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Abstract. Phytoplankton account for around half of plane-
tary primary production and are instrumental in regulating
ocean biogeochemical cycles. Around 70 % of the oceans
is characterized by either seasonal or permanent stratifica-
tion. In such regions, it has been postulated that two distinct
planktonic ecosystems exist, one that occupies the nutrient-
limited surface mixed layer and another that resides below
the mixed layer in a low-light, nutrient-rich environment.
Owing to challenges observing the planktonic ecosystem be-
low the mixed layer, it remains largely unexplored. Conse-
quently, it is rarely characterized explicitly in marine ecosys-
tem models. Here, we develop a simple, two-layered box
model comprised of an ecosystem (nutrient, phytoplankton,
and zooplankton – NPZ) in the surface mixed layer and a
separate one (NPZ) in a subsurface layer below it. The two
ecosystems are linked only by dynamic advection of nutri-
ents between layers and controls on light attenuation. The
model is forced with surface light (modelled from the top of
the atmosphere) and observations of mixed layer depth. We
run our model at the Bermuda Atlantic Time-series Study
(BATS) site and compare results with a time series of more
than 30 years for phytoplankton and nutrient observations.
When compared with observations, the model simulates con-
trasting seasonal and interannual variability in chlorophyll in
the two layers, reproducing the observed trends post-2011. A
shoaling mixed layer post-2011, driven by ocean warming,
increases light availability in both layers, which alters surface
phytoplankton physiology while increasing subsurface phy-
toplankton biomass. Results lend support to the hypothesis
that the euphotic zone of stratified systems can be described

using two vertically separated planktonic ecosystems. Never-
theless, simulating the ecosystem in the subsurface layer was
more challenging than the ecosystem in the surface mixed
layer as less is known about model parameters and processes
due to a lack of measurements, suggesting that more work is
needed to study controls on subsurface planktonic communi-
ties.

1 Introduction

Phytoplankton are photosynthetic single-celled microorgan-
isms that form the base of the oceanic food web. Their contri-
bution to Earth’s primary production is similar to terrestrial
plants, accounting for approximately half of it (Longhurst
et al., 1995; Field et al., 1998). These tiny organisms play
a crucial role in regulating the global carbon, nitrogen, and
phosphorus cycles, making them vital for Earth’s climate reg-
ulation (Falkowski et al., 1998; Falkowski, 2012). Over the
past century, a warming climate has been reported (Intergov-
ernmental Panel on Climate Change, 2022), and direct (e.g.
change in the carbon-to-chlorophyll ratio; C : Chl ratio) and
indirect (e.g. changes in stratification) resultant impacts on
phytoplankton dynamics have been identified (e.g. Winder
and Sommer, 2012; Behrenfeld et al., 2016).

Around 70 % of the ocean is characterized by either
seasonal or permanent stratification, with this percentage
thought to be increasing with climate change (e.g. Polov-
ina et al., 2008; Gruber, 2011; Leonelli et al., 2022). Our
understanding of global surface phytoplankton dynamics is
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primarily based on satellite observations of chlorophyll a.
However, stratified oceans often feature a relatively shallow
nutrient-depleted mixed layer with a deep chlorophyll max-
imum (DCM) below it at depths of 80–120 m where nutri-
ent concentrations are higher (Cullen, 1982; Fasham et al.,
1985), which is hidden from satellites (Cullen, 2015; Cornec
et al., 2021; Stoer and Fennel, 2024). The community of phy-
toplankton at the DCM is thought to contribute significantly
to biogeochemical cycling in stratified waters but remains
understudied (Dai et al., 2023; Viljoen et al., 2024; Stoer and
Fennel, 2024). Considering the potential expansion of strati-
fied waters with climate change (Li et al., 2020), it is impor-
tant that we learn more about phytoplankton dynamics below
the mixed layer.

In a stratified ocean, the euphotic zone can be theoreti-
cally divided into two vertically separated layers (Dugdale,
1967). The upper zone extends from the surface to the bot-
tom of the mixed layer and is characterized by high light but
depleted nutrients. The lower zone is between the bottom of
the mixed layer and the euphotic zone and is low in light but
replete in nutrients (Eppley et al., 1973; Small et al., 1987).
To understand the vertical distribution of phytoplankton in
stratified waters from observations collected at sea, empiri-
cal methods have been employed to partition profiles of total
phytoplankton biomass into vertically separated layers. For
example, Lange et al. (2018) show that high-light-adapted
and low-light-adapted Prochlorococcus dominate the surface
and subsurface layers, respectively, in the tropical Atlantic.
Brewin et al. (2022) developed an algorithm to vertically par-
tition phytoplankton into two communities within the upper
ocean of the northern Red Sea. Recently, Viljoen et al. (2024)
used this algorithm to partition phytoplankton into two verti-
cally separated communities within the Sargasso Sea (at the
Bermuda Atlantic Time-series Study – BATS – site). They
found that the two communities exhibit distinct and con-
trasting responses to climate variability over multidecadal
timescales. From 2011 to 2022, chlorophyll in the surface
mixed layer showed a decreasing trend, while chlorophyll be-
low the mixed layer and above the euphotic zone displayed
an increasing trend (Viljoen et al., 2024). Understanding the
mechanisms controlling the different trends in these two ver-
tically separated phytoplankton communities may help im-
prove predictions of future changes to the base of the marine
ecosystem in stratified waters. Exploring these mechanisms
requires the development of a suitable ecosystem model.

A wide range of ecosystem models are available to the bi-
ological oceanographic community, ranging from simple sin-
gle nutrient–phytoplankton–zooplankton (NPZ) models (see
Franks, 2002) to complex 3D models with multiple nutri-
ent, detrital, and plankton state variables. The essence of
those simple and complex ecosystem models is the nutrient–
phytoplankton–zooplankton (NPZ) cycles. Based on this
fundamental theory, an NPZ box model with physical forcing
(mixed layer forcing) was developed by Evans and Parslow
(1985), providing useful insights into phytoplankton annual

cycles within the mixed layer (see Miller and Wheeler,
2012). Here, we briefly review studies using these models
at BATS. Building on the earlier work of Evans and Parslow
(1985), the first nitrogen-based NPZD model (where the D
refers to a detrital state variable) was developed by Fasham
et al. (1990), who also proposed the most widely used set
of parameters for NPZ modelling. This model was later vali-
dated at BATS (Fasham, 1993), providing a foundation for
further NPZD model development. Efforts have been de-
voted to further NPZD model development to address various
scientific questions at BATS. For instance, Hurtt and Arm-
strong (1996, 1999) developed a model based on Fasham
et al. (1990) to improve the simulation of chlorophyll con-
centrations and primary production dynamics through com-
parisons with observations. Doney et al. (1996) developed
a 1D, physically coupled NPZD model, following the ra-
tionale of Fasham et al. (1990), to investigate the seasonal
interaction between physics and biology in the upper ocean
at BATS. Spitz et al. (1998) assimilated observations from
BATS to refine parameters in the NPZD model of Fasham
et al. (1990). Similarly, Schartau and Oschlies (2003) as-
similated observations to derive a set of parameters that en-
hance the NPZD model performance in different locations
in the North Atlantic Ocean, including at BATS. The NPZD
model of Fasham et al. (1990) has also been coupled with a
3D physical modelling framework (Sarmiento et al., 1993) to
simulate ecosystems at a regional and global scale (e.g. Os-
chlies and Garçon, 1999; Fennel et al., 2006; Gruber et al.,
2006; Druon et al., 2010).

In this paper, we build on the early work of Dugdale (1967)
and the NPZ box model of Evans and Parslow (1985) to con-
struct a simple two-layered vertically structured NPZ model
that partitions the euphotic zone of stratified waters into a
surface high-light nutrient-depleted layer and a subsurface
low-light nutrient-replete layer using the mixed layer depth
(MLD) and base of the euphotic zone as our boundaries. Our
model is built on the assumption that these two layers host
two different ecosystems (Dai et al., 2023) and are linked by
dynamic advection of nutrients between layers and the at-
tenuation of light. We use data collected at BATS (a season-
ally stratified site) to evaluate the construction of our model
and to test whether it can capture seasonal and multidecadal
variability in phytoplankton dynamics within and below the
mixed layer, as well as to explain the opposite trends in these
two vertically separated layers over the 2011 to 2022 period
observed by Viljoen et al. (2024). A key novelty of our model
is the implementation of a different set of parameters for each
layer, setting it apart from existing ecosystem models. A de-
tailed description of the model functions, parameters, and
datasets used is provided in Sect. 2. The findings from sen-
sitivity tests, model outputs, comparisons with observations,
and the mechanism of different trends post-2011 in the two
communities are presented in Sect. 3. Finally, Sect. 4 offers
a concluding discussion of our findings.
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Figure 1. Schematic diagram of the two-layered ecosystem model.
Light and dark blue shades represent the surface and subsurface
layers, respectively. Ps, Zs, and Ns (Pd, Zd, and Nd) refer to the
phytoplankton, zooplankton, and nutrient pools at the surface (sub-
surface), respectively. zm and zeu refer to the mixed layer depth and
euphotic zone, respectively. Mixing and entrainment represent the
mixing and entrainment effects driven by zm, which is highlighted
by the dashed pink line. Dashed dark red lines represent the nutri-
ent excursion from the surface to the subsurface layer. The arrow
direction denotes the direction of the nitrogen cycle.

2 Method

2.1 Model description

We present a two-layered NPZ model, building on the single-
layer model of Evans and Parslow (1985). Figure 1 shows
a schematic outline of our model, displaying the interaction
of different nutrients, phytoplankton, and zooplankton pools.
The surface layer extends from the sea surface down to the
mixed layer depth (zm), while the subsurface layer spans the
bottom of zm to the euphotic depth (zeu) representing the
depth limit of the euphotic zone (EU). In this model, zeu is
defined as the depth at which 0.0001 % of the surface light
level is available (note that this is considerably deeper than
the common definition of 1 % of the surface light level owing
to the fact that growth by phytoplankton has been observed
well below the 1 % light level (Cox et al., 2023) and to ensure
that the bottom boundary of the model is always deeper than
zm). A key assumption is made in the structure of our model:
the two different phytoplankton and zooplankton communi-
ties in the two layers (Dai et al., 2023) do not interact di-
rectly. Essentially, we make the assumption that each ecosys-
tem is adapted to the environment it resides in and thus has a

competitive advantage in that layer. The two ecosystems are
linked only through the exchange in nutrients between the
two layers as indicated by the arrows in Fig. 1. Our model is
run using two forcings: zm, which comes from observational
data at the Bermuda Atlantic Time-series Study (BATS) site
(see description below), and broadband surface light. Follow-
ing Miller and Wheeler (2012) and Brock (1981), we model
daily averaged solar radiation at the BATS site (31° N) as-
suming clear-sky conditions modulated by the atmospheric
attenuation coefficient (Atm) and PAR fraction (fpar), and
this light is attenuated through the mixed layer (with the at-
tenuation coefficient as a function of pure water and surface
chlorophyll concentration) and averaged within the mixed
layer for use in surface layer modelling. Similarly, we con-
tinue to attenuate light (with the attenuation coefficient as a
function of pure water and subsurface chlorophyll concentra-
tion) between zm and zeu, averaging it to represent the sub-
surface light forcing.

In the surface layer of our model, the rationale is simi-
lar to the model of Evans and Parslow (1985). The change
in zooplankton concentration is controlled by grazing, mor-
tality, and also the dilution and concentration effect due to
fluctuations in zm (see Eq. 7). A key modification we intro-
duced is changing from a linear response of the zooplank-
ton mortality term to a quadratic response to enhance the
stability of the model (e.g. Denman, 2003; Edwards and
Yool, 2000; Steele and Henderson, 1992). As in Evans and
Parslow (1985), the dynamics of phytoplankton concentra-
tion are controlled by phytoplankton growth and mortality,
zooplankton grazing, and the effect of zm (see Eq. 6). For
the growth term, we calculate the growth rates of nutrients
and light and apply Liebig’s law of the minimum to regu-
late phytoplankton growth (Eq. 4). Additionally, to ensure
a conservative model, we modify the Evans and Parslow
(1985) model by changing the asymmetric effect of zm to
a symmetric effect to ensure a conservative model. In other
words, in our model, the mixed layer incorporates both di-
lution and concentration effects on both nutrient and phy-
toplankton concentrations (see Eqs. 5–6). Furthermore, as in
the Evans and Parslow (1985) model, the nutrient cycle in our
model is controlled by the growth and death of phytoplank-
ton and zooplankton, as well as the mixing and entrainment
effect driven by zm (Eq. 5). For the mixing effect, we adopt a
fraction of zm (µm in Table 1) to represent the dynamic mix-
ing processes between the two layers following the approach
of Miller and Wheeler (2012) rather than using a fixed coeffi-
cient as in the Evans and Parslow (1985) model. Considering
previously used fixed coefficients, such as 0.1 m d−1 (Fasham
et al., 1990) and 0.5 m d−1 (Macías et al., 2007), we select
µm = 0.0055 to yield a time-mean µm · zm of 0.3 m d−1, a
mid-range value that aligns well with the 0.25 m d−1 used in
Fennel et al. (2001).

In the subsurface layer, the dynamics of phytoplankton
and zooplankton concentration adhere to principles similar
to those in the surface layer. However, phytoplankton growth
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in the subsurface layer is simplified and dependent solely on
light (Eq. 16), as light availability is significantly weaker and
nutrients are substantially higher than the surface layer. The
nutrient cycle in the subsurface layer (Eq. 17), however, is
more complex. It involves not only the phytoplankton and
zooplankton cycle in the subsurface layer but also the rem-
ineralization of nutrients from some of the dead phytoplank-
ton and zooplankton from the surface layer (Eq. 14). In ad-
dition, nutrients in the subsurface layer are injected into the
surface layer via mixing and entrainment processes. This ex-
change between nutrient pools in the surface and subsurface
layers serves as the crucial link connecting the processes be-
tween the two layers.

In summary, the model equations for dissolved nutrient
(N), phytoplankton (P), and zooplankton (Z) concentration
dynamics in the surface and subsurface layers are shown as
follows, with all related parameters described in Table 1.

Surface layer:

dzm

dt
= ζ(t), (1)

ζ+(t)=max(0,ζ(t)), (2)

8s =
asεsP

2
c,s

as+ εsP 2
c,s
, (3)

Gs =min
{
Vmaxs

(
1− exp

(
−αsIs

Vmaxs

))
,
VmaxsNc,s

Ks+Nc,s

}
, (4)

dNc,s

dt
=−GsPc,s+µpmsPc,s+ (1− γs−µg)8sZc,s

+µzcsZ
2
c,s+

(µmzm+ ζ
+(t))(Nc,d−Nc,s)

zm

−
ζ(t)

zm
Nc,s, (5)

dPc,s

dt
=GsPc,s−msPc,s−8sZc,s−

ζ(t)

zm
Pc,s, (6)

dZc,s

dt
= γs8sZc,s− csZ

2
c,s−

ζ(t)

zm
Zc,s, (7)

Ik =
Vmaxs

αs
, (8)

I∗ =
Is

Ik
, (9)

χs =
I∗

θm(1− exp(−I∗))
, (10)

Chl ac,s = Pc,sQC :N
1
χs
Mc. (11)

Subsurface layer:

zD = zeu− zm, (12)
dzD
dt
= η(t), (13)

φ =
(1−µz)csZ

2
c,szm

zD
+
µg8sZc,szm

zD

+
(1−µp)msPc,szm

zD
, (14)

8d =
adεdP

2
c,d

ad+ εdP
2
c,d
, (15)

Gd = Vmaxd

(
1− exp

(
−
αdId

Vmaxd

))
, (16)

dNc,d

dt
=−GdPc,d+mdPc,d+ (1− γd)8dZc,d

+ cdZ
2
c,d−

η(t)

zD
Nc,d

−
(µmzm+ ζ

+(t))(Nc,d−Nc,s)

zD
+φ, (17)

dPc,d

dt
=GdPc,d−mdPc,d−8dZc,d−

η(t)

zD
Pc,d, (18)

dZc,d

dt
= γd8dZc,d− cdZ

2
c,d−

η(t)

zD
Zc,d, (19)

Chl ac,d = Pc,dQC :N
1
χd
Mc. (20)

Nc,s, Pc,s, Zc,s, and Chl ac,s represent the dissolved nutri-
ent, phytoplankton, zooplankton, and chlorophyll a concen-
trations at the surface layer. Similarly, Nc,d, Pc,d, Zc,d, and
Chl ac,d represent the dissolved nutrient, phytoplankton, zoo-
plankton, and chlorophyll a concentrations at the subsur-
face layer. In this model, the unit of Chl ac,s and Chl ac,d
is mg m−3, whereas Nc,s, Pc,s, Zc,s, Nc,d, Pc,d, and Zc,d are
expressed in nitrogen units, mmol N m−3. Here, 8s and 8d
represent the grazing at the surface and subsurface layer, re-
spectively, which share the same “Holling Type III” response
(Denman and Peña, 2002) but with different parameters at
different layers. The term φ represents the influence of the
export production from the surface layer to the subsurface
layer nutrient pool, andGs shows the growth rate of the phy-
toplankton at the surface, determined by the processes most
limiting to surface light (Vmaxs(1− exp(−αsIs

Vmaxs
))) or nutrients

(VmaxsNc,s
Ks+Nc,s

) (Michaelis–Menten uptake, Franks, 2002). How-
ever, at the subsurface layer, the growth of phytoplankton
(Gd) is set to be only limited by subsurface light (Id). The
thickness of the subsurface layer is represented as zD .

To calculate the surface chlorophyll concentration
(Chl ac,s) in this model, we convert phytoplankton from ni-
trogen units in moles to carbon units in milligrams (mg) by
multiplying by the molecular weight of carbon (Mc in Ta-
ble 1) and the Redfield ratio (QC :N in Table 1). Then, we
convert the carbon to chlorophyll using the surface carbon-
to-chlorophyll ratio (χs) following the Eqs. (8)–(10) origi-
nating from Geider et al. (1997) and Jackson et al. (2017),
where θm is the maximum chlorophyll-to-carbon ratio and
I∗ is dimensionless irradiance. According to Jackson et al.
(2017), a suitable value for θm at the surface is 0.01. The di-
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mensionless irradiance I∗ is defined by Eq. (9), where Is is
the surface layer photosynthetically active radiation and Ik is
defined as the ratio of maximum chlorophyll-normalized pro-
duction over the chlorophyll-normalized initial slope of the
photosynthesis irradiance curve (Jackson et al., 2017). Since
our model does not include chlorophyll-normalized parame-
ters, we approximate Ik as Vmaxs

αs
to calculate χs.

To calculate the subsurface chlorophyll concentration
(Chl ac,d), we followed a similar method as calculating
Chl ac,s, but used a fixed C : Chl ratio in the subsurface layer
(χd). According to Viljoen et al. (2024), χd tends to be stable
at the subsurface and shows a lower value than the surface
layer. Thus we fixed χd as 156, half of the modelled time-
mean χs, which also falls in the range of 1–226 observed by
Viljoen et al. (2024).

2.2 Model parameterization

Table 1 summarizes the parameters used in our model, as
well as their meanings, values, units, and supporting refer-
ences. In this two-layer NPZ model, most of the basic pa-
rameters (fpar,Kdw, αs,ms, and γs) at the surface come from
Fasham et al. (1990), which forms the most widely used val-
ues for NPZ modelling.Kdw andKdps are parameters used to
calculate the total attenuation coefficients (Kds ) at the surface
layer (see Eq. 21) such that

Kds =Kdw+Kdps ·Chl ac,s, (21)

whereKdw refers to the attenuation of pure water andKdps is
the chlorophyll-specific light attenuation at the surface. Sim-
ilarly, Kdw and Kdpd are parameters used to calculate the to-
tal attenuation coefficients (Kdd ) at the subsurface layer (see
Eq. 22) such that

Kdd =Kdw+Kdpd ·Chl ac,d, (22)

whereKdpd is the chlorophyll-specific light attenuation at the
subsurface. In this model, we use different values for Kdps

and Kdpd as field studies have shown that the chlorophyll-
specific attenuation of phytoplankton changes vertically in
stratified waters (Uitz et al., 2008). We approximate the
chlorophyll-specific light attenuation from the chlorophyll-
specific absorption coefficient of phytoplankton derived by
Uitz et al. (2008), making Kdps = 0.028 m2 (mg Chl a)−1

and Kdpd = 0.026 m2 (mg Chl a)−1.
The initial values for surface phytoplankton (Po) and

chlorophyll (Chlo) concentrations are set to 0.2 mmol N m−3

and 0.1 mg m−3 based on observations at BATS reported by
Kantha (2004) and Anugerahanti et al. (2020), respectively.
Furthermore, No is set to 0.1 mmol N m−3, which is the av-
erage value of in situ NO3 observations at BATS from 1998–
2007 (Anugerahanti et al., 2020). Observational data for zoo-
plankton at different depths are more challenging to find.
To keep consistency, we chose the Zo = 0.25 mmol N m−3

based on the experiment that produces phytoplankton and

nutrient results closely matching in situ data (PPE in Fig. 2
in Anugerahanti et al., 2020). The initial value of the mixed
layer depth (zmo ) is set to be 52 m, the time-mean value of
zm from 1990 to the end of 2022 at the BATS location (data
are described below). Given that the time-mean chlorophyll
tends to be near zero at 250 m (Anugerahanti et al., 2020), we
define the initial value of the euphotic zone (zeo ) as 250 m.

Regarding the initial values at the subsurface layer, Pdo
is challenging to determine since few studies present phy-
toplankton concentrations in mmol N m−3 at various depths.
Nevertheless, based on the vertical phytoplankton concen-
tration profile from 0 to 250 m at the BATS location simu-
lated by the NPZD model from Doney et al. (1996), the phy-
toplankton concentration at 50–250 m ranges from approxi-
mately 0.05 to 0.15 mmol N m−3. Consequently, Pdo is given
as 0.1 mmol N m−3, in the centre of that range. Given that
time-mean Chl ac,d varies from 0.01 to 0.25 mg m−3 between
50–250 m (Anugerahanti et al., 2020), Chldo is defined in the
centre of the range at 0.13 mg m−3. For Zdo and Ndo , we fol-
low the same methodology used to determine initial values
in the surface layer but select values at around 200 m from
Anugerahanti et al. (2020).

We employ the most traditional values for the maximum
grazing rate (as) and prey capture rate (εs) in the surface
layer, as outlined by Oschlies and Garçon (1999). The zoo-
plankton quadratic mortality rate (cs) and the coefficients re-
lated to the excretion of the nutrients from the first to the sec-
ond layer (µz, µg , and µp) are adopted from Pasquero et al.
(2005), which are also used in other literature (e.g. Sand-
ulescu et al., 2007; Yaya et al., 2021). Given that our hypoth-
esis is tested at the BATS location, characterized by a season-
ally stratified ocean, we adjusted the initial values of Vmaxs

andKs to reflect the conditions specific to this area. Schartau
and Oschlies (2003) show that Vmaxs has a strong seasonal
cycle at the BATS location ranging from around 1 to 1.4 d−1.
Accordingly, we select Vmaxs = 1.2 d−1, an average value of
this range. Given the range of 0.45–0.91 mmol N m−3 for the
half-saturation constant for phytoplankton nutrient uptake at
the surface layer (Ks) at BATS, as reported by Hurtt and
Armstrong (1999), we adopt Ks = 0.7 mmol N m−3, a mid-
point of that range.

In the subsurface layer, given that no study has employed
different parameters at different layers in an NPZ model, it
is challenging to adjust the parameters based on existing lit-
erature. However, as we know the light availability should
be much lower at the subsurface, which implies that the ini-
tial slope of the photosynthesis irradiance curve (αd) and
phytoplankton maximum growth rate (Vmaxd ) at the subsur-
face may be higher and lower than the surface, respectively
(Fasham, 1993). Schartau and Oschlies (2003) provide a set
of parameters by assimilating observational data at the BATS
location, including a higher αd and lower Vmaxd , which are
used in our model. To maintain consistency, we use their pa-
rameters for the rest of our subsurface parameters.
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Table 1. Parameters used in our two-layered NPZ model, as well as their meanings, values, units, and supporting references. P/I:
photosynthesis–irradiance.

Parameter Symbol Value Unit Reference

Solar constant SolarK 1373 Wm−2 Miller and Wheeler (2012)
Atmospheric attenuation Atm 0.5 – Miller and Wheeler (2012)
PAR fraction fpar 0.41 – Fasham et al. (1990)
Light attenuation due to water Kdw 0.04 m−1 Fasham et al. (1990)
Surface chlorophyll-specific light attenuation coefficient Kdps 0.028 m2(mgChl a)−1 Uitz et al. (2008)
Initial value for surface nutrient concentration No 0.1 mmolNm−3 Anugerahanti et al. (2020)
Initial value for nutrient concentration in the subsurface layer Ndo 2.5 mmolNm−3 Anugerahanti et al. (2020)
Initial value for phytoplankton concentration at the surface Po 0.2 mmolNm−3 Kantha (2004)
Initial value for zooplankton concentration at the surface Zo 0.25 mmolNm−3 Anugerahanti et al. (2020)
Initial value for chlorophyll concentration at the surface Chlo 0.1 mgm−3 Anugerahanti et al. (2020)
Initial value for phytoplankton concentration at the subsurface Pdo 0.1 mmolNm−3 Doney et al. (1996)
Initial value for zooplankton concentration at the subsurface Zdo 0.05 mmolNm−3 Anugerahanti et al. (2020)
Initial value for chlorophyll concentration at the subsurface Chldo 0.13 mgm−3 Anugerahanti et al. (2020)
Initial value for mixed layer depth zmo 52 m Time-mean zm at BATS
Initial value for euphotic zone zeo 250 m Anugerahanti et al. (2020)

Half-saturated for phytoplankton nutrient uptake at surface layer Ks 0.7 mmolNm−3 Hurtt and Armstrong (1999)
Initial slope of the P/I curve at surface layer αs 0.025 d−1(Wm−2)−1 Fasham et al. (1990)
Phytoplankton mortality rate at surface layer ms 0.09 d−1 Fasham et al. (1990)
Phytoplankton maximum growth rate at surface layer Vmaxs 1.2 d−1 Schartau and Oschlies (2003)
Zooplankton assimilation efficiency at surface layer γs 0.75 – Fasham et al. (1990)
Maximum grazing rate at surface layer as 2 d−1 Oschlies and Garçon (1999)
Prey capture rate at surface layer εs 1 (mmolNm−3)−2 d−1 Oschlies and Garçon (1999)
Zooplankton quadratic mortality rate cs 0.2 (mmolNm−3)−1d−1 Pasquero et al. (2005)
Dead zooplankton fraction immediately available as nutrient µz 0.2 – Pasquero et al. (2005)
Zooplankton grazing substance fraction sinking to the subsurface layer µg 0.2 – Pasquero et al. (2005)
Dead phytoplankton fraction immediately available as nutrient µp 0.2 – Pasquero et al. (2005)
Mixing fraction coefficient µm 0.0055 – Fennel et al. (2001)

Subsurface chlorophyll-specific light attenuation coefficient Kdpd 0.026 m2(mgChl a)−1 Uitz et al. (2008)
Initial slope of the P/I curve at subsurface layer αd 0.256 d−1(Wm−2)−1 Schartau and Oschlies (2003)
Phytoplankton mortality rate at subsurface layer md 0.05 d−1 Schartau and Oschlies (2003)
Phytoplankton maximum growth rate at subsurface layer Vmaxd 0.27 d−1 Schartau and Oschlies (2003)
Zooplankton assimilation efficiency at subsurface layer γd 0.9 – Schartau and Oschlies (2003)
Maximum grazing rate at subsurface layer ad 1.575 d−1 Schartau and Oschlies (2003)
Prey capture rate at subsurface layer εd 1.6 (mmolNm−3)−2 d−1 Schartau and Oschlies (2003)
Zooplankton quadratic mortality rate at subsurface layer cd 0.34 (mmolNm−3)−1d−1 Schartau and Oschlies (2003)

Maximum chlorophyll-to-carbon ratio at surface layer θm 0.01 – Jackson et al. (2017)
C : N Redfield ratio for phytoplankton QC :N

106
16 mmolC (mmolN)−1 Redfield (1958)

Molecular weight of Carbon Mc 12 mgC (mmolC)−1 –
C : Chl ratio at subsurface layer χd 156 – Half of the modelled time-mean

C : Chl ratio at surface layer

2.3 Model sensitivity analysis

To determine the sensitivity of model parameters, we con-
ducted a series of experiments. First, the model was run from
1990 to 2022 with the parameters listed in Table 1 with the
chlorophyll, zooplankton, and nutrient concentration stocks
at the surface and subsurface layers saved (default run). Next,
the model was run again with each parameter (except for
SolarK, Kdw, QC :N, and Mc, which are well-known) indi-
vidually increased and decreased by 10 % while keeping the
remaining parameters fixed (sensitivity runs). We then calcu-
late the time-mean values of each state variable in sensitivity

runs and the default run and computed the ratios by dividing
the former by the latter. Eventually, these ratios construct a
general range (3), illustrating how the mean values deviate
from the default run in response to a 10 % change (increase
or decrease) in each parameter in Table 1.

2.4 Model validation

Ship-based data from BATS (1990–2022) were used to
calculate integrated stocks of chlorophyll and dissolved
NO2+NO3, as well as mixed layer depth (zm) used in this
study, following the methodology outlined by Viljoen et al.
(2024). Temperature profiles from conductivity, temperature,
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and depth (CTD) casts (Johnson et al., 2024) were used to
compute zm, specifically for profiles with concurrent temper-
ature and salinity data that included measurements in the sur-
face (< 11 m). The zm was calculated using the temperature-
based algorithm implemented in the holteandtalley Python
package (Holte and Talley, 2009). Chlorophyll a concen-
trations were extracted from high-performance liquid chro-
matography (HPLC) pigment data (Johnson et al., 2023a), in-
cluding only profiles with a minimum of six depth measure-
ments and coincident CTD and particulate organic carbon
(POC) bottle data. Dissolved inorganic nitrogen (DIN) mea-
surements were obtained from nitrate+ nitrite profiles on
the BATS data server (http://bats.bios.edu/bats-data/, last ac-
cess: 18 July 2023). Only DIN profiles with at least six mea-
surements in the upper 350 m and that aligned with selected
HPLC chlorophyll a and temperature profiles were used. All
CTD, HPLC, and DIN data were restricted to profiles within
a 0.5° latitude and longitude box around the BATS site.

We ran our model with the parameters in Table 1 from
1 January 1990 to 31 December 2022 in a daily time step
at BATS to derive a chlorophyll and nutrient concentration
daily time series. This model was not spun up, but it stabi-
lized within 1 month, which indicates that the model output
became comparable with observations as of 1 February 1991.
To estimate the stocks of chlorophyll and nutrients in the
model, we multiplied the vertically averaged concentration in
each layer by the thickness of each layer. The thicknesses of
the surface and subsurface layer are zm and zD (see Eq. 12),
respectively. Next, to compare model output with observa-
tions, we used the observational chlorophyll and nutrient in-
tegration above zm time series at BATS from Viljoen et al.
(2024) as referenced observational stocks at the surface layer,
as we use the same zm, which is also used as the bottom
boundary for the surface layer in the model. For the subsur-
face layer stock calculation, we first integrate observational
chlorophyll and nutrient concentrations at BATS from zm to
zk (zk refers to the deepest depth level of the measurements
at each time step just above zeu). This integration is then di-
vided by the (zk minus zm) to obtain the averaged concentra-
tion between zm and zk . This average concentration was used
as a representative value for the water column from zm to zeu
and then multiplied by the model subsurface thickness (zD)
to derive the subsurface phytoplankton and nutrient stocks.

In addition to the time series of stocks, we also calculate
a time-mean climatology of surface and subsurface chloro-
phyll and nutrient stocks. To determine the relationship be-
tween observational and model outputs, we calculate Spear-
man’s correlation coefficient (Corr.) and the significance
level (p) using only the time steps where data are available
for both observations and model outputs.

2.5 Data deseasonalization and trend analysis

To compare model estimates of interannual variability with
observations, we first resampled the daily time series from

the model to be monthly time series using the monthly me-
dian as described in Viljoen et al. (2024). To keep the same
method that Viljoen et al. (2024) used, we dealt with miss-
ing values in observations using a median climatology. Fi-
nally, we decompose the surface and subsurface chlorophyll
stocks in the model and observations and extract the desea-
sonalized time series, following the same method applied in
Viljoen et al. (2024), using the Python function MSTL from
the statsmodels.tsa.seasonal package, with a period of 12 rep-
resenting the months of the year. We then calculate the Spear-
man’s correlation coefficient (Corr.) and significance (p) of
the deseasonalized time series between the model and obser-
vations.

To utilize this model to determine the drivers of the dif-
ferent post-2011 trends at the surface and subsurface layer
(Viljoen et al., 2024), we first resample daily surface and
subsurface light, the surface C : Chl ratio, and the surface
and subsurface chlorophyll, phytoplankton, zooplankton, and
DIN concentration from the model to a monthly time se-
ries and decomposed it to produce deseasonalized data fol-
lowing the method described above. To examine the trend
of each time series post-2011, linear regression analysis
(Python sklearn.linear_model.LinearRegression) is first ap-
plied to all extracted deseasonalized data described above
(including modelling and observational time series) over
2011–2022. Based on this linear regression, we extract the
slope (S) of the trend between 2011 (including 2011) and the
end of 2022 and obtain the p value to examine the signifi-
cance of the trend. Also, according to the linear regression,
we calculate the percentage change (1) in the fitted model as
the relative difference between the start and end values of the
model fit between 2011 and 2022.

3 Results

3.1 Model sensitivity

The range of two values (3) for each parameter is shown in
Fig. 2. In the bar plot, the more3 varies from 1.0, the greater
the difference between the adjusted and default model out-
puts. Among the eight state variables (Chl as, Ps, Ns, Zs,
Chl ad, Pd, Nd, Zd), Ns show large ranges (> 0.94–1.06)
when varying four parameters (Ndo , zeo , Ks, and Vmaxs ).
This suggests that surface nutrient stocks are sensitive to
changes in these parameters, reflecting their dependence on
initial deep ocean nutrient stocks and surface phytoplankton
growth.

Following Ns, the chlorophyll (Chl ad), phytoplankton
(Pd), and zooplankton (Zd) stocks in the subsurface layer ex-
hibit the next highest sensitivity in this model. They show
a tendency to be sensitive to changes in parameters at the
subsurface layer (notably md, Vmaxd , and εd) and the light
attenuation coefficient in the atmosphere (Atm and fpar). In
addition, Chl ad is also sensitive to a change in χ . This sug-

https://doi.org/10.5194/bg-22-3253-2025 Biogeosciences, 22, 3253–3278, 2025

http://bats.bios.edu/bats-data/


3260 Q. Zheng et al.: Simulating vertical phytoplankton dynamics in a stratified ocean

Figure 2. (a–b) Sensitivity of model output (difference in time mean, denoted 3) for surface-layer-integrated chlorophyll (Chl as), phyto-
plankton (Ps), nutrients (Ns), and zooplankton (Zs), as well as subsurface-layer-integrated values (Chl ad, Pd, Nd, Zd), when increasing and
decreasing each parameter from Table 1 (except for SolarK, Kdw, QC :N, andMc) by 10 % individually whilst keeping the remaining values
fixed.

gests that the net growth of phytoplankton and light play the
most important role in modulating Chl ad, Pd, and Zd, and
the subsurface C : Chl ratio has a large impact on Chl ad. In
contrast, the surface chlorophyll (Chl as) stock is sensitive
primarily to the change in parameters at the surface layer.
The key parameter θm in the photo-acclimation model also
plays an important role in determining Chl as. Compared to
Chl as, surface zooplankton (Zs) and phytoplankton stocks
(Ps) tend to be more stable, primarily sensitive to Ndo , zeo ,
andms. This indicates that the initial assumption of the deep-
ocean nutrient stocks and the death of phytoplankton have a
impact on Zs and Ps. Nd tends to be the most stable param-
eter, resilient to the changes in all parameters except for Ndo
and zeo . However, notably, the range of3 inNd is the second
largest (0.86–1.14) when varying zeo compared to3 in other
parameters. These findings indicate that changes in most of
the parameters hardly impact Nd. However, the determina-
tion of Ndo and zeo is pivotal to good Nd estimation.

From a parameter perspective, this model is not sensitive
to changes in the µz, µg , µp, and initial values except for
zeo and Ndo . This indicates that this model is not sensitive to
changes in the excursion process from the surface to subsur-
face layer and changes in most of the initial values. However,
zeo and Ndo show large ranges of 3 for all state variables at
the surface layer (especially for surface zooplankton stock)
and subsurface nutrient stock. This highlights the importance
of getting initial nutrient stock conditions in the subsurface
layer right.

3.2 Model forcing, output, and validation

Figure 3 shows the daily forcing and outputs of the two-
layered model from 1990 to 2022. The light forcing at the
surface (solid yellow line) and subsurface layers (dashed yel-
low line) is presented in Fig. 3a. Surface light ranges from
22 to 262 W m−2 with the minimum in winter and the peak
during summer. Subsurface light shows a similar seasonality
though its intensity decreases, ranging from 0 to 11 W m−2.
The mixed layer depth (zm) forcing from observations at
BATS is shown in Fig. 3b (solid pink line). zm also has a
strong seasonality, with a minimum in summer and a maxi-
mum in winter. It can be as shallow as 10 m during summer
and as deep as 200 m in winter. Below zm, the euphotic zone
(zeu) estimated from the model is shown in Fig. 3b (dashed
pink line), which shows a contrasting seasonality to zm with
the shallowest zeu in winter and deepest zeu in summer.

Figure 3c–f illustrate the vertically averaged concentra-
tions of phytoplankton, zooplankton, and dissolved inor-
ganic nitrogen (DIN) within the surface layer in the model
(solid lines). In the initial month of the simulation (Jan-
uary 1990), the model exhibits instability, reflected by a
spike value (0.8 mmol N m−3) in the phytoplankton concen-
tration at the surface layer. Nevertheless, the model quickly
stabilizes. Consequently, the statistical analysis presented
here is based on model outputs from 1 February 1990 to
the end of 2022 (Table 2). Surface chlorophyll a, phy-
toplankton, zooplankton, and DIN surface concentrations
show ranges of 0.01–0.28 mg m−3, 0.08–0.62 mmol N m−3,
0.05–1.47 mmol N m−3, and 0.04–0.5 mmol N m−3, respec-
tively, with mean values of 0.07 mg m−3, 0.21 mmol N m−3,
0.18 mmol N m−3, and 0.09 mmol N m−3 for chlorophyll,
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Table 2. The concentration of chlorophyll, phytoplankton, zooplankton, and nutrients at two layers in the model. Chl ac,s, Pc,s, Zc,s, and
Nc,s represent the chlorophyll a, phytoplankton, zooplankton, and DIN vertically averaged concentration in the surface layer time series, and
Chl ac,d, Pc,d, Zc,d, and Nc,d represent the chlorophyll a, phytoplankton, zooplankton, and DIN vertically averaged concentration between
the bottom of the zm and zeu time series from the model. The time mean (R̄), minimum (Rmin), and maximum (Rmax) of these time series
are presented. The units of each parameter are shown in square brackets. The statistics are based on the time series from 1 February 1990 to
31 December 2022.

Chl ac,s Pc,s Zc,s Nc,s Chl ac,d Pc,d Zc,d Nc,d
[mg m−3] [mmol N m−3] [mmol N m−3] [mmol N m−3] [mg m−3] [mmol N m−3] [mmol N m−3] [mmol N m−3]

R̄ 0.07 0.21 0.18 0.09 0.06 0.12 0.10 1.73
Rmin 0.01 0.08 0.05 0.04 0.00 0.00 0.01 0.78
Rmax 0.28 0.62 1.47 0.50 0.33 0.65 0.49 4.91

phytoplankton, zooplankton, and DIN concentration (Ta-
ble 2). This model also displays seasonality in these state
variables. During winter and spring, nutrient availability in-
creases in the surface layer (with a deeper mixed layer), re-
sulting in slightly higher concentrations of phytoplankton
and chlorophyll. This is followed by a maximum zooplank-
ton concentration in the subsequent month driven by grazing
on phytoplankton. These findings reveal that, at the surface
layer, the phytoplankton concentration remains relatively sta-
ble over the year but is slightly higher in spring driven by the
increase in DIN and light availability, providing somewhat
more food to zooplankton.

Compared to the surface layer, the magnitude of the sub-
surface chlorophyll (Fig. 3c, dashed green line) concen-
tration is very similar, reflected by a similar range of 0–
0.33 mg m−3 with a time mean of 0.06 mg m−3 (Table 2).
However, subsurface phytoplankton (Fig. 3d, dashed or-
ange line) and zooplankton (Fig. 3e, dashed brown line)
concentrations decrease to ranges of 0–0.65 and 0.01–
0.49 mmol N m−3, respectively, with the time-mean values
of 0.12 and 0.10 mmol N m−3, respectively (Table 2). In ad-
dition, phytoplankton and zooplankton concentrations in the
subsurface layer show strong seasonality, in contrast to that
in the surface layer. When the chlorophyll and phytoplank-
ton concentration in the subsurface layer reaches the mini-
mum, the surface concentration tends to be higher and vice
versa. Minimum chlorophyll concentration in the surface
layer, coupled with the shallowest zm and highest surface
light in summer, creates conditions of higher light availabil-
ity in the subsurface layer, increasing phytoplankton growth.
This increased growth in subsurface phytoplankton subse-
quently supports zooplankton growth.

The DIN concentration in the subsurface layer
(Fig. 3f, dashed blue line) ranges from around 0.78
to 4.91 mmol N m−3 with a time-mean value of
1.73 mmol N m−3, which is notably higher than that in
the surface layer (see Table 2). This difference in the two
DIN pools and the distinctive light environments between
the two layers (Fig. 3a) highlight the different conditions for
phytoplankton growth: the surface layer is characterized by
depleted nutrients but adequate light, whereas the subsurface

layer is dominated by weak light but abundant nutrients.
These conditions likely create two distinct environments to
which different phytoplankton communities have adapted.

To compare the model output with observational data from
BATS, chlorophyll and DIN stocks are calculated at each
layer. Figure 4a first shows the chlorophyll integrated from
the sea surface to zm from model output (green line) and ob-
servations (solid dark dots) spanning 1990 to 2022. When
masking the observational missing values in modelling out-
put, the observations and modelling output show a strong
and significant correlation (Corr.= 0.77, Table 3). After the
model stabilizes (as of 1 February 1990), modelled chloro-
phyll ranges from 0.14 to 60.49 mg m−2, which is higher than
the observed range of 0.07–30.19 mg m−2 as shown in Ta-
ble 3. However, modelled surface chlorophyll stock shows
a similar time-mean value of 5.01 mg m−2 as in observa-
tions (5.7 mg m−2). Also, the standard deviation from the
model (6.94 mg m−2) exhibits strong similarity to observa-
tions (7.4 mg m−2). These findings indicate that the two-
layered model successfully simulates the surface chlorophyll
stock dynamics, including the intra-annual variability.

Figure 4e compares monthly averaged chlorophyll stocks
above the zm from modelling output (solid green line)
and observations (solid dark dots). Observed chlorophyll
stocks show a strong seasonal variability with a maximum
(15.36 mg m−2) in January and a minimum (0.32 mg m−2)
in July. The model mirrors this seasonal cycle by showing
a similar peak (13.63 mg m−2) in January and a minimum
(0.52 mg m−2) in July (Table 3).

Figure 4b shows the subsurface chlorophyll integrated
from zm to zeu from the model (dashed green line) and ob-
servations (hollow black dots). The modelling and obser-
vational time series also show a significant positive corre-
lation (Corr.= 0.31) although lower than the surface layer.
Table 3 shows that subsurface chlorophyll integration in
the model ranges from 0 to 107.42 mg m−2, closely match-
ing the observed range of 0 to 94.66 mg m−2. However, in
general, the model estimates relatively lower chlorophyll
stocks in the subsurface layer compared to observations,
as indicated by a lower time-mean value of 17.96 mg m−2

in the model than 26.19 mg m−2 observed at BATS. Dif-
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Figure 3. (a) Solid (dashed) yellow lines refer to vertically averaged light within the surface (subsurface) layer in the model from 1990 to
2022. (b) Solid and dashed pink lines represent the observational zm from BATS and zeu simulated by the model, respectively, from 1990 to
2022. (c) Solid (dashed) lines indicate the model output of the chlorophyll a concentration vertically averaged within the surface (subsurface)
layer from 1990 to 2022. (d) As in (c) but for phytoplankton concentration. (e) As in (c) but for zooplankton concentration. (f) As in (c) but
for nutrient concentration.

ferent from the mean values, the standard deviation from
the model (19.69 mg m−2) is higher than in observations
(14.93 mg m−2), which indicates that the model simulates
larger variability than in the observations.

Despite simulating a similar seasonality (Fig. 4f), the
model shows lower stocks during spring with discrepan-
cies in the timing of the minimum and maximum months
at the subsurface layer. Table 3 shows that the model pre-
dicts these extremes in February (1.89 mg m−2) and August
(39.94 mg m−2), while observations show them in January

with a higher value of 11.57 mg m−2 and September with a
similar value of 35.24 mg m−2. The discrepancy is especially
obvious from January to May. A possible explanation for the
low values in the model during these months is that the av-
eraged subsurface light is too low in the model (Fig. 3a) to
simulate high enough phytoplankton growth in the subsur-
face layer.

Figure 4a–b and e–f illustrate that surface and subsur-
face chlorophyll stocks show inverse intra-annual and sea-
sonal variability, as seen in both the model and observa-
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Figure 4. (a) Daily chlorophyll stocks at the surface layer from the model (solid green line) and observations (dark solid dots) from 1990
to 2022. (b) Daily chlorophyll stocks at the subsurface layer from the model (dashed green line) and observations (hollow dark dots) from
1990 to 2022. (c) Daily nitrogen stocks at the surface layer from the model (solid blue line) and observations (hollow dark dots) from 1990
to 2022. (d) Daily nitrogen stocks at the subsurface layer from the model (dashed blue line) and observations (hollow dark dots) from 1990
to 2022. (e–h) As in (a–d) but for their time-mean monthly climatology.

Table 3. The integration of chlorophyll and nutrients from the model and observations, as well as their relationships. Chl as and Ns represent
the Chl a and DIN integration time series within the surface layer. Chl ad andNd represent the Chl a and DIN integration time series between
the bottom of the zm and zeu. R̄, Rmin, Rmax, and σ represent the time mean, minimum, maximum, and standard deviation of each time
series described above. The correlation coefficient, Corr.(model, obs), shows the relationship between the full signal of each time series in
the model and observation; its corresponding p value is shown in parentheses. R̂min and R̂max represent the minimum and maximum of
the time-mean monthly climatology of Chl as, Chl ad, Ns, and Nd. Mmin and Mmax represent the month when R̂min and R̂max are reached.
Values are shown for the model and observations (in parenthesis). The units of each parameter are shown in square brackets, except for
Corr.(model, obs), which does not have units. The statistics of the full time series are based on the time series from 1 February 1990 to
31 December 2022.

R̄ Rmin Rmax σ Corr.(model, obs) R̂min R̂max Mmin Mmax

Chl as [mg m−2] 5.01 (5.70) 0.14 (0.07) 60.49 (30.19) 6.94 (7.40) 0.77 (p = 0.00) 0.52 (0.32) 13.63 (15.36) Jul (Jul) Jan (Jan)
Chl ad [mg m−2] 17.96 (26.19) 0.00 (0.00) 107.42 (94.66) 19.69 (14.93) 0.31 (p = 0.00) 1.89 (11.57) 39.94 (35.24) Feb (Jan) Aug (Sep)
Ns [mmol N m−2] 4.71 (2.94) 0.52 (0.0) 48.03 (73.68) 4.62 (9.67) 0.62 (p = 0.00) 1.21 (0.04) 11.04 (10.25) Jul (Sep) Jan (Mar)
Nd [mmol N m−2] 460 (468) 256 (101) 545 (1040) 57 (157) 0.004 (p = 0.94) 396 (413) 505 (500) Sep (Mar) May (Nov)
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tions. Following a decline in surface chlorophyll seen in both
the model and observations (Fig. 4e), subsurface chlorophyll
stocks increase (Fig. 4f). This suggests that the distinct verti-
cal differences in phytoplankton seasonal dynamics at BATS
illustrated in observations are successfully captured by the
two-layered model.

Figure 4c shows the surface DIN stocks from the model
(solid blue line) and NO3+NO2 stocks from observations
(solid black dots). After eliminating the missing values in
observations in the model, the surface nitrogen stocks show
a strong relationship between modelling and observational
outputs, indicated by a significant correlation (Corr.= 0.62,
Table 3). The surface DIN stock in the model ranges from
0.52 to 48.03 mmol N m−2, smaller than the range of 0–
73.68 mmol N m−2 in NO3+NO2 observations. This model
simulates a higher time-mean DIN but smaller standard de-
viation (4.71± 4.62 mmol N m−2) than in the observations
(2.94±9.67 mmol N m−2). This suggests that this model suc-
cessfully simulates the surface nitrogen cycle but overes-
timates the time-mean nitrogen stocks and underestimates
their variability.

Figure 4g shows that modelled and observational DIN
stocks in the surface layer show similar seasonality. The
observational NO3+NO2 stocks show maximum values
of 10.25 mmol N m−2 in March and minimum values of
0.04 mmol N m−2 in September. The model surface DIN also
shows a similar maximum of 11.04 mmol N m−2 but in Jan-
uary and reaches a minimum (1.21 mmol N m−2) in July (Ta-
ble 3). Figure 4g reveals that the discrepancy between the
model and observation is more evident in autumn and win-
ter when the surface nutrient observations are generally ex-
tremely low, close to zero.

The subsurface DIN integration from the model (dashed
blue line) and subsurface NO3+NO2 integration from ob-
servations (hollow black dots) are presented in Fig. 4d. A
small nonsignificant correlation coefficient (Corr.= 0.004)
between observational and modelling outputs suggests that
this model cannot simulate the variability in the NO3+NO2
dynamics in the subsurface layer. This indicates that Nd
has large uncertainties in this model, which is also reflected
in the sensitivity analysis in Sect. 3.1. However, Table 3
shows that the model estimates a similar time-mean value of
460 mmol N m−2 as seen in observations (468 mmol N m−2)
with a smaller standard deviation (57 mmol N m−2) com-
pared with observations (157 mmol N m−2). Similarly, a
smaller range in Nd of 256–545 mmol N m−2 is seen in the
model compared to observations (101–1040 mmol N m−2) as
reported in Table 3. These findings suggest that this model
estimates a reasonable value of DIN stocks in the subsurface
layer when compared with observations but cannot simulate
the variability in the observations.

Figure 4h also confirms the findings described above.
The NO3+NO2 stocks in the subsurface show a min-
imum (413 mmol N m−2) in March and a maximum
(500 mmol N m−2) in November in observations (Table 3).

This seasonality is almost the reverse of the pattern in the
surface layer seen from observations. Although this reverse
pattern is not captured by the model, it estimates a sim-
ilar seasonal minimum (396 mmol N m−2) and maximum
(505 mmol N m−2).

3.3 Drivers of post-2011 trend in chlorophyll a in the
two layers

The deseasonalized chlorophyll stocks (Chl as) at the surface
layer over 1990–2022 from the model (solid green line) and
observations (solid black line) are shown in Fig. 5a. They
show very good agreement reflected by a significant positive
correlation coefficient (0.78) shown in Table 4. This coeffi-
cient even increases to 0.85 if only comparing the deseason-
alized Chl as over 2011–2022 (Table 4). This suggests that
this two-layer NPZ model has a strong ability to simulate the
interannual variability in surface chlorophyll stocks, particu-
larly over 2011–2022.

The observational Chl as shows a significant decreasing
trend from 2011 to the end of 2022 (straight black line
in Fig. 5a), also reported by Viljoen et al. (2024). Ta-
ble 4 confirms this significant decreasing trend by show-
ing a slope of −0.41 mg m−2 yr−1 in observations. This de-
creasing trend post-2011 is also captured in the two-layered
model (green line in Fig. 5a), with a very similar trend
(S =−0.42 mg m−2 yr−1 in Table 4) as seen in observations.

Figure 5b shows the deseasonalized subsurface chloro-
phyll stock time series (Chl ad) from the model (dashed
green line) and observations (dashed black line). Although
the correlation is weaker than seen in Chl as, it is still sig-
nificant (Corr.= 0.44 in Table 4). This correlation becomes
strong over 2011–2022, reflected by an increase in Corr. to
0.75 (Table 4). This indicates that the model is also capa-
ble of simulating the interannual variability of chlorophyll
in the subsurface layer, particularly post-2011, although it is
weaker than at the surface layer. Looking at 2011–2022, in
contrast to the decreasing trend in Chl as, Chl ad shows an
increasing trend in both the model and observations (Fig. 5b).
Table 4 confirms this increasing trend, showing a similar
significant positive slope of the Chl ad post-2011 trend in
the model (S = 1.31 mg m−2 yr−1) and observations (S =
1.43 mg m−2 yr−1).

To understand the drivers of the decreasing trend in Chl as
over 2011–2022, we first show the interannual variability
of the observational mixed layer depth (zm) (Fig. 5c) and
surface chlorophyll concentration (Chl ac,s) from the model
(Fig. 6a). Figure 5c demonstrates a decreasing trend in zm
since 2011 (S =−2.57 m yr−1 in Table 4), which indicates a
decreasing trend in the surface layer thickness. However, the
chlorophyll concentration also shows a decreasing trend (S =
−0.002 mg m−3 yr−1), which mirrors the decrease in chloro-
phyll stocks. 1 of Chl ac,s is −26.8 %, which means that the
chlorophyll concentration decreased by approximately 27 %
from 2011 to 2022. This further confirms that the decreasing
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Table 4. The trend and change of state variables from the model over 2011–2022 and the relationship between chlorophyll biomass from
the model and observations. In this table, Chl as and Chl ad represent the surface and subsurface integration of the chlorophyll, respectively.
Chl ac,s, zm, χs, Is, Pc,s, Nc,s, and Zc,s represent the deseasonalized MLD, surface chlorophyll concentration, surface C : Chl ratio, surface
light, surface phytoplankton concentration, surface DIN concentration, and surface zooplankton concentration from the model. Similarly,
Chl ac,d, Id, Pc,d, Nc,d, and Zc,d represent the chlorophyll concentration, light, phytoplankton concentration, DIN concentration, and zoo-
plankton concentration at the subsurface layer from the model. S means the slope of the post-2011 trend of the parameters mentioned above.
All S values are significant except for the trend of Zc,s. The unit of S for each parameter is shown as [S] in square brackets. 1 denotes the
percentage change in the fitted model output for each parameter described above between 1 January 2011 and 31 December 2022. The values
from the observations are shown in parenthesis and the rest of the values are from the model. The correlation coefficient, Corr.(model,obs),
shows the relationship between the deseasonalized full time series over 1990–2022 in the model and observations; its corresponding p value
is shown in parentheses. Similarly, Corr.(model,obs)2011 shows the relationship between the deseasonalized time series over 2011–2022 in
the model and observation.

S [S] 1 [%] Corr.(model,obs) Corr.(model,obs)2011

Chl as −0.42 (−0.41) [mg m−2 yr−1] −68.4 0.78 (p = 0.00) 0.85 (p = 0.00)
Chl ac,s −0.002 [mg m−3 yr−1] −26.8
zm −2.57 [m yr−1] −45.3
χs +4.54 [yr−1] +19.2
Is +2.71 [W m−2 yr−1] +26.8
Pc,s −0.001 [mmol N m−3 yr−1] −7.7
Nc,s −0.000 [mmol N m−3 yr−1] −3.8
Zc,s −0.001 [mmol N m−3 yr−1] −5.1
Chl ad +1.31 (+1.43) [mg m−2 yr−1] +179.2 0.44 (p = 0.00) 0.75 (p = 0.00)
Chl ac,d +0.004 [mg m−3 yr−1] +172.9
Id 0.058 [W m−2 yr−1] +45.5
Pc,d +0.008 [mmol N m−3 yr−1] +172.9
Nc,d −0.040 [mmol N m−3 yr−1] −24.0
Zc,d +0.006 [mmol N m−3 yr−1] +126.4

trend of Chl as is related to the decrease in Chl ac,s rather
than purely driven by a decreasing surface layer water vol-
ume.

Next, to understand the drivers of decreasing Chl ac,s post-
2011, we also show the surface C : Chl ratio (χs), light (Is),
phytoplankton (Pc,s) concentration, nutrient (Nc,s) concen-
tration, and zooplankton (Zc,s) concentration from the model
(Fig. 6b–e). χs and Is show an increasing trend since 2011
(Fig. 6b), reflected by a positive slope of 4.54 yr−1 and
2.71 W m−2 yr−1, respectively (see Table 4). From 2011 to
2022, χs and Is increase by around 19.2 % and 26.8 %. In
contrast to the surface light trend, Pc,s shows a weak decreas-
ing trend (S =−0.001 mmol N m−3 yr−1) and a decrease of
7.7 %. Nc,s shows a near-zero decreasing trend and Zc,s does
not show a significant trend (p = 0.05), which is also re-
flected by their small change in percentage of −3.8 % and
−5.1 %, respectively. Our results suggest that the change in
surface chlorophyll concentration is primarily driven by the
change in surface light and χs rather than the change in phy-
toplankton concentration. The shoaling of mixed layer depth
(Fig. 5c) described above enhances the light in the surface
layer, leading to an increasing C : Chl ratio, which further
contributes to a decreasing chlorophyll biomass from 2011
to 2022.

To explore the mechanism behind the increasing Chl ad
trend post-2011, we also show the deseasonalized chloro-
phyll concentration (Chl ac,d) in Fig. 7a. Similar to Chl ad,
Chl ac,d shows an increasing trend (S = 0.004 mg m−3 yr−1)
and increased by 172.9 % from 2011 to 2022 (Ta-
ble 4). Similarly, this increasing trend is also seen in
Id, Pc,d, and Zc,d, which show S of 0.058 W m−2 yr−1,
0.008 mmol N m−3 yr−1, and 0.006 mmol N m−3 yr−1, re-
spectively. A large change in the percentage is also seen in Id
(+45.5 %), Pc,d (+172.9 %), and Zc,d (+126.4 %). Particu-
larly, the change in percentage in Pc,d is identical to Chl ac,d,
owing to the fact that the model has a fixed χd. These findings
suggest that the increase in subsurface chlorophyll biomass is
driven by the increase in phytoplankton concentration, which
is a result of an increase in light in the subsurface layer due
to the shoaling of mixed layer depth and reduction in Chl as.
This mechanism is further confirmed by a decreasing trend
(S =−0.04 mmol N m−3 yr−1) and a change in percentage
of −24 % in Nc,d, as more nutrients are taken up with sub-
surface phytoplankton growth.

4 Discussion

We have built a two-layered NPZ box model of the strat-
ified ocean that assumes the marine ecosystem in the eu-
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Figure 5. (a) Time series of deseasonalized chlorophyll integration above zm (surface layer) from 1990 to 2022 from the two-layered NPZ
model (green) and from observations (black). Straight lines correspond to the linear regressions fitted to deseasonalized data from 2011
to the end of 2022 (post-2011 includes 2011–2022) from model data (green) and observations (black). (b) As in (a) but for time series of
deseasonalized chlorophyll a integration between zm and zeu (subsurface layer). (c) As in (a) but for deseasonalized observational MLD
(zm) at BATS.

photic zone can be partitioned into two distinct communities:
one located within the mixed layer and the other situated be-
low the mixed layer and above the very base of the euphotic
zone (defined here as the 0.0001 % light level). These two
communities reside in two different environments: a (typi-
cally) nutrient-limited one within the mixed layer and a light-
limited one below it.

Model estimates of the time-mean vertically averaged phy-
toplankton concentration are 0.21 mmol N m−3 in the surface
layer (above the mixed layer depth) and 0.12 mmol N m−3 in
the subsurface layer (below the mixed layer and above the
euphotic zone). These estimates align well with the near-
surface value given by Kantha (2004) (0.2 mmol N m−3) and
the time-mean range of 0.05–0.15 mmol N m−3 at a depth
of 100–250 m simulated by the coupled physical and NPZD
model of Doney et al. (1996). Similarly, this model es-
timates a time-mean surface chlorophyll concentration of
0.07 mg m−3, which is consistent with the estimate (around
0.09 mg m−3) modelled by an NPZD model at BATS (Spitz
et al., 2001) and the time mean from observations (around
0.1 mg m−3) (Anugerahanti et al., 2020). Also, this model
provides a range of 0–0.33 mg m−3 for the chlorophyll con-
centration at the subsurface layer, which is consistent with
the observational range of 0–0.25 mg m−3 and modelling
range of 0–0.35 mg m−3 given by Anugerahanti et al. (2020).

Regarding zooplankton, limited by fixed observations at
200 m at BATS (Madin et al., 2001), we cannot make a direct
comparison of our model estimates with these observations.

Nonetheless, our model provides comparable time-mean
zooplankton concentration estimates of 0.18 mmol N m−3

above the mixed layer and 0.1 mmol N m−3 below it,
which are consistent with those reported by Anugerahanti
et al. (2020). They utilize a complex 3D ecosystem model
(MEDUSA) to reveal a vertical profile of zooplankton con-
centration ranging from 0 to 0.3 mmol N m−3 near the sur-
face decreasing to 0–0.1 mmol N m−3 at 200 m (Anugera-
hanti et al., 2020).

Vertically averaged concentrations of modelled dissolved
inorganic nitrogen (DIN) in the two layers align with other
studies at BATS. The time mean of DIN concentration av-
eraged within the mixed layer is around 0.09 mmol N m−3

in very good agreement with in situ data for DIN at BATS
of around 0.1 mmol N m−3 within the upper 50 m (Anuger-
ahanti et al., 2020; Hurtt and Armstrong, 1999). The DIN
concentration within the mixed layer shows a range of 0.04–
0.5 mmol N m−3, which is also consistent with the range (0–
0.6 mmol N m−3) modelled by Spitz et al. (2001). In addi-
tion to the surface layer, the subsurface time-mean DIN con-
centration vertically averaged below the mixed layer and
above the euphotic zone (1.73 mmol N m−3) in our model
agrees with the observational nitrate concentration record
(1.75 mmol N m−3; Anugerahanti et al., 2018) and modelling
output at 160 m (of around 2 mmol N m−3) from a 1D algal-
group-based phytoplankton model (Salihoglu et al., 2008).

Our model simulates the vertically integrated chlorophyll
for two ecosystems using a dynamical model of the C :
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Figure 6. (a) Time series of deseasonalized chlorophyll a concentration vertically averaged above zm (surface layer) from 1990 to 2022
from the two-layered NPZ model. Straight lines correspond to the linear regressions fitted to deseasonalized data from 2011 to the end of
2022 (post-2011 includes 2011–2022) from model data. (b) Deseasonalized surface C : Chl ratio (purple) and light (yellow) time series from
1990 to the end of 2022 from the two-layered NPZ model. The purple (yellow) straight line indicates the linear regressions fitted to the
deseasonalized surface C : Chl ratio (light) data from 2011 to the end of 2022 (post-2011 includes 2011–2022) from the two-layered NPZ
model. (c) As in (a) but for the deseasonalized surface phytoplankton concentration from the model. (d) As in (e) but for the deseasonalized
surface DIN concentration from the model. (e) As in (a) but for the deseasonalized surface zooplankton concentration from the model.

Chl ratio at the surface layer and a fixed C : Chl ratio at
the subsurface layer. The chlorophyll integration within the
mixed layer in this model shows a strong seasonal cycle
with a maximum (13.63 mg m−2) in spring and a minimum
(0.52 mg m−2) in summer, in good agreement with in situ
observations at BATS. Furthermore, this seasonality closely
matches the median climatology (around 2.5–18.5 mg m−2)
of the surface chlorophyll integration partitioned from the
vertical profiles using a sigmoid-based function (Viljoen
et al., 2024). Although different integration boundaries make

more direct comparisons with other studies difficult, the
range of chlorophyll integrations is also comparable with
modelling and observations reported by Doney et al. (1996)
within the upper 140 m (10–30 mg m−2) at BATS.

Both model and in situ data show that phytoplankton in
the two layers have a contrasting seasonality at BATS, which
is also seen in the statistical partition results of Viljoen
et al. (2024) and in other seasonally stratified regions like
the northern Red Sea (Brewin et al., 2022). The subsur-
face chlorophyll stock shows a seasonality with a minimum
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Figure 7. (a) Time series of deseasonalized chlorophyll a concentration vertically averaged between zm and zeu (subsurface layer) from
1990 to 2022 from the two-layered NPZ model. Straight lines correspond to the linear regressions fitted to deseasonalized data from 2011 to
the end of 2022 (post-2011 includes 2011–2022) from model data. (b) As in (a) but for deseasonalized subsurface light time series from 1990
to the end of 2022 from the two-layered NPZ model. (c) As in (a) but for the deseasonalized subsurface phytoplankton concentration from
the model. (d) As in (e) but for the deseasonalized subsurface DIN concentration from the model. (e) As in (a) but for the deseasonalized
subsurface zooplankton concentration from the model.

(1.89 mg m−2) in spring and a maximum (39.94 mg m−2)
in autumn. The maximum matches the in situ measure-
ments (35.24 mg m−2), while the minimum displays a larger
discrepancy from observations (11.57 mg m−2) in spring.
However, this minimum value estimated from our two-
layered model agrees with the minimum (near zero) of the
chlorophyll integration below the mixed layer partitioned
using a conceptual model applied to vertical profiles in
Viljoen et al. (2024). The former maximum from our mod-
els is also comparable to but higher than the maximum

of their median chlorophyll integration climatology (around
20 mg m−2) (Viljoen et al., 2024). This discrepancy may be
attributed to the deeper integration boundary used in our
model and also the different choice of climatology (time
mean and median) (Viljoen et al., 2024). Given that measure-
ments below 50 m are scarcer, especially in spring (Anuger-
ahanti et al., 2020), than near-surface measurements, the val-
ues predicted by our model may still be considered reason-
able.
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Concerns may be raised regarding the choice of different
bottom boundaries when comparing modelled subsurface-
integrated chlorophyll against the observations. A sensitivity
analysis based on different euphotic zone assumptions (see
Appendix A) shows that different assumptions primarily in-
fluence the seasonality comparison, particularly in summer
when the subsurface layer (water column) in the model is
thicker compared to winter. A shallower euphotic zone could
cause the model to overestimate integrated chlorophyll in
summer, whereas a deeper euphotic zone might make obser-
vations not suitable for model validation due to lack of mea-
surements. Despite these potential uncertainties related to
the euphotic zone, the interannual variability comparison is
hardly influenced by different definitions of euphotic zones.

This model simulates a strong seasonality in DIN stocks
accumulated within the mixed layer, in agreement with in
situ data (Fig. 4c and g). It shows a peak (11.04 mmol N m−2)
in spring, agreeing with the peak value from in situ mea-
surements (10.25 mmol N m−2) of NO2+NO3 stocks, and
a minimum (1.21 mmol N m−2) in summer, slightly higher
than shown in observations (0.04 mmol N m−2). These lower
values (near zero) of in situ measurements during summer
and autumn are limited by the sensitivity of the method used
for measuring DIN (Steinberg et al., 2001; Lomas et al.,
2013), which is unable to resolve low concentrations of DIN.
Thus, our estimate could be a reasonable representative of
the seasonal minimum surface DIN stocks.

Our results underscore the challenge of accurately simulat-
ing subsurface communities, likely due to difficulties in accu-
rately determining parameters for the subsurface layer. Mod-
elling subsurface nitrate dynamics, especially seasonality,
is particularly challenging with a simplified model. Despite
this, our model aligns with observed time-mean DIN values
(around 460 mmol N m−2), closely matching NO2+NO3 in-
tegrated stocks (468 mmol N m−2). Moreover, while uncer-
tainties in deep-ocean nitrate dynamics remain, these have a
minimal effect on subsurface phytoplankton growth, which
is driven by subsurface light. Sensitivity analysis further em-
phasizes the importance of determining subsurface parame-
ters for simulating subsurface chlorophyll and nutrient dy-
namics. Although the parameters for the subsurface layer in
our model are derived from the assimilation of the obser-
vational data at BATS (e.g. Schartau and Oschlies, 2003),
there is a need for more precise parameterizations tailored
to the specific subsurface environment to enhance our un-
derstanding of phytoplankton communities’ responses to cli-
mate change. This can only be achieved by modellers work-
ing together with observers, targeting key measurements of
important subsurface parameters, and improving understand-
ing of controls on subsurface phytoplankton.

Some studies have observed increasing trends in integrated
chlorophyll at BATS (e.g. 150 m integration from 1989 to
2003; Saba et al., 2010). However, recently, Viljoen et al.
(2024) observed the opposite trends in surface and subsur-
face chlorophyll integration between 2011 and 2022. This

opposite trend is also captured in this two-layered model.
Our model reveals that shoaling mixed layer depth increases
the light availability at both the surface and subsurface lay-
ers. However, the two phytoplankton communities at the sur-
face and subsurface layers show different responses to this
increase in light intensity. At the surface layer, the C : Chl ra-
tio in this model shows an increasing trend over 2011–2022,
which is also seen from Viljoen et al. (2024). This change in
C : Chl ratio explains most of the change in surface chloro-
phyll biomass. Although our model shows a decreasing trend
in phytoplankton concentration, whereas Viljoen et al. (2024)
showed no trend in surface, this change is small (7.7 %), and
there is little trend in surface nutrient concentration and no
trend in zooplankton. This supports the mechanism at the sur-
face layer observed in Viljoen et al. (2024) that intensifying
light does not directly drive a decrease in carbon stocks; in-
stead, it changes the physiology of phytoplankton by increas-
ing the C : Chl ratio, which leads to a decreasing chlorophyll
biomass over 2011–2022. Different from the surface layer,
an increasing trend in chlorophyll stocks is still seen from
both observations and our model. This is because the growth
of phytoplankton is purely driven by the light in the subsur-
face and the C : Chl ratio is fixed. The intensifying light di-
rectly leads to an increase in phytoplankton and chlorophyll
biomass, confirmed by the large consistent change in sub-
surface light as well as the chlorophyll, phytoplankton, and
zooplankton concentration, which also agrees with the obser-
vations in Viljoen et al. (2024). Understanding these mech-
anisms will help improve projections of future chlorophyll
stocks in stratified systems with ocean warming.

Despite our model providing valuable insights into verti-
cal variations in plankton community composition and help-
ing to understand drivers of trends during the past decade
at BATS, it is important to acknowledge its limitations. The
processes designed in this model do not incorporate all the
key biogeochemical processes in stratified systems, such as
nitrogen fixation and iron limitation, which should be consid-
ered in future developments. Moreover, the model does not
explicitly account for important biological components such
as bacteria, viruses, and detritus, which play a crucial role in
nutrient cycling and ecosystem functioning. Our model does
not incorporate the diversity of phytoplankton or zooplank-
ton within the two layers. It also assumes the conservation
of phytoplankton and nutrients within the mixed layer during
shoaling, which may overestimate the surface phytoplankton,
as they could be lost from the surface layer when the mixed
layer shoals. We also assume that the two vertically sepa-
rated communities of phytoplankton and zooplankton do not
directly interact, only implicitly through the exchange in nu-
trients between layers. Good agreement between model out-
put and observations supports this assumption. Our model
assumes a linear relationship between nutrients interacting
between the two layers and the depth of the mixed layer. In
cases where this relationship is not linear, our model may
not be appropriate to use. We have explored including an ex-
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plicit entrainment term in our model to capture some nonlin-
earity (see Appendix B). This term exchanges phytoplankton
between layers through entrainment (term not included for
zooplankton, assuming they are motile). The entrained phy-
toplankton are converted directly to nutrients assuming com-
petitive exclusion (see Appendix B). Including this process
had little influence on our results at the BATS location. How-
ever, this process may play a more important role in other
regions. Future work should investigate if an explicit inter-
action between zooplankton would further improve model
simulations. There are also other limitations related to model
application. As a two-layered box model, coupling it with
other more complex physical models may not be straightfor-
ward. Furthermore, the parameters presented in this study are
specifically designed for the BATS site and will likely require
adjustment for other stratified locations.

5 Summary

We developed a two-layer NPZ model for stratified oceans,
partitioning the euphotic zone into a surface layer above the
mixed layer depth and a subsurface layer below it for the first
time. The model applies distinct parameters in each layer to
capture the contrasting environmental conditions for phyto-
plankton growth at BATS.

This simple model was able to simulate the chloro-
phyll seasonal and interannual variability at both the surface
and subsurface layers, reproducing the observed contrasting
trends in chlorophyll between the two layers over the past
decade.

The model simulations, along with the accompanying sen-
sitivity analyses, reveal that the main mechanisms respon-
sible for the decreasing trend in surface chlorophyll in re-
cent years at the Bermuda time series site are two-fold:
(a) increasing trend in light reaching the surface layer at the
study site and associated photo-acclimation, as indicated by
changes in the carbon to chlorophyll ratio in phytoplankton,
and (b) changes in stratification and an associated decrease
in the mixed layer depth. Interestingly, the model also cap-
tures with high fidelity the contrasting seasonal patterns in
chlorophyll dynamics in the subsurface layer, as well as the
contrasting increasing trend in the subsurface chlorophyll in
recent years. Key to the success of the simulation has been
the treatment of the phytoplankton communities in the two
layers as distinct communities with distinct bio-optical and
physiological traits adapted to the local environment.

The study underscores the importance of following
changes in both the layers to be able to appreciate and pre-
dict any current or future changes in marine ecosystems as
a whole in response to changing climate. We see here that
the decrease in surface chlorophyll as a result of increasing
stratification may be compensated for by a corresponding in-
crease in subsurface chlorophyll. Though the detrimental ef-
fect of increasing stratification on surface chlorophyll is often

discussed in the literature, the beneficial effects on the sub-
surface phytoplankton communities are often overlooked.

Generalizing the model to other regions can only be under-
taken cautiously because many of the simplifications applied
to the model were designed to mimic the local conditions at
the study site; this includes, for example, a high level of de-
coupling between the two layers due to stratification, which
may not be applicable elsewhere. The strength of the model
lies in being able to follow the contrasting dynamics of the
surface and subsurface populations of phytoplankton as dis-
tinct communities that are simulated using model parameters
appropriate for each community.

Appendix A: Sensitivity analysis of euphotic zone depth

To explore the impact of different euphotic zone depth defi-
nitions on subsurface chlorophyll integration and its compar-
ison with observations, we conducted a sensitivity analysis
using alternative euphotic zone criteria.

In the main paper, the euphotic zone is defined as the depth
corresponding to 0.0001 % of the surface light level. Accord-
ingly, in this sensitivity analysis, we defined the euphotic
zone as 0.001 % (shallower euphotic zone) and 0.00001 %
(deeper euphotic zone) of the surface light level. By run-
ning the model with these two extra euphotic zone assump-
tions, the subsurface chlorophyll integrations are simulated.
Accordingly, the observations are recalculated using these
new bottom boundaries following the method described in
Sect. 2.4.

Figures A2 and A3 demonstrate the subsurface chloro-
phyll integration based on 0.001 % and 0.00001 % light-
level-based euphotic zones, respectively (green lines). Ac-
cordingly, they also show the new observational subsurface
chlorophyll integration (black dots) calculated from 0.001 %
and 0.00001 % euphotic zones separately. Compared with
Fig. 4f, the main effect of different definitions of the euphotic
zone on subsurface chlorophyll integration comparison oc-
curs in summer (June–August). Given that the mixed layer
depth is typically shallow in summer, this results in a thicker
subsurface layer. In this case, changes in the bottom bound-
ary have a stronger impact on subsurface light and accord-
ingly the chlorophyll concentration.

Specifically, a shallower euphotic zone tends to cause the
model to increase subsurface chlorophyll integration in sum-
mer (Fig. A2b), whereas a deeper euphotic zone leads to
a reduction (Fig. A3b). The water column used for inte-
gration calculations remains consistent across comparisons,
so differences between model simulations and observations
arise mainly from variations in modelled and observational
representative chlorophyll concentrations under different eu-
photic zone depths. A shallower euphotic zone generally
leads the model to increase chlorophyll concentrations in
summer. In contrast, a deeper euphotic zone reduces the
subsurface chlorophyll concentration in summer. However,
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Figure A1. Vertical distribution of chlorophyll concentration
[mg m−3] measurements at BATS from 1990 to 2022. Observa-
tional data are plotted as a function of depth (from the sea surface
at 0 m to the deep layers) and year, with colour representing the
chlorophyll concentration.

we need to be careful about the observational representative
concentration. Given that there are no chlorophyll measure-
ments below the 0.0001 % euphotic zone (see Fig. A1), a
deeper (0.00001 %) euphotic zone can inflate the observa-
tional chlorophyll concentration.

Despite these impacts on seasonality comparisons, differ-
ent euphotic zones have a minimal impact on the post-2011
trend comparison in subsurface chlorophyll integration. Fig-
ures A2c and A3c show that the modelled trend remains sim-
ilar to observations, consistent with the results presented in
Fig. 5b. In conclusion, varying the euphotic zone assump-
tions primarily affects seasonal comparisons between the
model and observations but does not change our primary
findings regarding post-2011 trends.
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Figure A2. Comparison of chlorophyll integration between the model and observations using a euphotic zone defined by the 0.001 % surface
light level. (a) Daily chlorophyll stocks at the subsurface layer from the model (dashed green line) and observations (hollow dark dots) from
1990 to 2022. (b) As in (a) but for the time-mean climatology. (c) Deseasonalized subsurface chlorophyll integration time series from 1990
to 2022 from the two-layered NPZ model (green) and from observations (black). Straight lines correspond to the linear regressions fitted to
deseasonalized data from 2011 to the end of 2022 (post-2011 includes 2011–2022) from model data (green) and observations (black).

Figure A3. As in Fig. A2, but based on the euphotic zone defined as 0.00001 % of the surface light level.
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Appendix B: MLD-driven phytoplankton interactions

To explore the influence of the mixed layer depth pump on
two phytoplankton communities across two layers, we in-
clude additional interactions of two phytoplankton commu-
nities during mixing processes by modifying the equations
presented in Sect. 2.1. We implicitly assumed that each phy-
toplankton community dominates competition in each layer.
When these communities interact driven by oscillations of
MLD, the superior competitor immediately outcompetes the
other. Specifically, when the mixed layer depth deepens, phy-
toplankton in the subsurface layer that are carried to the sur-
face layer (simulated by ζ+(t)Pc,d in Eq. B6) directly die off
and directly convert to the surface nutrient pool (Eq. B2) as
this model excludes the detrital state variable. We also in-
troduced ζ−(t) (see Eq. B1) to help simulate the opposite
scenario of a shallowing mixed layer during which phyto-
plankton from the surface layer (ζ−(t)Pc,d) are advected to
the subsurface layer, contributing to the subsurface nutrient
pool (see Eq. B4).

To maintain consistency with phytoplankton processes, we
similarly apply this mixed layer pump concept for nutrients,
replacing the traditional asymmetrical MLD effect (by delet-
ing ζ+(t)(Nc,d−Nc,s)). When the mixed layer depth deepens
(denoted by ζ+(t) in Eq. 1), nutrients from the subsurface
layer (Nc,d) are transported to the surface layer, explicitly
represented by ζ+(t)Nc,d in Eqs. (B2) and (B4). In contrast,
when the mixed layer depth shallows (ζ−(t) in Eq. B1), nu-
trients from the surface layer are advected to the subsurface
layer shown as ζ−(t)Nc,s in Eqs. (B2) and (B4).

In summary, we introduced a new equation (Eq. B1)
and adjusted the surface nutrient (Eq. 5) and phytoplank-
ton (Eq. 6) concentration equations to become Eqs. (B2) and
(B3), respectively. Similarly, the subsurface nutrient (Eq. 17)
and phytoplankton (Eq. 18) concentration equations become
Eqs. (B4) and (B5), respectively. All other equations from
Sect. 2.1 remain unchanged.

ζ−(t)=min(0,ζ(t)), (B1)
dNc,s

dt
=−GsPc,s+µpmsPc,s+ (1− γs−µg)8sZc,s

+µzcsZ
2
c,s−

ζ(t)

zm
Nc,s+

(µmzm)(Nc,d−Nc,s)

zm

+
ζ+(t)Pc,d

zm
+
ζ+(t)Nc,d

zm
+
ζ−(t)Nc,s

zm
, (B2)

dPc,s

dt
=GsPc,s−msPc,s−8sZc,s−

ζ(t)

zm
Pc,s

+
ζ−(t)Pc,s

zm
, (B3)

dNc,d

dt
=−GdPc,d+mdPc,d+ (1− γd)8dZc,d

+ cdZ
2
c,d−

η(t)

zD
Nc,d+φ

−
(µmzm)(Nc,d−Nc,s)

zD
−
ζ−(t)Pc,s

zD

−
ζ+(t)Nc,d

zD
−
ζ−(t)Nc,s

zD
, (B4)

dPc,d

dt
=GdPc,d−mdPc,d−8dZc,d

−
η(t)

zD
Pc,d−

ζ+(t)Pc,d

zD
. (B5)

Next, running the model with these modified equations, we
show the chlorophyll and nutrient integration from the model
and observations (Fig. B1). The results obtained from these
simulations were very similar to those presented in Fig. 4. We
also present the deseasonalized chlorophyll integration from
the model and observations in Fig. B2, which also closely
match the patterns in Fig. 5. Consequently, our main con-
clusions remain robust, even when incorporating this more
complex mixing scenario driven by mixed layer depth varia-
tions.
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Figure B1. (a) Daily chlorophyll stocks at the surface layer from the model (solid green line) and observations (solid dark dots) from 1990
to 2022. (b) Daily chlorophyll stocks at the subsurface layer from the model (dashed green line) and observations (hollow dark dots) from
1990 to 2022. (c) Daily nitrogen stocks at the surface layer from the model (solid blue line) and observations (hollow dark dots) from 1990
to 2022. (d) Daily nitrogen stocks at the subsurface layer from the model (dashed blue line) and observations (hollow dark dots) from 1990
to 2022. Panels (e)–(h) are as in (a)–(d) but for their time-mean climatology. Results are from simulations using Eqs. (B1)–(B5).
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Figure B2. (a) Deseasonalized chlorophyll integration above zm (surface layer) time series from 1990 to 2022 from the two-layered NPZ
model (green) and from observations (black). Straight lines correspond to the linear regressions fitted to deseasonalized data from 2011 to
the end of 2022 (post-2011 includes 2011–2022) from model data (green) and observations (black). (b) As in (a) but for deseasonalized
chlorophyll a integration between zm and zeu (subsurface layer) time series. Results are from simulations using Eqs. (B1)–(B5).

Code and data availability. BATS data used in this
study were acquired freely from the BATS data server
(https://doi.org/10.26008/1912/bco-dmo.3782.2; Johnson et
al., 2023b) for Niskin bottle nutrient data and the BATS project
page at the Biological–Chemical Oceanography Data Management
Office for HPLC chlorophyll a and CTD data (Johnson et al.,
2023a, 2024). The two-layered model function codes are published
openly at https://doi.org/10.5281/zenodo.15776912 (Zheng, 2025).

Interactive computing environment. Examples of Jupyter Note-
book Python scripts, displaying how to run the model and visu-
alize the output, are included at https://github.com/Qicodediary/
two-layered-ecosystem-model (Zheng, 2024).
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