimated eCH4, both spatially and tem-
porally (Ma et al., 2021; Parker et al., 2020; Chang et al.,
2023), primarily due to the sensitivity of their estimations
to the wetland areal extent, the implemented biogeochemical
structures, and parameterizations. The multi-model ensem-
ble approach is applied to increase the skill, reliability, and
consistency of model forecasts, potentially offsetting individ-
ual model errors (Schaefer et al., 2012). However, a recent
study (Chang et al., 2023) found that downsampling atmo-
spheric inversion and wetland model CH4 predictions based
on a comparison to eddy covariance data did not reduce un-
certainty in global eCH4 estimates. Therefore, it has become
necessary to thoroughly evaluate the performance of these
models using the most recent generation of wetland models
against an increasingly dense network of observations (Del-
wiche et al., 2021; Knox et al., 2019) from eddy covariance
sites.

Here we conducted ensemble simulations of 16 wetland
biogeochemical models following a common modeling pro-
tocol to provide monthly integrated global eCH4 for the pe-
riod of 2000–2020, as part of the Global Carbon Project’s
methane budget activity. The inundation dynamics of each
model were simulated using a model-specific prognostic hy-
drological modeling approach as well as a set of diagnos-
tic satellite-driven simulations. A set of factorial simulations
were carried out to isolate the effects of temperature, precip-

itation, and rising atmospheric CO2 concentration. The mod-
eled temperature sensitivity was evaluated against the global
eddy covariance database FLUXNET-CH4 (Delwiche et al.,
2021; Knox et al., 2019) and a data-driven global wetland
CH4 upscaling dataset UpCH4 (McNicol et al., 2023) based
on FLUXNET-CH4. In addition, we examined the changes in
eCH4 for the year 2020, which was characterized as an ex-
tremely warm and wet year with the highest growth rate of
atmospheric CH4 observed over the study period.

2 Methods

2.1 Wetland model ensemble

Sixteen wetland models participated in the ensemble simu-
lations (Table S1). Wetland CH4 models can be generally
described as functions describing the biogeochemical pro-
cesses that control CH4 production and oxidation through
methanogenesis and methanotrophy, as well as the biophys-
ical processes that regulate CH4 transport from the soil to
the atmosphere (Table S1). Methanogenesis in the models
is linked to different proxies (e.g., carbon substrate, het-
erotrophic respiration, net primary production) with a wide
range of model complexity – more sophisticated models in-
clude wetland plant functional types (PFTs) and explicitly
simulate the processes of CH4 production, consumption, and
transport, while the simplified models use generalized empir-
ical equations to simulate net fluxes without explicitly calcu-
lating individual components of the CH4 flux.

Wetlands were defined as naturally vegetated forested and
non-forested ecosystems with saturated/inundated areas, ex-
cluding coastal wetlands; cultivated wetlands such as rice
paddies; and open water systems such as rivers, lakes, ponds,
and reservoirs. A prognostic wetland inundation scheme and
a diagnostic wetland dataset (Wetland Area and Dynamics
for Methane Modeling (WAD2M v2); Zhang et al., 2021a)
were applied to identify the wetland areal dynamics. The
prognostic wetland areal dynamics were independently de-
termined by each model’s hydrological modules, which use
water table depth or soil moisture, combined with subgrid
topographic conditions, to determine saturated areas within a
land surface grid cell (Zhang et al., 2016; Xi et al., 2022).
Among the participating models, there was a large varia-
tion in complexity and in the level of comprehensiveness
with which wetland extents were characterized. The mod-
ules for simulating inundation ranged from simplified TOP-
MODEL approaches to more sophisticated representations of
water table variation, with the estimated magnitude being in-
fluenced by the hydrologic schemes utilized and the sensitiv-
ities to precipitation. The prognostic modeled wetland extent
showed large variability in estimated magnitude but was con-
sistent with satellite-based inundation products in predicting
different phases of inundation (Xi et al., 2022; Zhang, et al.,
2021a). The ensemble mean of the modeled wetland extent
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is close to 7.5×106 km2 as estimated by WAD2M but higher
than the 4.6× 106 km2 by the satellite-based product Global
Surface Water Extent and Dynamics version 2 (GIEMS-2;
Prigent et al., 2020). The modeled temporal variations in wet-
land areas show high correlations with satellite-based prod-
ucts for temperate regions and high latitudes (Fig. S1), ex-
cept in the tropics. The limited agreement in the tropics may
be due to the influence of aerosols and clouds on satellite-
based measurements, as well as the process-based model’s
performance limitations in representing wetland areas. The
diagnostic runs are exclusively used for temperature depen-
dence calculations due to a discontinuity issue in WAD2Mv2
over a few tropical hotspots, which affect a subset of wet-
land models that are particularly sensitive to inundation in
the hotspots.

2.2 Modeling protocol and simulation setups

The modeling protocol aimed to provide wetland CH4 fluxes
and quantify the associated uncertainties arising from model
differences, meteorological forcing, and wetland extent dy-
namics. To quantify meteorological forcing uncertainty, we
used two climate inputs: a ground-based monthly climate
dataset from the Climatic Research Unit (CRU) (Harris et
al., 2014) up to 2020 and a harmonized daily dataset from
the Global Soil Wetness Project Phase 3 (GSWP3-W5E5)
through the year 2019, which is a multiple-source-based
daily dataset (Cucchi et al., 2020; Dirmeyer et al., 2006)
used in the Inter-Sectoral Impact Model Intercomparison
Project 3a (ISIMIP3a). For models that require 6-hourly me-
teorological forcings, a temporal-interpolation dataset (CRU-
JRA) was applied based on the Japanese Reanalysis Agency
(JRA55) aligned with CRU. The atmospheric CO2 concen-
tration values for 1861–2020 were obtained from the CMIP6
experimental protocol (Meinshausen et al., 2017). Ancillary
data, such as soil texture and CH4-related parameter sets,
used model-specific inputs. All the models were run in “nat-
ural vegetation” mode without the transient effects of land-
use or land-cover change. Methane oxidation in wetland soils
was implicitly included in the estimate, but the upland ox-
idative sink was not included as it was not part of the net
wetland emission calculations. Models included the spin-up
period to pre-industrial conditions, assuming net ecosystem
exchange equilibrium before 1860, by recycling fixed CO2
concentrations (1860 level of 286.42 ppm) and meteorology
(1901–1920).

2.3 FLUXNET-CH4 and the machine learning-based
upscaling product UpCH4

FLUXNET-CH4 is the first global dataset of CH4 eddy co-
variance measurements that includes ∼ 80 sites globally, in-
cluding different wetland types such as peatlands (e.g., bog,
fen), mineral wetlands (e.g., marsh, swamp), and rice pad-
dies. For this study, a subset of natural freshwater wetland

sites was selected for the analysis. All the eddy covariance
measurements used in this study were gap-filled daily and
total fluxes were filled using an artificial neural network
(ANN) approach (Knox et al., 2019). In addition, a data-
driven gridded dataset (UpCH4; McNicol et al., 2023) for
2001–2018, which is based on 119 site-years of CH4 fluxes
from the FLUXNET-CH4 dataset, was applied in the com-
parison. This dataset used a random forest model to upscale
ground-based eddy covariance CH4 flux data and was then
forced with globally gridded predictor data and two wetland
extent products to predict wetland CH4 emissions. The pre-
dictors included data sources from climate, biometeorologi-
cal, and soil properties.

2.4 Time series decomposition and statistical analyses

To attribute the time series of global wetland CH4 emissions
to what we consider the dominant drivers of change (i.e.,
temperature, precipitation, and CO2 concentration), we ap-
plied a multiple regression approach (Piao et al., 2013) to
estimate the parameters of global wetland CH4 sensitivity to
climate drivers using the following equation:

y = βCO2+ γTmp+ δPre+ c+ ε, (1)

where y is the global annual total wetland CH4 emission of
each model from the transient run or from the observation-
based upscaling dataset UpCH4, and Tmp, Pre, and CO2 are
the mean annual temperature, total annual precipitation, and
mean atmospheric CO2 concentration for that year, respec-
tively. γ , δ, β, and c are regression coefficients, and ε is
the residual error term. The regression coefficients were cal-
culated using a maximum likelihood estimate. Changes in
other meteorological forcings may also influence the estima-
tion of y. These confounding drivers, such as solar radiation
and wind speed, although they are considered to have minor
impacts on the variations of eCH4, were implicitly accounted
for in the regression coefficients.

2.5 Model factorial experiment

To further separate the contribution of different controls on
the change in methane emissions (1eCH4) by climate vari-
ations and rising CO2, we used a subset of four models
that conducted factorial experimental simulations by hold-
ing each factor constant during part of the transient runs.
This subset of the wetland models (i.e., four wetland mod-
els: ELM-ECA, LPJ-wsl, SDGVM, and VISIT) performed a
set of factorial simulations to specifically attribute the effect
of temperature, precipitation, and rising CO2 concentration
on wetland CH4 fluxes with the climatology of 2000–2006
for 2007–2020. The simulations were performed by running
the model while keeping one factor constant at a time to es-
timate the contribution of each component to the total range
of variations (Table S2). For these factorial simulations, we
evaluated the annual amplitude of wetland eCH4 as a relative
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percentage change to minimize the impacts of different mod-
eling implementation choices, such as different input vari-
ables among models. The effect of the total changes on the
relative change in amplitude was represented by the differ-
ence between the transient (one factor is time-varying) and
baseline (static at 2000–2006 levels) runs. For simplicity, the
relative contribution of a single driver to eCH4 variations was
quantified as the transient run minus the specific control run.
To calculate the contribution of each driver using the sub-
set of the models, we calculated weighting factors per year
across the models, with lower bias resulting in higher weight
relative to the full ensemble mean using an inverse function.

2.6 Temperature dependence calculation

To further evaluate the response of eCH4 to rising temper-
atures, we calculated the modeled seasonal eCH4 tempera-
ture dependence, referred to as the apparent Q10 metric at
the locations of 34 FLUXNET-CH4 sites. This seasonal Q10
differs from the intrinsicQ10 prescribed in the parameteriza-
tion of respiratory processes in each model. Here it represents
the overall response of eCH4 along geographic temperature
gradients. The apparent Q10 is defined as eCH4 sensitivity
to temperature change. We calculated apparentQ10 based on
CH4 emitting strength over a standard wetland area, which
was calculated as the CH4 fluxes divided by inundated area
on a per-pixel basis to exclude the effect of inundation dy-
namics. To derive the temperature dependence of eCH4 at the
soil or ecosystem level, we applied the following equation:

R(i)= Rb(i)Q
T (i)− Tref

0

10 , (2)

where R(i) is the net wetland flux at the location of site i,
Rb(i) is the basal net CH4 flux at the reference temperature
Tref, and T (i) is ambient temperature. The parameters Q10,
0 = 10°, and Tref = 15° are all time-independent constants.
The Q10 acting on specific timescales can be obtained from
eCH4 at corresponding specific timescales (i.e., seasonal to-
tal and annual total) by fitting an exponential regression with
modeled eCH4 and air temperature from CRU or GSWP3-
W5E5. To quantify the uncertainty in observed apparentQ10,
we employed 1000 sets of resampled FLUXNET-CH4 ob-
servations generated based on a Gaussian distribution. The
uncertainty range in measured seasonal mean CH4 fluxes
was determined by aggregating the uncertainty of daily to-
tal fluxes obtained through ANN gap filling.

3 Results and discussion

3.1 Changes in eCH4 during the period 2000–2020

The multi-model ensemble based on the prognostic inun-
dation schemes shows that the average annual global eCH4
over the period 2000–2020 was 156± 24 Tg CH4 yr−1

(mean± 1σ ). The average annual eCH4 increased

from 153± 23 Tg CH4 yr−1 during 2000–2009 to
158± 24 Tg CH4 yr−1 during 2010–2020. And 15 out
of 22 model simulations show significant positive linear
trends (p<0.01), with an ensemble mean increase rate
of 0.6± 0.3 Tg CH4 yr−1 yr−1 over 2000–2020 (Fig. 1a;
Table 1; Fig. S2). Differences in total annual emissions
between the two sets of simulations driven by two different
climate datasets (CRU and GSWP3-W5E5) agree well in the
magnitude of the annual anomalies. Notable eCH4 variations
to climate events were observed, such as the rise during the
2010 La Niña (+5.2 Tg CH4 yr−1) and the decline during
the 2015 El Niño (−4.6 Tg CH4 yr−1) after removing the
positive linear trends. The multi-model ensemble wetland
eCH4 response to climate events is consistent with those
reported by earlier studies (Zhang et al., 2018; Zhu et al.,
2017) using single wetland models, indicating a modulation
of the phase of eCH4 anomaly (1eCH4) by the El Niño–
Southern Oscillation. The model ensemble demonstrates
a consistent increase in interannual variability (IAV) in
1eCH4 from 3.6± 1.6 Tg CH4 yr−1 during 2000–2009
to 4.7± 1.5 Tg CH4 yr−1 during 2010–2020, suggesting a
potential increase in eCH4 variability under climate change.

The models consistently show that 2020 is the strongest
positive anomaly year during 2000–2020, with a net increase
of 2 [−2, 7] Tg CH4 yr−1 (mean [min, max]) in 2020 com-
pared to 2019. This positive anomaly in 2020 (Table 1) is
broadly consistent with a recent study (Peng et al., 2022)
that reported 6± 2.3 Tg CH4 yr−1 based on simulations of
two bottom-up models with different climate datasets. The
discrepancy in estimated magnitude between the Peng et
al. (2022) and our results is partly due to the parameteriza-
tions of the CH4 module that causes lower annual magnitude
in this study (∼ 162± 23 Tg CH4 yr−1 in 2020) compared
to the Peng et al. (2022) study (177± 31 Tg CH4 yr−1 in
2020). Additionally, the precipitation inputs in the climate
forcing used in this study show a lower positive anomaly
(∼ of 20 mm yr−1 in CRU over global wetland) in precip-
itation in 2020 compared to the reanalysis-based estimates
(∼ 40–117 mm yr−1) over global wetlands used in the study
by Peng et al. (2022), which leads to lower estimates of wet-
land area and consequently lower emissions in this study.
Moreover, our model ensemble does not indicate a strong
increase (−0.2 [−1.5–0.7] Tg CH4 yr−1) in eCH4 in Africa
in 2020. This contrasts with recent atmospheric inversions
(Feng et al., 2023; Qu et al., 2022), which suggest a large
increase of 11–17 Tg CH4 yr−1 above 2019 levels in African
CH4 emissions for 2020. The estimated increase from these
inversions is equivalent to 55 %–85 % of total eCH4 in Africa
during 2010–2019 in our study (Fig. 2). These discrepancies
highlight the need for further studies to investigate the differ-
ences between these two approaches, including uncertainty
in climate inputs in process-based bottom-up models and par-
titioning different sources in atmospheric inversions.

There were widespread net increases in eCH4 across all
latitudinal bands during 2010–2020, compared to the av-
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Figure 1. Simulated global wetland CH4 emissions from the model ensemble for 2000–2020. (a) Time series of annual total emissions during
2000–2020, with the shaded area representing the range between minimum and maximum modeled emissions. The horizontal lines represent
the ensemble means of 2000–2009 (152 Tg CH4 yr−1) and 2010–2019 (158 Tg CH4 yr−1), respectively. (b) Latitudinal gradient of eCH4
difference (1eCH4), with the mean annual total1eCH4 for each of the 30° latitude bins from the two sets of simulations shown. The change
is calculated relative to the mean of the 2000–2009 level from the two sets of simulations with prognostic wetland emission models grouped
by different climate datasets, CRU and GSWP3-W5E5. (c) Boxplots of mean seasonal 1eCH4 for the three regions. The central mark and
the bottom and top edges of the box indicate the median and the 25th and 75th percentiles of the ensemble, respectively. The colored lines
represent the average seasonal cycle of 2000–2009 from the simulations grouped by two climate datasets, CRU and GSWP3-W5E5.

erage of 2000–2009, with the largest magnitudes occur-
ring in the 90° S–30° N bands (there are relatively few wet-
lands in the southern extratropics of 90–30° S, contribut-
ing 0.1–0.2 Tg CH4 yr−1) and temperate regions (30–60° N)
(Fig. 1b). The annual magnitude of eCH4 increased by 3.7–
3.8, 1.8–2.4, and 0.6–0.8 Tg CH4 yr−1 in the tropical, tem-
perate, and Arctic wetlands, respectively. The tropics have
experienced the largest increases in annual total emissions
with an increase of 3 % relative to 2000–2009 (Table 1). This
finding is aligned with the results of several recent atmo-
spheric inversions (Basu et al., 2022; Feng et al., 2022; Lan
et al., 2021) using satellite observations and/or isotopic mea-
surements that suggest a large increase in microbial emis-
sions for the post-2007 period in the tropics. While the in-
crease in annual total emissions from temperate wetlands is
lower than that from the tropics, they nevertheless show a
larger relative increase of 5 %–8 % compared to 2000–2009.
Arctic wetlands also show an increased rate of 5 %–7 % rel-
ative to the same period.

The increase in eCH4 occurs in parallel with differing pat-
terns of enhanced seasonal cycles between tropical and extra-
tropical wetlands (30–90° N) (Fig. 1c). In temperate and Arc-
tic wetlands, the majority of the increase in emissions (60 %–
92 %) occurred primarily during the growing season (May–

October). Specifically, increases in Arctic wetlands occurred
during the early growing season (May–July), aligning with
findings from a data-driven estimate (Yuan et al., 2024) and a
long-term eddy-covariance-based study (Rößger et al., 2022)
that observed early-growing-season increases in eCH4 due
to continuous warming in a Siberian wetland. In contrast, the
increase in emissions within the 90° S–30° N band exhibited
relatively minor seasonal variations throughout the year, with
the May–October period accounting for a 24 % greater in-
crease in 1eCH4 compared to the November–April period
(Fig. S3).

3.2 Spatial distribution of eCH4

A few key regions contribute significantly to global emis-
sions (Fig. 2a, c). These regions are mainly floodplains lo-
cated along major river basins such as the Amazon, Ganges,
Mississippi, and Yangtze; tropical peatlands in the Congo
and Southeastern Asia; and high-latitude peatlands in the
Hudson Bay Lowland (HBL) and West Siberian Lowland
(WSL). However, inter-model variabilities in eCH4 reveal
varying levels of spatial agreement between models, with
the largest discrepancies coming from South America and
Africa. South America is one of the largest contributors to the
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Table 1. Summary of wetland CH4 emissions (Tg CH4 yr−1) over different time periods by latitudinal bands for the prognostic wetland
simulations. The ensemble mean with minimum and maximum (numbers within square brackets) are listed, respectively.

Time period Forcing 90–30° S 30° S–30° N 30–60° N 60–90° N Global

2000–2009 CRU 3[1–5] 107[63–141] 31[16–60] 11[4–29] 152[119–187]
GSWP3-W5E5 3[1–5] 106[60–142] 33[18–57] 11[4–29] 153[116–188]

2010–2019 CRU 3[1–6] 110[67–144] 34[17–64] 12[4–30] 158[126–193]
GSWP3-W5E5 3[1–6] 110[64–146] 35[18–60] 12[4–29] 158[118–203]

global total eCH4. Still, the net change in that region shows
only a moderate increase, with diverging trends within the
Amazon Basin during the 2010s (Fig. 2b, d). The uncertain
temporal trends are consistent with a long-term, large-scale
atmospheric inversion based on airborne campaigns (Basso
et al., 2021). South Asia and Africa are among the regions
with the largest increases in the tropics, next to North Amer-
ica, but have high uncertainty with a lower level of agreement
among the models (Fig. S4). The model ensemble shows
that northwestern South Asia has a significant percentage in-
crease in eCH4 during 2010–2019 relative to its average lev-
els from 2000–2009, suggesting a possible high sensitivity of
eCH4 to climate change in this region.

The comparison with previous estimates from bottom-up
approaches and top-down atmospheric inversions (Table S3)
suggests that the model ensemble mean generally captures
well the spatial distribution of annual eCH4, with a poten-
tial underestimation for a few methane hotspots (Fig. S5).
The model ensemble means for the Amazon Basin, HBL,
and WSL show good agreement with atmospheric inver-
sions (Bergamaschi et al., 2013; Pickett-Heaps et al., 2011;
Ringeval et al., 2014; Tunnicliffe et al., 2020; Wilson et al.,
2016, 2021) and bottom-up modeling estimates (Bansal et
al., 2023; Bloom et al., 2017; Bohn et al., 2015), with rela-
tively low uncertainty. The model ensemble highlights WSL
and HBL as CH4 hotspots in the high latitudes, with good
agreements of annual magnitudes with atmospheric inver-
sions and in situ observations (Bohn et al., 2015; Glagolev
et al., 2011; Pickett-Heaps et al., 2011), while the models
have lower estimates for Alaska compared to the inversions
(Chang et al., 2014; Miller et al., 2016). However, for the
two hotspots of the Pantanal and Sudd wetlands, the mod-
els tended to underestimate the annual eCH4 compared to
a few recent satellite-based estimates (Gerlein-Safdi et al.,
2021; Gloor et al., 2021; Lunt et al., 2021; Pandey et al.,
2021), with a large uncertainty range of up to 2 orders of
magnitude across the model ensemble (Fig. S5). In addition
to the regions where eCH4 are being underestimated, recent
studies (France et al., 2022; Shaw et al., 2022) based on air-
craft measurements suggest that the bottom-up models likely
underestimate high eCH4 fluxes in some little-studied wet-
lands, such as those in Zambia and Bolivia. The underesti-
mations by process-based wetland models can be attributed
to (1) the challenge in accurately capturing the areal dynam-

ics of wetlands under varying hydrological conditions, such
as in flat terrains that receive lateral transport of water from
upper streams (Li et al., 2024; Lunt et al., 2021; Gerlein-
Safdi et al., 2021); (2) existing knowledge gaps in mapping
wetlands in remote areas, which affect the parameterization
of inundation modeling; and (3) the limited representation of
water table regulation (Chen et al., 2021) and wetland PFTs
(Bastviken et al., 2023) on eCH4 in biogeochemical models.

3.3 Attribution of wetland CH4 changes

To evaluate the relative contribution of different factors on
global eCH4, we calculated the sensitivity of eCH4 to mean
annual temperature (denoted as γ ), annual total precipitation
(denoted as δ), and CO2 concentration (denoted as β) using a
multiple regression approach for each model run over the pe-
riod of 2000–2020. The same approach was applied to the
upscaled gridded machine learning dataset UpCH4, which
uses eddy covariance measurements from FLUXNET-CH4
as training inputs. The model ensemble suggests that temper-
ature is the primary driver of the increase in eCH4 (Fig. 3a).
The regression coefficient for γ is 4.6 Tg CH4 yr−1 °C−1,
with a range of −0.4 and 9.0 Tg CH4 yr−1 °C−1 between
the 10th and 90th percentiles among all models. This mean
temperature sensitivity is slightly higher than the γ coef-
ficient of 3.2–4.1 Tg CH4 yr−1 °C−1 estimated for UpCH4.
In contrast, precipitation contributed little to the increase
from the prognostic simulations, with a coefficient δ of
0–0.3 Tg CH4 yr−1 mm−1. The coefficient δ was lower at
−0.05–0 Tg CH4 yr−1 mm−1 for UpCH4, as precipitation
was not chosen as a model training predictor through its
feature selection, based on site-level eddy covariance mea-
surements (McNicol et al., 2023). However, precipitation is
a more dominant factor at large scales, especially for tropical
floodplains, which contribute the largest proportion of emis-
sions but are poorly represented by eddy covariance mea-
surements. The model-ensemble-estimated β remains small,
ranging from 0 to 0.3 Tg CH4 yr−1 ppm−1, while UpCH4
suggests a β at −0.01 Tg CH4 yr−1 ppm−1. However, other
confounding drivers might influence eCH4 as well, such as
solar radiation, wind speed, and nitrogen deposition. Thus,
the inferred sensitivities are implicitly accounted for in the
regression coefficients despite their relatively small impacts
compared to the major drivers.
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Figure 2. Spatial distribution of eCH4 and the average change between the 2010s and 2000s. (a) Map of mean eCH4 (unit: g CH4 m−2 yr−1

per 0.5° grid cell) for 2000–2020. The regions defined in panels (c) and (d) and regional CH4 hotspots in Table S3 are outlined in black and
red, respectively. (b) Map of change in mean annual wetland emissions (1eCH4) between the 2010s and 2000s. (c) Boxplot of mean annual
eCH4 and (d) 1eCH4 by regions for 2000–2020 in ascending order for median estimates. Afr: Africa; CAs: Central Asia; EAs: East Asia;
Eur: Europe; NAm: North America; NAs: North Asia; Oz: Oceania; SAm: South America; SAs: South Asia; SEAs: Southeast Asia.

Figure 3. Attributions of 1eCH4 during 2000–2020. (a) Histogram showing the sensitivity coefficients derived from a multiple regression
approach (see the Methods section) for temperature (γ ), precipitation (δ), and atmospheric CO2 concentration (β). The curves represent
probability distributions of sensitivity coefficients across the models, assuming a Gaussian distribution. Vertical lines represent estimates from
the machine learning-based dataset UpCH4, with different colors corresponding to different climate datasets. (b) Time series of anomalies
for annual mean temperature (1T ), annual total precipitation (1P ), and annual mean wetland extent (1Fw) for 2000–2020 for CRU and
2000–2019 for GSWP3. The shaded areas in 1Fw represent the minimum and maximum ranges from the prognostic model simulations.
Dashed lines are linear fitted trends for the corresponding variables.
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Generally, the factorial simulations of the four-model sub-
set indicated a consistently positive contribution (three out of
four) from rising temperature to 1eCH4, with a large vari-
ability (SD= 4.3 Tg CH4 yr−1) of contributions from pre-
cipitation (Fig. S6). The strength of the CO2 fertilization
effect varied among models and was moderate but positive
in all models. Two models (ELM-ECA and SDGVM) were
among the models with higher sensitivity to climate varia-
tions, while LPJ-wsl and VISIT were close to the full en-
semble mean. ELM-ECA produced a negative temperature
effect on eCH4, likely due to its modeled nutrient constraints
and higher temperature sensitivity for methanotrophic com-
pared to methanogenic processes. Considering the deviation
of each model from the full ensemble mean, the weighted
mean (Fig. S7) contributions for temperature, precipitation,
and CO2 concentration from the subset models were 3.2, 1.8,
and 1.4 Tg CH4 yr−1, respectively. The results from the sub-
set of the models consistently demonstrate that temperature
is the primary factor influencing eCH4.

Overall, the interannual variations of modeled eCH4 were
primarily associated with rising temperature, altered precip-
itation patterns, and rising atmospheric CO2 concentrations
that stimulated ecosystem productivity through the CO2 fer-
tilization effect (Yvon-Durocher et al., 2014). We note that a
recent study found strong hysteresis in the seasonal temper-
ature dependence of observed eCH4 using the FLUXNET-
CH4 dataset (Chang et al., 2021). Those hysteretic features
likely result in uncertainty in annual temperature sensitiv-
ity estimates but would not bias the conclusion of tem-
perature as a dominant controller of eCH4 at the decadal
timescale. The links between rising temperature and en-
hanced net CH4 fluxes are evident (as described below), as
the annual global average temperature over wetland areas has
significantly (p<0.01) increased by 0.5–0.7 °C from 2000–
2020 (Fig. 3b). The modeled interannual variations of wet-
land extent dynamics reproduced the response to strong cli-
mate events (e.g., positive anomaly during the La Niña phase
in 2010/2011 (Boening et al., 2012) and 2020). Both climate-
forcing datasets suggest no significant trend in the anomaly
of annual mean wetland area globally over the same period
based on the prognostic hydrological simulations (Fig. 3b).
Similarly, no significant regional trends in wetland area were
found for most of the subregions, with the exception of South
America, which shows a decrease, and East Asia, which
shows a slight increase (Fig. S8). Considering that the extent
of modeled wetland areas is primarily driven by precipita-
tion, we do not detect a substantial contribution of changes in
wetland extent to the long-term increase in eCH4 over 2000–
2020 based on the climate datasets. However, considerable
differences in annual and seasonal precipitation estimates be-
tween the climate datasets used in this study and those de-
rived from reanalysis or satellite-based products (Zhang et
al., 2023a) result in large uncertainties in the estimated trends
in wetland extent.

Figure 4. Temperature dependence of simulated seasonal eCH4
across locations of FLUXNET-CH4 sites. (a) Model ensemble
mean (“Model Ensmean”) of simulated eCH4 against seasonal
mean temperature for the JJA season along the temperature gradient
at the locations of FLUXNET-CH4 sites in comparison to the esti-
mates from eddy covariance measurements (“Obs”; Fig. S10; Ta-
ble S4) and UpCH4. Each dot represents the value at one site for an
individual year when observations are available. The unit of the sim-
ulated CH4 emissions is gCH4 m−1 month−1 per standard wetland
area to exclude the effect of inundation on eCH4. The exponential
fitted curves are shown. (b) Histogram of the seasonal Q10 for the
16 individual models for the months of DJF, MAM, JJA, and SON.
Sample sizes are shown in the plot. The Q10 values derived from
FLUXNET-CH4, UpCH4, and the model ensemble mean are shown
as vertical solid lines, with a width of the bar for “Obs” indicating
the uncertainty range of Q10 based on measurement uncertainty.

3.4 Temperature dependence of wetland CH4 models

The modeled CH4 emissions show an exponential relation-
ship between eCH4 and air temperature, with higher temper-
atures corresponding to higher mean eCH4 during the peak
growing season (JJA, June–July–August) in the Northern
Hemisphere (Fig. 4a). The model ensemble mean of eCH4
response to temperature shows good agreement within the
range of the spread when compared to the site-level mea-
surements from FLUXNET-CH4 and the gridded product
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UpCH4. The model ensemble mean has a higher CH4 emit-
ting strength (i.e., CH4 emission per standard wetland area)
for the high latitudes, leading to lower apparent Q10. This
implies that the model-ensemble-estimated temperature de-
pendence for the high latitudes could be potentially over-
estimated during the JJA season. The apparent Q10 values
for individual models show a large spread (Fig. S9), with 11
out of the 16 models having statistically significant (p<0.01)
exponential relationships. The good agreement between the
ensemble mean and observations suggests that the ensem-
ble approach provides a better constraint compared to sin-
gle models alone. Furthermore, it is important to acknowl-
edge that the sparse spatial coverage of FLUXNET-CH4 over
low latitudes, especially for underrepresented areas such as
Africa, Southeast Asia, and South America, limits our ability
to evaluate temperature dependencies over high-temperature
regions (Fig. S10).

The modeled apparent Q10 exhibits an average temper-
ature dependence similar to that of ecosystem respiration,
as reported by previous studies (Bloom et al., 2017; Ma-
hecha et al., 2010; Yvon-Durocher et al., 2014), indicat-
ing that the underlying factors controlling the response
of eCH4 and ecosystem respiration to temperature covary.
The modeled temperature dependences are more constrained
with less spread for JJA and SON (September–October–
November) than DJF (December–January–February) and
MAM (March–April–May) when most site-level measure-
ments have limited availability. The seasonal variations of
modeled apparent Q10 differ from site-level observations or
UpCH4, reflecting discrepancies in the involved processes
between eddy covariance and land surface models. Given that
underrepresented processes such as substrate supply tend to
have higher sensitivity of ecosystem metabolic processes to
temperature, it is likely that the models do not entirely cap-
ture the fine-scale processes that affect the overall tempera-
ture response (Chang et al., 2021). In addition, the absence
or underrepresentation of certain biophysical processes could
lead to lower modeled apparent Q10. For instance, the en-
semble mean of modeled apparent Q10 for SON months is
underestimated, likely linked to the limited representation of
processes during the freeze–thaw cycle (e.g., zero-curtain pe-
riod), as suggested by previous observational studies (Mas-
tepanov et al., 2008; Zona et al., 2016).

4 Conclusions

Our results estimated global average wetland CH4 emissions
at 158± 24 (mean ± 1σ ) Tg CH4 yr−1 for the period 2010–
2020, with an average decadal increase of 6–7 Tg CH4 yr−1

compared to the decade of 2000–2009. The increases in
the four latitudinal bands of 90–30° S, 30° S–30° N, 30–
60° N, and 60–90° N were 0.1–0.2, 3.6–3.7, 1.8–2.4, and
0.6–0.8 Tg CH4 yr−1, respectively, during the 2 decades. Our
analysis reveals how global wetlands respond to variations in

the primary climatic controls of temperature, precipitation,
and rising CO2 concentrations. The model average shows
good agreement with eddy covariance measurements on tem-
perature dependence, confirming the primary role of temper-
ature in the rising trajectory of eCH4 at decadal timescales.
Furthermore, the modeled ensembles of prognostic wetland
extents offer a complementary approach to satellite-based es-
timates (Prigent et al., 2020; Zhang, et al., 2021a) and enable
further investigation into the uncertainties in wetland area es-
timation. These differences can motivate improvements to
inundation schemes through an improved water table posi-
tion (Chen et al., 2021) and lateral flow representation. Note
that a large portion of tropical wetlands comprise inundated
floodplains connecting rivers, where the leaching of methane
production from wetlands to river networks is not accounted
for in the wetland models. The prognostic models estimate an
annual mean maximum wetland area of 8.0± 2.0×106 km2,
with a seasonal cycle (annual maximum minus annual mini-
mum) of 4.7± 2.0×106 km2. Resolving the large uncertainty
in wetland areas and seasonal variation remains a high prior-
ity to refine bottom-up estimates of eCH4. Lastly, our results
highlight the important but highly uncertain CO2 fertiliza-
tion effect on eCH4. The mean sensitivity coefficient β and
results from the factorial experiment suggest a net increase
in eCH4 of 0.1 %–2.3 % relative to the annual total under an
average ∼ 20 ppm increase in atmospheric CO2 concentra-
tion. In comparison, a synthesis study based on field exper-
iments (van Groenigen et al., 2011) shows a narrower range
of 0.3 %–0.6 % average increase for every 20 ppm increase,
assuming a linear fertilization effect between CO2 concen-
tration and eCH4.

Our results show that an ensemble of process-based wet-
land methane models provides quantification for uncertainty
in eCH4, as well as better constraints than a single model on
the predicted trend and magnitude of eCH4. However, nom-
inally distinct models might have similar biases because of
similarities in the way they represent a subset of processes
(see Table S1 for the model summary). Future evaluation
of modeled processes, such as oxidation, production, and
transport pathways, along with model errors across different
timescales using statistical tools, could help identify similari-
ties in model behaviors to guide model development (Zhang,
2023b). Furthermore, the eCH4 estimates are subject to forc-
ing uncertainty, given that the two climate datasets applied
in the simulation protocol do not cover the full magnitude
and variability of climatic variables. Specifically, precipita-
tion has a significant impact on wetland extent and anaer-
obic soil conditions but has large uncertainty in spatiotem-
poral patterns (Sun et al., 2018). Thus, we recommend that
future ensemble simulations consider the uncertainty in cli-
mate variables among different datasets. In addition, the sen-
sitivity parameters derived from the multiple regression are
not independent of climate datasets. Thus, they are affected
by the choice of meteorological drivers. Overall, quantita-
tively accounting for model performance and dependence
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and thoroughly evaluating the effectiveness (Chang et al.,
2023) could improve the wetland model ensemble estimation
in future studies.
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