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Abstract. The Bering Sea shelf supports a highly productive
marine ecosystem that is vulnerable to ocean acidification
(OA) due to the cold, carbon-rich waters. Previous observa-
tional evidence suggests that bottom waters on the shelf are
already seasonally undersaturated with respect to aragonite
(i.e.�arag < 1) and that OA will continue to increase the spa-
tial extent, duration, and intensity of these conditions. Here,
we use a regional ocean biogeochemical model to simulate
changes in ocean carbon chemistry for the Bering Sea shelf
from 1970–2022. Over this timeframe, model results sug-
gest that surface �arag decreases by −0.043 per decade and
surface pH by −0.014 per decade, comparable to observed
global rates of OA. However, bottom water pH decreases at
twice the rate of surface pH, while bottom [H+] decreases at
nearly 3 times the rate of surface [H+]. This amplified bot-
tom water acidification has emerged over the past 25 years
and is likely driven by a combination of anthropogenic car-
bon accumulation and increasing primary productivity and
subsurface respiration and remineralization. Due to this en-
hanced bottom water acidification, the spatial extent of bot-
tom waters with�arag < 1 has greatly expanded over the past
2 decades, along with pH conditions harmful to red king crab.
Interannual variability in surface and bottom �arag, pH, and
[H+] has also increased over the past 2 decades, resulting
in part from the increased physical climate variability. We
also find that the Bering Sea shelf is a net annual carbon
sink of 1.1–7.9 Tg C yr−1, with the range resulting from the
difference in the two different atmospheric forcing reanaly-

sis products used. Seasonally, the shelf is a significant car-
bon sink from April–October but a somewhat weaker carbon
source from November–March.

1 Introduction

The global ocean presently absorbs 25 %–31 % of annual
CO2 emissions, making it a critical carbon sink that miti-
gates anthropogenic warming (Gruber et al., 2019; Friedling-
stein et al., 2020; McKinley et al., 2020). The uptake of this
anthropogenic carbon has driven a shift in the marine car-
bonate system towards a state of lower pH and carbonate
saturation, a process referred to as ocean acidification (OA;
Feely et al., 2004). High-latitude regions are particularly vul-
nerable to OA due to the poorly buffered, cold temperature
waters generating naturally low-carbonate-saturation states
(Fabry et al., 2009). Experimental studies have determined
a number of negative effects to marine organisms due to OA
(Doney et al., 2020), particularly for organisms that form cal-
cium carbonate shells, as these shells become harder to build
and maintain as carbonate saturation states (�) approach and
drop below one. Pteropod shell dissolution has already been
observed in several high-latitude environments (Bednarsek
et al., 2012; Niemi et al., 2021), and OA is expected to shift
these conditions equatorward over time.

Although OA is driven by the increase in atmospheric CO2
and subsequent increase in ocean carbon uptake, there are a
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Figure 1. Spatial map of the model domain along with the model
bathymetry. Also shown are the discrete ship-based sample loca-
tions (blue dots) and the two moorings (red diamonds) used for
model validation. The thick black line denotes the spatial region
used to encompass the Bering Sea shelf. Also noted at the bottom
are the η and ξ axes for the western and southern open boundary
conditions, respectively.

number of physical and biogeochemical processes that can
modify the rate of OA expected from the increase in atmo-
spheric CO2 (Hauri et al., 2021). For example, the accumu-
lation of respired carbon at depth reduces the buffer capacity
of subsurface water, leading to amplified subsurface acidifi-
cation rates compared to surface waters throughout large re-
gions of the global oceans (Fassbender et al., 2023). Coastal
shelf systems can experience local rates of acidification much
faster than the global oceans due to upwelling (Feely et al.,
2008), biological respiration (Feely et al., 2010), eutroph-
ication (Laurent et al., 2017), and changes in circulation
(Siedlecki et al., 2021). In the Arctic, changes in sea ice for-
mation (Zhang et al., 2020) and biological productivity and
remineralization (Qi et al., 2022) can generate acidification
rates 2–3 times greater than the rate for the open oceans.

The Bering Sea is composed of a relatively large (>
500 km wide and > 100 km long), shallow eastern coastal
shelf along with a narrow western shelf and a deep interior
basin. The shelf itself is composed of three distinct biophys-
ical domains (inner, middle, and outer) often delineated by
the 50, 100, and 200 m isobaths (Fig. 1). General circula-
tion on the shelf tends to follow these isobaths in a north-
northwest direction, eventually feeding into the western in-
tensified Anadyr Current, which then flows through Bering
Strait, thereby providing a key conduit between the Bering
Sea and Arctic (Kinder et al., 1986; Stabeno et al., 2016).
The Bering Sea shelf ecosystem is strongly tied to the at-
mospheric and oceanic physical forcing, with the seasonal
formation and retreat of sea ice playing a fundamental role
through the development of the bottom water cold pool and
by setting the timing and magnitude of the spring phyto-

plankton bloom (Brown and Arrigo 2013; Sigler et al., 2014).
While the formation of sea ice occurs annually, the areal ex-
tent and timing of ice formation and retreat can vary sub-
stantially. This variability during the past 10–20 years has
consisted of multi-year periods of persistent warm, low sea
ice extent (e.g., 2001–2005 and 2014–2018) or cold, high sea
ice extent conditions (e.g., 2007–2013; Stabeno et al., 2012).
The recent warm years have generated record-breaking low
sea ice extent and high temperatures in the northern Bering
Sea, with substantial negative impacts to the marine ecosys-
tem (Stabeno and Bell, 2019; Siddon et al., 2020).

On annual timescales, the Bering Sea shelf is generally
considered a net carbon sink, driven by substantial spring–
summer primary productivity generating low surface ocean
pCO2 values and a net influx of carbon from the atmosphere
(Bates et al., 2011; Cross et al., 2014; Pilcher et al., 2019).
A portion of the carbon fixed by this mixed-layer productiv-
ity sinks to bottom waters where it is respired into inorganic
carbon and can be re-emitted back to the atmosphere in fall–
winter due to strong atmospheric wind speeds and vertical
mixing (Cross et al., 2014; Pilcher et al., 2019). Sea ice fur-
ther impacts the seasonal carbon cycle by acting as a physical
barrier inhibiting air–sea gas exchange. Furthermore, sea ice
formation can pump dissolved inorganic carbon (DIC) and
total alkalinity to the bottom along with salinity via brine re-
jection, while sea ice melt dilutes both variables in surface
waters (Mortenson et al., 2020).

Previous observational and modeling studies have found
that seasonal periods of undersaturation of aragonite
(�arag < 1) are already occurring within subsurface waters
and near regions of significant riverine freshwater runoff
(Mathis et al., 2011; Cross et al., 2013; Pilcher et al., 2019).
Subsurface �arag < 1 waters occur in summer and early fall,
driven by bacterial respiration associated with remineraliza-
tion of sinking organic matter, particularly in regions of high
primary productivity in the middle- and outer-shelf domains
(Mathis et al., 2011). Surface waters generally maintain
much higher values of �arag and pH due to this significant
primary productivity, except near freshwater runoff, particu-
larly the mouths of the Yukon and Kuskokwim rivers, where
�arag < 1 and relatively low pH values are driven by rela-
tively high DIC :TA ratios due to terrestrial carbon exports
(Mathis et al., 2011; Pilcher et al., 2019). Furthermore, model
simulations suggest that winter surface �arag values are rela-
tively low and close to 1, particularly in ice-covered regions
where entrained subsurface carbon cannot re-equilibrate with
the atmosphere (Pilcher et al., 2019). Winter observational
data are extremely sparse due to challenging weather and
sea ice conditions; however, limited late-fall data suggest su-
persaturated pCO2 conditions (Cross et al., 2014; Cross et
al., 2016). Model simulations project that seasonal periods
of surface �arag undersaturation may grow to encompass up
to 5 months of the year following the RCP 8.5 emissions
scenario and 2–3 months following the RCP 4.5 scenario
(Pilcher et al., 2022).
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The Bering Sea sustains a substantial US fishery, rep-
resenting 40 % of US total fish catch by weight and
USD 3 billion in annual value (Wiese et al., 2012). These
fisheries also provide commercial, subsistence, and cultural
benefits to many Alaskan communities, putting them at risk
from ocean acidification (Mathis et al., 2015). In the Bering
Sea, red and tanner crab have emerged as species particularly
vulnerable to the direct effects of OA. The growth rates and
survival of larval and juvenile crab for both species are de-
creased at pH values lower than 7.8 (Long et al., 2013a, b,
2016). Incorporating these results into bioeconomic models
suggests that the red king crab fishery could substantially de-
cline if OA is not accounted for in the fisheries management
process (Seung et al., 2015; Punt et al., 2016). Recent clo-
sures of the snow crab fishery and the Bristol Bay red king
crab fishery have had devastating impacts on the Bering Sea
commercial fishing community and have led to some dis-
cussion concerning the potential role of OA (Siddon, 2022).
However, recent laboratory studies have found that snow crab
appear resilient to OA (Algayer et al., 2023) and that the
snow crab fishery collapse may be due to a mass mortality
event resulting from the 2018–2019 heat wave (Szuwalski et
al., 2023). In comparison to the collapse in snow crab pop-
ulations, the Bristol Bay red king crab fishery has been in
a steady decline since 2014 (Fedewa et al., 2020). Although
model results suggest that bottom waters in parts of Bristol
Bay have pH values harmful to larval and juvenile red king
crab, these crab populations tend to inhabit nearshore regions
that are relatively well buffered with much higher pH values
(Pilcher et al., 2022). Nonetheless, recent work suggests that
OA may be contributing to recruitment failure in the Bristol
Bay red king crab fishery (Litzow et al., 2025).

Recent work utilized a regional ocean biogeochemical
model and a dynamical downscaling technique to generate
long-term projections of OA for the Bering Sea shelf using
multiple Earth system models (ESMs) and emissions sce-
narios (Pilcher et al., 2022). Here, we greatly expand the
temporal coverage of our previous model hindcast, which
covered 2002–2012 (Pilcher et al., 2019), to now simulate
53 years (1970–2022) of the Bering Sea marine carbon cy-
cle. We use this model output to quantify spatial-temporal
trends in Bering Sea shelf marine carbonate variables over
the entire hindcast and the underlying mechanisms generat-
ing heterogeneity in these trends. We conclude by illustrating
how this model output is being incorporated into the fisheries
management process and the next steps to continue refining
these model-based OA products.

2 Methods

2.1 Base model description

The regional Bering10K model is an implementation of the
Regional Ocean Modeling System (ROMS; Shchepetkin and

McWilliams, 2005; Haidvogel et al., 2008), with 10 km hor-
izontal resolution and 30 vertical layers. The Bering10K
model simulates sea ice formation and melt, along with
tidal mixing. A thorough description of the physical model
can be found in Hermann et al. (2016) and Kearney et
al. (2020). This physical model is coupled to a lower-trophic
NPZD model, originally developed as part of the Bering Sea
Ecosystem Study (BESTNPZ; Gibson and Spitz 2011) and
recently updated by Kearney et al. (2020). Briefly, the BEST-
NPZ model simulates two phytoplankton groups (small and
large), five zooplankton groups (microzooplankton, small
copepods, large copepods, euphausiids, and jellyfish), three
nutrient groups (nitrate, ammonium, iron), and two detrital
groups (slow and fast sinking). BESTNPZ also contains an
ice biology sub-model which simulates ice algae, nitrate, and
ammonium, along with a benthic sub-model which simulates
a benthic infauna group and a detrital group. A thorough de-
scription of the BESTNPZ model can be found in Kearney et
al. (2020).

Carbonate chemistry is incorporated into the Bering10K
BESTNPZ model by simulating DIC and total alkalinity
(TA), which are used to calculate the remainder of the
carbonate system following the OCMIP-2 protocols and
CO2SYS (Lewis and Wallace, 1998). Here we report pH
and [H+] values on the total scale. DIC is generated from
planktonic respiration and detrital remineralization and con-
sumed via planktonic photosynthesis. Additionally, DIC is
exchanged with the atmosphere depending on the gradient
in the partial pressure of CO2 between the surface ocean
and the atmosphere (DpCO2) and the wind speed follow-
ing Wanninkhof (2014). The atmospheric CO2 concentration
is set to the monthly in situ concentration from the NOAA
Barrow Observatory in Alaska (Thoning et al., 2022). This
time series started in 1973; for 1970–1972, we take the 1973
Barrow monthly time series and subtract the respective an-
nual growth rate from the Mauna Loa time series (https:
//gml.noaa.gov/ccgg/trends/, last access: November 2024).
Riverine freshwater runoff flux is prescribed following fresh-
water discharge data from 28 watersheds in Alaska and Rus-
sia, including the Yukon River, which supplies roughly 50 %
of the total freshwater flux to the Bering Sea shelf (Kear-
ney, 2019). This river runoff contains seasonally varying con-
centrations of DIC (1480–4100 µmolkg−1) and TA (1238–
2743 µmolkg−1) following data collected at Pilot Station at
the mouth of the Yukon River (Striegl et al., 2007; PART-
NERS, 2010; Pilcher et al., 2019).

The atmospheric forcings for air temperature, sea level
pressure, longwave and shortwave radiation, u and v winds,
specific humidity, and rainfall are provided by a combina-
tion of reanalysis products. For 1970–1994 we use the Com-
mon Ocean Reference Experiment (CORE; Large and Yea-
ger, 2009) forcing, for 1995–2011 the Climate Forecast Sys-
tem Reanalysis (CFSR; Saha et al., 2010), and for 2011–2021
the Climate Forecast System Operational Analysis (CFSv2-
OA; Saha et al., 2014). Lateral open boundary conditions at
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weekly resolution for temperature, salinity, and oceanic ve-
locities (u and v) are derived from the larger-scale Northeast
Pacific model (NEP5), which has nominal 10 km horizon-
tal resolution and 60 vertical layers (Danielson et al., 2011)
for the CORE forcing timeframe. The CFSR forcing time-
frame uses the CFSR/CFSv2-OA ocean values at a zonal
resolution of 1/2° and a variable meridional resolution of
1/4° between 10° N and 10° S, increasing to 1/2° poleward
of 30° N and 30° S, and a total of 40 vertical layers (Saha
et al., 2010). Nitrate boundary conditions are monthly cli-
matologies from a long-term run of the larger Northeast Pa-
cific (NEP5) ROMS domain (Danielson et al., 2011). Oxy-
gen initial conditions and monthly boundary conditions are
climatologic means from the World Ocean Atlas 2018 prod-
uct (Garcia et al., 2018). Water column iron concentrations
are nudged towards empirical climatological profiles, which
use an analytical function based on Seward line data in the
Gulf of Alaska for coastal regions (Hinckley et al., 2009).
On-shelf values are set at 2.0 mmol m−3 at the surface and
4.0 mmol m−3 at depth, and this gradient transitions linearly
to 0.01 mmol m−3 at the surface and 2.0 mmol m−3 at depth
in water depths greater than 100 m.

The lateral boundary conditions for DIC and TA are cal-
culated via linear regressions with salinity through the fol-
lowing equations, derived from observational data collected
primarily from 2008–2010 (Pilcher et al., 2019).

S < 32.6 DIC= 58.5 · S+ 191.2+1DIC(t)atmo (1)
S ≥ 32.6 DIC= 140.4 · S− 2478.7+1DIC(t)atmo (2)
S < 33.6 TA= 49.6 · S+ 600.6 (3)
S ≥ 33.6 TA= 141.8 · S− 2494.4 (4)

The salinity–DIC regression has changed over time as the
oceanic uptake of CO2 has increased the DIC concentration
of waters, with no effect on salinity. Thus, using this same
relationship for the boundary conditions at the start of the
hindcast in 1970 would artificially increase DIC. To account
for changes in DIC over time, we center the DIC–salinity
relationship on the year 2009 (i.e., midpoint of 2008–2010
sampling timeframe) and subtract (add) DIC for years before
(after) 2009. The DIC value added or subtracted (1DICatmo

in Eqs. 1–2) for year (t) is obtained from the linear trend
in DIC (Fig. S1) calculated from the historical runs of the
Coupled Model Intercomparison Phase 6 (CMIP6) over the
1970–2009 timeframe from the mean of three different Earth
system models (GFDL-ESM4, CESM2, and MIROC-ES2L).
These three ESMs were selected as they have been used pre-
viously in the Bering10K regional dynamical downscaling
(Cheng et al., 2021; Pilcher et al., 2022). We chose to use
this method to gain the higher spatial resolution, particularly
in the vertical, provided by the ESM output. We only use the
DIC trend from the CMIP6 ESMs and omit any TA trend
because the TA trends over this timeframe are much smaller
and are tied to changes in salinity (Hinrichs et al., 2023),

which is accounted for in our salinity–TA relationship at the
boundary.

Initial conditions for the start of the hindcast in 1970 for
non-carbonate chemistry variables are taken from a 30-year
model spin-up using repeating 2001 forcing (Kearney et al.,
2020). Initial conditions for TA are calculated using the same
salinity regression used for the boundary conditions. Simi-
larly, the DIC initial conditions use the salinity regression,
along with subtracting the same long-term trend used for the
boundary conditions. The model is then spun-up for an ad-
ditional 3 years using repeating 1970 forcing, at which point
the model seasonal CO2 cycle was approximately in balance
with minimal year-to-year on-shelf variations. The model
hindcast is then started and run continuously for 1970–2022.

2.2 Model updates

A new addition to the BESTNPZ model presented in pre-
vious work is the inclusion of oxygen cycling following
Siedlecki et al. (2015) and Bianucci et al. (2011). Oxygen
cycling contains phytoplankton growth as a source and res-
piration, remineralization, and nitrification as sinks. Oxygen
cycling throughout the water column is governed by the fol-
lowing equation:

∂O2

∂t
= Phyi · ui (Light, N)− resp

(
Phyi

)
− resp(Zi)

− remin(Di)− nitrification+ advection+ diffusion. (5)

Surface and bottom oxygen concentrations are further modi-
fied through the following equations, respectively:

∂O2

∂t

∣∣∣∣
surface

=
VO2

1z
·
(
[O2]sat− [O2]|z=surface, (6)

VO2 = 0.251u2
(

Sc
660

)−0.5

, (7)

∂O2

∂t

∣∣∣∣
bottom

=
1
1z

(
WD

dD
dz

∣∣∣∣
z=bottom

)
− resp(Ben)

− excretion(Ben)− remin(DetBen) , (8)

where Phyi is the phytoplankton group; ui is the growth rate;
“Light” and N are the light and nutrient limitations, respec-
tively; “resp” is respiration; Zi is the zooplankton group;
“remin” is bacterial remineralization; and Di is the detrital
group. For the surface Eq. (6), 1z is the vertical thickness
of the grid cell, [O2]sat is calculated following the equation
from Garcia and Gordon (1992), Sc is the Schmidt number,
and VO2 is the gas transfer velocity following Wanninkhof
(2014). For the bottom Eq. (8),WD is the detrital sinking rate,
“Ben” is the benthic infauna group, and “DetBen” is benthic
detritus. The above model Eqs. (5)–(8) utilize constant sto-
ichiometric molar ratios consisting of C : N= 106 : 16 and
O2 : N= 138 : 16 for nitrate fluxes and O2 : N= 106 : 16 for
ammonium fluxes. The complete BESTNPZ model equa-
tions are found in Kearney et al. (2020).
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2.3 Observational data for model validation

To assess overall model skill, we compare model hindcast
output to several observational datasets. One of the largest
available datasets for carbonate chemistry in the Bering Sea
was collected and compiled during the 2008–2010 Bering
Sea Ecosystem Study (BEST) and Bering Sea Integrated Re-
search Program (BSIERP). This dataset is particularly valu-
able due to the large number of discrete DIC and TA sam-
ples; these are the prognostic model variables used within
the model and therefore provide a direct model–data compar-
ison. These data were typically collected in the spring (April
and May) and summer (June and July) seasons, along with
a fall (September and October) sample period in 2009. The
sampling regime covered a large portion of the US south-
eastern Bering Sea shelf, including three cross-shelf tran-
sects (Fig. 1). pCO2, pH, and �arag values were calculated
from DIC, TA, salinity, and temperature measurements using
CO2SYS (Cross et al., 2012, 2013).

The M2 mooring is the longest dataset for surface ocean
pCO2 in the Bering Sea. While the M2 mooring itself pro-
vides a multi-decadal-long time series of standard oceano-
graphic properties, the moored autonomous surface vehi-
cle (MAPCO2; Sutton et al., 2019) system used to measure
pCO2 was first deployed in 2013 and has since been re-
deployed with the M2 mooring during the ice-free season
for every year except 2020. Generally, this time series cov-
ers the months of May–September; however in 2021 it was
left out much later than usual, providing the first glimpse
of late-fall and early-winter pCO2. For further model vali-
dation of pCO2, we also utilize pCO2 measurements from
an Autonomous Surface Vehicle CO2 (ASVCO2) system on-
board the Saildrone uncrewed surface vehicle (USV) (Wang
et al., 2022). This dataset provides a transect of surface ocean
pCO2, generally running from the Aleutian Islands to the
Bering Strait during missions to the Chukchi Sea from 2017–
2019. Therefore, each year contains a northward transect in
late spring/early summer, along with a southward transect in
late summer.

3 Results

3.1 Model skill assessment

Model property–property comparisons and associated skill
statistics between discrete samples collected during 2008–
2010 and the model hindcast illustrate relatively high corre-
lation coefficients across the water column for most model
prognostic variables (Fig. 2). However, a slight negative TA
bias combined with a slight positive DIC bias work synergis-
tically to generate a relatively larger negative bias in �arag
and pH. Another notable model–data mismatch is that sub-
surface points (depth > 200 m) for salinity, NO3, TA, and
DIC are all relatively lower in the model compared to the ob-

servations. These points are all outside of our definition of
the Bering Sea shelf (encompassing depth 0–200 m; Fig. 1)
and are located on the shelf break, which is smoothed in the
model bathymetry to ensure numerical stability (Kearney et
al., 2020). Modeled transport across the shelf break is rela-
tively small, with most on-shelf water arriving through the
Aleutian Islands, with shelf water residence times generally
less than 3 years (Mordy et al., 2021).

The model–data comparison illustrated in Fig. 2 is fur-
ther summarized via a target diagram (Jolliff et al., 2009)
in Fig. 3. In a target diagram, the position in the y axis de-
notes either a positive (Y > 0) or negative (Y < 0) normal-
ized model bias, while the position in the x axis signifies
whether the model has a larger (X > 0) or smaller (X < 0)
root-mean-square deviation (RMSD) compared to the ob-
served data. The radial distance from the origin (normal-
ized RMSD) is then related to the modeling efficiency met-
ric (MEF; Stow et al., 2009), where model variables that lie
within the RMSD < 1 circle have an MEF > 0, signifying
that the model outperforms an estimate based solely on the
mean of the observations. Figure 3 illustrates that all high-
lighted model variables fall within the RMSD value of 1,
with relatively low overall biases. Most model variables dis-
play less variability compared to the observations, except for
�arag which displays more variability.

In addition to the ship-based observational comparison,
model output of surface ocean pCO2 is also compared to
the M2 mooring time series (Fig. 4). The model accurately
captures the timing of the late-spring pCO2 drawdown along
with the subsequent increase in pCO2 leading into summer.
Furthermore, the modeled late-fall and early-winter increase
in pCO2 is also apparent in the mooring for the single year
that the mooring was left out late into the season. However,
the model generally tends to underestimate the magnitude
of the late-spring pCO2 drawdown, which then subsequently
leads to model overestimations of summer pCO2. Notable
exceptions are apparent in 2013, 2018, and 2022 when the
observed late-spring pCO2 drawdown was relatively weaker,
and the modeled drawdown is more comparable with obser-
vations.

Further surface pCO2 comparisons between the model
output and in situ pCO2 from the autonomous Saildrone plat-
form are shown in Fig. 5. Overall, the model does a reason-
ably sufficient job of capturing the dominant spatial pattern
in pCO2 illustrated by the Saildrone data, namely the rela-
tively lower pCO2 values in the southeastern and northern
Bering Sea with higher values in the central inner-shelf do-
main near Nunivak Island. The seasonality between the two
transects also aligns, with relatively lower values during the
northward transect and higher values during the southward
transect. However, the model appears to consistently under-
estimate the pCO2 drawdown (i.e., model pCO2 biased high
compared to Saildrone data) in the southeastern Bering Sea
during the northward transect, similar to the underestimated
spring pCO2 drawdown from the M2 mooring comparison

https://doi.org/10.5194/bg-22-3103-2025 Biogeosciences, 22, 3103–3125, 2025
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Figure 2. Plots of model (x axis) and observed (y axis) co-located points for different model variables. Also shown in each plot are the R,
RMSE, and bias skill statistics. Observed data are from the 2008–2010 BEST–BSIERP project, shown as blue dots in Fig. 1. Note that here
the colorbar is constrained to depths between 0–200 m because our focus is on the shelf, though deeper, off-shelf points (denoted by bright
yellow dots) are still included.

Figure 3. Target diagram summarizing the data comparison from
Fig. 2. Here, the x axis is the normalized unbiased RMSD between
the model and data, multiplied by the sign of the difference between
model and observed standard deviation. The y axis is the normal-
ized mean bias.

(Fig. 4). However, the southward transects suggest that this
bias is reversed later in the year, when the model is now bi-
ased low compared to the Saildrone data, which is also the
opposite bias to what we see during the late summer and
early fall in the M2 mooring comparison. Additionally, the
model tends to underestimate pCO2 in the central inner-shelf

Figure 4. M2 mooring pCO2 data (blue dots) compared to model
daily pCO2 values (black line) at the equivalent model grid cell
location. The mooring is generally deployed in spring and retrieved
in fall, though it was out much later in 2021.

domain just to the west of Nunivak Island. It appears that
the Saildrone data are consistently capturing a relatively high
plume of pCO2 in this region. The model also generally sim-
ulates these relatively high pCO2 waters in that region of the
inner-shelf domain, but there is a lot of interannual variability
and seasonality in this feature.

This analysis suggests that the model is simulating the
Bering Sea carbon cycle reasonably well, though there are
some noted differences. Namely, the model appears to un-
derestimate variability overall (Fig. 3) and underestimate the
magnitude of the seasonal pCO2 drawdown according to
both the M2 mooring and Saildrone data. This could be due
to a somewhat smaller-magnitude spring bloom, which is
consistent with slight positive model biases in DIC and NO3
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Figure 5. Surface pCO2 values from Saildrone transects (dots) with model surface pCO2 values averaged over the equivalent timeframe as
the background shading.

from the ship-based observation comparison (Fig. 2). This
bias could translate to model pH and �arag values that are
biased low in surface waters but biased high in bottom wa-
ters due to less respiration of sinking organic carbon from
a smaller spring bloom. However, we caution that bottom
measurements are very limited overall and were all collected
during the anomalously cold-water conditions during 2008–
2010. Furthermore, pCO2 is a relatively difficult variable
for the model to capture because it is a nonlinear, diagnos-
tic variable that is dependent on temperature, salinity, DIC,
and TA. This nonlinearity and the potential for synergistic bi-
ases (e.g., positive DIC bias but negative TA bias) can gener-
ate very large magnitude deviations. Thus, additional bottom
water data, particularly for DIC and TA, would be extremely
useful in further validating the bottom water carbonate chem-
istry beyond the 2008–2010 analysis here.

3.2 Impact of forcing on linear trends

The Bering10K BESTNPZ model has historically been uti-
lized for a variety of fisheries management applications (Gib-
son and Spitz, 2011; Kearney et al., 2020). For these appli-

cations, the model hindcast timeframe needed to run through
the present and extend back in time to cover major transi-
tions in the Bering Sea during the 1970s and 1980s. At the
time, no individual forcing product provided this full time-
frame; therefore, it was necessary to combine the CORE
and CFSR forcing. Furthermore, the transition between prod-
ucts in 1995 was selected as the 1990s experienced rela-
tively more stable climate variability for the Bering Sea, as
this was after the shifts in the 1970s and 1980s but prior to
the temperature stanzas of the early 2000s (Stabeno et al.,
2012). However, any significant differences in either the at-
mospheric forcing or the oceanic boundary conditions be-
tween the datasets could generate a significant deviation in
model results, particularly immediately following the transi-
tion in 1995. Furthermore, this transition (i.e., essentially a
spin-up to the new model forcing) could generate erroneous
linear trends when calculated over the entire timeframe that
would represent a shift in the variable over a discrete period
rather than a multi-decadal trend. To help clarify this poten-
tial influence, we ran a separate simulation which branched
off from the primary hindcast simulation in 1995 by contin-
uing the CORE forcing until 2003. We then compared these
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results to the primary hindcast simulation (e.g., simulation
that switches to CFSR in 1995) to assess the effect of this
transition in forcing.

Surface and bottom salinity for the Bering Sea shelf pro-
vides an example of how the shift in forcing can generate an
erroneous long-term trend. A noticeable decrease in salinity
of ∼ 0.5 psu immediately follows the switch to CFSR forc-
ing and oceanic boundary conditions, which does not occur
when the CORE forcing and Northeast Pacific model-derived
oceanic boundary conditions are extended to 2003 (Fig. S2).
This decrease generates a negative trend in surface salinity
when calculated over the entire timeframe; however, trends
over the individual forcing timeframes are extremely weak
and of the opposite sign for the CORE timeframe. This shift
in salinity will also impact DIC and total alkalinity through
the salinity regression equations used to calculate the hori-
zontal open boundary conditions (Eqs. 1–4). This leads to a
decrease in DIC and total alkalinity within the open bound-
ary conditions that is greater in magnitude in intermediate
waters (Fig. S3). The effect is greater on DIC relative to TA
due to differences in the regression equations. The net effect
on shelf-wide conditions is readily apparent for total alka-
linity (Fig. S4) but is more muted with DIC, likely due to
the relatively stronger effect of biology and air–sea gas ex-
change.

To account for the potential influence of this transition
in forcing, we report all time series linear trends over three
timeframes: (1) the complete 1970–2022 CORE-CFSR time-
frame, (2) the 1970–1994 CORE timeframe, and (3) the
1998–2022 CFSR timeframe. We start the CFSR trends in
1998 rather than 1995 to account for several years for the
transition in forcing, based in part on the re-equilibration to
the new forcing by 1998 demonstrated in salinity (Fig. S2).
Furthermore, dividing the hindcast into the two timeframes
of 1970–1994 and 1998–2022 produces two, equivalent 25-
year time slices and will help elucidate any acceleration in
trends. Lastly, we show the results of the CORE simulation
extended to 2003 for trend estimates in the Supplement, not-
ing which variables exhibit consistent trends throughout both
forcing datasets and which variables’ long-term trends (esti-
mated over 1970–2022) are impacted by the forcing switch
in 1995. The goal with this comparison is not to suggest that
trends between the CORE- and CFSR-forced products are
the same, but rather our goal is to elucidate which long-term
trends result directly from the switch in forcing and which
long-term trends emerge within an individual forcing prod-
uct.

3.3 Bering Sea shelf acidification

Over the 1970–2022 model hindcast, annual surface and bot-
tom �arag and pH decrease, while [H+] increases for the
Bering Sea shelf, with linear trends greater at the bottom
compared to the surface (Fig. 6). We show [H+] in addition
to pH because pH changes reflect relative [H+] changes and

are, therefore, not ideal for comparisons between waters with
different initial chemistry conditions, such as between sur-
face and bottom waters (Fassbender et al., 2017, 2021). Sur-
face �arag ranges from 1.7–1.8 at the start of the simulation
and decreases to 1.5–1.6 by the end, surface pH ranges from
8.1–8.125 and decreases to 8.025–8.05, and surface [H+]
ranges from 7.5–7.75 nmol kg−1 at the start and increases to
9.25 nmol kg−1 by 2022. Furthermore, the bottom pH trend
from 1970–2022 is twice as great as the surface trend, while
the bottom [H+] trend over the same timeframe is nearly
3 times as great as the surface [H+] trend. In fact, bottom
acidity, as denoted by [H+], increases by approximately 40 %
from 1970–2022. These amplified bottom water carbonate
trends are strongest over the 1998–2022 timeframe, partic-
ularly compared to the relatively weak bottom water trends
over the 1970–1994 timeframe. This suggests that the strong
bottom water trends evolve over the 1998–2022 timeframe
and may be specific to the CFSR forcing. However, the bot-
tom pH trend with CORE forcing increases from −0.0029
per decade when calculated from 1970–1994 to −0.011 per
decade when calculated from 1970–2003 (Fig. S5). Thus,
the enhanced bottom water trends over the recent timeframe
may be sensitive to the forcing product and the specific time-
frame over which the trend is calculated. Surface trends in all
three carbonate variables are similar across all timeframes,
with slightly higher trends from 1998–2022 for pH and [H+].
Notably, annual bottom �arag < 1 conditions first emerge in
2008 and after 2020 stay below 1 for the remainder of the
model simulation. Furthermore, bottom pH values are ap-
proaching 7.8 (e.g., conditions demonstrated to negatively af-
fect growth and survival of red king crab; Long et al., 2013a,
b) by the end of the model simulation.

Annual average surface �arag and pH values from 1998–
2022 are generally greater on the middle- and outer-shelf
domains compared to the inner-shelf domain (Figs. 7–8).
Conversely, bottom water values for both variables are gen-
erally greater for the inner-shelf domain compared to the
middle- and outer-shelf domains. The lowest bottom values
tend to occur in the northwest Bering Sea shelf, in the Gulf of
Anadyr. Relatively lower values of surface �arag and pH are
also apparent near the Yukon River delta. Most shelf surface
waters have annual �arag > 1.25 and pH ≥ 8.0. Bottom wa-
ters, however, are near or below the aragonite saturation hori-
zon (i.e., �arag = 1) for most of the middle and outer shelf,
along with pH values < 8.0 and near 7.8 for the northwest-
ern middle-shelf domain. Surface �arag and pH trends are
spatially fairly consistent throughout the shelf, with slightly
stronger, negative trends over the middle shelf and in the
northwestern shelf near the Gulf of Anadyr (Figs. 7–8). Bot-
tom water trends for both variables are more spatially het-
erogenous, with substantially greater trends on the outer-
shelf domain compared to the rest of the shelf. This region,
along with parts of the southeastern middle-shelf domain,
displays stronger, negative trends at the bottom compared
to the surface, similar to the shelf-wide averaged time series
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Figure 6. Time series plots of model annual average surface (a, c, e) and bottom (b, d, f) �arag (a, b), pH (c, d), and [H+] (e, f) averaged
over the Bering Sea shelf region. Also shown are the linear trend values over three different timeframes.

Figure 7. Spatial plots of model annual average surface (a, c) and bottom (b, d) �arag from 1998–2022 (a, b) along with the linear trend for
each grid cell (c, d) over the same timeframe. Bottom waters with depths > 1500 m are omitted here as our focus is on the shelf.
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Figure 8. Spatial plots of model annual average surface (a, c) and bottom (b, d) pH from 1998–2022 (a, b) along with the linear trend for
each grid cell (c, d) over the same timeframe. Bottom waters with depths > 1500 m are omitted here as our focus is on the shelf.

plots in Fig. 6. [H+] trends display similar spatial patterns as
pH and are not shown here.

Vertical profiles of modeled pH at the M2 and M8 mooring
locations highlight the onset of pH values < 7.8 (Fig. 9). At
M2, these conditions do not occur in the hindcast until after
2005, at which point they seasonally occur somewhat regu-
larly and shoal to depths between 30–50 m. At M8, pH< 7.8
waters rarely occur prior to 2000, after which they occur sea-
sonally every year. In most years, these conditions also shoal
to 30–50 m; however, there are several years when they occur
throughout the entire water column.

3.4 Bering Sea shelf carbon cycle

Atmospheric CO2 concentrations significantly increase from
328 µatm in 1970 to 420 µatm by 2022, while the sur-
face ocean pCO2 for the Bering Sea shelf increases from
324 µatm in 1970 to 402 µatm in 2022 (Fig. 10a). This
lag in the growth rate of surface ocean pCO2 compared
to the atmosphere generates a net decrease in DpCO2
(i.e., pCOocean

2 −pCOatmo
2 ) and drives a more negative air–

sea CO2 flux, where a negative flux indicates a flux of car-
bon into the ocean (Fig. 10b, c). However, the more negative
DpCO2 values with greater carbon fluxes into the ocean tend
to occur from 1995–2022, following the switch from CORE
to CFSR forcing. Indeed, analysis of the CORE-extended
hindcast indicates that the switch in forcing plays a signif-
icant role, with the CORE forcing suggesting higher oceanic
surface pCO2 values and more positive CO2 flux values dur-
ing the overlapping years (Fig. S6). Furthermore, while there
is a negative trend in CO2 flux over the entire 1970–2022

Figure 9. Model monthly averaged pH over the entire model time
series at the M2 (a) and M8 (b) approximate model locations. The
black contour line denotes the threshold for pH values< 7.8, which
are conditions harmful to red king crab.
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Figure 10. Time series of model annual average (a) surface ocean
pCO2 (black line) and atmospheric CO2 concentration (dashed
line), (b) DpCO2, and (c) CO2 flux. Here, DpCO2 is defined as
pCOocean

2 −pCOatmo
2 and a negative CO2 flux signifies a flux of

carbon into the ocean. The dotted line denotes the year when the
forcing transitions from CORE to CFSR.

timeframe (under combined forcing), there is a very mini-
mal negative trend over the 1970–2003 CORE-forced time-
frame and a slight positive trend over the 1998–2022 CFSR-
forced timeframe, indicating that the transition in forcing is
biasing the 1970–2022 trend (Fig. S6). To further illustrate
this difference, we calculate the total carbon shelf sink us-
ing the spatial area of the shelf (i.e., area defined in Fig. 1;
804 393 km2). For the CORE-forced 1970–1994 timeframe,
the shelf was an annual carbon sink of 1.1 Tg C yr−1, com-
pared to an annual carbon sink of 7.9 Tg C yr−1 for the 1998–
2022 CFSR-forced timeframe.

Figure 11 illustrates that a substantial amount of this an-
nual carbon uptake occurs within the middle- and outer-shelf
domains and the northern Bering Sea inner-shelf domain.
Conversely, coastal waters near regions of significant riverine
runoff (e.g., Yukon and Kuskokwim rivers) are an annual net
carbon source. The spatial patterns of air–sea CO2 flux are
largely consistent with the spatial pattern in DpCO2, though
there are some areas where the two variables are not aligned
(i.e., not the same sign). This is especially apparent for the
off-shelf Bering Sea Basin, which displays slightly negative

DpCO2 values but a relatively strong, positive (i.e., flux out
of the ocean) CO2 flux. The difference of both variables be-
tween the CFSR and CORE forcing timeframes illustrates the
substantial changes noted in Fig. 10. The off-shelf Bering Sea
Basin in particular displays substantially greater-magnitude,
negative DpCO2 and CO2 flux values during the CFSR-
forced timeframe. CO2 flux values on the outer-shelf domain
and near the shelf break are also substantially more negative
(i.e., greater carbon uptake) during the CFSR-forced time-
frame due to more negative DpCO2 values.

To further investigate the processes leading to the en-
hanced ocean carbon uptake, we examine the progression
of the seasonal carbon cycle over each model decadal time-
frame (Fig. 12). These figures reveal a non-uniform seasonal
increase in surface ocean pCO2, with the summer (May–
September) values increasing at a much lower rate compared
to the rest of the year. For example, the seasonal pCO2 sum-
mer minimum increases by only 22 µatm over the model
timeframe, whereas the seasonal winter maximum in Jan-
uary increases by 93 µatm. Atmospheric pCO2 also increases
over this timeframe but with minimal changes in seasonality
(i.e., the seasonal amplitude increases by ∼ 6 µatm over the
entire timeframe). The overall effect is a slight reduction in
positive CO2 flux (i.e., less carbon efflux to the atmosphere)
during the months when the shelf is a net source of carbon
(November–March) but generates greater-magnitude, nega-
tive DpCO2 and CO2 flux values during the months when
the shelf is a net carbon sink (April–September). Notably,
these enhanced negative DpCO2 and CO2 flux values occur
following the transition to CFSR forcing.

To further understand changes in pCO2, we separate
the pCO2 signal into a temperature component and non-
temperature component following Takahashi et al. (2002):

pCO2 T = pCO2 · exp
[
0.0423

(
T − T̄

)]
, (9)

pCO2 nonT = pCO2 · exp
[
0.0423

(
T̄ − T

)]
, (10)

where the overbars represent the model annual mean val-
ues, pCO2 T is the temperature component reflecting the ef-
fect of thermal solubility on pCO2, and pCO2 nonT is the
remaining pCO2 effects governed by non-thermal compo-
nents including biological activity. Following Eqs. (9) and
(10), we can calculate the seasonal amplitude of both pCO2 T
and pCO2 nonT, which gives an indication of which compo-
nent has a greater effect on determining the seasonal pCO2.
Figure 13 illustrates this comparison throughout the model
timeframe. The seasonal amplitudes for both pCO2 T and
pCO2 nonT increase over the model simulation; however, the
amplitude for pCO2 nonT increases to a much greater extent.
Furthermore, the pCO2 nonT amplitude is always greater than
the pCO2 T amplitude, with the ratio increasing to greater
than 2.

Figure 6 illustrates that linear trends in �arag and pH are
greater at the bottom compared to the surface, especially for
the CFSR-forced timeframe. Figure 14 demonstrates that this
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Figure 11. Spatial plots of model annual average surface (a) DpCO2 and (b) CO2 flux from 1998–2022. Also shown is (c) 1DpCO2 and
the (d) 1CO2 flux calculated as the difference between the 1998–2022 and the 1970–1994 timeframes.

Figure 12. Seasonal plots of model surface ocean pCO2 (a),
DpCO2 (b), and CO2 flux (c) averaged over multiple timeframes.

Figure 13. Time series of the yearly maximum seasonal amplitude
of pCO2–T (dotted blue line), pCO2–nonT (solid blue line), and
the ratio of pCO2–nonT / pCO2–T (orange line).

is also true for the trend in DIC, where the bottom trend over
the entire model hindcast is a little over twice as strong com-
pared to the surface. The CORE and CFSR forcing compar-
ison illustrates that this enhanced bottom trend is a result
of the CFSR-forced time series, which is a factor of ∼ 1.5
greater at the bottom compared to the surface for 1998–
2022. Conversely, the CORE-forced surface trend is more
than 3 times as strong as the bottom trend. However, ex-
tending the CORE forcing to 2003 doubles the bottom DIC
trend, reducing this surface-to-bottom-trend comparison to
less than a factor of 2 (Fig. S7). There are also positive
trends in integrated primary production and bottom water
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Figure 14. Time series plots of Bering Sea shelf model annual average (a) surface DIC, (b) bottom DIC, (c) depth-integrated primary
productivity, (d) bottom water remineralization, and (e) bottom water oxygen concentration. Also shown are the linear trend values over
three different timeframes.

remineralization, along with a negative trend in bottom oxy-
gen concentrations over the entire model timeframe. Here,
primary production refers to gross primary production (GPP)
and remineralization encompasses all detrital remineraliza-
tion and benthic excretion. Productivity and remineralization
rates are both relatively high to start the model simulation,
before decreasing to a minimum in the early 1990s and then
steadily increasing through the remainder of the model sim-
ulation. This increase in productivity is tied to an increase
in nitrate concentrations from the CORE to CFSR forcing,
along with a positive trend in shortwave radiative forcing dur-
ing the CFSR-forced timeframe. This leads to opposite trends
in all three variables between the CORE- and CFSR-forced
timeframes, with CORE trending towards lower productivity,
remineralization, and higher oxygen but CFSR trending to-
wards higher productivity, remineralization, and lower oxy-
gen. However, the CORE trends are more affected by the rel-
atively anomalous initial values, and the extended CORE-
forced simulation also suggests a shift towards higher pro-
ductivity and remineralization, though not to the same ex-
tent as the overlapping CFSR-forced years (Fig. S7). Over

the entire model hindcast, productivity is strongly correlated
with bottom remineralization (R = 0.92) and negatively cor-
related with bottom oxygen (R =−0.76).

To further understand the drivers behind changes in the
carbonate chemistry, we also use a first-order Taylor series to
decompose changes in pCO2, �arag, and [H+] into the four
primary drivers:

1φ =
∂φ

∂DIC
1DIC+

∂φ

∂TA
1TA+

∂φ

∂Salt
1Salt

+
∂φ

∂Temp
1Temp, (11)

where 1φ represents the time change in the calculated car-
bonate parameter (pCO2, �arag, or [H+]), and the four vari-
ables on the right-hand side of the equation account for the
contributions of DIC, TA, salinity, and temperature, respec-
tively. The partial derivatives are calculated through small
perturbations using CO2SYS (Lewis and Wallace, 1998;
Sharp et al., 2023). We employ the Taylor series decomposi-
tion for both the entire 1970–2022 timeframe and the CFSR
1998–2022 timeframe (Fig. 15). This decomposition further
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Figure 15. Taylor series decomposition of trends in pCO2 (a),
�arag (b), and [H+] (c) for surface and bottom waters over the
1970–2022 and 1998–2022 timeframes.

highlights that the OA trends are driven by increasing DIC,
particularly for bottom waters. Surface carbonate trends are
also driven to a lesser extent by decreasing TA over the 1970–
2022 timeframe, though this effect is somewhat diminished
during the more recent 1998–2022 timeframe. On this time-
frame, warming temperatures emerge as a driver for surface
and bottom pCO2 and [H+], though they are still lower in
magnitude than DIC.

4 Discussion

Our model hindcast simulates surface �arag and pH trends
of −0.043 and −0.014 per decade and bottom �arag and pH
trends of −0.066 and −0.028 per decade, respectively, from
1970–2022 for the Bering Sea shelf. This surface pH trend
is comparable to the global observed mean pH decline over
a similar timeframe due to ocean acidification (Lauvset et
al., 2015; Ma et al., 2023). Our surface �arag trend is lower
than the global observed �arag trend of −0.071 per decade
(Ma et al., 2023), though the global high-latitude trend is
more comparable to our model trend. Pilcher et al. (2022)
projected that surface �arag on the Bering Sea shelf would
decline by −0.044 to −0.097 per decade from 2010–2100
under the RCP 4.5 and RCP 8.5 emissions scenarios, respec-

tively, while surface pH would decline by −0.015 to −0.04
per decade. Thus, our hindcast simulation has a historical
acidification rate from 1970–2022 that is comparable to the
projected RCP 4.5 acidification rate. Conversely, the RCP 8.5
acidification rate is more than twice as great as our historical
rate. This comparison provides context for the rate of change
in carbonate chemistry that marine ecosystems have already
experienced compared to the projected rate over the 21st cen-
tury.

Surface trends in �arag are comparable across all model
timeframes, while surface trends in pH and [H+] are stronger
over the last 25 years, reflecting a recent increase in the rate
of acidification likely driven by the increased rate of atmo-
spheric CO2 growth. Interannual variability in surface car-
bonate variables also increased over the past 25 years, in-
cluding the emergence of multi-year periods of sustained
anomalous conditions. This is especially apparent for sur-
face �arag, with periods of relatively high (e.g., 2001–2007
and 2014–2019) and low (e.g., 2008–2013)�arag conditions.
This coincides with the observed warm and cold tempera-
ture “stanzas” that have emerged for the Bering Sea shelf
(Stabeno et al., 2012; Stabeno and Bell 2019). For the sur-
face and bottom, warm temperatures lead to higher �arag
values, while cold temperatures generate lower �arag val-
ues. Pilcher et al. (2019) noted a similar phenomenon be-
tween a warm and cold temperature regime and attributed
this to a combination of the thermal solubility effect on�arag
(i.e., cooling decreases �arag) and increased fall productiv-
ity and ocean carbon uptake. In our study, thermal solubility
is likely also a contributor to recent �arag variability; how-
ever, surface DIC (Fig. 14a) also displays a similar pattern
between warm and cold temperature regimes, suggesting the
influence of changes in biogeochemistry (i.e., Pilcher et al.,
2019). The warm and cold regimes also generate substantial
differences in sea ice extent, which can impact the seasonal
carbon cycle through changes in air–sea flux inhibition, the
timing and composition of the spring phytoplankton bloom,
and changes in the sea ice carbonate pump (e.g. Mortenson
et al., 2020). A complete mechanistic breakdown of how the
warm and cold temperature regimes impact the seasonal car-
bon cycle and modify background OA rates is beyond the
scope of this present paper but is the focus of planned future
work.

The threat OA presents to Alaskan marine ecosystems
demonstrates a clear need to develop accurate and reliable
model-based OA products to support fisheries management.
The recent emergence of multi-year anomalously low �arag
and pH conditions is significant because marine organisms
may not be as resilient to longer cumulative exposure to
acidic conditions (Bednarsek et al., 2022). Furthermore, OA
is gradually shifting waters to a lower �arag and pH base-
line and reduced buffer capacity, leading to a higher rate of
extreme acidity events (Burger et al., 2020) and an amplifi-
cation of the seasonal cycle (Kwiatkowski and Orr, 2018). It
is therefore critical to track the development of high-acidity
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Figure 16. Time series plots of an OA indicator calculated as the
spatial extent (i.e., percent of total area) of bottom waters with a
July–September �arag < 1 (grey line) and pH < 7.8 (black line).
The total spatial area is the entire Bering Sea shelf for the top plot
and Bristol Bay for the bottom plot.

water conditions on seasonal to annual timeframes to sup-
port practical advice within the fisheries management pro-
cess. To this end, we have developed an OA index for the
Eastern Bering Sea shelf using annually updated output from
our model hindcast (Fig. 16). This index indicates the areal
extent of the Bering Sea shelf where bottom waters are be-
low threshold values of �arag and pH from July–September.
We specifically target summer bottom waters because this is
when the seasonal bottom water respiration signal is greatest,
thereby generating the most acidic seasonal conditions. The
two biological thresholds are chosen as the aragonite satu-
ration horizon and a pH of 7.8, which has negative effects
on red king and tanner crab growth and survival (Long et
al., 2013a, b, 2016). The spatial extent for both indices has
greatly expanded over our model hindcast for both the en-
tire Bering Sea shelf (Fig. 16a) and Bristol Bay (Fig. 16b)
– the location of a highly valuable red king crab fishery that
may already be experiencing negative effects on recruitment
due to OA (Litzow et al., 2025). Prior to 2005, between 5 %–
10 % of the shelf had conditions of pH < 7.8, but by 2022
this jumped to more than 50 % of the shelf spatial area. Thus,
locations on the shelf that had rarely or never contained these
conditions in our model hindcast prior to the early 2000s

now regularly experience them (Fig. 9). Currently this in-
dex, along with spatial plots highlighting pH conditions on
the shelf for the current year, is included in the annual NOAA
Eastern Bering Sea Ecosystem Status Report (Siddon, 2022),
a key report used by the North Pacific Fisheries Management
Council for setting quotas.

Modeled bottom water acidification rates on the Bering
Sea shelf are substantially greater compared to the surface,
particularly for pH and [H+]. The amplified bottom water
trends emerge over the past 25 years, coinciding with a net
increase in primary productivity and a subsequent increase
in bottom water remineralization. This connection between
surface productivity, bottom water remineralization, and rel-
atively acidified bottom water is consistent with previous ob-
servational studies on the Bering Sea shelf (Mathis et al.,
2011; Cross et al., 2014). The accumulation of anthropogenic
carbon can also generate relatively greater changes in pH and
[H+] in subsurface waters due to nonlinearities in the carbon-
ate system (Fassbender et al., 2023), though anthropogenic
carbon is not explicitly tracked in our model simulations. Our
model results add to a growing body of literature suggesting
that biological remineralization reduces water buffer capac-
ity and can accelerate subsurface acidification rates (Cai et
al., 2011; Feely et al., 2010; Cross et al., 2018; Kwiatkowski
et al., 2020; Arroyo et al., 2022; Qi et al., 2022; Fassbender
et al., 2023). Indeed, Qi et al. (2022) found accelerated OA
rates in the neighboring Chukchi Sea due to enhanced sub-
surface biological remineralization. Previous observational
studies have also noted a long-term increase in primary pro-
ductivity for both the Arctic Ocean (Lewis et al., 2020) and
the Bering Sea (Wang et al., 2022). Higher productivity in
the Bering Sea has also been observed in warmer years (Lo-
mas et al., 2020), though model projections suggest that over-
all phytoplankton biomass will decrease with future climate
warming (Cheng et al., 2021). Thus, the enhanced productiv-
ity may be a transient response to recent observed warming
and sea ice decline and the resulting ongoing ecological shift
(Moore and Stabeno, 2015; Overland et al., 2023). Interest-
ingly, Pilcher et al. (2022) did not find accelerated bottom
water acidification rates compared to the surface in their pro-
jected OA rates for the Bering Sea shelf. These projections
were generated using the same Bering10K BESTNPZ model
presented in here, suggesting that the enhanced bottom OA
rates in our hindcast result from the model forcing.

Here, we find that the modeled Bering Sea shelf is an
annual carbon sink of 1.1–7.9 Tg C yr−1, with the range
resulting from the change in forcing between CORE and
CFSR. Most of this carbon uptake occurs on the middle-
and outer-shelf domains, while the inner-shelf domain con-
tains some regions of net carbon efflux, mostly located near
river runoff. Previous estimates for the shelf carbon sink have
ranged from 2–67 Tg C yr−1, and our estimate agrees with
the 6.8 Tg C yr−1 estimate by Cross et al. (2013) that incorpo-
rated late-fall and winter data when the shelf is typically out-
gassing carbon. Notably, this range is significantly less than
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the previous model estimate of 15–25 Tg C yr−1 by Pilcher
et al. (2019), which was over a much shorter timeframe
(2003–2012) that only used the CFSR forcing (i.e., more
comparable to our upper 7.9 Tg C yr−1 estimate here). Us-
ing pCO2 data from autonomous vehicles, Wang et al. (2022)
found that Bering Sea shelf carbon uptake has increased from
1989–2019 due to an increase in primary productivity which
suppressed summer pCO2 values and generated more nega-
tive DpCO2. Our model results present a similar mechanism
(Fig. 12) but are highly uncertain as this mechanism appears
to be sensitive to the switch in forcing. The substantial in-
crease in the magnitude of the pCO2 nonT seasonal amplitude
compared to pCO2 T may also indicate that changes in pro-
ductivity and respiration are driving recent changes in the
model carbon cycle and the amplified bottom water acidifi-
cation rates. However, anthropogenic carbon uptake can also
generate large changes in the pCO2 nonT seasonal amplitude
(Fassbender et al., 2018).

Interestingly, the strongest model trends over the past
25 years are in the off-shelf Bering Sea Basin. This region
is a net annual source of carbon (Fig. 11), but the model
suggests that this carbon efflux has substantially declined
over the past 25 years. This region also displays divergent
DpCO2 and CO2 flux patterns (i.e., negative DpCO2 but pos-
itive CO2 flux) on annual timeframes, likely due to the influ-
ence of wind speed in determining the magnitude of the flux.
For example, wind speeds in the Bering Sea Basin are much
stronger in winter compared to summer; thus positive winter
efflux values will be greater in magnitude than negative sum-
mer influx values, generating a net positive annual average
flux. However, our model results are likely more uncertain
for this region because the substantially greater depths com-
bined with our model terrain-following coordinates generate
relatively deep surface grid cells, which may significantly in-
fluence the air–sea gas exchange.

A noted caveat to our model results is that the shift in at-
mospheric and boundary condition forcing in 1995 can lead
to a shift in the system which impacts trends calculated over
the entire model timeframe. For some model variables such
as salinity and air–sea CO2 flux, the impact is readily no-
ticeable, particularly when extending the CORE forcing to
2003 (see Supplement). Conversely, the extent to which this
switch impacts the trends in �arag and pH is less clear. Sur-
face �arag and pH trends are largely consistent across all
three timeframes, suggesting these trends are largely unaf-
fected by the change in forcing. This result is not unexpected,
given that surface acidification rates are strongly tied to the
atmospheric CO2 concentration, which is not impacted by
the forcing shift. There is a moderate acceleration of the pH
and [H+] trends over the last 25 years; however, the annual
atmospheric CO2 growth rate also increases over this same
timeframe. Meanwhile, bottom �arag and pH display differ-
ent trends over the CORE and CFSR timeframes, with es-
sentially no trend with the former but steep negative trends
with the latter. This result may suggest that the 1970–2022

trend is not a product of a discontinuity created in 1995 by
the change in forcing but rather emerges over the 1998–2022
CFSR forcing. Thus, the accelerated bottom OA rates gener-
ated by the model may be dependent on the CFSR forcing,
as they are driven by enhanced productivity and remineral-
ization that are not apparent in the CORE-forced simulation.
But it does not appear that these trends are artificially gener-
ated by the switch in forcing itself. Future comparisons with
newly developed model frameworks for the Northeast Pacific
(i.e., Drenkard et al., 2024) may shed further light on the ro-
bustness of these trends across different models and forcing
products.

It is also possible that these bottom water trends emerge
over the more recent timeframe and are independent of the
forcing, a conclusion supported by previous observational
studies (e.g., Qi et al., 2022; Wang et al., 2022). Indeed,
extending the CORE-forced simulation to 2003 generates a
modest increase in bottom water acidification rates. Diag-
nosing the mechanism responsible for these differences in
the forcing is beyond the scope of this paper, as our goal
is rather to highlight which variables and trends are im-
pacted by the transition in forcing. However, we note that
the CORE atmospheric shortwave and longwave radiative
forcings are slightly adjusted to agree with the CFSR radia-
tive forcing (Kearney et al., 2020) and that water temper-
ature comparisons between the two are comparable (Kear-
ney, 2021). Nonetheless, this study highlights the sensitivity
of the simulated carbon cycle to small shifts in surface and
boundary forcing and suggests that further constraints on the
spin-up and boundary condition forcing may be required as
part of future model development.

5 Conclusions

We use a regional ocean biogeochemical model to simulate
the Bering Sea shelf carbon cycle from 1970–2022. Over this
timeframe, modeled surface waters acidify at rates compara-
ble to those observed in the global ocean, with a slight ac-
celeration in the trend over the past 25 years. Shelf bottom
waters acidify at 2 to nearly 3 times the rate of surface wa-
ters, driven by increased productivity and subsurface respi-
ration and remineralization. However, the magnitude of the
bottom water trends may be sensitive to the timeframe and
atmosphere–ocean forcing product utilized. This mechanism
leads to a substantial increase in the spatial extent of sum-
mer bottom waters with �arag < 1 and pH conditions harm-
ful to red king crab, including parts of the shelf where these
conditions previously did not occur during our model time-
frame. To facilitate tracking these conditions and support the
fisheries management process, we have developed an OA in-
dex which is updated annually and presented as part of the
NOAA Eastern Bering Sea Ecosystem Status Report. Lastly,
we find that the modeled Bering Sea shelf is an annual car-
bon sink of 1.1–7.9 Tg C yr−1, which is lower than a previ-
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ous model estimate of 15–25 Tg C yr−1 but is more consis-
tent with the observational constraint of 6.8 Tg C yr−1. The
range in our estimate results from differences between the
two atmospheric forcing reanalysis products, with the higher
estimate driven by relatively greater carbon uptake in sum-
mer and early fall and somewhat less winter carbon efflux.

Code and data availability. The ROMS Bering10K model source
code used in this study is the K19P20 (Version 2022.09.08) re-
lease archived at https://doi.org/10.5281/zenodo.7062782 (Kearney,
2022). The model output used to generate the figures is archived at
https://doi.org/10.5281/zenodo.15741406 (Pilcher et al., 2025).

Atmospheric CO2 values for Barrow and Mauna Loa are pub-
licly available at the NOAA Earth System Research Laboratories
Global Monitoring Laboratory. M2 mooring pCO2 data are avail-
able at the NOAA National Centers for Environmental Information
(NCEI) at https://doi.org/10.3334/cdiac/otg.tsm_m2_164w_57n
(Cross et al., 2016). Saildrone pCO2 data are also avail-
able at NCEI (with DOIs: https://doi.org/10.25921/gkr5-cb26,
Cross et al., 2021f; https://doi.org/10.25921/w59k-4b77,
Cross et al., 2021e; https://doi.org/10.25921/wkrh-a319,
Cross et al., 2021d; https://doi.org/10.25921/kaj6-vc23, Cross
et al., 2021c; https://doi.org/10.25921/tpv6-sk21, Cross et
al., 2021b; https://doi.org/10.25921/fdbj-6k06, Cross et al.,
2021a; https://doi.org/10.25921/2srd-e610, Cross et al., 2023b;
https://doi.org/10.25921/mnf2-ze24, Cross et al., 2023a).
BEST–BSIERP data are also available at NCEI (with DOIs:
https://doi.org/10.3334/cdiac/otg.best08spr_33hq20080329,
Mathis et al., 2016a; https://doi.org/10.25921/px3e-rb18, Mathis
et al., 2016b; https://doi.org/10.25921/f6g1-3d67, Cross et
al., 2019d; https://doi.org/10.25921/sqkj-f093, Cross et al.,
2019c; https://doi.org/10.25921/14tb-zk16, Cross et al., 2019b;
https://doi.org/10.25921/kjhg-2n93, Cross et al., 2019a).
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line at https://doi.org/10.5194/bg-22-3103-2025-supplement.
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