



## Supplement of

## Potential of carbon uptake and local aerosol production in boreal and hemi-boreal ecosystems across Finland and in Estonia

Piaopiao Ke et al.

Correspondence to: Piaopiao Ke (piaopiao.ke@helsinki.fi) and Markku Kulmala (markku.kulmala@helsinki.fi)

The copyright of individual parts of the supplement might differ from the article licence.

| Parameter                  |                    | CO <sub>2</sub> /H <sub>2</sub><br>O fast<br>analyzer                                                               | 3-D<br>sonic<br>anemom<br>eter                                | Air<br>Tempera<br>ture (°C)              | Relative<br>humidit<br>y                                                 | PAR<br>(mmol/m<br><sup>2</sup> /s)                                  | Cano<br>py<br>heigh<br>t (m) | Measure<br>ment<br>height of<br>eddy<br>covarianc<br>e | Soil<br>type           |
|----------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------|--------------------------------------------------------|------------------------|
| Forest                     | Värriö             | LI-7200,<br>LI-COR<br>Bioscien<br>ces,<br>USA                                                                       | METEK<br>uSonic-<br>1,<br>Elmshor<br>n,<br>Germany            | PT-100                                   | MP106<br>A,<br>Rotroni<br>c,<br>Switzerl<br>and                          | LI-<br>190SB,<br>LI-COR<br>Bioscien<br>ce, USA                      | 10                           | 15 m                                                   | Haplic<br>podzol       |
|                            | Hyytiälä           | LI-0202<br>(before<br>2018.03)<br>and LI-<br>7200<br>(after<br>2018.03)<br>, LI-<br>COR,<br>Bioscien<br>ces,<br>USA | Gill HS-<br>50<br>anemom<br>eter, Gill<br>Instrume<br>nts, UK | PT-100                                   | MP102<br>H<br>Rotroni<br>c,<br>Switzerl<br>and<br>(after<br>2012.06<br>) | LI-<br>190SZ<br>quantum<br>sensor,<br>LI-COR<br>Bioscien<br>ces, UK | 18                           | 23.3 m<br>before<br>3/2018,<br>27 m<br>after<br>3/2018 | Haplic<br>podzol       |
|                            | Ränskälän<br>korpi | LI-7200,<br>LI-COR<br>Bioscien<br>ces,<br>USA                                                                       | METEK<br>uSonic-<br>3,<br>Elmshor<br>n,<br>Germany            | Hmp155                                   | HMP15<br>5,<br>Vaisala,<br>Finland                                       | PQS,<br>Kipp &<br>Zonen<br>B.V.,<br>Netherla<br>nds                 | 14                           | 29 m                                                   | Draine<br>d peat       |
|                            | Järvselja          | LI-7200,<br>LI-COR<br>Bioscien<br>ces,<br>USA                                                                       | METEK<br>uSonic-<br>3,<br>Elmshor<br>n,<br>Germany            | PT-100                                   | WXT52<br>0,<br>Vaisala,<br>Finland                                       | Delta-T<br>Pyranom<br>eter (only<br>for<br>global<br>radiation)     | 17.3                         | 30 m                                                   | Pseudo<br>podzoli<br>c |
| Agricult<br>ural<br>fields | Haltiala           | LI-7200,<br>LI-COR<br>Bioscien<br>ces,<br>USA                                                                       | METEK<br>uSonic-<br>3,<br>Elmshor<br>n,<br>Germany            | HC2,<br>Rotronic<br>,<br>Switzerl<br>and | HC2,<br>Rotroni<br>c,<br>Switzerl<br>and                                 | Li-190R,<br>LI-COR<br>Bioscien<br>ces, USA                          | <1.5 <sup>a</sup>            | 3.0 m                                                  | Silty<br>clay          |
|                            | Qvidja             | LI-7200,<br>LI-COR<br>Bioscien<br>ces,<br>USA                                                                       | METEK<br>uSonic-<br>3,<br>Elmshor<br>n,<br>Germany            | HMP155<br>,<br>Vaisala,<br>Finland       | HMP15<br>5,<br>Vaisala,<br>Finland                                       | PQS,<br>Kipp &<br>Zonen<br>B.V.,<br>Netherla<br>nds                 | <1.2ª                        | 2.3 m                                                  | Clay<br>loam           |
|                            | Viikki             | LI-7200,<br>LI-COR<br>Bioscien<br>ces,<br>USA                                                                       | Metek<br>uSonic-<br>3,<br>Elmshor<br>n,<br>Germany            | HMP110<br>, Vaisala                      | HMP11<br>0,<br>Vaisala                                                   | Kipp&Zo<br>nen PQS<br>1, B.V.,<br>Netherla<br>nds                   | <1.2ª                        | 2.5m                                                   | Clay<br>loam           |

20 Table S1. Analyzer and meteorological sensors for air temperature, humidity, and PAR

| Peatland        | Siikaneva | LI-7200,<br>LI-COR<br>Bioscien<br>ces,<br>USA       | METEK<br>uSonic-<br>1,<br>Elmshor<br>n,<br>Germany | HC2,<br>Rotronic<br>,<br>Switzerl<br>and | HC2,<br>Rotroni<br>c,<br>Switzerl<br>and | Li-190R,<br>LI-COR<br>Bioscien<br>ces, USA              | 0.3 | 3.0 m | Peat          |
|-----------------|-----------|-----------------------------------------------------|----------------------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------------------------|-----|-------|---------------|
| Urban<br>garden | Kumpula   | LI-7200,<br>LI-COR<br>Bioscien<br>ces,<br>USA       | METEK<br>uSonic-<br>1,<br>Elmshor<br>n,<br>Germany | PT-100                                   | HMP24<br>3,<br>Vaisala,<br>Finland       | PARlite,<br>Kipp &<br>Zonen<br>B.V.,<br>Netherla<br>nds |     | 29 m  |               |
| Coastal<br>area | Tvärminne | LI-<br>7200RS,<br>LI-COR<br>Bioscien<br>ces,<br>USA | METEK<br>uSonic-<br>3,<br>Elmshor<br>n,<br>Germany | HMP155<br>,<br>Vaisala,<br>Finland       | HMP15<br>5,<br>Vaisala,<br>Finland       |                                                         |     | 4.2 m | Sedime<br>nts |

21 <sup>a</sup>Estimated as the maximum plant height in growing season; ------ not determined

Table S2. Comparison of  $\Delta N_{\text{neg}}$  across the hemi-boreal and boreal ecosystems in midday (10:00-14:00) of spring and summer.

| Ecosystem               | Site (site ID) | Spring $\Delta N_{\text{neg}}$<br>(1/cm <sup>3</sup> , 50%) | Comparing with Hyytiälä median $\Delta N_{neg}$ | Comparing with Hyytiälä 75 <sup>th</sup> percentile $\Delta N_{neg}$ | Summer<br>$\Delta N_{\text{neg}}^{3}$<br>$(1/\text{cm}^{3}, 50\%)$ | Comparing<br>with<br>Hyytiälä<br>median<br>$\Delta N_{neg}$ | Comparing<br>with<br>Hyytiälä 75 <sup>th</sup><br>percentile<br>$\Delta N_{neg}$ |
|-------------------------|----------------|-------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------|
| Forest                  | Hyytiälä       | 2.0                                                         | 1                                               | 1                                                                    | 1.4                                                                | 1                                                           | 1                                                                                |
|                         | Värriö         | 0.84                                                        | 0.42                                            | 0.42                                                                 | 0.98                                                               | 0.70                                                        | 1.0                                                                              |
|                         | Järvselja      | 0.73                                                        | 0.36                                            | 0.28                                                                 | 0.66                                                               | 0.47                                                        | 0.57                                                                             |
| Drained peatland forest | Ränskälänkorpi | 0.76                                                        | 0.38                                            | 0.5                                                                  | 0.67                                                               | 0.48                                                        | 0.6                                                                              |
|                         | Haltiala       | 7.7                                                         | 3.8                                             | 2.3                                                                  | 1.4                                                                | 1.0                                                         | 1.1                                                                              |
| Agricultural land       | Qvidja         | 2.4                                                         | 1.2                                             | 1.2                                                                  | 1.7                                                                | 1.2                                                         | 1.4                                                                              |
|                         | Viikki         | 2.3                                                         | 1.13                                            | 1                                                                    | 1.7                                                                | 1.2                                                         | 1.2                                                                              |
| Peatland                | Siikaneva      | 1.1                                                         | 0.54                                            | 0.52                                                                 | 1.5                                                                | 1.1                                                         | 1.1                                                                              |
| Urban<br>vegetated area | Kumpula        | 4.9                                                         | 2.4                                             | 2.4                                                                  | 5.0                                                                | 3.6                                                         | 3.9                                                                              |
| Coastal area            | Tvärminne      | 0.19                                                        | 0.1                                             | 0.13                                                                 | 0.45                                                               | 0.32                                                        | 0.49                                                                             |



Figure S1. The  $50^{\text{th}}$  percentile (a),  $25^{\text{th}}$  percentile (b), and mean values (c) of NEE at each hour for the forest sites and urban gardens in the autumn and the corresponding  $50^{\text{th}}$  percentile,  $25^{\text{th}}$  percentile, and mean values in the winter, (d), (e), (f), respectively.



Figure S2. The 50<sup>th</sup> percentile (a), 25<sup>th</sup> percentile (b), and mean values (c) of NEE at each hour for the agricultural lands in the autumn and the corresponding 50<sup>th</sup> percentile, 25<sup>th</sup> percentile, and mean values, (d), (e), (f) in the winter, respectively.



Figure S3. The 50<sup>th</sup> percentile (a), 25<sup>th</sup> percentile (b), and mean values (c) of NEE at each hour for
the open peatland and coastal area in the autumn and the corresponding 50<sup>th</sup> percentile, 25<sup>th</sup> percentile, and mean values, (d), (e), (f) in the winter, respectively.



Figure S4. The median diurnal variation of the air temperature in the forests (a), agricultural fields (b), and peatland and coastal area (c) in each season.



Figure S5. The 50<sup>th</sup> percentile (a), 75<sup>th</sup> percentile (b), and median daily fluctuations (c) of negative ions at each hour for the forest sites and urban gardens in the autumn and the corresponding 50<sup>th</sup> percentile, 75<sup>th</sup> percentile, and median daily fluctuations in the winter, (d), (e), (f), respectively.



Figure S6. The 50<sup>th</sup> percentile (a), 75<sup>th</sup> percentile (b), and median daily fluctuations (c) of negative ions at each hour for agricultural fields in the autumn and the corresponding 50<sup>th</sup> percentile, 75<sup>th</sup> percentile, and median daily fluctuations in the winter, (d), (e), (f), respectively.



Figure S7. The 50<sup>th</sup> percentile (a), 75<sup>th</sup> percentile (b), and median daily fluctuations (c) of negative ions at each hour for open peatland and coastal area in the autumn and the corresponding 50<sup>th</sup> percentile, 75<sup>th</sup> percentile, and median daily fluctuations in the winter, (d), (e), (f), respectively.



Figure S8. The yearly changes of median air temperature in summer (a) and precipitations (b) in Viikki cropland. The data in Kumpula, Helsinki, which is ~5.6 km away from Viikki croplands, was applied to represent yearly changes in Viikki croplands. All data are from Finnish Metrological Institute.



Värriö Forest 
Hyytiälä Forest
Kanskälänkorpi Forest
Värriö Forest
Kumpula Urban garden

Figure S9. Comparison between median NEE, median negative intermediate ions at 2.0-2.3 nm, leaf area index, and median photosynthetic photo flux density (PPFD) at midday in summer between the sites. The error bars are 10<sup>th</sup> and 25<sup>th</sup> percentile for NEE, 75<sup>th</sup> and 90<sup>th</sup> percentile for the negative intermediate ions, and 75<sup>th</sup> and 90<sup>th</sup> percentile for PPFD at each site.