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Abstract. In the vast Pacific Ocean, remote islands and
atolls induce mesoscale and sub-mesoscale processes that
significantly impact the surrounding oligotrophic ocean,
collectively referred to as the island mass effect (IME).
These processes include nutrient upwelling and phytoplank-
ton biomass enhancement around islands, creating spatial
and temporal heterogeneity in biogeochemical properties.
Previous algorithms developed for detecting the IME using
satellite data are based on monthly or longer averages of
satellite-derived chlorophyll a concentrations. As such, they
tend to underestimate the true extent of this phenomenon be-
cause they do not take into account sub-mesoscale and short-
term temporal variations and because of the sensitivity of
the detection algorithm to single-pixel variability. Here we
present a new approach that enhances satellite data recov-
ery by merging products from multiple sensors and applying
the POLYMER atmospheric correction. By integrating mod-
eled surface currents with higher-temporal-resolution satel-
lite observations, we dynamically track chlorophyll a en-
hancements associated with the IME and the advection of
detached patches and filaments over distances exceeding
1000 km from their source. Our findings, applied to four is-
land groups in the South Pacific, suggest that the ecological
influence of the IME on the oligotrophic ocean is much larger
than previously recognized. This work provides a foundation
for improved mechanistic understanding of the IME and sug-
gests broader implications for ocean ecology in subtropical
regions. The approach developed here could also be applied
in studies on biological responses to other mesoscale and
sub-mesoscale processes in other parts of the world’s oceans.

1 Introduction

The Pacific Ocean is the largest ocean on our planet, cov-
ering approximately one-third of Earth’s surface. Embedded
in this vast open ocean are remote islands and atolls that are
a source of perturbations to the open-ocean ecosystem. As
winds and currents interact with island topography, they in-
duce mesoscale processes (i.e., local upwelling, eddies) that
form at the downstream wake of islands. These in turn al-
ter vertical and horizontal fields of temperature, light, and
nutrients (Eden and Timmermann, 2004; Dong et al., 2007;
Hasegawa et al., 2009; De Falco et al., 2022, and references
therein). In most cases, increased chlorophyll a concentra-
tion ([Chla]; see Table 1 for definitions of all acronyms and
variables used in this paper) is observed in the vicinity of is-
lands, likely triggered by nutrient inputs from land and/or up-
welling of nutrient-rich deep water around islands (Shiozaki
et al., 2014; Gove et al., 2016; Caputi et al., 2019). This
phenomenon, known as the island mass effect (IME), alters
the growth and mortality rates of plankton species and intro-
duces spatiotemporal heterogeneity in biogeochemical prop-
erties in the surrounding oligotrophic ocean. Signatures and
effects of these IMEs can be detected hundreds of kilometers
away from islands around which they were initiated (Mes-
sié et al., 2020, 2022). The first study on the IME evaluated
the enhancement of carbon fixation as a measure of produc-
tivity near Oahu (Hawaii) relative to the background ocean
(BO), which was defined as the furthest station along a tran-
sect (in that case, 30 km away from the island’s shore; Doty
and Oguri, 1956). This approach assumed that the IME was
confined to an area located between the island’s shore and
the location of the “BO station”. The first basin-scale study
of the IME used in situ chlorophyll fluorescence measure-
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ments (Dandonneau and Charpy, 1985) and showed ubiqui-
tous enhancements of chlorophyll fluorescence in the vicin-
ity of large islands in the western Pacific (e.g., Vanuatu, Fiji,
Tonga, and Samoa).

The limited accessibility to vast areas in the South Pacific
Ocean makes ocean color remote sensing approaches well-
suited for basin-scale studies of the IME. Using long-term
averages of [Chla] from ocean color remote sensing data
(July 2002 to June 2012), Gove et al. (2016) showed that
the IME is a nearly ubiquitous phenomenon across the Pa-
cific Ocean. The authors estimated the magnitude of IMEs
by looking at changes in [Chla] within a ∼ 30 km wide band
around each island’s 30 m isobath, relative to BO reference
pixels located just outside this band (Gove et al., 2013, 2016).
In practice, this detection method uses the same quantitative
approach as Doty and Oguri (1956) and accurately assesses
the magnitude of the [Chla] enhancement associated with the
IME as long as the BO reference pixels are outside the re-
gion affected by the IME. This assumption is reasonable for
small islands (most islands in Gove et al., 2016, were smaller
than a 30 km equivalent spherical diameter) and when using
multi-year averages of [Chla] that tend to highlight only lo-
cations with permanent [Chla] enhancement (see below). A
more recent basin-scale study of the IME aimed to capture
more complex spatial heterogeneity around islands by defin-
ing a specific [Chla] contour to delineate the extent of the
IME, allowing for the detection of the IME to extend further
than 30 km away from the 30 m isobath (Messié et al., 2022).

Generally speaking, approaches for the detection of the
IME from remotely sensed [Chla] require full or nearly full
pixel data recovery over the entire study area for an accurate
delineation of the extent of the IME. Messié et al. (2022)
used yearly and monthly averages of 4 km spatial resolu-
tion [Chla] maps for their basin-scale estimation of the IME.
While this temporal and spatial averaging enables the pro-
duction of gapless [Chla] maps, it reduces the ability to de-
tect fine-scale heterogeneity in space and time (Lee et al.,
2018), only highlighting [Chla] enhancement observable at
the same location over the time frame of the averaging period
and therefore generally confined to regions directly adjacent
to islands. Indeed, determining the spatial extent of the bi-
ological response of the IME and its effect on the ecology
and bio-geochemistry of the adjacent oligotrophic ocean is
challenging due to its spatial heterogeneity and the transient
nature of phytoplankton responses to perturbations (Messié
et al., 2020; Cassianides et al., 2020). Surface ocean prop-
erties, as observed by satellite sensors, are advected by wind
and currents across a kilometer-wide pixel on a timescale of a
few hours. Therefore, observations of the ocean using yearly
averages only capture spatial patterns due to dominant winds
and currents over this time frame, ignoring spatial and tem-
poral heterogeneity caused by short-term wind and current
variability. Thus, a more accurate quantification of IME ex-
tent and dynamics requires temporal averaging of satellite
data over shorter timescales (e.g., to resolve mesoscale vari-

ability, up to 2 weeks) and tracking the evolution of IMEs
over space and time using surface current data (Cassianides
et al., 2020). Ideally, daily observations of the entire global
ocean would provide the necessary temporal resolution to
track IMEs. In reality, satellite measurements of the ocean
surface in visible and near-infrared wavelengths are often ob-
structed by clouds or affected by sunglint, limiting the extent
of data recovery at the necessary temporal scales.

Here, we present a method to increase satellite data re-
covery to improve the spatial and temporal resolution of
satellite observations by merging products from up to five
different satellite sensors and using an atmospheric correc-
tion that is less sensitive to glint and adjacency effects.
These merged products reveal frequent occurrences of higher
[Chla] patches that are detached from islands and advected
offshore (referred to as “delayed IME” in Messié et al.,
2020). The higher temporal resolution achieved allows for a
more accurate estimation of [Chla] accumulation as a proxy
for phytoplankton biomass accumulation (termed “blooms”)
associated with IMEs. Building upon the work of Messié
et al. (2022), we integrate modeled surface currents to de-
velop a dynamic algorithm for the detection of the IME.
We applied this algorithm to four island groups in the South
Pacific Ocean (i.e., Rapa Nui, Society Islands, Samoa, and
Fiji) over a 6-month period and show that accounting for
detached patches significantly increases estimates of total
[Chla] stocks associated with the IME in the area of study.
This implies that the IME has a much larger impact on the
oligotrophic ocean than previously estimated.

2 Method

2.1 Level-2 satellite product computation

The use of a single satellite sensor often results in maps
with significant gaps in data due to intermittent cloud cover
or glint (which depends on the satellite-specific viewing an-
gle). To address this, we have adapted NASA Ocean Color’s
processing strategy to produce level-3 custom-made com-
posite products from level-1A (L1A) top-of-atmosphere ra-
diance. We merged data collected by three different sen-
sor types (Moderate Resolution Imaging Spectroradiometer,
MODIS; Visible Infrared Imaging Radiometer Suite, VIIRS;
and Ocean and Land Colour Instrument, OLCI) on board up
to six polar-orbiting satellites (Aqua, Terra, SNPP, JPSS1,
Sentinel-3A, and Sentinel-3B). By taking advantage of their
different overpass times, swaths, and viewing geometry, we
decreased the impact of clouds and glint on data recovery.
Additionally, we applied the POLYMER atmospheric correc-
tion (Steinmetz et al., 2011) to further improve data recovery
in areas impacted by glint and adjacency effect (e.g., close
to shore and clouds). POLYMER is an atmospheric correc-
tion based on a spectral matching method to decompose the
top-of-atmosphere (TOA) signal into an atmospheric model
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Table 1. Table of notations.

SPSG South Pacific subtropical gyre

IME Island mass effect

BO Background ocean

IMEM Island mass effect zone delineated with the Messié et al. (2022) algorithm

IMED Dynamic island mass effect zone delineated with the algorithm developed in this study

IMET Total island mass effect zone delineated with the algorithm developed in this study:
IMEM+ IMED= IMET

BOM Background ocean zone relative to the IMEM zone, defined as the BOM area is equal to the IMEM area,
located outside of the IMEM zone and closest to the 30 m isobath

BOT Background ocean zone relative to the IMET zone, defined as the BOT area is equal to the IMET area,
located outside of the IMET zone and closest to the 30 m isobath

[Chla] Total chlorophyll a concentration (mg m−3)

cp660 Particulate beam attenuation coefficient at 660 nm (m−1)

chl_min Minimum [Chla] detected in the first pixel band adjacent to the 30 m isobath (shallow pixel polygon) of
each island

chl_max Maximum [Chla] detected in the first pixel band adjacent to the 30 m isobath (shallow pixel polygon)
of each island

chl5th 5th-percentile [Chla] of the IMET predicted zone

chl95th 95th-percentile [Chla] of the IMET predicted zone

1[Chla]IMET−BOT IMET [Chla] enhancement: [Chla]IMET − [Chla]BOT (mg m−3)

1[Chla]IMEM−BOM IMEM [Chla] enhancement: [Chla]IMEM − [Chla]BOM (mg m−3)∑
[Chla]IMET IMET surface-area-integrated [Chla] (mg m−1)∑
[Chla]IMEM IMEM surface-area-integrated [Chla] (mg m−1)

1
∑
[Chla]IMET−BOT IMET surface-area-integrated [Chla] enhancement:

∑
[Chla]IMET −

∑
[Chla]BOT (mg m−1)

1
∑
[Chla]IMEM−BOM IMEM surface-area-integrated [Chla] enhancement:

∑
[Chla]IMEM −

∑
[Chla]BOM (mg m−1)

SEMf
[Chla]IMET

Standard error in the mean associated with [Chla]IMET (mg m−3; see Appendix B)

SEMf
1[Chla]IMET−BOT

Standard error in the mean associated with 1[Chla]IMET−BOT (mg m−3; see Appendix B)

SEMf
1
∑
[Chla]IMET−BOT

Standard error in the mean associated with 1
∑
[Chla]IMET−BOT (mg m−1; see Appendix B)

and an ocean reflectance model. A three-term polynomial fit
is used to model the atmospheric reflectance, with the first
term accounting for non-spectral scattering such as sunglint
and the last term accounting for adjacency effect from clouds
and white surfaces (Steinmetz et al., 2011). By utilizing the
entire TOA spectrum and accounting for adjacency effects
and residual glint in its polynomial fit terms, this method im-
proves the retrieval of high-quality data around clouds and
from pixels affected by sunglint compared to standard atmo-
spheric correction methods (Frouin et al., 2009, 2012). The
POLYMER atmospheric correction was initially developed
for the Medium Resolution Imaging Spectrometer (MERIS)

sensor but was adapted to produce consistent ocean color
products between MODIS, VIIRS, and OLCI sensors, among
others (Steinmetz and Ramon, 2018).

Most operational level-3 products are available at spatial
resolutions of 4 or 9 km. While this resolution is usually suf-
ficient to capture important mesoscale spatial features in the
open ocean, it does not resolve sub-mesoscale features like
fronts, small eddies, and filaments around islands. Addition-
ally, bottom reflectance in coastal waters prevents data recov-
ery closer than 4 or 9 km from shore at these spatial resolu-
tions. Moreover, it is a common practice in coastal studies to
remove at least one neighboring pixel around shallow areas
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to limit the impact of adjacency effects and ensure no con-
tamination from bottom reflectance. Therefore, the closest
data recovered with a 4 km spatial resolution are most often
centered at least 6 km away from the 30 m isobaths. How-
ever, most islands in the ocean are smaller than 2 km2. For
instance, the median island area in the 2593 km× 2593 km
region analyzed around the Fiji Archipelago is ∼ 0.06 km2

with ∼ 86 % of all islands smaller than 2 km2. Therefore,
having the closest pixel 6 km away from shore and a pixel
size that is at least twice the size of ∼ 86 % of islands limits
our ability to accurately quantify their IME (see for exam-
ple Niue, Fig. A2). With the approach presented here, we
can maximize data recovery close to shore while keeping the
nominal resolution of 1 km of the operational MODIS and
VIIRS level-2 (L2) products. Ideally, we would produce this
type of multi-satellite composite for the entire Pacific Ocean,
but we had to limit our study area to four case studies around
islands of interest due to computational and data storage ca-
pacity limitations. In each case, the maps were large enough
(i.e.,> 1200 km× 1200 km area) to capture the full extent of
the IME around the group of islands studied and were limited
to a maximum size of a 2600 km× 2600 km area.

All analyses for this study were conducted using the Uni-
versity of Maine’s high-performance Linux computing clus-
ter following the processing pipeline shown in Fig. A1.
We downloaded level-1 (L1A) top-of-atmosphere radiance
of MODIS Aqua, MODIS Terra, VIIRS SNPP, and VIIRS
JPSS1 via NASA’s common metadata repository application
programming interface (CMR API, 2024) and the resam-
pled 1 km spatial resolution OLCI S3A and OLCI S3B data
via Copernicus Data Space Catalogue API (2024) using the
Python download utility “getOC” (see the GitHub reference
of Haëntjens and Bourdin, 2017). We built two sets of satel-
lite data. We downloaded the first set of images along the
entire Tara Pacific transect (May 2016 to October 2018; see
Gorsky et al., 2019; Lombard et al., 2023) and used it to com-
pute sensor-specific calibration coefficients based on correla-
tion with continuous in situ data (see Sect. 2.2). We refer to
it as the “calibration dataset”. The second set of images, re-
ferred to as the “study dataset”, consisted of 6-month-long
time series of satellite images in the vicinity of islands of in-
terest. We processed all downloaded L1A images into atmo-
spherically corrected level-2 remote sensing reflectance (Rrs)
data using the POLYMER algorithm (version v4.17beta2;
Steinmetz, 2023) and ancillary data from the European Cen-
tre for Medium-Range Weather Forecasts reanalysis model
version 5 (i.e., ERA5). We removed poor-quality data pixels
by applying the flags and recommendations of POLYMER
(see POLYMER flags, 2024). For comparison, we also gen-
erated the standard NASA Rrs using the atmospheric correc-
tion of SeaDAS (i.e., “l2gen”) using the Ocean Color Science
Software (OCSSW) V2022.3, and applying the Ocean Color
default flags (see NASA OBPG flags, 2024). Subsequently,
we projected each satellite image of the study dataset onto
the same equally spaced 1 km spatial resolution plate carrée

reference grid specific to each studied region using nearest-
neighbor interpolations from Python’s SciPy library. We es-
timated [Chla] from all POLYMER and l2gen Rrs data us-
ing the OCx algorithm (i.e., chl_ocx; O’Reilly and Werdell,
2019) and the CI-OCx blended algorithm (i.e., chlor_a; Hu
et al., 2019; O’Reilly and Werdell, 2019).

2.2 In situ data and match-ups

We calibrated remote sensing products to minimize inter-
sensor variability and biases using in situ data collected dur-
ing the Tara Pacific Expedition (Gorsky et al., 2019; Lom-
bard et al., 2023). We measured hyperspectral absorption
(a) and attenuation (c) quasi-continuously near islands with
a SeaBird ac-s spectrophotometer mounted in an underway
flow-through system. We computed particulate absorption
and attenuation coefficients (i.e., ap and cp) by referencing
these sensor measurements to hourly samples taken through
a 0.2 µm filter (Dall’Olmo et al., 2009; Slade et al., 2010;
Boss et al., 2019). Particulate beam attenuation at 660 nm
(cp660) was used as a proxy for particulate organic carbon
(Gardner et al., 2006; Cetinić et al., 2012). We estimated
absorption specific to Chla-containing particles using the
line height of the ap peak at 676 nm (ap676LH; Boss et al.,
2013). We collected surface samples daily around 10:30 lo-
cal time for pigment analysis via high-pressure liquid chro-
matography (HPLC; see Gorsky et al., 2019; Lombard et al.,
2023). We then estimated [Chla] from ap by applying the
well-constrained linear relationship between the logarithm of
ap676LH amplitude and the logarithm of total [Chla] estimated
from HPLC (Fig. B2a).

We performed match-ups between the calibrated [Chla]
estimated from the underway system and the [Chla]
estimated from satellites to choose the best algorithm
(i.e., least noisy or biased) to compute [Chla] from
satellite Rrs. We matched three different [Chla] products
(i.e., chlor_a_polymer, chl_ocx_seadas, chlor_a_seadas)
with the calibrated [Chla] estimated from the underway sys-
tem following Bailey and Werdell (2006). We extracted and
averaged underway [Chla] measurements within a ±3 h pe-
riod of each satellite overpass (i.e., Aqua and SNPP, 13:30;
Terra, 10:30; Sentinel-3A and Sentinel-3B, 10:00; JPSS1,
14:20 local time at the Equator) and satellite data from the
25 closest pixels to underway data locations. We computed
median coefficients of variation inRrs for bands between 412
and 555 nm and for the aerosol optical thickness at 865 nm
for each match-up and tested several homogeneity thresholds
and the minimum number of unmasked pixels to maximize
the number of valid match-ups without introducing noise to
the in situ satellite correlations (Bailey and Werdell, 2006).
Only match-ups with a minimum of seven unmasked pix-
els and coefficients of variation lower than 0.15 were kept
(Fig. B2b, c, and d). We compared the parameters of the ro-
bust linear regressions of valid match-ups to choose the best
[Chla] derivation methods (Table B1). We found 33 % more
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valid match-ups with [Chla] computed using POLYMER Rrs
(N = 428) than valid match-ups with [Chla] computed using
SeaDAS Rrs (N = 321). [Chla] computed with the blended
CI-OCx using POLYMER Rrs showed, on average, the high-
est coefficient of determination (R2chlor_a_polymer = 0.78±
0.05), slopes closest to 1 (slopechlor_a_polymer = 0.99±0.10),
and intercepts closest to 0 (interceptchlor_a_polymer =−0.06±
0.10) when compared to in situ [Chla]. In contrast, the nor-
malized root mean square error in the correlation between
in situ [Chla] and [Chla] computed with the blended CI-
OCx using POLYMER Rrs (nRMSEchlor_a_polymer = 21.81±
6.34 %) was higher than with the other two [Chla] values
computed using SeaDASRrs (nRMSEchlor_a_seadas = 16.55±
1.70 % and nRMSEchl_ocx_seadas = 20.94± 3.18 %). Consid-
ering the smaller bias (slope closer to 1 and intercept closer
to 0) and better data recovery (higher number of valid match-
ups) associated with the computation of [Chla] with the
blended CI-OCx algorithm applied on POLYMER Rrs, we
choose this method for the rest of the analysis to minimize
differences between sensors while maximizing valid pixel
recovery. Despite the well-documented degradation of the
MODIS sensor on board the Terra satellite and its poten-
tial impact on climate studies (Lyapustin et al., 2014; Xiong
et al., 2019; Xiong and Butler, 2020), our analysis found no
significant indication of reduced data quality in [Chla] esti-
mates derived from MODIS Terra Rrs. Correlations between
in situ [Chla] and MODIS Terra-derived [Chla] showed per-
formance metrics (R2, nRMSE, slope, and intercept) compa-
rable to those of other satellite sensors included in this study
(Table B1 and Fig. B2 b, c, and d). These findings suggest
that the extensive correction and calibration efforts applied
to MODIS Terra data effectively mitigate the impacts of solar
diffuser degradation, changes in scan mirror reflectance, and
increased polarization sensitivity (Lyapustin et al., 2014). As
a result, MODIS Terra data can be reliably incorporated into
the multi-satellite merged product used in this study.

2.3 Level-3 multi-satellite product merging

We followed a similar merging strategy to that of
Copernicus’ multi-satellite Global Ocean Colour processor
(i.e., GlobColour): each sensor’s satellite product was de-
rived separately before merging them (Garnesson et al.,
2019), rather than the strategy of the Ocean-Colour Climate
Change Initiative (i.e., OC-CCI), which merges reflectances
before calculating the products (Sathyendranath et al., 2019).
This method offers two important advantages: (1) it does
not require any band-shifting procedures to merge Rrs be-
tween sensors with different spectral bands, and (2) it bene-
fits from sensor-specific algorithm coefficients that account
for variability in Rrs across sensors to produce consistent
products (Garnesson et al., 2019). To improve consistency
and minimize the differences across satellite sensors, we in-
dividually calibrated the [Chla] data from each sensor with
the underway in situ [Chla] measurements (using parameters

from their respective robust linear regressions; see Table B1)
to produce “calibrated” products before merging them. This
nudging method reduced the inter-satellite variability and im-
proved the spatial smoothness of the binned products. Since
[Chla] was calibrated to in situ data, the bias associated with
the estimation of [Chla] from each satellite was centered and
likely reduced to the bias of in situ data. For each study area,
we binned the calibrated data temporally to reconstruct full
satellite images. Time series of 8 d periods were the small-
est temporal binning we could achieve to recover nearly full
satellite images in all the studied regions for 6-month-long
time series. Before computing the merged products of a given
8 d period and a given region, we grouped all re-projected
level-2 images and removed outliers (see Appendix C). To
minimize the weight of outliers on the level-3 end products,
the binning was performed with medians instead of averages.
We produced a 6-month-long time series of level-3 8 d medi-
ans of [Chla] for each of the four case studies presented here.
Each case-study region was centered geographically on an
island sampled during the Tara Pacific Expedition, and each
6-month time series was centered temporally on the day of in
situ sampling (Gorsky et al., 2019; Lombard et al., 2023). We
propagated errors associated with [Chla] estimation, nudg-
ing, and merging throughout each step to represent the fi-
nal [Chla] uncertainty denoted as the standard error in the
mean (i.e., SEM) of the merged product (SEMf

[Chla]IME
; see

Appendix B). We used this final uncertainty to determine if
the [Chla] enhancement associated with an IME was signifi-
cant or not.

2.4 Island mass effect detection

2.4.1 Bathymetry, island, and submerged reef
databases

We created masks at 1 km spatial resolution denoting land
(land mask) and areas shallower than 30 m depth (shallow
mask) for the studied areas using the General Bathymetric
Chart of the Oceans (GEBCO) database (GEBCO Bathymet-
ric Compilation Group, 2022). Since a large number of is-
lands and reefs are smaller than the spatial resolution of the
GEBCO database (i.e., 15 arcsec corresponding to 463 m at
the Equator), we utilized the 30 m spatial resolution global is-
land database (Sayre et al., 2019, 2020) to refine the land and
shallow masks for the study areas. We then extended the shal-
low mask by one additional pixel to ensure all shallow pix-
els are masked. Subsequently, we merged the global island
database and the submerged reef database from Messié et al.
(2022) into a single database. To ensure accuracy, we auto-
matically verified all island centroids to confirm their align-
ment with a land pixel on the land mask and to ensure their
associated land polygon was not significantly smaller than
the reported island area in the global island database. Simi-
larly, we automatically checked all submerged reef centroids
to confirm their alignment with a shallow mask pixel and to
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ensure their associated shallow-mask polygons were not sig-
nificantly smaller than the reported reef area in the Messié
et al. (2022) database. We manually corrected any discrepan-
cies that were identified when comparing to the bathymetry
data and saved the corrections for reference. For simplic-
ity, the term “islands” in this study also refers to submerged
seamounts or reefs shallower than 30 m depth.

2.4.2 IME contour delineation

The [Chla] contour value delineating the IME was deter-
mined in three successive steps to dynamically detect de-
tached IME patches. The first step used the method from
Messié et al. (2022) to detect IMEs on each 8 d composite
map of the time series (see step 1 of Fig. 1a). This method
defines the [Chla] contour value with an iterative process
starting from the highest (chl_max) to the lowest [Chla]
(chl_min) values detected one pixel away from the 30 m iso-
bath of each island and ending when a set of specified con-
ditions is met. These conditions include (1) when [Chla] val-
ues fall below chl_min, (2) when the IME mask touches the
domain borders or a continent masks, and (3) when regions
with [Chla] exceeding 80 % of the chl_max are detected far-
ther than 150 km away from the 30 m isobath. This 150 km
threshold was set to allow for the detection of water masses
that were detached from an island and advected offshore (de-
noted “detached IMEs”) but, at the same time, to prevent po-
tential bias by accounting for non-IME-related [Chla] vari-
ability far from the island. We observed that this algorithm
performed well when the IME is directly adjacent to the 30 m
isobath of an island and when the IME is spatially homoge-
neous, with the highest [Chla] values typically located near
the island and decreasing with distance from shore (similar
to the IME detected with monthly or yearly satellite aver-
ages; Messié et al., 2022). Therefore, this method is valu-
able as the first step for detecting the strongest IME signal
that surrounds an island, referred to in this study as IMEM
(step 1 of Fig. 1a). However, this approach underestimates
the entire extent of an IME when applied to 8 d [Chla] prod-
ucts because it fails to detect elevated [Chla] patches that
have been detached from their originating IME or when pix-
els with [Chla]> 0.8× chl_max were detected more than
150 km from the island of origin. Detached IMEs, typically
comprised of dynamic filaments and eddies that are quickly
advected away from islands, are detectable on 8 d averaged
satellite products but often not captured using monthly or
yearly averages such as the products used by Messié et al.
(2022). We therefore extended the method proposed by Mes-
sié et al. (2022) by adding another set of detection protocols,
here called step 2 and step 3. We utilized modeled daily sur-
face currents (i.e., global ocean ensemble physics reanalysis
products provided by Copernicus Marine Services; European
Union-Copernicus Marine Service, 2019) to predict the gen-
eral locations of IME patches that detach from islands (step 2
of Fig. 1). For clarity, we refer to the detached IME area ob-

tained with this approach as IMED (step 3 of Fig. 1). The
sum of both the IMEM and IMED areas (i.e., total IME) is
referred to as IMET. The following sequence was applied to
detect IMEs in each 8 d median composite of the time series
(Fig. 1):

– Step 1 is the detection of IMEM (Messié et al., 2022,
Fig. 1a).

– Step 2 is the prediction of the general location of IMED
by applying the average current u and v vectors from
the previous 8 d period (t =−1) to the location of IMET
detected at t =−1 (Fig. 1d). When step 2 is performed
on the first 8 d median of the time series (t = 0), the
surface current at t = 0 is applied to the IMEM detected
at t = 0 instead (Fig. 1b).

– Step 3 is the delineation of IMED and IMET using a
second round of [Chla] value iteration, ranging from the
95th to the 5th percentiles of [Chla] measured within the
predicted zone and only keeping the patches that over-
lap with the predicted zone location as explained below.

Step 3 of the detection involves a second round of [Chla]
iteration, which is based on the IMEM detection method but
adapted to the higher-resolution satellite composites. First,
we modified the detection of the [Chla] range, defining the
range of iteration for a given IME, to better capture the
dynamic range in [Chla] of the entire IME while avoid-
ing potential biases in pixels adjacent to the island due to
bottom reflectance and adjacency effect. We performed the
[Chla] iteration from the 95th to the 5th [Chla] percentiles
of the entire predicted zone (chl95th and chl5th) instead of
performing the [Chla] iteration from chl_max to chl_min
of the first pixel band around the 30 m isobath of each is-
land. Additionally, the iteration step size was automatically
defined to always correspond to 30 [Chla] steps within the
[Chla] range of the entire predicted zone (from chl95th to
chl5th). The number of [Chla] iteration steps (i.e., 30 itera-
tions) was optimized by trial and error to better detect the
IME around Rapa Nui, where the [Chla] dynamic range is
the lowest and where a small change in the [Chla] contour
has the most impact on the IME surface detected. Simi-
larly to the IMEM detection, once the [Chla] contour value
was found, the iteration was performed again, starting at
the preceding iteration but with an iteration step size di-
vided by 10 in order to delineate the IME patch more ac-
curately. As a result, the [Chla] iteration step value ranged
from 10−4 to 10−1 mg m−3 which, in low-dynamic-range re-
gions, is smaller than the 10−3 mg m−3 step value used in
Messié et al. (2022) and smaller than the accuracy of abso-
lute [Chla] retrieval from satellites (10−1 mg m−3, discussed
below). This smaller [Chla] iteration step value improved the
performance of the detection algorithm around islands in re-
gions with a very low dynamic range in [Chla] (e.g., Rapa
Nui). We also modified the conditions to stop the [Chla] itera-
tion, removing the condition that stopped the [Chla] iteration
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Figure 1. Island mass effect detection method. (a) Step 1: [IMEM]t0
detection following the method from Messié et al. (2022). (b) Step
2 at t = 0 (first image of the time series): prediction of the detached
IME ([IMED]t0 ) location applying t0 surface currents ([u,v]t0 ) to
the [IMEM]t0 location. (c) Step 3 at t = 0: detached IME con-
tour detection ([IMED]t0 ) iterating from the 95th to the 5th per-
centile of [Chla] (chl95th and chl5th respectively) detected within
the [IMEM]t0 and the t0 predicted zone. (d) Step 2 at t > 0 (rest
of the time series): prediction of the [IMED]t location applying
t−1 surface currents ([u,v]t−1 ) to the total IME location detected
in the previous image ([IMET]t−1 ). (e) Step 3 at t > 0: [IMED]t
contour detection iterating from chl95th and chl5th detected within
the [IMET]t−1 and the t predicted zone.

when pixels with [Chla]> 0.8× chl_max are located more
than 150 km away from the studied island to allow for the
detection of a detached IME further than 150 km away from
the island (i.e., condition number 3; Messié et al., 2022). Ad-
ditionally, instead of stopping the [Chla] iteration when the
IME touched the domain border, the IME was considered to
be exiting the domain, and the iteration was stopped when,
for a given [Chla] contour, more than 25 % of the predicted
pixel location overlapped with a chlorophyll patch touching
the border. This modification improved detection of the IME
by tolerating a small proportion of the IME patch to be ad-
vected near the domain border while still stopping the itera-
tion when the [Chla] contour becomes too low and includes
features that are not part of the IME. We also added a condi-
tion to stop the IMED [Chla] iteration when the IMED [Chla]
contour intersected an IMED contour associated with another
island. Finally, as in Messié et al. (2022), the BO reference
zones associated with each IME zone (i.e., IMEM, IMED, and
IMET) were defined as the area equal to the size of the cor-
responding IME zone but located outside of the IME zone,
closest to the shallow mask (i.e., BO zone associated with
IMEM denoted BOM and BO zone associated with IMET de-
noted BOT, Table 1). We computed surface-area-integrated
[Chla] as a proxy for surface phytoplankton biomass inte-
grated over the entire IME and BO zones in two-dimensional
metric tons of chlorophyll a (t m−1) by summing the [Chla]
of each pixel within the IME and BO zones multiplied by the
area of that pixel:

∑
[Chla]IME =

NpixelIME∑
n=1

[Chla]n× areapixeln . (1)

The difference in average [Chla] and
∑
[Chla]IMET be-

tween the IME and the corresponding BO reference zone
was computed to estimate the biomass increase associated
with an IME relative to the BO (i.e., 1[Chla]IMET−BOT and
1
∑
[Chla]IMET−BOT respectively). The [Chla] enhancement

attributed to a given IME was deemed significant when
both the mean and integrated values were above their uncer-
tainty, e.g., 1[Chla]IMET−BOT −SEMf

1[Chla]IMET−BOT
> 0 or

1
∑
[Chla]IMET−BOT−SEMf

1
∑
[Chla]IMET−BOT

> 0. Examples
of IME zones detected on the 6-month-long map time series
around Fiji–Tonga and Samoa–Niue (Figs. 2 and 3; Supple-
ment Animations S1 and S2; Bourdin, 2025) show contours
outlining the IMEM (i.e., red contours), the extension of the
algorithm to detect the IMED (i.e., blue contours), and their
associated BOT zones (i.e., white circles). The same analysis
was performed around Rapa Nui and the Society Islands and
is accessible in Bourdin (2025).
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Figure 2. Snapshot of 6-month-long time series of 8 d multi-
satellite composites of the total chlorophyll a concentration ([Chla])
around the Fiji and Tonga archipelagos. The IMEM (Messié et al.,
2022) contours are delineated in red, the IMED contours added in
this study are delineated in blue, and the BOT zones associated with
each IMET area are delineated with white circles. Overlaid arrows
represent modeled surface current. Entire 6-month animated time
series are accessible in the Supplement (Animation S1) or in Bour-
din (2025).

2.4.3 Detecting the IME around neighboring islands

In the case of neighboring islands, it is important to define
which island, among a group of islands within a common
IMEM patch, contributes the most to the IMEM (referred
to as the “lead island”). In Messié et al. (2022), the lead
island was defined as the island with the highest chl_min
value detected on the first pixel band adjacent to its shallow-
mask polygon. In our study, the 8 d median composite prod-
uct maps are more spatially heterogeneous than monthly or
yearly averages used in Messié et al. (2022), and therefore
chl_min values may not be the best indicator to assign a lead
island. Moreover, the first pixel band adjacent to the shallow
mask, from which the chl_min value is extracted, is the most
likely to be impacted by the adjacency effect and bottom re-
flectance, leading to potential misassignment of the lead is-
land. For example, the 6-month map time series around Fiji
shows regions of enhanced [Chla] that have been advected in
different directions around the archipelago, with the largest
bloom always centered on Fiji’s two largest islands (i.e., Viti
Levu at 10 912 km2 and Vanua Levu at 5817 km2; Fig. 2 and
Supplement Animation S1). When applying the IMEM crite-

Figure 3. Snapshot of 6-month-long time series of 8 d multi-
satellite composites of the total chlorophyll a concentration ([Chla])
around Samoa, Tonga, and Niue. The IMEM (Messié et al., 2022)
contours are delineated in red, the IMED contours added in this
study are delineated in blue, and the BOT zones associated with
each IMET area are delineated with white circles. Overlaid arrows
represent the modeled surface current. Entire 6-month animated
time series are accessible in the Supplement (Animation S2) or in
Bourdin (2025).

ria, the lead island was assigned to smaller islands (e.g., Koro
Island and Yalewa Kalou Island, which have a surface area
of 105 km2 and at 0.2 km2, respectively) or to a 20 km2 sub-
merged reef in 19 % of the realizations in this time series.
Likewise, when applying the IMEM criteria on the Society
Islands’ IME, the lead island was assigned to small islands in
24 % of the 8 d frames in the time series, although the bloom
was always centered on Tahiti. Based on observations of the
time series of [Chla] maps, we found that, for large islands
(> 100 km2), the largest IMEs, in terms of the area and mag-
nitude of [Chla], are generally located around islands with
the largest land area. For that reason, in our dynamic model
the lead island was reassigned after the IMEM detection (step
1 of Fig. 1a) following a different ranking (see below), which
was also later used as the order of detection of IMED (step
3 of Fig. 1). All islands of a specific study region were
first sorted by 100 km2 increments of land area categories
(smaller than 100 km2, between 100 and 200 km2, etc.), and
then within each category they were further sorted by incre-
ments of 10 km2 30 m isobath area sub-categories (represent-
ing the reef area). Thus, land area is ranked higher than reef
area only when islands are larger than or equal to 100 km2.
We further ranked islands within each land area category and
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reef area sub-category using their IME intensity based on
chl95th values, rounded to the closest 0.1 mg m−3. Finally, is-
lands of a similar rounded land area, rounded reef area, and
rounded chl95th were ranked by their calculated IMEM area.
The IMET detection was performed following this ranking
order; thus, for a given IMET zone encompassing multiple
islands, the lead island was defined as the top-ranked island
in the IMET zone. Once all IMET detections were performed,
the lead islands assigned by this ranking were verified to en-
sure that, among all islands associated with a given IMET
patch, the lead island was indeed selected as the first island
in the ranking previously defined. Considering the complex-
ity of the currents around archipelagos, we acknowledge that
although a single lead island was assigned to a given IMET,
the enhancement in [Chla] associated with IMEs could orig-
inate from the influence of multiple islands. For instance, the
IME associated with Fiji was a combination of IMEs of all is-
lands and submerged reefs of the archipelago, which was also
often mixed with the substantial IME influence of the Tonga
Archipelago. Therefore, IMEs of all islands and reefs associ-
ated with archipelagos were combined into an “archipelago
IME”, such as the “Fiji–Tonga” IME example (Fig. 2), to
track the evolution of the combined IME over the 6-month
time series produced (i.e., 88 islands and 140 submerged
reefs; Fig. 4). Likewise, the IMET associated with Samoa
encompassed the IMEs of Savaii, Upolu, and Tutuila and all
the other small islands and reefs contained within the IMET
patch detected around the archipelago (i.e., 7 islands and 38
submerged reefs; Fig. 5). The IME around the Society Is-
lands in French Polynesia was also combined into one large
IME that encompassed the Society Islands themselves, the
Tuamotu Archipelago, and all small islands and reefs located
in the large IME zone detected around Tahiti (i.e., 176 islands
and 34 submerged reefs; Fig. E2). The IMET associated with
Rapa Nui encompassed Rapa Nui and Sala y Gómez and two
submerged reefs (Fig. E1).

3 Assessment

3.1 Benefit of multi-sensor composites

The observation and tracking of water masses in the ocean
from space are challenging due to glint and clouds that sig-
nificantly reduce the amount of data recovered from satel-
lite ocean color sensors. Furthermore, even without clouds
or glint, uncertainties associated with satellite retrieval re-
main substantial, mainly due to atmospheric gases (Giler-
son et al., 2022). This impact is even larger in oligotrophic
and ultra-oligotrophic regions, where less light is reflected
back to the satellites by the ocean in comparison to the at-
mosphere. Merging data from multiple satellites with dif-
ferent overpass times and viewing angles offers several ad-
vantages: (1) changing cloud coverage over time may allow
for zones masked by clouds in the morning to be visible in

the afternoon; (2) observing the ocean from varying viewing
angles improves data recovery by minimizing the impact of
sunglint; (3) assuming no bias, combining data from sensors
with different inherent uncertainties likely reduces the over-
all uncertainty in the merged product; and (4) as atmospheric
properties (other than clouds) change over time, merging data
from multiple overpass times can further decrease the rela-
tive uncertainty in the final product. Moreover, the correc-
tion of the adjacency effect and glint by the POLYMER at-
mospheric correction further increases data recovery and re-
duces uncertainties around clouds and in glint-impacted ar-
eas. By merging products from multiple satellites, we max-
imized the amount of data available at a given time and lo-
cation (∼ 10 measurements per pixel on average for a given
8 d period). The recovery of sufficient data for binning was
critical for identifying and removing outliers and obtaining
smooth level-3 products. This method allowed for a gapless
and smooth coverage of the zones analyzed during a 6-month
time series at an 8 d frequency and therefore improved the de-
tection of sub-mesoscale currents, filaments, and eddies as-
sociated with the IME.

3.2 IME detection algorithm refinement

Time series of remote sensing maps (Bourdin, 2025) and
their snapshots (Figs. 2, 3) reveal the complexity of cur-
rents around islands and the rather chaotic advection patterns
of the IME into the open ocean and between islands. The
four case studies were located in the South Pacific subtrop-
ical gyre (SPSG), where geostrophic currents are low and
mesoscale and sub-mesoscale currents interact with island
topography from variable directions. In this region, the “up-
stream” sides of islands also show enhanced [Chla], which
suggests IME water masses are advected in all directions
around islands (e.g., Fig. A2). Under these conditions and
contrary to the assumption in Messié et al. (2022), there are
generally no strict upstream pixels directly adjacent to an is-
land. Consequently, defining the lower end of the [Chla] iter-
ation as the minimum [Chla] detected in the first pixel band
around the shallow pixel mask may result in an overestima-
tion of the lower threshold of the [Chla] iteration and thus an
underestimation of the IME area. Therefore, to better capture
the local range in [Chla] and to avoid a potential remaining
impact of adjacency effect and bottom reflectance on satel-
lite retrievals, we extracted the range of the [Chla] iteration
from the entire predicted zone of the IME location. In addi-
tion, to improve robustness and reduce sensitivity to noise,
we used the 95th to the 5th percentiles instead of the maxi-
mum and minimum [Chla] values. By design, all IME [Chla]
values were higher than the [Chla] of their respective BO
zones; however, while the mean [Chla] values of all IMET
zones were significantly higher than their BOT counterparts
(i.e.,1[Chla]IMET−BOT−uncertainty> 0; Figs. 5, 4, E1, E2),
IMEM [Chla] values were not significantly higher than their
BOM counterparts in several occurrences in the eastern SPSG
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Figure 4. The 6-month-long time series of satellite-derived IME properties of the IME zones (IMEM, dashed red line; IMED, dash-
dotted blue line; IMET, solid black line) detected around the Fiji and Tonga archipelagos combined. (a) Average chlorophyll a con-
centration within the IME zones ([Chla]IME), (b) difference in average [Chla] between each IME zone and their respective BO zones
(1[Chla]IME−BO), (c) IME surface-area-integrated chlorophyll a (

∑
[Chla]IME), (d) difference in IME and BO surface-area-integrated

chlorophyll a (1
∑
[Chla]IME−BO), (e) IME zone area, and (f) surface current velocity.

(i.e., 1[Chla]IMEM−BOM − uncertainty< 0; Figs. E1, E2).
This suggests that the larger relative uncertainty in [Chla]
retrieval and the very low dynamic range in [Chla] in this
region (Fig. E1) prevented accurate delineation of the entire
IME zone using the [Chla] iteration step size of the IMEM
algorithm. To improve IME detection in ultra-oligotrophic
regions, we used a dynamic [Chla] iteration step size as a
function of the regional [Chla] dynamic range instead of
a fixed step size. This adaptive iteration step size resulted
in a smaller step size in ultra-oligotrophic regions than the
value used in Messié et al. (2022) and a smaller step size
than the accuracy of [Chla] retrieval from satellites. While
a 0.01 mg m−3 iteration step is appropriate for accurately
delineating the IME in mesotrophic regions (Messié et al.,
2022), it represents most of the [Chla] variability in ultra-
oligotrophic regions (Fig. A2). Satellite measurements may
exhibit a notable relative uncertainty when retrieving ab-
solute [Chla], particularly in oligotrophic regions. This is
mostly due to the atmospheric contribution being signifi-
cantly larger than the contribution of the water-leaving ra-
diance to the top-of-atmosphere radiance measured by satel-

lites (Gilerson et al., 2022). However, given that these Pacific
Ocean regions are distant from major sources of absorbing
aerosols, atmospheric properties are expected to be relatively
uniform within a specific satellite image (i.e., MODIS im-
ages cover 600 km2 at the Equator). Consequently, the pre-
cision of the signal necessary to delineate spatial patterns
in [Chla] is expected to be higher than the accuracy of the
retrieved [Chla]. An advantage of this iterative method is
that it does not rely on absolute values of [Chla] to delin-
eate the IME but rather on spatial increases in [Chla] around
islands. Indeed, reducing the step size of the [Chla] iteration
improved the performance of the detection algorithm around
small islands and in ultra-oligotrophic regions where the dy-
namic range of [Chla] is very low (e.g., Rapa Nui).

In the current study, we adjusted the satellite measure-
ments of [Chla] to best match in situ values and improve
our confidence in accurately retrieving absolute [Chla]. We
note that a similar IME delineation accuracy can be achieved,
even without in situ data, by nudging the [Chla] of all satel-
lite sensors to one of them to minimize inter-sensor hetero-
geneity and obtain spatially homogeneous composites. Even
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Figure 5. The 6-month-long time series of satellite-derived IME properties of the IME zones (IMEM, dashed red line; IMED, dash-
dotted blue line; IMET, solid black line) detected around Samoa (Savaii, Upolu, and Tutuila). (a) Average chlorophyll a concen-
tration within the IME zones ([Chla]IME), (b) difference in average [Chla] between each IME zone and their respective BO zones
(1[Chla]IME−BO), (c) IME surface-area-integrated chlorophyll a (

∑
[Chla]IME), (d) difference in IME and BO surface-area-integrated

chlorophyll a (1
∑
[Chla]IME−BO), (e) IME zone area, and (f) surface current velocity.

though this method may introduce a bias towards the satellite
sensor chosen as the reference, this bias will be equivalent to
the bias associated with the use of a single satellite sensor,
and, since for the detection of the IME we do not rely on ab-
solute [Chla] values, we expect to achieve a similar accuracy
in mapping the extent of the IME.

3.3 Detached IME detection

When quantifying the IME, one challenge is to only account
for [Chla] increases associated with this phenomenon and not
with other mesoscale processes. Messié et al. (2022) solved
this problem by stopping the [Chla] iteration when pixels
with [Chla]> 0.8× chl_max are located more than 150 km
away from the 30 m isobath of an island. When comparing
IMET and IMEM contours of the same 8 d median [Chla]
products, we found that this restriction was the primary rea-
son the IMEM algorithm underestimated the IME area. With
the higher-resolution time series obtained here, we show that
pixels with the highest [Chla] within an IME are hetero-

geneously distributed and frequently detected further than
150 km from the 30 m isobath. A detection of such a pixel
with the IMEM algorithm will result in the termination of the
iteration process before the entire IME is detected. There-
fore, in this study, we adapted and improved the IME detec-
tion algorithm of Messié et al. (2022) to work with the spa-
tial and temporal heterogeneity of our level-3 merged satel-
lite products. We removed this aforementioned condition and
minimized accounting for potential [Chla] increases due to
non-IME-related processes using modeled surface currents
to select and track only the high [Chla] patches that were ad-
vected away from islands and submerged reefs. We nonethe-
less expect a potential overestimation of the IME where pro-
cesses not associated with the IME trigger [Chla] accumula-
tion in the surface ocean away from an island and advect this
water mass from the open ocean, around an island, and to-
wards the open ocean again downstream of the island (advec-
tion of continental coastal processes, equatorial upwelling,
etc.). In these regions, clustering water masses based on more
properties than just [Chla] may help differentiate between
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non-IME [Chla] increases and IME patches. This cluster-
ing method was initially explored in this study using self-
organizing maps (SOMs; Vesanto and Alhoniemi, 2000) to
delineate IME zones based on [Chla], the backscattering co-
efficient (bbp), sea surface temperature (SST), the ratio of
[Chla] and bbp, and phytoplankton physiological stress indi-
cators (not shown). While the SOM clustering accurately de-
lineated the IME zones in regions with a sufficient dynamic
range (e.g., in the western SPSG, around Fiji, or Samoa), the
method often failed in the ultra-oligotrophic regions (e.g., in
the eastern SPSG around Rapa Nui), where the signal-to-
noise ratio of bbp and the physiological stress indices were
too low to delineate IME zones as accurately as the iterative
[Chla] method. Therefore, because this study also focuses on
regions with relatively low dynamic ranges, we decided not
to use the SOM clustering method; nonetheless, it could be a
good alternative or complementary method in regions under
continental or upwelling influence, where the [Chla] iteration
method might overestimate the IME. In the four case studies
presented here, the high-temporal-resolution products show
that most, if not all, increases in [Chla] are initiated close
to islands or submerged reefs. The mixed-layer depth in the
SPSG is almost exclusively shallower than 80 m, which is
significantly shallower than the nutricline in most of the gyre
(∼ 150–220 m; Longhurst, 2007; Raimbault et al., 2008). It
implies that wind-driven divergence in this region generally
upwells nutrient-depleted water from above the nutricline. In
this context, islands and shallow submerged topography may
provide the most significant perturbations in this strongly
stratified system, with the potential to introduce nutrients to
the euphotic zone and trigger phytoplankton blooms as large
as the IME zones observed.

3.4 IME detection method validation

Consistent with satellite imagery, IMEM and IMED zones
were characterized by elevated underway [Chla] and cp660
in comparison to the BOT zones in all four cases studied
(Figs. 6, D1, D2, and D3). Both variables collected with
the underway system increased steeply on the inbound tran-
sect to Fiji (left-hand side panel of Fig. 6) and decreased
gradually on the outbound transect (right-hand side panel
of Fig. 6). Southward currents were the dominant surface
currents on the western side of Fiji during the 16 d period
overlapping with in situ sampling. The pattern shown along
the outbound transect indicates the demise and/or dilution of
the bloom as it was advected south of Fiji. The increase in
[Chla] and cp660 was ubiquitous near the shore and was cap-
tured by the satellite IMET detection algorithm. In compar-
ison, the IMEM algorithm detected the strongest [Chla] in-
crease within IMEs (Figs. 6, D1, D2, D3) but often missed
the [Chla] gradient from the IME to background ocean
(e.g., outbound transect from the Society Islands, Fig. D2)
and systematically missed the IMED (e.g., inbound transect
to Samoa, Fig. D3; departure from Fiji, Fig. 6).

3.5 Extent of the IME using different algorithms

Similarly, the IME zones detected during the 6-month time
series around Fiji–Tonga, Samoa–Niue, Rapa Nui, and the
Society Islands (Figs. 2 and 3 and Bourdin, 2025) suggest
that the IMEM detection algorithm generally performs well
in capturing the core of an IME as long as the associated
[Chla] distribution is concentric on the island with the high-
est [Chla] located close to shore. In all four case studies, the
IMEM algorithm generally failed to capture the full extent
of the IME area at 8 d observation frequency (i.e., IMEM
area� IMET area; Fig. 7 and Table 2). To compare the
IMEM algorithm to the one developed here, we calculated
the absolute and percent differences in the mean [Chla], de-
tected IME area, and surface-area-integrated chlorophyll a
(
∑
[Chla]) derived from the two approaches applied on the

same 8 d median [Chla] products (Fig. 7 and Table 2). [Chla]
averages in IMEM zones were equivalent to or higher than
those in the IMET zones (Fig. 7 and Table 2) because the
minimum value of the [Chla] used in the iteration to find
the IMET contour was always lower than the minimum value
used in the IMEM algorithm. Therefore, when different from
the IMET contour, the IMEM contour was always located
closer to the island shore where [Chla] is generally higher
than in the rest of the IMET zone, explaining the negative
differences in average [Chla] between IMET and IMEM (Ta-
ble 2, Fig. 7). The area and surface-area-integrated chloro-
phyll a were largely underestimated in IMEM in comparison
to IMET in all four case studies (Fig. 7 and Table 2). For
instance, the large bloom event that developed around Fiji
between March and May 2017 detected in the IMET zone
was not detectable in the IMEM zone. IMET also captured a
nearly continuous increase in biomass around the Society Is-
lands, while it was only intermittently captured by the IMEM
contour (Fig. 7). In each case, the underestimation of IMEM
compared to IMET was variable over time, suggesting the
criteria used to delineate the extent of IMEM are sensitive to
noise in a given satellite image and thus depend on the spatial
smoothness of the [Chla] map used to delineate IMEM. The
modification of these criteria in the IMET algorithm reduced
its sensitivity to single-pixel variability.

3.6 IME quantification metric

The [Chla] enhancement associated with the IME was
quantified as the difference between surface-area-integrated
[Chla] in a given IME zone and surface-area-integrated
[Chla] in the respective BO zone (chosen to have the same
surface area; see Method) to better represent the total Chla
enhancement. In all four cases, the surface-area-integrated
[Chla] enhancement associated with IMET relative to their
BOT counterparts was significant during the entire 6-month
time series (i.e., 1

∑
[Chla]IMET−BOT − uncertainty> 0) ex-

cept for two 8 d occurrences around Rapa Nui.
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Figure 6. Validation of the extent of the IME using in situ underway data around the Fiji Archipelago. (a, b) The 8 d median [Chla] (a) at the
time of sampling along the transect inbound to Fiji and (b) at the time of sampling along the transect outbound from Fiji. [Chla] measured in
situ with the underway system is overlaid on the satellite data background. (c, d) Chlorophyll a concentration ([Chla]). (e, f) Beam attenuation
at 660 nm (proxy for particulate organic carbon). Data sampled with the underway system during the transect (a, c, e) sailing towards Fiji
and (b, d, f) sailing away from Fiji. Data colored when located within the IME zones detected on the overlapping 8 d satellite composite
(BOT, black circle; IMEM, red square; IMED, blue diamond). The underway data points are minute-binned, and the solid lines are smoothed
underway data. The smoothing was performed by applying a 2 h low-pass digital filter to the minute-binned data. The grey patch highlights
the time Tara was sailing in coastal water (< 6 nautical miles or 11 km away from a submerged reef or coast).

It should be emphasized that [Chla] can be associated with
large uncertainties as a measure of phytoplankton biomass
due to photoacclimation, a process of intracellular pigment
adjustment in response to changes in light and nutrient con-
ditions (Cullen, 1982; Geider et al., 1998). This is especially
the case in regions with increased mesoscale activity and up-
welling, such as those adjacent to islands. When low-light-
adapted cells with larger intracellular [Chla] are upwelled
to the surface, satellites can measure an apparent increase
in [Chla] that is not necessarily associated with an increase
in biomass (Hasegawa et al., 2008). In all case studies pre-
sented here, the increased [Chla] detected in IME zones was
associated with increased cp660, which is a proxy for to-
tal organic biomass (including phytoplankton biomass) that
is not impacted by photoacclimation (Behrenfeld and Boss,

2006). This observation provides confidence that detected
IME zones were indeed associated with spatial increases
in phytoplankton biomass around islands. When investigat-
ing the ecological consequences of the IME, it is important
to note that both satellite data and our underway measure-
ments only describe surface ocean properties and do not pro-
vide information about the vertical distribution of biomass
in IME zones. Gove et al. (2016) showed that the increase in
[Chla] associated with the IME propagated below the surface
and suggested this increase in [Chla] represented a strong
increase in biomass at depth. Although strong subsurface
chlorophyll maximums (SCMs) are generally measured in
subtropical regions, most of the SCM signal is often due
to photoacclimation from low light availability at depth and

https://doi.org/10.5194/bg-22-3207-2025 Biogeosciences, 22, 3207–3233, 2025



3220 G. Bourdin et al.: Dynamics of the island mass effect

Table 2. IMEM and IMET detection method comparison summary: 6-month mean and standard deviation of differences.

Variables Island group 1 [IMET− IMEM] 1 [%]

[Chla]IME Rapa Nui 7× 10−4
± 5.7× 10−3 mg m−3 1± 10 %

Society Islands −2.2× 10−3
± 3.2× 10−3 mg m−3

−4± 6 %
Samoa −1.7× 10−2

± 3.9× 10−2 mg m−3
−14± 30 %

Fiji and Tonga −3.6× 10−2
± 3.6× 10−2 mg m−3

−21± 21 %

IME area Rapa Nui 7× 104
± 6.3× 104 km2 58± 39 %

Society Islands 2.2× 105
± 2.2× 105 km2 33± 32 %

Samoa 5.7× 104
± 5.8× 104 km2 49± 35 %

Fiji and Tonga 3.1× 105
± 2.2× 105 km2 60± 28 %∑

[Chla]IME Rapa Nui 4.1± 4.1 t m−1 58± 27 %
Society Islands 10.4± 11.7 t m−1 32± 31 %
Samoa 4.6± 4.9 t m−1 45± 34 %
Fiji and Tonga 52.3± 35.2 t m−1 58± 27 %

Figure 7. Differences (%) in the IME area (solid line), chlorophyll
a concentration ([Chla]; dash-dotted line), and IME surface-area-
integrated chlorophyll a (

∑
[Chla]IME; dash line) estimated by the

IMEM and IMET algorithms for the four case studies (Rapa Nui,
Society Islands, Samoa, Fiji–Tonga).

only associated with a moderate increase in biomass (Kitchen
and Zaneveld, 1990; Fennel and Boss, 2003; Furuya, 1990).

3.7 The utility of capturing IME temporal dynamics

The high-temporal-resolution products revealed the high spa-
tial and temporal heterogeneity of the IME and frequent con-
nectivity between IME zones of distant islands. This dy-
namic IME detection method permitted tracking in time the
accumulation of chlorophyll a standing stock in surface wa-
ters, which suggested frequent temporal increases in phyto-

plankton biomass in addition to the spatial increase in phy-
toplankton biomass already detected around islands. For in-
stance, the accumulation of integrated [Chla] in IME zones
suggests the occurrence of two distinct blooms in Samoa’s
IME zone and a large bloom in Fiji–Tonga’s IME zone.
These blooms were sustained for weeks while being advected
offshore and eventually detached from the island they orig-
inated from (Figs. 2 and 3). The first one around Samoa
was initiated around mid-September 2016 and was advected
southward towards Niue (see area and 1[Chla]IMET−BOT in-
creases; Fig. 5). The integrated [Chla] of this bloom contin-
ued to increase after the water mass detached from Samoa
and persisted near Niue until the end of November 2016
(i.e., ∼ 10 weeks after detaching from Samoa; Figs. 3 and
5). The second bloom detected in Samoa’s IME initiated
around 22 November 2016 and was advected east, detach-
ing from the archipelago and reaching a maximum surface-
area-integrated [Chla] enhancement relative to a BO value of
13.6 t m−1 before ending around 24 January 2017 (Figs. 3,
5). A third bloom observed in the same region detached from
Tonga and was detected more than ∼ 1300 km east of the
island. Phytoplankton biomass can continue to accumulate
in advected water masses even without an additional influx
of nutrients. For example, if the rate of horizontal dilution
of a bloom with its surrounding oligotrophic waters reduces
encounter rates and hence grazing pressure, phytoplankton
biomass will continue to accumulate even if the remaining
nutrients only support a low growth rate (as long as the
growth rate exceeds the grazing rate; Lehahn et al., 2017).
Interestingly, both bloom initiation events detected around
Samoa were synchronized with a sudden increase in the av-
erage surface current velocity within the IMEM zone. The
increased current interacting with the island topography may
have promoted sub-mesoscale and mesoscale mixing and the
upwelling of nutrient- and trace-metal-enriched water to the
surface close to shore. The current data overlaid on the [Chla]
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map time series also show increased surface current close to
the shore when and where each of the three blooms started
to detach from their island of origin (Supplement Anima-
tion S1 and Bourdin, 2025). This suggests that when IME
water parcels were detached from their source of nutrients
(i.e., the island) and diluted into the surrounding oligotrophic
ocean, the phytoplankton biomass in the growing patch con-
tinued to accumulate due to a reduction in grazing while us-
ing the limited nutrient supply advected with it. This dynamic
emphasizes the fact that although phytoplankton blooms in
IME zones are triggered by local enrichment of macronutri-
ents and trace metals near islands (Messié et al., 2020, 2022;
Gove et al., 2016, 2013; De Verneil et al., 2017; Hasegawa
et al., 2009; Caputi et al., 2019; Palacios, 2002; Signorini
et al., 1999), they are also tightly controlled by loss pro-
cesses such as grazing. In the case of Fiji–Tonga, the IME
surface-area-integrated [Chla] enhancement relative to the
BO (i.e., 1

∑
[Chla]IMET−BOT ) increased up to 88.7± 15.8

t[Chla]m−1 and covered an area up to ∼ 1× 106 km2, with
a longitudinal extent of ∼ 2000 km. The IME surface-area-
integrated [Chla] decreased from 5 May to 2 September to
finally reach pre-bloom values again in August 2017, approx-
imately 5 months after the bloom initiated (Fig. 4). In con-
trast to the Samoa case study, no apparent increase in cur-
rent speed was detected near Fiji or Tonga during the period
covered by the time series. In this case, the timing of this
large bloom observed around the Fiji and Tonga archipela-
gos coincided with the annual Trichodesmium spp. blooms
observed in this region during the austral summer (Dandon-
neau and Gohin, 1984; Dupouy et al., 2000). The high un-
derwater volcanic activity characteristic of this region can
supply a significant amount of trace metals directly into
the euphotic zone and support these large blooms of Tri-
chodesmium spp. (Bonnet et al., 2023; Guieu et al., 2018;
Berman-Frank et al., 2001; Lory et al., 2022; Rubin et al.,
2011). These known shallow hydrothermal vents were sys-
tematically located within the detected IME zone associ-
ated with Tonga and Fiji, suggesting the detected IME is
likely a combined effect of islands and shallow hydrother-
mal vents in this region. The longer generation time of Tri-
chodesmium spp., which allows surface currents to spread
them horizontally, and their ability to partially escape grazing
pressure may explain why these blooms can be maintained
for 5 months and cover a significant area of ∼ 1× 106 km2

(Capone et al., 1997; Messié et al., 2020). These two case
studies show how the dynamic detection of the IME pro-
vides information about IME phenology and about island
connectivity in comparison to a frozen field observation of
the ocean, for which all maps are independent of each other.

4 Conclusions

The method developed here describes the history of a given
IME with finer resolution and highlights dynamics that are

not detectable using monthly and yearly average remote
sensing products. Such a method is essential for improving
our mechanistic understanding of the IME (e.g., whether the
cause is island runoff or upwelling) and the ecological suc-
cession within IMEs. De Falco et al. (2022) highlight the
uniqueness of interactions between a given island topogra-
phy and surrounding wind and current flows, suggesting that
phytoplankton responses depend on these interactions. Here
we show that IMEs are highly dynamic and that they can in-
duce large coherent blooms that can sustain for months while
being advected more than 1000 km away from their source.
These advected IMEs seed the oligotrophic ocean and other
islands with water masses characterized by higher phyto-
plankton abundance and potentially different species com-
position than the surrounding oligotrophic ocean, such as the
Trichodesmium blooms in the southwestern Pacific Ocean.
This analysis reveals a broader spatial extent of IMEs in sub-
tropical regions, suggesting that islands have a greater im-
pact on food web dynamics and biogeochemical processes in
these areas, which are traditionally considered oligotrophic.
This detection method can also be adapted to track water
masses with specific optical properties being advected in up-
welling regions or in river plumes. We suggest that future
studies use more satellite variables than just [Chla] in re-
gions where processes other than the one studied can cause
elevated surface [Chla] to better discriminate the underlying
processes.

We demonstrated the importance of using gapless high-
temporal- and high-spatial-resolution satellite products and
modeled surface currents to identify and track sub-mesoscale
filaments and eddies associated with the IME around islands
in the subtropical Pacific Ocean. We minimized satellite un-
certainties by augmenting the number of observations and
maximized data recovery using all available NASA and ESA
polar-orbiting ocean color satellites. At the current dawn of
global hyperspectral ocean color sensing, we recommend
having sensors with different overpass times when planning
for new ocean color satellites as part of the future constella-
tion to help maximize coverage and understand the dynamics
of mesoscale and sub-mesoscale processes in the ocean.

Appendix A: Satellite merging pipeline

MODIS, VIIRS, and OLCI L1A radiance data were pro-
cessed with SeaDAS l2gen and POLYMER algorithms to
produce atmospherically corrected level-2 Rrs data. Low-
quality data pixels were removed by applying the recom-
mended atmospheric correction flags to their respective Rrs
data. Every scene was then projected onto the same equally
spaced 1 km spatial resolution plate carrée reference grid
using nearest-neighbor interpolation before [Chla] compu-
tation. Each satellite [Chla] was nudged to best match in
situ values before merging them into 8 d median composites
(Fig. A1).
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Figure A1. Satellite composite production flowchart.

Figure A2. Multi-satellite composite of [Chla] around Niue (11 to 18 September 2016) at 1 km spatial resolution. The white squares represent
the 4 and 9 km resolution pixel sizes of the level-3 NASA data, and the orange contour represents the shallow pixel mask at 4 km spatial
resolution.
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Appendix B: Uncertainty estimates

The 8 d merged products represent a composite of multiple
overpasses and satellites that included∼ 120 ocean color im-
ages (daytime) for a ∼ 2500 km2 square region around the
Fiji Archipelago. Therefore, each pixel of the merged prod-
uct is a median of n observations of the original images with
standard deviations (σVbin ) representing the temporal vari-
ability in a variable V in a given pixel during each 8 d pe-
riod and the variability between sensors after nudging. The
number of non-flagged observations (nVbin ) used to bin each
merged pixel was generally sufficient, with 8 d long periods
and an operational constellation of five to six satellites, to
produce smooth merged [Chla] products. For example, the
median number of non-flagged [Chla] observations used to
bin each pixel was nbin[Chla] = 10 for the entire time series
around Fiji, with less than 2.5 % of the pixels binned with
less than 3 non-flagged observations (Fig. B1).

Known uncertainties were propagated from in situ data to
satellite [Chla] end products. HPLC-derived [Chla] and in
situ ap spectra were measured in an along-track manner. The
error associated with the computation of [Chla] from the un-
derway system was estimated by the normalized root mean
square error (nRMSEudw in %) of the relation between the
underway chlorophyll line height (ap676LH) and total [Chla]
measured from HPLC during the Tara Pacific Expedition
(Fig. B2a).

The error associated with the computation of [Chla] from
satellites was estimated by the nRMSEsat of the relation be-
tween the underway chlorophyll line height (ap676LH) and
[Chla] obtained from each satellite sensor along the transect
of the Tara Pacific Expedition (Fig. B2b, c, and d). The un-
certainties in binned satellite end products were computed as
follows:

σV =

√√√√σ 2
Vbin+

nc∑
n=1
(Ṽ × nRMSEc)2, (B1)

where Ṽ is the binned variable, nc is the number of cali-
brations/corrections, and nRMSEc is the nRMSE associated
with each of the nc corrections. The standard error in the
mean of the adjusted satellite end products of each pixel was
computed as follows:

SEMV =
σV
√
nVbin

. (B2)

The final uncertainty estimate associated with [Chla] within
entire IME or BO zones (SEMf

[Chla]IME
) as presented in

Figs. E1, E2, 5, and 4 was expressed as the average standard
error in the mean of the adjusted [Chla] within entire IME or
BO zones:

SEMf
[Chla]IME

=
σ [Chla]IME∑
n[Chla]binIME

+S[Chla]unc×[Chla]IME, (B3)

where
∑
n[Chla]binIME

is the total number of [Chla] observa-
tions within the IME zone before merging and S[Chla]unc is the
weighted bias associated with the computation of the slopes
of the regressions between in situ [Chla] and each satellite
[Chla] estimate. S[Chla]unc was computed as follows:

S[Chla]unc = |1− S[Chla]sat| ×
nMsat

NMtot

, (B4)

where S[Chla]sat is the slope of the relation between in situ
[Chla] and [Chla] of a given satellite, nMsat is the number
of valid match-ups of the same satellite, and NMtot is the to-
tal number of valid match-ups. S[Chla]unc represents the max-
imum bias associated with the computation of the merged
satellite [Chla], which we assume to be equivalent to the po-
tential likelihood bias of the merged satellite [Chla]. Assum-
ing enough valid match-ups with each satellite, S[Chla]unc is
a conservative estimate of the bias associated with the slope
computation because the merging method forces each satel-
lite [Chla] to agree with in situ data using sensor-specific cor-
rections, which likely reduces the bias of the merged product.
IME area uncertainties (σAIME ) were computed during the de-
tection of the IME [Chla] contours as the difference in the
IME area between the last two iterations of [Chla] contours:

σAIME = AIMEcChlf
−AIMEcChlf−1

, (B5)

where AIMEcChlf
is the IME area for the final IME contour

value andAIMEcChlf−1
is the IME area for the previous contour

value. Therefore, σAIME represents the area detection resolu-
tion associated with the size of the step of the [Chla] itera-
tion. The uncertainties associated with the estimation of IME
surface-area-integrated [Chla] (

∑
[Chla]IME) were computed

as follows:

SEMf∑
[Chla]IME

=

∑
[Chla]IME

×

√√√√(SEMf
[Chla]IME

[Chla]IME

)2

+

(
σAIME

AIME

)2

. (B6)
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Figure B1. Distribution of the number of valid [Chla] (i.e., not flagged) observations per merged pixel over each 8 d period along the 6-month
time series around the Fiji Archipelago (18 February to 5 September 2017).

Figure B2. Robust linear regressions (a) between [Chla] measured from HPLC and the ap [Chla] absorption peak at 676 nm measured
from the underway system, (b) between calibrated [Chla] estimated from ap underway measurements and [Chla] estimated from satellite
data using the blended CI-OCx algorithm with POLYMER Rrs, (c) of the blended CI-OCx algorithm with l2gen Rrs, and (d) of the OCx
algorithm with l2gen Rrs. In situ measurements were conducted during the Tara Pacific Expedition (May 2016 to October 2018).
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Table B1. Robust correlations parameters of match-ups between satellite and in situ underway data.

Variables Satellite sensor R2 nRMSE [%] Slope Intercept N

POLYMER Rrs MODISA 0.78 24.38 1.09 −0.01 111
Blended CI-OCx [Chla] (chlor_a) MODIST 0.81 20.48 1.08 −0.01 96

VIIRSN 0.82 16.18 0.90 −0.19 109
VIIRSJ1 0.70 31.47 1.02 0.05 27
OLCI 0.79 16.56 0.89 −0.13 85

SeaDAS Rrs MODISA 0.74 18.59 0.84 −0.27 85
Blended CI-OCx [Chla] (chlor_a) MODIST 0.71 16.61 0.70 −0.43 67

VIIRSN 0.70 16.17 0.81 −0.56 92
VIIRSJ1 0.84 17.37 1.15 0.14 22
OLCI 0.81 13.99 1.01 −0.10 55

SeaDAS Rrs MODISA 0.66 20.00 0.71 −0.32 85
OCx [Chla] (chl_ocx) MODIST 0.67 19.30 0.75 −0.35 67

VIIRSN 0.62 25.97 1.20 −0.50 92
VIIRSJ1 0.74 21.76 1.36 0.19 22
OLCI 0.70 17.65 0.80 −0.11 55

Appendix C: Outlier removal

Bio-optical variables in the ocean, including [Chla], gener-
ally follow a log-normal distribution (Campbell, 1995) with
fewer high values forming a heavy tail in the high end of the
dynamic range. After appropriate flagging, low-quality data
pixels impacted by sunglint, the adjacency effect, and bottom
reflectance are rare and account for a few pixels scattered on
either end of the log-normal distribution and beyond real-
istic values for a given region (generally< 1st percentile or
� 99th percentile; Fig. C1). Computing the median of these
pixels can result in noisy merged products when they are the
only available data over a given 8 d period and at a given lo-
cation (i.e., pixel). Consequently, to improve the consistency
of the level-3 merged products, rare outliers of a given vari-
able were removed from all re-projected level-2 images of
a given 8 d period and a given region based on the distribu-
tion of all individual x measurements (i.e., pixels). First, we
grouped all the re-projected level-2 images of a given vari-
able, 8 d period, and region together and applied a log-normal
transformation to the data:

xt = ln(x−min(x)+ 1). (C1)

We partitioned xt into N bins of width W defined using the
Freedman–Diaconis rule that is more suited to a heavy-tailed
distribution due to its low sensitivity to outliers (Freedman
and Diaconis, 1981):

W = 2×
IQR(xt )

3
√
n

, (C2)

where IQR is the inter-quartile range and n is the number of
observations in the data xt . The minimum number of pixels
per bin threshold (nb

min) was computed as a rounded fraction
of n of a given variable (i.e., horizontal line in Fig. C1):

nb
min = bn× 10−6

e. (C3)

The lower-end threshold tL was determined by finding the
first bin with fewer pixels than nb

min (i.e., gap in the normal
distribution), going from the median x̃ to xmin (xmin ≤ tL <

x̃). Similarly, the higher-end threshold tH was determined by
finding the first bin with less than nb

min pixels per bin, go-
ing from x̃ to xmax (x̃ < tH ≤ xmax). This threshold detection
was iterated up to 15 times or until tL and tH did not change
from one iteration to the other. Any re-projected level-2 pixel
from a given 8 d period, region, and variable falling out of the
range (tL, tH) was deleted before computing the medians of
the merged level-3 products.
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Figure C1. Example distribution of all valid [Chla] (i.e., not flagged) observations from all satellite sensors merged (i.e., MODIS Aqua,
MODIS Terra, VIIRS SNPP, OLCI S3A) from 19 September 2016 at 01:00 to 26 September 2016 at 21:30 UTC (8 d period) around Niue
and Samoa (77 satellite images merged) before outlier removal (panels a and b) and after outlier removal (panels c and d). The number of
pixels per bin is displayed on a linear scale in panels (a) and (c) and on a log base-10 scale in panels (b) and (d). The dashed lines represent
the 1st and the 99th percentiles, the solid horizontal line represents the cut-off value in pixels per bin for outlier removal (nb

min), and the
red-shaded area highlights the pixels removed.

Appendix D: Rapa Nui, Society Islands, and Samoa
validation transects

Figure D1. Validation of the IME extent using in situ underway data around Rapa Nui. (a) Chlorophyll a concentration ([Chla]) and (b) beam
attenuation at 660 nm (proxy for particulate organic carbon). Data sampled with the underway system during the transect sailing towards
Rapa Nui (left) and sailing away from Rapa Nui (right). Data colored when located within the IME zones detected in the overlapping 8 d
satellite composite (BOT, black circle; IMEM, red square). The points are minute-binned underway data, and the solid lines are smoothed
underway data. The smoothing was performed by applying a 2 h low-pass digital filter to the minute-binned data. The grey patch highlights
the time Tara was sailing in coastal water (< 50 m depth).
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Figure D2. Validation of the IME extent using in situ underway data around the Society Islands in French Polynesia. (a) Chlorophyll a
concentration ([Chla]) and (b) beam attenuation at 660 nm (proxy for particulate organic carbon). Data sampled with the underway system
during the transect sailing towards the Society Islands (left) and sailing away from the Society Islands (right). Data colored when located
within the IME zones detected in the overlapping 8 d satellite composite (BOT, black circle; IMEM, red square; IMED, blue diamond). The
points are minute-binned underway data, and the solid lines are smoothed underway data. The smoothing was performed by applying a 2 h
low-pass digital filter to the minute-binned data. The grey patch highlights the time Tara was sailing in coastal water (< 50 m depth).

Figure D3. Validation of the IME extent using in situ underway data around Samoa. (a) Chlorophyll a concentration ([Chla]) and (b) beam
attenuation at 660 nm (proxy for particulate organic carbon). Data sampled with the underway system during the transect sailing towards
Samoa (left) and sailing away from Samoa (right). Data colored when located within the IME zones detected in the overlapping 8 d satellite
composite (BOT, black circle; IMEM, red square; IMED, blue diamond). The points are minute-binned underway data, and the solid lines
are smoothed underway data. The smoothing was performed by applying a 2 h low-pass digital filter to the minute-binned data. The grey
patch highlights the time Tara was sailing in coastal water (< 50 m depth).
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Appendix E: Rapa Nui and Society Islands time series

Figure E1. The 6-month-long time series of satellite-derived IME properties of the IME zones (IMEM, dashed red line; IMED, dash-dotted
blue line; IMET, solid black line) detected around Rapa Nui. (a) Average chlorophyll a concentration within the IME zones ([Chla]IME),
(b) difference in average [Chla] values between each IME zone and their respective BO zones (1[Chla]IME−BO), (c) IME surface-area-
integrated chlorophyll a (

∑
[Chla]IME), (d) difference in IME and BO surface-area-integrated chlorophyll a (1

∑
[Chla]IME−BO), (e) IME

zone area, and (f) surface current velocity.
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Figure E2. The 6-month-long time series of satellite-derived IME properties of the IME zones (IMEM, dashed red line; IMED, dash-
dotted blue line; IMET, solid black line) detected around the Society Islands in French Polynesia. (a) Average chlorophyll a concentra-
tion within the IME zones ([Chla]IME), (b) difference in average [Chla] values between each IME zone and their respective BO zones
(1[Chla]IME−BO), (c) IME surface-area-integrated chlorophyll a (

∑
[Chla]IME), (d) difference in IME and BO surface-area-integrated

chlorophyll a (1
∑
[Chla]IME−BO), (e) IME zone area, and (f) surface current velocity.

Code and data availability. HPLC data are accessible from the
BCO-DMO repository (https://doi.org/10.26008/1912/bco-dmo.
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repository (https://doi.org/10.5067/SeaBASS/TARA_PACIFIC_
EXPEDITION/DATA001, Bourdin and Boss, 2016). The satel-
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outliers, to nudge, and propagate uncertainties is accessible
at https://doi.org/10.5281/zenodo.13376825 (Bourdin, 2024).
Level-3 multi-satellite composite data; downloaded current
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Cetinić, I., Perry, M. J., Briggs, N. T., Kallin, E., D’Asaro,
E. A., and Lee, C. M.: Particulate Organic Carbon and In-
herent Optical Properties during 2008 North Atlantic Bloom
Experiment, J. Geophys. Res.-Oceans, 117, 2011JC007771,
https://doi.org/10.1029/2011JC007771, 2012.

CMR API: NASA Common Metadata Repository (CMR),
https://cmr.earthdata.nasa.gov/search/granules.json?provider=
OB_DAAC, last access: August 2024.

Consortium, T. P.: Tara Pacific Expedition Participants, Zenodo,
https://doi.org/10.5281/zenodo.3777760, 2020.

Copernicus Data Space Catalogue API: Copernicus Data Space,
https://catalogue.dataspace.copernicus.eu/resto/api/collections/
Sentinel3/search.json?, last access: August 2024.

Cullen, J. J.: The Deep Chlorophyll Maximum: Comparing Vertical
Profiles of Chlorophyll a, Can. J. Fish. Aquat. Sci., 39, 791–803,
https://doi.org/10.1139/f82-108, 1982.

Dall’Olmo, G., Westberry, T. K., Behrenfeld, M. J., Boss, E., and
Slade, W. H.: Significant contribution of large particles to optical
backscattering in the open ocean, Biogeosciences, 6, 947–967,
https://doi.org/10.5194/bg-6-947-2009, 2009.

Dandonneau, Y. and Charpy, L.: An Empirical Approach to the Is-
land Mass Effect in the South Tropical Pacific Based on Sea Sur-
face Chlorophyll Concentrations, Deep-Sea Res. Pt. I, 32, 707–
721, https://doi.org/10.1016/0198-0149(85)90074-3, 1985.

Dandonneau, Y. and Gohin, F.: Meridional and Seasonal Varia-
tions of the Sea Surface Chlorophyll Concentration in the South-
western Tropical Pacific (14 to 32° S, 160 to 175° E), Deep-
Sea Res. Pt. I, 31, 1377–1393, https://doi.org/10.1016/0198-
0149(84)90078-5, 1984.

De Falco, C., Desbiolles, F., Bracco, A., and Pas-
quero, C.: Island Mass Effect: A Review of Oceanic
Physical Processes, Front. Mar. Sci., 9, 894860,
https://doi.org/10.3389/fmars.2022.894860, 2022.

de Verneil, A., Rousselet, L., Doglioli, A. M., Petrenko, A. A., and
Moutin, T.: The fate of a southwest Pacific bloom: gauging the
impact of submesoscale vs. mesoscale circulation on biologi-
cal gradients in the subtropics, Biogeosciences, 14, 3471–3486,
https://doi.org/10.5194/bg-14-3471-2017, 2017.

Dong, C., McWilliams, J. C., and Shchepetkin, A. F.: Island
Wakes in Deep Water, J. Phys. Oceanogr., 37, 962–981,
https://doi.org/10.1175/JPO3047.1, 2007.

Doty, M. S. and Oguri, M.: The Island Mass Effect, ICES J. Mar.
Sci., 22, 33–37, https://doi.org/10.1093/icesjms/22.1.33, 1956.

Dupouy, C., Neveux, J., Subramaniam, A., Mulholland, M. R.,
Montoya, J. P., Campbell, L., Carpenter, E. J., and Capone,
D. G.: Satellite Captures Trichodesmium Blooms in the South-
western Tropical Pacific, Eos, Transactions American Geophysi-
cal Union, 81, 13–16, https://doi.org/10.1029/00EO00008, 2000.

Eden, C. and Timmermann, A.: The Influence of the Galápagos
Islands on Tropical Temperatures, Currents and the Generation
of Tropical Instability Waves, Geophys. Res. Lett., 31, L15308,
https://doi.org/10.1029/2004GL020060, 2004.

European Union-Copernicus Marine Service: Global Ocean Ensem-
ble Physics Reanalysis, Mercator Océan International [data set],
https://doi.org/10.48670/MOI-00024, 2019.

Fennel, K. and Boss, E.: Subsurface Maxima of Phyto-
plankton and Chlorophyll: Steady-state Solutions from

a Simple Model, Limnol. Oceanogr., 48, 1521–1534,
https://doi.org/10.4319/lo.2003.48.4.1521, 2003.

Freedman, D. and Diaconis, P.: On the Histogram as a Den-
sity Estimator: L2 Theory, Z. Wahrscheinlichkeit., 57, 453–476,
https://doi.org/10.1007/BF01025868, 1981.

Frouin, R., Deschamps, P.-Y., and Steinmetz, F.: Environmen-
tal Effects in Ocean Color Remote Sensing, Proc. SPIE 7459,
Ocean Remote Sensing: Methods and Applications, 745906,
https://doi.org/10.1117/12.829871, 2009.

Frouin, R., Deschamps, P.-Y., Ramon, D., and Steinmetz,
F.: Improved Ocean-Color Remote Sensing in the Arc-
tic Using the POLYMER Algorithm, Proc. SPIE 8525,
Remote Sensing of the Marine Environment II, 85250I,
https://doi.org/10.1117/12.981224, 2012.

Furuya, K.: Subsurface Chlorophyll Maximum in the Tropical
and Subtropical Western Pacific Ocean: Vertical Profiles of
Phytoplankton Biomass and Its Relationship with Chlorophylla
and Particulate Organic Carbon, Mar. Biol., 107, 529–539,
https://doi.org/10.1007/BF01313438, 1990.

Gardner, W., Mishonov, A., and Richardson, M.: Global POC Con-
centrations from In-Situ and Satellite Data, Deep-Sea Res. Pt. II,
53, 718–740, https://doi.org/10.1016/j.dsr2.2006.01.029, 2006.

Garnesson, P., Mangin, A., Fanton d’Andon, O., Demaria, J., and
Bretagnon, M.: The CMEMS GlobColour chlorophyll a product
based on satellite observation: multi-sensor merging and flagging
strategies, Ocean Sci., 15, 819–830, https://doi.org/10.5194/os-
15-819-2019, 2019.

GEBCO Bathymetric Compilation Group: The GEBCO_2022
Grid – a Continuous Terrain Model of the Global Oceans
and Land, NERC EDS British Oceanographic Data Centre
NOC [data set], https://doi.org/10.5285/E0F0BB80-AB44-2739-
E053-6C86ABC0289C, 2022.

Geider, R. J., Maclntyre, H. L., and Kana, T. M.: A Dynamic
Regulatory Model of Phytoplanktonic Acclimation to Light,
Nutrients, and Temperature, Limnol. Oceanogr., 43, 679–694,
https://doi.org/10.4319/lo.1998.43.4.0679, 1998.

Gilerson, A., Herrera-Estrella, E., Foster, R., Agagliate, J., Hu, C.,
Ibrahim, A., and Franz, B.: Determining the Primary Sources of
Uncertainty in Retrieval of Marine Remote Sensing Reflectance
From Satellite Ocean Color Sensors, Frontiers in Remote Sens-
ing, 3, 857530, https://doi.org/10.3389/frsen.2022.857530, 2022.

Gorsky, G., Bourdin, G., Lombard, F., Pedrotti, M. L., Audrain, S.,
Bin, N., Boss, E., Bowler, C., Cassar, N., Caudan, L., Chabot, G.,
Cohen, N. R., Cron, D., De Vargas, C., Dolan, J. R., Douville, E.,
Elineau, A., Flores, J. M., Ghiglione, J. F., Haëntjens, N., Her-
tau, M., John, S. G., Kelly, R. L., Koren, I., Lin, Y., Marie, D.,
Moulin, C., Moucherie, Y., Pesant, S., Picheral, M., Poulain, J.,
Pujo-Pay, M., Reverdin, G., Romac, S., Sullivan, M. B., Trainic,
M., Tressol, M., Troublé, R., Vardi, A., Voolstra, C. R., Wincker,
P., Agostini, S., Banaigs, B., Boissin, E., Forcioli, D., Furla, P.,
Galand, P. E., Gilson, E., Reynaud, S., Sunagawa, S., Thomas,
O. P., Thurber, R. L. V., Zoccola, D., Planes, S., Allemand, D.,
and Karsenti, E.: Expanding Tara Oceans Protocols for Under-
way, Ecosystemic Sampling of the Ocean-Atmosphere Interface
During Tara Pacific Expedition (2016–2018), Front. Mar. Sci., 6,
750, https://doi.org/10.3389/fmars.2019.00750, 2019.

Gove, J. M., Williams, G. J., McManus, M. A., Heron, S. F., Sandin,
S. A., Vetter, O. J., and Foley, D. G.: Quantifying Climatological
Ranges and Anomalies for Pacific Coral Reef Ecosystems, PLoS

https://doi.org/10.5194/bg-22-3207-2025 Biogeosciences, 22, 3207–3233, 2025

https://doi.org/10.3390/rs12162520
https://doi.org/10.1029/2011JC007771
https://cmr.earthdata.nasa.gov/search/granules.json?provider=OB_DAAC
https://cmr.earthdata.nasa.gov/search/granules.json?provider=OB_DAAC
https://doi.org/10.5281/zenodo.3777760
https://catalogue.dataspace.copernicus.eu/resto/api/collections/Sentinel3/search.json?
https://catalogue.dataspace.copernicus.eu/resto/api/collections/Sentinel3/search.json?
https://doi.org/10.1139/f82-108
https://doi.org/10.5194/bg-6-947-2009
https://doi.org/10.1016/0198-0149(85)90074-3
https://doi.org/10.1016/0198-0149(84)90078-5
https://doi.org/10.1016/0198-0149(84)90078-5
https://doi.org/10.3389/fmars.2022.894860
https://doi.org/10.5194/bg-14-3471-2017
https://doi.org/10.1175/JPO3047.1
https://doi.org/10.1093/icesjms/22.1.33
https://doi.org/10.1029/00EO00008
https://doi.org/10.1029/2004GL020060
https://doi.org/10.48670/MOI-00024
https://doi.org/10.4319/lo.2003.48.4.1521
https://doi.org/10.1007/BF01025868
https://doi.org/10.1117/12.829871
https://doi.org/10.1117/12.981224
https://doi.org/10.1007/BF01313438
https://doi.org/10.1016/j.dsr2.2006.01.029
https://doi.org/10.5194/os-15-819-2019
https://doi.org/10.5194/os-15-819-2019
https://doi.org/10.5285/E0F0BB80-AB44-2739-E053-6C86ABC0289C
https://doi.org/10.5285/E0F0BB80-AB44-2739-E053-6C86ABC0289C
https://doi.org/10.4319/lo.1998.43.4.0679
https://doi.org/10.3389/frsen.2022.857530
https://doi.org/10.3389/fmars.2019.00750


3232 G. Bourdin et al.: Dynamics of the island mass effect

ONE, 8, e61974, https://doi.org/10.1371/journal.pone.0061974,
2013.

Gove, J. M., McManus, M. A., Neuheimer, A. B., Polovina, J. J.,
Drazen, J. C., Smith, C. R., Merrifield, M. A., Friedlander,
A. M., Ehses, J. S., Young, C. W., Dillon, A. K., and Williams,
G. J.: Near-Island Biological Hotspots in Barren Ocean Basins,
Nat. Commun., 7, 10581, https://doi.org/10.1038/ncomms10581,
2016.

Guieu, C., Bonnet, S., Petrenko, A., Menkes, C., Chavagnac, V.,
Desboeufs, K., Maes, C., and Moutin, T.: Iron from a Sub-
marine Source Impacts the Productive Layer of the Western
Tropical South Pacific (WTSP), Scientific Reports, 8, 9075,
https://doi.org/10.1038/s41598-018-27407-z, 2018.

Haëntjens, N. and Bourdin, G.: getOC v0.8.0: A Pyhton-based
Batch Download Utility for Ocean Color Satellite Data, GitHub
[code], https://github.com/OceanOptics/getOC (last access: Au-
gust 2024), 2017.

Hasegawa, D., Yamazaki, H., Ishimaru, T., Nagashima,
H., and Koike, Y.: Apparent Phytoplankton Bloom Due
to Island Mass Effect, J. Marine Syst., 69, 238–246,
https://doi.org/10.1016/j.jmarsys.2006.04.019, 2008.

Hasegawa, D., Lewis, M. R., and Gangopadhyay, A.: How Islands
Cause Phytoplankton to Bloom in Their Wakes, Geophys. Res.
Lett., 36, L20605, https://doi.org/10.1029/2009GL039743, 2009.

Hu, C., Feng, L., Lee, Z., Franz, B. A., Bailey, S. W., Werdell,
P. J., and Proctor, C. W.: Improving Satellite Global Chloro-
phyll a Data Products Through Algorithm Refinement and
Data Recovery, J. Geophys. Res.-Oceans, 124, 1524–1543,
https://doi.org/10.1029/2019JC014941, 2019.

Kitchen, J. C. and Zaneveld, J. R. V.: On the Noncorrelation of
the Vertical Structure of Light Scattering and Chlorophyll α
in Case I Waters, J. Geophys. Res.-Oceans, 95, 20237–20246,
https://doi.org/10.1029/JC095iC11p20237, 1990.

Lee, K. A., Roughan, M., Malcolm, H. A., and Otway, N. M.: As-
sessing the Use of Area- and Time-Averaging Based on Known
De-correlation Scales to Provide Satellite Derived Sea Sur-
face Temperatures in Coastal Areas, Front. Mar. Sci., 5, 261,
https://doi.org/10.3389/fmars.2018.00261, 2018.

Lehahn, Y., Koren, I., Sharoni, S., d’Ovidio, F., Vardi, A.,
and Boss, E.: Dispersion/Dilution Enhances Phytoplankton
Blooms in Low-Nutrient Waters, Nat. Commun., 8, 14868,
https://doi.org/10.1038/ncomms14868, 2017.

Lombard, F., Bourdin, G., Pesant, S., Agostini, S., Baudena, A.,
Boissin, E., Cassar, N., Clampitt, M., Conan, P., Da Silva, O.,
Dimier, C., Douville, E., Elineau, A., Fin, J., Flores, J. M.,
Ghiglione, J.-F., Hume, B. C. C., Jalabert, L., John, S. G., Kelly,
R. L., Koren, I., Lin, Y., Marie, D., McMinds, R., Mériguet, Z.,
Metzl, N., Paz-García, D. A., Pedrotti, M. L., Poulain, J., Pujo-
Pay, M., Ras, J., Reverdin, G., Romac, S., Rouan, A., Röttinger,
E., Vardi, A., Voolstra, C. R., Moulin, C., Iwankow, G., Banaigs,
B., Bowler, C., De Vargas, C., Forcioli, D., Furla, P., Galand,
P. E., Gilson, E., Reynaud, S., Sunagawa, S., Sullivan, M. B.,
Thomas, O. P., Troublé, R., Thurber, R. V., Wincker, P., Zoccola,
D., Allemand, D., Planes, S., Boss, E., and Gorsky, G.: Open
Science Resources from the Tara Pacific Expedition across Coral
Reef and Surface Ocean Ecosystems, Scientific Data, 10, 324,
https://doi.org/10.1038/s41597-022-01757-w, 2023.

Longhurst, A.: Ecological Geography of the Sea, Elsevier, second
edn., ISBN 978-0-12-455521-1, https://doi.org/10.1016/B978-0-
12-455521-1.X5000-1, 2007.

Lory, C., Van Wambeke, F., Fourquez, M., Barani, A., Guieu, C.,
Tilliette, C., Marie, D., Nunige, S., Berman-Frank, I., and Bon-
net, S.: Assessing the Contribution of Diazotrophs to Micro-
bial Fe Uptake Using a Group Specific Approach in the West-
ern Tropical South Pacific Ocean, ISME Communications, 2, 41,
https://doi.org/10.1038/s43705-022-00122-7, 2022.

Lyapustin, A., Wang, Y., Xiong, X., Meister, G., Platnick, S., Levy,
R., Franz, B., Korkin, S., Hilker, T., Tucker, J., Hall, F., Sellers,
P., Wu, A., and Angal, A.: Scientific impact of MODIS C5 cali-
bration degradation and C6+ improvements, Atmos. Meas. Tech.,
7, 4353–4365, https://doi.org/10.5194/amt-7-4353-2014, 2014.

Messié, M., Petrenko, A., Doglioli, A. M., Aldebert, C., Martinez,
E., Koenig, G., Bonnet, S., and Moutin, T.: The Delayed Island
Mass Effect: How Islands Can Remotely Trigger Blooms in the
Oligotrophic Ocean, Geophys. Res. Lett., 47, e2019GL085282,
https://doi.org/10.1029/2019GL085282, 2020.

Messié, M., Petrenko, A., Doglioli, A. M., Martinez, E., and Al-
vain, S.: Basin-Scale Biogeochemical and Ecological Impacts of
Islands in the Tropical Pacific Ocean, Nat. Geosci., 15, 469–474,
https://doi.org/10.1038/s41561-022-00957-8, 2022.

NASA OBPG flags: Ocean Color Level-2 Default Flags, https:
//oceancolor.gsfc.nasa.gov/resources/atbd/ocl2flags/, last access:
August 2024.

O’Reilly, J. E. and Werdell, P. J.: Chlorophyll Algorithms for Ocean
Color Sensors – OC4, OC5 & OC6, Remote Sens. Environ., 229,
32–47, https://doi.org/10.1016/j.rse.2019.04.021, 2019.

Palacios, D. M.: Factors Influencing the Island-mass Effect of the
Galápagos Archipelago, Geophys. Res. Lett., 29, 49-1–49-4,
https://doi.org/10.1029/2002GL016232, 2002.

POLYMER flags: HYGEOS – POLYMER README Section: 2.6
Flagging, GitHub [code], https://github.com/hygeos/polymer/
blob/master/README.md, last access: August 2024.

Raimbault, P., Garcia, N., and Cerutti, F.: Distribution of inorganic
and organic nutrients in the South Pacific Ocean − evidence for
long-term accumulation of organic matter in nitrogen-depleted
waters, Biogeosciences, 5, 281–298, https://doi.org/10.5194/bg-
5-281-2008, 2008.

Rubin, M., Berman-Frank, I., and Shaked, Y.: Dust- and Mineral-
Iron Utilization by the Marine Dinitrogen-Fixer Trichodesmium,
Nat. Geosci., 4, 529–534, https://doi.org/10.1038/ngeo1181,
2011.

Sathyendranath, S., Brewin, R., Brockmann, C., Brotas, V., Cal-
ton, B., Chuprin, A., Cipollini, P., Couto, A., Dingle, J., Doerf-
fer, R., Donlon, C., Dowell, M., Farman, A., Grant, M., Groom,
S., Horseman, A., Jackson, T., Krasemann, H., Lavender, S.,
Martinez-Vicente, V., Mazeran, C., Mélin, F., Moore, T., Müller,
D., Regner, P., Roy, S., Steele, C., Steinmetz, F., Swinton, J.,
Taberner, M., Thompson, A., Valente, A., Zühlke, M., Brando,
V., Feng, H., Feldman, G., Franz, B., Frouin, R., Gould, R.,
Hooker, S., Kahru, M., Kratzer, S., Mitchell, B., Muller-Karger,
F., Sosik, H., Voss, K., Werdell, J., and Platt, T.: An Ocean-
Colour Time Series for Use in Climate Studies: The Experience
of the Ocean-Colour Climate Change Initiative (OC-CCI), Sen-
sors, 19, 4285, https://doi.org/10.3390/s19194285, 2019.

Sayre, R., Noble, S., Hamann, S., Smith, R., Wright, D., Breyer,
S., Butler, K., Van Graafeiland, K., Frye, C., Karagulle, D., Hop-

Biogeosciences, 22, 3207–3233, 2025 https://doi.org/10.5194/bg-22-3207-2025

https://doi.org/10.1371/journal.pone.0061974
https://doi.org/10.1038/ncomms10581
https://doi.org/10.1038/s41598-018-27407-z
https://github.com/OceanOptics/getOC
https://doi.org/10.1016/j.jmarsys.2006.04.019
https://doi.org/10.1029/2009GL039743
https://doi.org/10.1029/2019JC014941
https://doi.org/10.1029/JC095iC11p20237
https://doi.org/10.3389/fmars.2018.00261
https://doi.org/10.1038/ncomms14868
https://doi.org/10.1038/s41597-022-01757-w
https://doi.org/10.1016/B978-0-12-455521-1.X5000-1
https://doi.org/10.1016/B978-0-12-455521-1.X5000-1
https://doi.org/10.1038/s43705-022-00122-7
https://doi.org/10.5194/amt-7-4353-2014
https://doi.org/10.1029/2019GL085282
https://doi.org/10.1038/s41561-022-00957-8
https://oceancolor.gsfc.nasa.gov/resources/atbd/ocl2flags/
https://oceancolor.gsfc.nasa.gov/resources/atbd/ocl2flags/
https://doi.org/10.1016/j.rse.2019.04.021
https://doi.org/10.1029/2002GL016232
https://github.com/hygeos/polymer/blob/master/README.md
https://github.com/hygeos/polymer/blob/master/README.md
https://doi.org/10.5194/bg-5-281-2008
https://doi.org/10.5194/bg-5-281-2008
https://doi.org/10.1038/ngeo1181
https://doi.org/10.3390/s19194285


G. Bourdin et al.: Dynamics of the island mass effect 3233

kins, D., Stephens, D., Kelly, K., Basher, Z., Burton, D., Cress,
J., Atkins, K., Van Sistine, D. P., Friesen, B., Allee, R., Allen,
T., Aniello, P., Asaad, I., Costello, M. J., Goodin, K., Harris,
P., Kavanaugh, M., Lillis, H., Manca, E., Muller-Karger, F., Ny-
berg, B., Parsons, R., Saarinen, J., Steiner, J., and Reed, A.: A
New 30 Meter Resolution Global Shoreline Vector and Associ-
ated Global Islands Database for the Development of Standard-
ized Ecological Coastal Units, J. Oper. Oceanogr., 12, S47–S56,
https://doi.org/10.1080/1755876X.2018.1529714, 2019.

Sayre, R., Martin, M. T., Cress, J. J., Holmes, N., McDermott-Long,
O., Weatherdon, L., Spatz, D., VanGraafeiland, K., and Will, D.:
The Geography of Islands, in: GIS for Science: Applying Map-
ping and Spatial Analysis, Volume 2, edited by: Esri Press, Esri
Press, 4–21, ISBN 978-1-58948-587-7, http://pubs.er.usgs.gov/
publication/70217711 (last access: March 2023), 2020.

Shiozaki, T., Kodama, T., and Furuya, K.: Large-scale Impact of
the Island Mass Effect through Nitrogen Fixation in the West-
ern South Pacific Ocean, Geophys. Res. Lett., 41, 2907–2913,
https://doi.org/10.1002/2014GL059835, 2014.

Signorini, S. R., McClain, C. R., and Dandonneau, Y.:
Mixing and Phytoplankton Bloom in the Wake of the
Marquesas Islands, Geophys. Res. Lett., 26, 3121–3124,
https://doi.org/10.1029/1999GL010470, 1999.

Slade, W. H., Boss, E., Dall’Olmo, G., Langner, M. R.,
Loftin, J., Behrenfeld, M. J., Roesler, C., and Westberry,
T. K.: Underway and Moored Methods for Improving Ac-
curacy in Measurement of Spectral Particulate Absorption
and Attenuation, J. Atmos. Ocean. Tech., 27, 1733–1746,
https://doi.org/10.1175/2010JTECHO755.1, 2010.

Steinmetz, F.: HYGEOS – POLYMER v4.17beta2, GitHub
[code], https://github.com/hygeos/polymer/commit/
7489c58d674fea7ef1729528c3fbdec022bb5450 (last access:
August 2024), 2023.

Steinmetz, F. and Ramon, D.: Sentinel-2 MSI and Sentinel-3 OLCI
Consistent Ocean Colour Products Using POLYMER, Proc.
SPIE 10778, Remote Sensing of the Open and Coastal Ocean and
Inland Waters, 107780E, https://doi.org/10.1117/12.2500232,
2018.

Steinmetz, F., Deschamps, P.-Y., and Ramon, D.: Atmospheric Cor-
rection in Presence of Sun Glint: Application to MERIS, Opt.
Express, 19, 9783, https://doi.org/10.1364/OE.19.009783, 2011.

Vesanto, J. and Alhoniemi, E.: Clustering of the Self-
Organizing Map, IEEE T. Neural Networ., 11, 586–600,
https://doi.org/10.1109/72.846731, 2000.

Xiong, X. and Butler, J. J.: MODIS and VIIRS Calibration
History and Future Outlook, Remote Sensing, 12, 2523,
https://doi.org/10.3390/rs12162523, 2020.

Xiong, X., Angal, A., Twedt, K. A., Chen, H., Link, D., Geng, X.,
Aldoretta, E., and Mu, Q.: MODIS Reflective Solar Bands On-
Orbit Calibration and Performance, IEEE T. Geosci. Remote, 57,
6355–6371, https://doi.org/10.1109/TGRS.2019.2905792, 2019.

https://doi.org/10.5194/bg-22-3207-2025 Biogeosciences, 22, 3207–3233, 2025

https://doi.org/10.1080/1755876X.2018.1529714
http://pubs.er.usgs.gov/publication/70217711
http://pubs.er.usgs.gov/publication/70217711
https://doi.org/10.1002/2014GL059835
https://doi.org/10.1029/1999GL010470
https://doi.org/10.1175/2010JTECHO755.1
https://github.com/hygeos/polymer/commit/7489c58d674fea7ef1729528c3fbdec022bb5450
https://github.com/hygeos/polymer/commit/7489c58d674fea7ef1729528c3fbdec022bb5450
https://doi.org/10.1117/12.2500232
https://doi.org/10.1364/OE.19.009783
https://doi.org/10.1109/72.846731
https://doi.org/10.3390/rs12162523
https://doi.org/10.1109/TGRS.2019.2905792

	Abstract
	Introduction
	Method
	Level-2 satellite product computation
	In situ data and match-ups
	Level-3 multi-satellite product merging
	Island mass effect detection
	Bathymetry, island, and submerged reef databases
	IME contour delineation
	Detecting the IME around neighboring islands


	Assessment
	Benefit of multi-sensor composites
	IME detection algorithm refinement
	Detached IME detection
	IME detection method validation
	Extent of the IME using different algorithms
	IME quantification metric
	The utility of capturing IME temporal dynamics

	Conclusions
	Appendix A: Satellite merging pipeline
	Appendix B: Uncertainty estimates
	Appendix C: Outlier removal
	Appendix D: Rapa Nui, Society Islands, and Samoa validation transects
	Appendix E: Rapa Nui and Society Islands time series
	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

