

Supplement of

Distribution of alkylamines in surface waters around the Antarctic Peninsula and Weddell Sea

Arianna Rocchi et al.

Correspondence to: Arianna Rocchi (rocchi@icm.csic.es) and Elisa Berdalet (berdalet@icm.csic.es)

The copyright of individual parts of the supplement might differ from the article licence.

Table S1. General characteristics of the 19 stations located in the Western Antarctic Peninsula (WAP) and the Weddell Sea (WS), presented in chronological sampling order, with indication of: coordinates, temperature, salinity, density, solar radiation (PAR) and F_v '/ F_m ' and the concentrations (average ± standard deviation, and number of replicates) of dissolved (mono-, di- and tri-methylamines, MMA, DMA, TMA, respectively; and diethylamine, DEA) and particulate TMA. * nd: below detection limit

Station #	Coordinates	T (°C)	Salinity Density (sigmaT)	PAR (W m ⁻²) F _v '/ F _m '	Dissolved alkylamines (nM) (n=2 or 3)	Particulate TMA (nM) (n=1)
1 WAP	63.1728 S 60.2182 W	2.3	34.2 27.2	598.7 0.407	MMA: nd DMA: 49.4 ± 7.4 TMA: 35.6 ± 8.0 DEA: 7.5 ± 0.2	10.8
2 WAP	64.1138 S 63.0150 W	2.0	33.8 26.9	222.7 0.311	MMA: nd DMA: 132.3 ± 16.9 TMA: 16.3 ± 2.4 DEA: 6.5 ± 1.0	28.1
3 WAP	65.4277 S 64.6542 W	2.2	33.8 26.9	76.0 0.529	MMA: nd DMA: 47.4 ± 3.2 TMA: 31.8 ± 0.2 DEA: 13.3 ± 0.8	-
4 WAP	67.5983 S 69.3292 W	1.6	33.6 26.8	210.6 0.378	MMA: nd DMA: 18.8 ± 2.2 TMA: 9.4 ± 5.0 DEA: 5.9 ± 1.2	12.1
5 WAP	66.3437 S 67.4995 W	2.3	33.8 26.9	148.6 0.397	MMA: nd DMA: 7.6 ± 3.6 TMA: 8.5 ± 2.3 DEA: 5.1 ± 0.7	14.2
6 WAP	65.3712 S 63.8798 W	2.4	33.8 26.9	377.2 0.416	$\begin{array}{c} \text{MMA: nd} \\ \text{DMA: } 20.5 \pm 3.9 \\ \text{TMA: } 13.4 \pm 1.5 \\ \text{DEA: } 7.4 \pm 0.7 \end{array}$	11.6
7 WAP	63.2012 S 59.0735 W	0.6	34.2 27.4	849.4 0.407	$\begin{array}{c} MMA: \ nd \\ DMA: \ 73.4 \pm 9.8 \\ TMA: \ 30.3 \pm 0.7 \\ DEA: \ 8.2 \pm 0.7 \end{array}$	10.5
8 WS	64.2455 S 56.1148 W	0.3	34.3 27.5	104.4 0.473	MMA: nd DMA: 8.8 ± 0.4 TMA: 14.3 ± 0.9 DEA: 5.7 ± 0.7	11.9
9 WS	64.6483 S 55.4650 W	0.4	34.2 27.4	710.0 0.503	$\begin{array}{c} \text{MMA:} 12.6 \pm 0.1 \\ \text{DMA:} \ 10.2 \pm 0.2 \\ \text{TMA:} \ 29.8 \pm 1.2 \\ \text{DEA:} \ 7.8 \pm 0.02 \end{array}$	18.4

10 WS	64.3905 S 54.2772 W	0.3	33.8 27.2	48.2 0.346	$\begin{array}{c} MMA: 12.6 \pm 0.03 \\ DMA: 9.1 \\ TMA: 13.0 \pm 3.0 \\ DEA: 6.1 \pm 0.2 \end{array}$	19.1
11 WS	65.2107 S 53.0985 W	-0.6	33.2 26.8	273.7 0.208	$\begin{array}{c} MMA: 12.8 \pm 0.1 \\ DMA: 12.3 \pm 0.8 \\ TMA: 27.4 \pm 2.3 \\ DEA: 7.6 \pm 0.2 \end{array}$	10.7
12 WS	65.2857 S 53.2763 W	-0.7	33.2 26.8	199.5 0.244	MMA: nd DMA: nd TMA: 22.0 ± 2.3 DEA: 5.9 ± 0.11	13.2
13 WS	64.3150 S 52.4360 W	-0.2	33.3 26.8	106.2 0.282	MMA: nd DMA: 17.9 TMA: 35.7 ± 1.6 DEA: 6.4 ± 0.5	12.8
14 WS	62.3803 S 49.0358 W	1.9	34.0 27.1	112.9 0.272	MMA: nd DMA: nd TMA: 2.6 ± 3.2 DEA: 6.0 ± 0.5	13.4
15 WS	64.0503 S 53.8363 W	0.8	34.0 27.2	69.5 0.468	MMA: nd DMA: nd TMA: 12.7 DEA: 7.1	20.5
16 WS	64.1597 S 56.0608 W	0.2	34.1 27.4	424.6 0.380	MMA: nd DMA: nd TMA: 1.5 DEA: 6.4 ± 0.2	18.9
17 WS	64.6538 S 56.6295 W	-0.2	34.1 27.5	47.79 0.540	MMA: nd DMA: 15.3 TMA: 8.6 ± 0.5 DEA: 9.1 ± 2.2	11.4
18 WS	64.3233 S 56.5637 W	-0.2	34.2 27.5	179.2 0.232	MMA: nd DMA: 16.4 ± 2.8 TMA: 67.9 ± 52.0 DEA: 6.7 ± 0.6	9.7
19 WS	64.1077 S 56.1890 W	0.3	34.2 27.4	435.3 0.383	$\begin{array}{c} MMA: nd \\ DMA: 45.9 \pm 7.0 \\ TMA: 16.9 \pm 0.2 \\ DEA: 7.8 \pm 0.01 \end{array}$	12.3

Table S2. Values of the biological parameters estimated in the 19 seawater samples where amine concentrations were estimated: Chlorophyll-a concentration expressed as μ g L⁻¹ and its equivalent as carbon biomass (μ g C L⁻¹). Abundances (in cells mL⁻¹ or virus mL⁻¹) and the equivalent biomass in terms of carbon (μ g C L⁻¹) of the different microbial groups: total virus abundances and the V1, V2, V3 and V4 groups, total bacteria abundance and the HNA and LNA bacteria fractions, and the subgroups of pico- and nanophytoplankton abundances based on their size (1–2 μ m, 2–7 μ m, 7–15 μ m, 15–20 μ m and Cryptophytes) estimated by flow cytometry.

Station #	Chlorophyll-a $(\mu g L^{-1})$ Biomass ($\mu g C L^{-1}$)	Viruses Total (virus mL ⁻¹) Biomass (µg C L ⁻¹)	V1 V2 V3 V4 (virus mL ⁻ ¹)	Bacteria Total (cells mL ⁻¹) Biomass (µg C L ⁻¹)	Bacteria HNA LNA (cells mL ⁻¹)	Phyto. 1– 2μm (cells mL ⁻¹) Biomass (μg C L ⁻¹)	Phyto. 2– 7μm (cells mL ⁻¹) Biomass (μg C L ⁻¹)	Phyto. 7– 15μm (cells mL ⁻¹) Biomass (μg C L ⁻¹)	Phyto. 15– 20μm (cells mL ⁻¹) Biomass (μg C L ⁻¹)	Cryptophytes (Cryptomonas) (cells mL ⁻¹) Biomass (µg C L ⁻¹)
1	9.6 480	1.10E+07 2.3	10.0E+06 1.1E+06 2.7E+05 0	9.10E+05 15.3	6.4E+05 2.8E+05	1.01E+03 0.4	1.37E+03 15.0	2.84E+03 18.6	1.14E+03 12.0	1.07E+02 1.1
2	1.7 85	1.10E+07 2.3	9.63E+06 1.54E+06 2.69E+05 0	4.63E+05 7.7	2.38E+05 2.25E+05	2.12E+03 0.8	2.41E+03 26.4	8.55E+02 5.6	4.56E+01 0.5	1.03E+03 10.4
3	1.5 75	1.40E+07 2.7	1.1E+07 2.4E+06 4.8E+05 0	6.80E+05 11.3	3.4E+05 3.4E+05	3.56E+03 1.3	6.60E+02 7.2	4.86E+01 0.3	1.09E+02 1.2	1.67E+01 0.2
4	0.6 30	1.30E+07 2.5	1.0E+07 1.9E+06 4.6E+05 0	8.60E+05 14.3	4.7E+05 3.9E+05	4.53E+03 1.7	8.88E+02 9.7	8.35E+01 0.5	2.13E+01 0.2	1.97E+01 0.2
5	1.6 80	1.30E+07 2.6	1.1E+07 2.2E+06 3.3E+05 0	4.70E+05 7.8	1.6E+05 3.1E+05	3.37E+03 1.2	1.61E+03 17.7	2.75E+02 1.8	5.77E+01 0.6	4.56E+01 0.5

6	2.3 115	1.60E+07 3.1	1.2E+07 2.6E+06 6.3E+05 0	7.90E+05 13.3	4.0E+05 4.0E+05	6.72E+03 2.5	9.14E+02 10.0	8.96E+01 0.6	2.11E+02 2.2	2.58E+01 0.3
7	0.5 25	2.60E+06 0.5	2.1E+06 3.9E+05 9.9E+04 0	7.20E+05 12.0	4.8E+05 2.4E+05	1.67E+03 0.6	1.16E+03 12.8	4.07E+02 2.7	3.34E+01 0.4	6.53E+01 0.7
8	1.0 50	7.20E+06 1.4	5.7E+06 1.2E+06 2.5E+05 0	6.70E+05 11.2	3.3E+05 3.4E+05	1.73E+03 0.6	1.70E+03 18.7	3.45E+02 2.2	3.64E+01 0.4	1.52E+01 0.2
9	0.8 40	6.00E+06 1.2	4.6E+06 1.1E+06 2.6E+05 0	4.50E+05 7.5	2.4E+05 2.2E+05	5.71E+02 0.2	3.16E+03 34.6	4.72E+02 3.1	5.92E+01 0.6	4.56E+01 0.5
10	0.5 25	6.70E+06 1.3	5.3E+06 1.1E+06 2.1E+05 0	2.90E+05 4.8	8.8E+04 2.0E+05	8.90E+02 0.3	1.72E+03 18.9	5.41E+02 3.5	6.07E+01 0.6	5.68E+02 5.7
11	0.2 10	4.00E+06 0.8	3.3E+06 6.1E+05 1.1E+05 0	2.10E+05 3.6	1.1E+05 1.1E+05	3.78E+02 0.1	1.78E+03 19.5	8.35E+01 0.5	1.97E+01 0.2	5.77E+01 0.6
12	0.2 10	3.10E+06 0.6	2.2E+06 8.2E+05 1.7E+05 0	5.10E+05 8.5	1.3E+05 3.8E+05	3.13E+02 0.1	1.98E+03 21.7	4.25E+01 0.3	9.11E+00 0.1	7.44E+01 0.7
13	0.4 20	3.80E+06 0.8	2.8E+06 8.5E+05 1.8E+05 0	2.90E+05 4.8	1.0E+05 1.8E+05	3.55E+02 0.1	2.93E+03 32.1	3.70E+02 2.4	1.21E+01 0.1	3.16E+02 3.2
14	0.3 15	1.00E+07 2.0	8.5E+06 1.3E+06 3.7E+05	1.10E+06 18.2	6.1E+05 4.8E+05	9.46E+02 0.3	1.56E+03 17.1	1.49E+02 1.0	3.49E+01 0.4	1.97E+01 0.2

			0							
15	1.0 50	8.70E+06 1.7	7.3E+06 9.5E+05 4.5E+05 1.8E+05	6.10E+05 10.1	3.2E+05 2.9E+05	4.07E+02 0.2	2.14E+03 23.4	4.48E+02 2.9	1.75E+02 1.8	1.34E+02 1.3
16	0.4 20	6.40E+06 1.3	4.8E+06 1.3E+06 2.3E+05 0	1.20E+06 29.6	6.3E+05 5.4E+05	3.55E+02 0.1	1.75E+03 19.2	3.63E+02 2.4	2.73E+01 0.3	6.38E+01 0.6
17	0.5 25	6.00E+06 1.2	4.6E+06 1.2E+06 1.9E+05 0	6.10E+05 10.2	3.8E+05 2.3E+05	1.82E+02 0.1	1.96E+03 21.4	3.26E+02 2.1	3.34E+01 0.4	6.23E+01 0.6
18	0.5 25	6.10E+06 1.2	4.4E+06 1.5E+06 3.0E+05 0	7.40E+05 12.4	3.8E+05 3.6E+05	4.27E+02 0.2	2.30E+03 25.2	2.49E+03 16.2	3.29E+02 3.5	6.23E+01 0.6
19	0.6 30	6.50E+06 1.3	4.8E+06 1.4E+06 3.0E+05 0	5.50E+05 9.3	3.1E+05 2.5E+05	7.52E+02 0.3	1.88E+03 20.6	5.51E+02 3.6	5.16E+01 0.5	5.47E+01 0.5

Table S3. Abundances (cells mL⁻¹) and biomasses (μ g C L⁻¹) of heterotrophic and phototrophic nanoflagellates (HNF and PNF, respectively) and the size classes based on their dimensions ($\leq 2 \mu$ m, 2–5 μ m, 5–10 μ m, 10–20 μ m and *Phaeocystis*), estimated by epifluorescence microscopy (note that samples #5, #9, #11, #15 were lost).

Station #	HNF tot (cells mL ⁻¹) Biomass (µg C L ⁻¹)	HNF ≤2 μm (cells mL ⁻ ¹) Biomass (μg C L ⁻¹)	HNF 2–5 μm (cells mL ⁻ ¹) Biomass (μg C L ⁻¹)	HNF 5–10 μm (cells mL ⁻ ¹) Biomass (μg C L ⁻¹)	HNF 10– 20 μm (cells mL ⁻ ¹) Biomass (μg C L ⁻¹)	PNF tot (cells mL ⁻¹) Biomass (µg C L ⁻¹)	$PNF \leq 2$ μm (cells mL ⁻ ¹) Biomass (µg C L ⁻¹)	PNF 2–5 μm (cells mL ⁻ ¹) Biomass (μg C L ⁻¹)	PNF 5–10 μm (cells mL ⁻ ¹) Biomass (μg C L ⁻¹)	PNF 10– 20 μm (cells mL ⁻ ¹) Biomass (μg C L ⁻¹)	Phaeocystis (cells mL ⁻¹) Biomass (μg C L ⁻¹)
1	2 593	233	1 820	265	275	3 514	2 074	921	127	392	497
	8.9	0.1	4.7	1.5	2.7	7.7	0.8	2.4	0.7	3.8	1.3
2	2 904	161	2 532	186	25	3 895	2 134	1 278	102	381	305
	7.8	0.1	6.5	1.0	0.2	8.4	0.8	3.3	0.6	3.7	0.8
3	1 585	449	873	183	79	4 209	1 753	2 347	89	21	179
	4.2	0.2	2.2	1.0	0.8	7.4	0.6	6.1	0.5	0.2	0.5
4	42	0	42	0	0	7 091	3 471	3 535	85	0	21
	0.1	0.0	0.1	0.0	0.0	10.9	1.3	9.2	0.5	0.0	0.1
5	-	-	-	-	-	-	-	-	-	-	-
6	152	0	93	49	11	1 524	309	1 199	5	11	4
	0.6	0.0	0.2	0.3	0.1	3.4	0.1	3.1	0.0	0.1	0.0
7	127	14	56	42	14	5 207	931	3 951	296	28	240
	0.5	0.0	0.1	0.2	0.1	12.5	0.3	10.3	1.6	0.3	0.6
8	529	0	332	183	14	4 949	1 450	3 373	127	0	243
	2.0	0.0	0.9	1.0	0.1	10.0	0.5	8.8	0.7	0.0	0.6
9	-	-	-	-	-	-	-	-	-	-	-
10	110	0	51	42	17	2 049	237	1 372	152	288	119
	0.5	0.0	0.1	0.2	0.2	7.3	0.1	3.6	0.8	2.8	0.3

11	-	-	-	-	-	-	-	-	-	-	-
12	643	0	564	79	0	3 220	949	2 045	218	8	272
	1.9	0.0	1.5	0.4	0.0	6.9	0.3	5.3	1.2	0.1	0.7
13	303	0	198	106	0	8 883	1 164	7 119	317	282	473
	1.1	0.0	0.5	0.6	0.0	23.4	0.4	18.5	1.7	2.7	1.2
14	2 120	557	1 228	215	120	1 940	377	1 376	173	14	1 376
	22.0	16.4	3.2	1.2	1.2	4.8	0.1	3.6	1.0	0.1	3.6
15	-	-	-	-	-	-	-	-	-	-	-
16	1 304	0	974	254	76	9 373	3 675	5 402	233	63	161
	4.6	0.0	2.5	1.4	0.7	17.3	1.4	14.0	1.3	0.6	0.4
17	1 791	0	1 552	210	28	9 155	3 113	5 904	117	21	206
	5.4	0.0	4.0	1.2	0.3	17.3	1.1	15.3	0.6	0.2	0.5
18	478	0	237	241	0	6 597	2 942	3 552	103	0	316
	1.9	0.0	0.6	1.3	0.0	10.9	1.1	9.2	0.6	0.0	0.8
19	102	0	73	14	14	4 082	864	2 819	302	97	0
	0.4	0.0	0.2	0.1	0.1	10.3	0.3	7.3	1.7	0.9	0.0

Table S4. Abundances (cells L⁻¹) and biomasses (μ g C L⁻¹) of phytoplankton (dinoflagellate cysts, dinoflagellates 10–20 μ m, 20–40 μ m, >40 μ m, diatoms 10–20 μ m, 20–40 μ m, >40 μ m) and ciliates, estimated by optical microscopy. Note that microphytoplankton taxon abundances are expressed as cells L⁻¹, whereas all other microorganism and virus data in Tables S2 and S3 are reported in cells mL⁻¹.

Station #	Dinofl. cysts (cells L ⁻¹) Biomass (µg C L ⁻¹)	Dinofl. 10–20 μm (cells L ⁻¹) Biomass (μg C L ⁻¹)	Dinofl. 20–40 μm (cells L ⁻¹) Biomass (μg C L ⁻¹)	Dinofl. >40 μm (cells L ⁻¹) Biomass (μg C L ⁻¹)	Diatoms 10– 20 µm (cells L ⁻¹) Biomass (µg C L ⁻¹)	Diatoms 20– 40 µm (cells L ⁻¹) Biomass (µg C L ⁻¹)	Diatoms >40 μm (cells L ⁻¹) Biomass (μg C L ⁻¹)	Ciliates (cells L ⁻¹) Biomass (µg C L ⁻¹)
1	0	0	8 964	4 482	1 101 078	821 700	8 964	0
	0.0	0.0	51.5	68.3	87.0	36.7	9.0	0.0
2	0	13 448	1 121	620	2 655	60	947	120
	0.0	2.2	1.3	5.0	0.2	0.0	0.3	0.1
3	2 538	16 255	19 431	0	182 372	4 096	6 540	903
	1.0	12.8	92.0	0.0	15.4	0.9	5.3	3.0
4	900	8 415	8 165	1 496	1 496	18 326	2 603	487
	0.3	7.5	27.8	7.7	0.1	0.8	2.6	3.4
5	1 440	0	8 831	434	1 040	7 854	2 320	800
	0.5	0.0	36.8	2.1	0.1	1.2	3.9	3.0
6	2 916	5 976	12 699	560	57 263	9 711	3 080	565
	1.2	3.1	84.4	9.3	4.4	7.2	2.2	27.9
7	300	4 215	9 010	747	20 169	0	40	0
	0.1	2.0	42.1	11.4	1.6	0.0	0.0	0.0
8	40	360	74 613	1 120	400	0	280	0
	0.0	0.1	215.6	15.9	0.0	0.0	0.7	0.0
9	160	8 964	50 696	1 494	747	747	400	320
	0.1	5.2	132.0	22.8	0.1	0.2	0.9	2.0
10	160	12 566	39 120	0	2 655	0	534	767

	0.1	6.4	187.8	0.0	0.2	0.0	0.2	2.5
11	40	14 593	787	0	29 733	1 814	1 067	0
	0.0	11.4	2.3	0.0	13.2	0.2	0.7	0.0
12	1 087	1 494	8 964	0	280	0	747	0
	1.3	0.4	46.6	0.0	0.0	0.0	0.6	0.0
13	600	1 321	12 699	747	240	0	160	2 988
	0.2	0.6	66.0	14.3	0.0	0.0	1.4	9.9
14	700	11 962	5 021	289	805	2 897	2 214	660
	0.2	4.9	22.2	5.3	0.1	0.3	4.4	18.2
15	940	35 388	1 174	40	19 053	935	520	60
	0.3	23.6	3.4	0.6	1.5	0.3	3.7	0.3
16	280	1 923	4 481	0	600	0	1 120	561
	0.1	1.1	8.2	0.0	0.0	0.0	3.0	1.2
17	6 000	38 097	1 847	0	200	747	600	0
	2.1	23.5	7.3	0.0	0.0	0.4	0.8	0.0
18	20	16 437	2 615	0	747	394	1 594	307
	0.0	0.9	2.3	0.0	0.0	0.1	0.2	0.2
19	0	10 480	1 247	120	1 494	454	420	0
	0.0	0.6	1.5	1.0	0.2	0.2	0.5	0.0

Table S5. Values of biogeochemical and nutrient data obtained in the 19 samples of this study concerning biogeochemical parameters: Total phosphorus (TP), Total Nitrogen (TN) and Total Organic Nitrogen (TON), Particulate and Dissolved Organic Nitrogen (PON, DON), Total Organic Carbon (TOC), Particulate and Dissolved Organic Carbon (POC, DOC), and the ratio between particulate C and N (C:N), Nitrate and Nitrite, Ammonium, Silicate, Phosphate and Dimethylsulfoniopropionate (DMSP) and Dimethylsulfide (DMS) concentrations. All parameters expressed in μ M except DMS and DMSP in nM. *nd: below detection limit

Station #	ΤΡ (μΜ)	TN TON (µM)	ΡΟΝ (μΜ)	DON (µM)	ΤΟC (μM)	ΡΟ (μΜ)	DOC (μM)	C:N	Nitrate Nitrite (µM)	Ammoniu m (µM)	Silicate (µM)	Phosphate (µM)	DMSP DMS (nM)
1	1.5	22.7 5.5	4.4	1.1	69.2	27.9	41.4	6.3	16.2 0.22	0.8	56.5	1.5	57.8 1.49
2	4.0	28.4 2.1	1.8	nd	52.0	9.4	42.6	5.1	25.2 0.30	0.8	74.9	2.5	84.9 1.8
3	5.4	26.4 4.6	1.1	4.1	50.1	7.0	43.1	6.4	20.5 0.19	1.1	53.1	1.7	36.4 2.47
4	4.3	26.6 0.7	1.0	nd	48.2	5.9	42.3	5.8	24.7 0.31	0.9	51.7	2.1	33.2 1.25
5	5.1	28.9 7.5	1.4	6.0	56.9	8.8	48.1	6.1	20.4 0.24	0.8	49.8	1.7	53.8 1.53
6	5.7	28.4 8.2	2.2	6.0	61.3	11.8	49.5	5.5	19.7 0.19	0.3	53.3	1.7	16 1.74
7	8.4	30.6 8.7	0.6	8.1	65.5	4.5	61.0	7.1	21.0 0.17	0.7	57.7	1.9	31.7 1.36
8	9.6	34.8 8.3	1.4	6.9	55.3	9.4	45.9	6.9	24.7 0.23	1.6	59.3	2.5	40.1 1.53
9	8.3	33.4 6.96	1.0	5.9	51.8	6.6	45.3	6.5	24.1 0.24	2.1	59.4	2.5	48.6 1.35
10	4.0	27.9 5.2	1.2	4.0	45.2	7.7	37.5	6.4	20.9 0.20	1.6	48.1	2.2	35.2 1.42
11	12.6	22.6 0.1	0.6	nd	132.7	3.8	128.9	6.5	20.7 0.25	1.5	51	2.3	18.1 0.67
12	16.0	23.0 1.0	0.7	0.3	144.3	4.3	140.0	6.4	19.8 0.27	1.9	50.5	2.2	20.0 0.55
13	12.8	20.6 0.1	0.7	nd	79.7	4.4	75.3	6.2	18.5 0.22	1.9	50	2.1	43.2 1.73
14	22.1	30.1 9.1	1.0	8.1	55.0	7.9	47.1	7.9	19.9 0.24	0.9	49.2	2.2	23.9 1.34

15	19.1	20.4 3.6	1.0	2.6	45.0	5.4	39.4	5.6	15.8 0.15	0.9	48.6	1.9	31.0 1.15
16	16.9	33.3 9.6	0.6	9.0	79.0	3.8	75.2	6.2	21.9 0.20	1.6	57.6	2.4	23.3 0.6
17	26.6	32.8 9.6	0.7	9.0	52.8	4.9	47.8	7.2	20.8 0.26	2.1	55.8	2.2	23.3 0.78
18	23.5	32.6 10.0	0.7	9.3	50.3	4.5	45.8	6.7	20.9 0.20	1.5	56.3	2.3	26.6 0.57
19	38.9	38.0 12.5	1.0	11.5	137.9	6.2	131.7	6.1	23.1 0.30	2.0	60.1	2.6	19.1 0.87

Figure S1. Chromatogram showing the retention times of MMA, DMA, TMA, CPA and DEA of a seawater sample.

Figure S2. Example of the cytogram of virus populations: V1 (pink) and V2 (light blue) corresponding to bacteriophages, V3 (orange) to eukaryotic algal virus and V4 (green) mainly to Haptophyceae virus of sample #15 (SSC-H: Side scatter, type of light dispersion and FITC-H: fluorescence captured with 536/40nm filter).

Figure S3. Example of the cytogram of bacteria, high (HNA) and low nucleic acid cells (LNA) of sample #1 (SSC: Side scatter, type of light dispersion; FL1: SYBRGreenI fluorochrome, FITC/1, fluorescence captured with 536/40nm filter; FL2: Phycoerythrin natural fluorochrome, PE/1, fluorescence captured with 590/50nm filter, and FL3: Chlorophyll a natural fluorochrome, PE-Cy5/1, fluorescence captured with 675/20nm filter).

Figure S4. Example of the cytogram of nanophytoplankton populations $(1-2 \mu m, 2-7 \mu m, 7-15 \mu m, 15-20 \mu m)$ and *Cryptomonas*) of sample #1 (SSC: Side scatter, type of light dispersion; FL2: Phycoerythrin natural fluorochrome, PE/1, fluorescence captured with 590/50 nm filter, and FL3: Chlorophyll a natural fluorochrome, PE-Cy5/1, fluorescence captured with 675/20 nm filter).

Figure S5. Boxplots depicting variables with statistically significant differences in mean values between the Western Antarctic Peninsula (n=7) and the northern Weddell Sea (n=12). Box-plots of (a) Chlorophyll-a concentration, (b) Sea Surface Temperature, concentrations of (c) dDMA, (d) DMS, (e) Ammonium, (f) Phosphate, (g) Total Phosphorus (TP), (h) PON and (i) POC; abundances of (l) Total Virus, (m) virus V1 population, (n) Diatoms (10–20µm), (o) Diatoms (>40µm), (p) Phytoplankton 1–2 µm, (q) Phytoplankton 2–7 µm and (r) PNF 5–10 µm (sample size is limited to n = 15 for this parameter due to missing values). Y-axes are in logarithmic scale. The error bars represent the standard deviation according to the number of samples; horizontal lines within boxes indicate the median of the distribution and dots represent the outliers. The Wilcoxon statistic, indicating significant differences between the two groups of samples is indicated in each box.

Figure S6. Heatmap showing Pearson's correlations between all the marine biogeochemical variables ("n" varied across parameters; details are provided in the Supplementary tables).