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Abstract. Indonesia is currently one of the three largest
contributors of carbon emissions from land use and land
cover change (LULCC) globally, together with Brazil and
the Democratic Republic of the Congo. However, until re-
cently, there were only limited reliable data available on
LULCC across Indonesia, leading to a lack of agreement
on the drivers, magnitudes, and trends of carbon emissions
between different estimates. Accurate LULCC should im-
prove robustness and reduce the uncertainties of carbon
dioxide (CO2) emissions from land use change (ELUC)
estimation. Here, we assess several cropland datasets that
are used to estimate ELUC in dynamic global vegetation
models (DGVMs) and bookkeeping models (BKMs). Avail-
able cropland datasets are generally categorized as either
statistics-based, such as the Food and Agricultural Orga-
nization (FAO) annual statistical dataset, or satellite-based,
such as the Mapbiomas dataset, which is derived from Land-
sat satellite images. Our results show that national-statistics-
based and satellite-based estimates have little agreement on
temporal variability and cropland area changes. On some
islands, they show spatial similarity, but differences ap-

pear on the main islands such as Kalimantan, Sumatra,
and Java. These differences lead to spatiotemporal uncer-
tainty in carbon emissions. The different land cover forc-
ings (national-statistics-based and satellite-based) in a sin-
gle model (JULES-ES) result in ELUC uncertainties of about
0.08 [0.06 to 0.11] PgC yr−1. Furthermore, we found that un-
certainties in ELUC estimates are also due to differences
in the carbon cycle models in DGVMs, as DGVMs driven
by the same land cover dataset show differences in ELUC
estimates of 0.12± 0.02 PgC yr−1 with a 95 % confidence
level and range [−0.04 to 0.35] PgC yr−1. This is consis-
tent with other products such as BKMs that estimate 0.14
[0.12 to 0.15] PgC yr−1, with both having steady trends. We
also compare the emissions with those from the National
Greenhouse Gas Inventory (NGHGI) product. The NGHGI
estimates (based on BUR3, the periodic official govern-
ment report on greenhouses gases to UNFCCC) have much
lower carbon emissions (0.06± 0.06 PgC yr−1), though with
an increasing trend. These numbers double when we in-
clude emissions from peat fire and peat drainage: the DGVM
ensemble indicates emissions of 0.23± 0.05 PgC yr−1, and
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BKMs indicate emissions of 0.24± 0.01 PgC yr−1. In con-
trast, emissions based on the Indonesian NGHGI re-
main much lower (BUR2: 0.18± 0.07 PgC yr−1; BUR3:
0.13± 0.10 PgC yr−1). Furthermore, emission peaks occur in
years of moderate to strong El Niño events. Several improve-
ments might reduce uncertainties in carbon emissions from
LULCC in Indonesia, such as a combination of a satellite-
based dataset with a national-statistics-based dataset, inclu-
sion of peat-related emissions in DGVMs, and potentially
explicit inclusion of palm oil in models, as this is a major
crop in Indonesia. Overall, the analysis shows that carbon
emissions have no decreasing trend in Indonesia. Therefore,
deforestation and forest fire prevention remain vital for In-
donesia.

1 Introduction

Indonesia plays a significant role in the global carbon cy-
cle through carbon emissions from land use and land cover
change (LULCC) (Friedlingstein et al., 2023). Together with
Brazil and the Democratic Republic of Congo, these three
countries are the highest carbon emitters in the world from
land use change. Their emissions combined are more than
half of the global total land use emissions (0.75 [0.59–
0.87] PgC yr−1 or 56 [44–68] %) (Friedlingstein et al., 2023).

Indonesian forests are spread across several islands. The
major islands are Sumatra, Kalimantan, Sulawesi, and Papua
(Gaveau et al., 2021). In recent decades, two islands, Suma-
tra and Kalimantan, have experienced extensive land use
changes (Gaveau et al., 2014, 2016; Margono et al., 2012).
There were many forested areas that have now been con-
verted into agricultural lands, predominantly palm oil planta-
tions. Forest area declined by 9.79 million hectares (Mha) or
11 % between 2001 and 2019, with near-equal expansion of
oil palm plantations of 8.48 Mha (Gaveau et al., 2022). This
forest loss is also confirmed by the Food and Agricultural
Organization (FAO), which shows the decline from 101.12
to 92.13 Mha for the last 2 decades, or 9.14 Mha lost (FAO,
2022).

These high rates of land conversion in regions of carbon-
dense and often pristine natural forests result in high carbon
emissions (Hong et al., 2021). Furthermore, there are large
peat and forest fires during extreme dry seasons in Indone-
sia (Fernandes et al., 2017; Nechita-Banda et al., 2018). This
has added to the carbon released into the atmosphere from
Indonesia, together with fires induced by humans (Brasika,
2023; FAO, 2023; van der Werf et al., 2017). Although there
is a declining trend in reported forest fires between 2003 and
2018 (van Wees et al., 2021), fires continue to contribute sig-
nificant emissions. For example, in 2019–2020, deforestation
fires in Indonesia continued contributing to high greenhouse
gas (GHG) emissions, i.e. about 3.7± 0.4 Gt CO2 eq., and

half of this can be attributed to emissions from peatland fires
(Datta and Krishnamoorti, 2022).

The emission of carbon from LULCC caused by de-
liberate human activities is represented as emissions from
land use change (ELUC) (PgC yr−1) in the Global Carbon
Budget (GCB) calculated using a set of bookkeeping mod-
els (Friedlingstein et al., 2023). This includes CO2 fluxes
from deforestation, afforestation, logging, forest degrada-
tion, shifting cultivation, and regrowth of forests. ELUC can
also be calculated using dynamic global vegetation models
(DGVMs), which are part of the Trends in Net Carbon Ex-
change (TRENDY) project (Friedlingstein et al., 2019; Sitch
et al., 2015), which supplies ensemble DGVM results each
year to the GCB. The LULCC input for the GCB is from the
Land Use Harmonization (LUH2) dataset (Chini et al., 2021;
Hurtt et al., 2020), which has temporal and spatial challenges
(Rosan et al., 2021) when employed for national-scale anal-
ysis.

With the development of multi-year land cover datasets
from Earth observations, there is potential to reduce the
uncertainty in carbon emissions from LULCC. This was
previously applied in the GCB 2022 (Friedlingstein et al.,
2022), where the authors replaced the FAO land use data
with satellite-based Mapbiomas data for Brazil (Rosan et al.,
2021). This resulted in improvements in LULCC datasets
that gave consistent estimates of ELUC trends using different
methodologies for Brazil.

In this research, we apply a similar approach to improve
our understanding of carbon emissions from LULCC in In-
donesia over the last 2 decades (2000–2022). However, we
focus more on the uncertainties, i.e. not only the causes by
the input, but also the different approaches of models and/or
inventories. We used LUH2-GCB2022, which is the harmo-
nization of several datasets, including satellite data with FAO
land use data and satellite-based cropland (Mapbiomas In-
donesia 1.0 – MB1 – and Mapbiomas Indonesia 2.0 – MB2)
datasets, as input to JULES-ES. First, we compare the tem-
poral and spatial variability of cropland from these datasets.
Second, we simulate ELUC with two approaches: various
LULCC driver datasets (LUH2-GCB2022, MB1, and MB2)
in one model (JULES-ES) and comparison with results using
one LULCC driver (MB1) in various models in TRENDY
v12. Last, we compare our estimates with other models or
products, i.e. bookkeeping models (BKMs), the National
Greenhouse Gas Inventory (NGHGI), and FAO GHG for In-
donesia.

Despite addressing many uncertainties caused by the in-
put data, model structure, and different products, we empha-
size the agreement between those models and products that
do appear. This includes the similarity of the trends, their
variability, their magnitudes, and their potential connection
to interannual variability. This might result in more robust
understanding of carbon emissions from Indonesia as these
agreements appear in the uncertainties. This is essential as
the Indonesian contribution to global carbon emissions from
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land use change is massive, but this multi-dataset assessment
has not been done before.

2 Methods

2.1 Land use dataset

2.1.1 Mapbiomas Indonesia dataset

Mapbiomas is an initiative aimed at mapping LULCC us-
ing a fast, reliable, and cost-effective methodology. Initially
launched in Brazil in 2015, it has since been applied to other
countries. Indonesia became the first country not in Latin
America to adopt the method, receiving training from experts
in Brazil (experts from the Asian country were trained by
the Brazilian Mapbiomas team to launch the land use map-
ping platform; Silva et al., 2022). Mapbiomas utilizes Land-
sat images and employs a pixel-based approach. Machine
learning algorithms have been developed to analyse these im-
ages, leveraging the powerful cloud processing capabilities
provided by Google Earth Engine (GEE).

The resulting dataset, MB1, classifies the LULCC from
2000 to 2019 (Mapbiomas Indonesia, 2022). While the clas-
sification scheme is adapted from Mapbiomas Brazil, it also
includes specific characteristics relevant to Indonesia. For in-
stance, agriculture in Mapbiomas Indonesia includes a palm
oil category, reflecting the significant impact of palm oil
production on LULCC in Indonesia (Mapbiomas Indonesia,
2022). However, there is no specific grazing land category in
Mapbiomas Indonesia, as grazing land is considerably small
and steady in Indonesia. Nevertheless, we still use the graz-
ing land from LUH2-GCB2022 for completeness (Fig. 1).
In case the total combination of the Mapbiomas agriculture
fraction and the LUH2-GCB2022 grazing land fraction is
higher than 1 in a given grid cell, we reduce the grazing land
fraction accordingly. So, the total area of cropland+ grazing
land will be equal to or less than 1.

Mapbiomas has a high spatial resolution of 30 m, which
is significantly higher than other products such as ESA CCI
LC at 300 m. The Mapbiomas dataset has the potential to de-
tect even small changes in LULCC. This dataset finds vari-
ous applications, including the calculation of CO2 emissions
resulting from land use change (Garofalo et al., 2022). Cur-
rently, Mapbiomas Indonesia is on its Collection 2.0 version
(MB2). This recent dataset has completed an accuracy as-
sessment and validation process (using ∼ 12 967 samples),
with a resulting overall accuracy of 77.2 %. This MB2 cov-
ers a longer period, 2000–2022, with some improvement in
land use classification. The agriculture is divided into more
categories: palm oil, rice paddy, pulpwood plantation, and
mosaic agriculture.

2.1.2 Integration of multiple datasets (FAO, HYDE,
LUH2, and Mapbiomas)

The LUH2 dataset employs an accounting-based method to
provide global annual gridded land use states and transitions
for the historical period from 850 to 2023 (Chini et al., 2021;
Hurtt et al., 2019, 2020). LUH2 considers each grid cell to be
naturally forested or non-forested. This potential vegetation
area is adjusted based on information about land use activi-
ties, such as agricultural expansion and abandonment, wood
harvesting, urban development, and shifting cultivation.

LUH2 received the input of the land fractions in agri-
culture from the HYDE database (Goldewijk et al., 2017).
This is a land use dataset that combines historical popula-
tion estimates and allocation algorithms with time-dependent
weighting maps to ensure internal consistency (Goldewijk
et al., 2017). The cropland and grazing data in HYDE are
obtained from the country-level statistical data provided by
FAO as shown in Fig. 1. The cropland in HYDE is from FAO
arable land and permanent land, while the grazing in HYDE
is from FAO permanent meadows and pastures.

FAO utilized a national statistics approach provided by
each country (Ricciardi et al., 2018). The national data are
provided to FAO annually via questionnaires completed by
each country; however, they may be based on less frequent
census periods, which can vary among countries. In Indone-
sia, FAO has sent out questionnaires since the 1960s. It re-
vised the land use questionnaire in 2016 (FAO, 2022). The
data before that year are from the Indonesia Statistic Agency
(BPS), which conducted agriculture surveys every 10 years
(Badan Pusat Statistik, 2023). The years in between are in-
terpolated. To spatially allocate the FAO data, HYDE uses
maps from the ESA Land Cover Consortium (Fig. 1).

This version of LUH2 with cropland areas based on
HYDE or FAO (except for Brazil, which started to use Map-
biomas in 2022) was utilized by the Global Carbon Bud-
get until the 2022 version (GCB22) (Chini and Hurtt, 2025).
As the FAO dataset is only available until 2020 for GCB22,
the years 2021 and 2022 are extrapolated from HYDE us-
ing the trend over the previous 5 years (2016–2020). Then,
specifically for Indonesia, in the Global Carbon Budget 2023
(GCB23), FAO data for Indonesia were replaced (while other
countries except for Brazil continued to be based on HYDE
or FAO) with the satellite-based MB1 dataset as input for
HYDE and then used by LUH2 for the period 2000–2019,
with extrapolation from HYDE until 2022. Recently, Map-
biomas launched the new version, MB2, which is claimed
to have higher accuracy. This dataset is currently being pro-
posed for the future GCB. Thus, in this research we differen-
tiate between LUH2-GCB2022, MB1, and MB2. The details
of all of the LULCC datasets assessed in this research are
given in Table 1.
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Figure 1. Diagram of the different LULCC driver datasets that are used as input for JULES-ES simulation.

Table 1. The LULCC dataset.

Dataset In the GCB for Indonesia Temporal Spatial Resolution DGVMs in this research

1. LUH2-GCB2022 GCB 2022 2000–2022 Extrapolated
for 2020
onwards

Distributed by
HYDE

0.5° JULES-ES

2. MB1 GCB 2023 2000–2022 Extrapolated
for 2019
onwards

Available 30 m,
resampled to
0.5°

Directly used in JULES-ES,
extrapolated with HYDE, and
adjusted with LUH2 in
TRENDY

3. MB2 2000–2022 Available 30 m,
resampled to
0.5°

JULES-ES

2.2 ELUC model and product comparison

This study utilizes the JULES-ES model (Sellar et al., 2019).
JULES-ES was developed from the Met Office’s Surface Ex-
change Scheme (MOSES). It can be used as a stand-alone
land surface model driven by observed forcing data or cou-
pled to an atmospheric global circulation model, such as the
Met Office’s Unified Model (UM) (Best et al., 2011). As
JULES-ES is a process-based model that simulates the fluxes
of carbon, water, energy, and momentum between the land
surface and the atmosphere (Clark et al., 2011), it can used
to analyse the important role of the land surface in the func-
tioning of the Earth system.

JULES-ES has a detailed representation of land surface
processes and includes recent developments in surface phys-
ical processes (Wiltshire et al., 2020), wood products (Jones

et al., 2011), fire representation (Burton et al., 2019), dy-
namic vegetation (Cox, 2001; Harper et al., 2018), land use
and the nitrogen cycle (Wiltshire et al., 2021), plant physiol-
ogy, and plant functional types. It can simulate the historical
evolution of the land carbon cycle under increasing atmo-
spheric CO2 concentrations and climate change (Harper et
al., 2016, 2018). Moreover, it can simulate the effect of land
use change when forced with external LULCC datasets. The
model description of JULES-ES regarding the impact of land
use change on the carbon cycle can be seen in Supplement
Sect. S1 (Eqs. S1, S2, and S3). For this study, we use the
same setting of JULES-ES as in TRENDY v12 for GCB23
but vary the fraction of agriculture with several datasets as
presented in Table 1. The detailed PFT setting of JULES-ES
(Hurtt et al., 2019; Chini and Hurtt, 2025) can be checked in
Supplement Table S1.
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Apart from looking at the effects of various LULCC
datasets on ELUC estimates, we also investigate the
ELUC uncertainties using different DGVMs. We analyse
18 DGVMs from TRENDY v12 and GCB23, all driven with
the LULCC forcing MB1, which has been extrapolated and
adjusted with HYDE and LUH2.

In addition to the DGVMs, we use ELUC estimates for In-
donesia from three BKMs that contributed to GCB23: H&C
(Houghton and Castanho, 2023; Houghton and Nassikas,
2017), OSCAR (Gasser et al., 2020), and BLUE (Hansis et
al., 2015). Although the DGVMs and the BKMs BLUE and
OSCAR used the LULCC forcing MB1, this results in a dif-
ferent estimation. Furthermore, these two model types have
different approaches and parameterizations. BKM methods
track the variations in carbon storage within vegetation, soils,
and wood products both pre-LULCC and post-LULCC by
employing established growth and carbon decay rates over
time. Unlike DGVMs, BKMs do not account for the influ-
ence of changing environmental factors on vegetation growth
rates. Instead of simulating carbon stocks, BKMs rely on di-
rect observational data for carbon densities, which are de-
rived from biome-level values found in the literature and in-
ventory data (Houghton et al., 1983).

We also compare the ELUC estimates from DGVMs and
BKMs with the NGHGI of Indonesia, a comprehensive re-
port on GHG emissions and removals compiled by the In-
donesian government. The Indonesian NGHGI follows the
IPCC (Intergovernmental Panel on Climate Change) defini-
tion of land use emissions, which differs from the ELUC def-
inition used by the GCB, as the NGHGI uses terrestrial fluxes
occurring on all land that countries define as “managed”.
We specifically use data from NGHGI Biennial Update Re-
ports 2 and 3 (BUR2 and BUR3) (Anwar et al., 2021), which
cover the time periods relevant for our study, i.e. 2000–2016
and 2000–2019, respectively. Then, we also investigate the
FAO GHG dataset for comparison (FAO, 2023; Francesco
Tubiello, 2020; Tubiello et al., 2021).

BUR is a periodic national report that follows UNFCCC
(United Nations Framework Convention on Climate Change)
guidelines for non-Annex-I countries. The GHG inventory
quantifies LULCC emissions using Tier-1 and Tier-2 meth-
ods according to the 2006 IPCC Reporting Guidelines: emis-
sions are calculated by multiplying the areas of land cover
change by specific emission factors for each land cover con-
version. The data collections and calculations are done by
ministries, bureaus, or agencies. The data are collected by
each relevant government organization and then compiled
by the Ministry of Environment and Forestry (Anwar et al.,
2021). Indonesia released BUR2 in 2018 (Agung Sugardi-
man et al., 2018) and BUR3 in 2021 (Anwar et al., 2021).
BUR3 uses an improved land cover map by reinterpreting
land use based on Landsat imagery and revision of relevant
sector data. This creates different estimates for LULCC emis-
sions between BUR2 and BUR3 (Anwar et al., 2021).

The FAO GHG inventory summarizes the greenhouse gas
emission dissemination. It follows the Tier-1 methods of the
IPCC Guidelines for National GHG Inventories (FAO, 2022,
2023). We use the total CO2 emissions from land use change
for comparison with models and other products. Then, CO2
emissions from “Drained organic soils” and “Fire in organic
soils” are added to represent the peat fire emissions and peat
drainage. We convert the data from kilotons CO2 into penta-
grams carbon (PgC).

2.3 Analysis

2.3.1 Annual and spatial LULCC

Quantifying the difference in products of LULCC is the first
step of the analysis in this research. We compare the tempo-
ral changes in LULCC from the datasets LUH2-GCB2022,
MB1, and MB2. MB1 classifies agriculture as a combination
of oil palm and other agriculture. MB2 has two additional
classifications, i.e. rice paddy and pulpwood plantation. The
FAO classifies cropland as arable land and land under perma-
nent crops (including oil palms). In the following, we refer to
the Mapbiomas category “agriculture” as “cropland” to sim-
plify the comparison across datasets.

The spatial maps of cropland areas are plotted and anal-
ysed in order to assess the differences between LULCC
datasets. We plot LUH2-GCB2022, whose cropland and
grazing land areas are from HYDE based on FAO country
statistics. The Mapbiomas dataset is satellite-based; thus, it
is already spatially distributed. However, the MB1 and MB2
datasets need to be processed as follows: first reclassify –
palm oil, rice paddy, pulpwood plantation, and other agri-
culture are defined as 100 % crop, while other classifications
(forest, non-vegetated areas, and water bodies) are consid-
ered 0 % crops. The spatial resolution of Mapbiomas is 30 m,
while LUH2 (used as GCB input) has a spatial resolution of
0.5°. We thus regridded the land cover fractions of MB1 and
MB2 to 0.5° resolution. This approach has a small impact on
the total cropland area, as illustrated in Fig. S1 in Supplement
Sect. S2.

2.3.2 ELUC simulations

The LUH2-GCB2022, MB1, and MB2 datasets are used as
input to JULES-ES, which is run at 0.5° resolution (Brasika,
2025a, b). This resolution allows us to capture the geograph-
ical conditions of Indonesia, which is an archipelago con-
sisting of many islands with considerable topographic vari-
ability. To calculate ELUC, we perform three sets of simu-
lations with JULES-ES using cropland areas from the three
LULCC datasets. The simulations are performed according
to the TRENDY v12 configuration, using a time-varying cli-
mate, CO2, and nitrogen deposition following the TRENDY
protocol (Sitch et al., 2024). The first simulation uses LUH2-
GCB2022 over the period 1700–2022. The second and third
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simulations use LUH2-GCB2022 from 1700–1999 and Map-
biomas (MB1 and MB2) that from 2000–2022. JULES-ES
is spun up to steady-state conditions by running 50 spin-
up cycles of 20 years starting in 1700, and then each set
of simulations follows two scenarios, S2 and S3. Scenario
S2 uses time-varying CO2 and climate forcing but constant
present-day land use (from the year 2000). Scenario S3 uses
time-varying CO2, climate forcing, and land use varying
from 1700 to 2022 (but uses three different datasets (LUH2-
GCB2022, MB1, and MB2) from 2000). ELUC is calculated
as the difference in net biome productivity at a grid cell level
between these two simulations. The ELUC values from these
simulations are compared to understand how differences in
LULCC from LUH2-GCB2022, MB1, and MB2 impact the
emission of carbon.

We also plot annual time series of all the available re-
sults from DGVMs, BKMs, and the NGHGI. We use the en-
semble mean of TRENDY v12 for the DGVMs, the model
BLUE for BKMs, NGHGI data from BUR3, and the FAO
GHG inventory. We plot the net carbon emissions to anal-
yse their trends, magnitudes, and patterns. Then, we re-plot
the ensemble DGVMs, BKMs (BLUE, H&C, and OSCAR)
and NGHGI (BUR2, BUR3, and FAO GHG) by including
the peat fire emissions and peat drainage emissions. The
NGHGI reports data on peat fire emissions and peat drainage
emissions, whereas for DGVMs and BKMs peat fire emis-
sions and peat drainage emissions are added from an exter-
nal dataset. Peat fire emissions are taken from the Global
Fire Emission Database (GFED4s; van der Werf et al., 2017),
while peat drainage emissions are a combination of three
spatially explicit datasets (FAO peat drainage emissions for
1990–2020, Conchedda and Tubiello, 2020; peat drainage
emissions for 1700–2010 from simulations with the DGVM
ORCHIDEE-PEAT, Qiu et al., 2021; and peat drainage emis-
sions for 1701–2021 from simulations with the DGVM LPX-
Bern v1.5, Lienert and Joos, 2018). We investigate their
ELUC trend with linear regressions, magnitude, and variabil-
ity with the mean and standard deviation, under conditions
with or without peat emissions.

3 Results

3.1 Annual land use changes in Indonesia

In this section, we analyse the cropland dynamics over In-
donesia for the last 2 decades. There are three datasets, i.e.
LUH2-GCB2022, MB1, and MB2. All of the datasets show
that cropland increased between 2000 and 2022, but the total
change varied between 10 and 20 Mha (Fig. 2a). The high-
est increase, in LUH2-GCB2022, was mainly in 2016–2022,
when it grew by 10 Mha. The difference between the datasets
can be seen clearly from the dynamics of the cropland change
(Fig. 2b). LUH2-GCB2022 shows higher cropland changes
than MB1 or MB2. In certain years, it shows a gain of nearly

3 Mha, such as in 2003 and 2016, while it shows a signifi-
cant loss of over 1 Mha in 2005, for which we could not find
any independent evidence supporting such a large decline in
cropland during that year. Furthermore, the order 2010, 2012,
and 2014, when the change in LUH2-GCB2022 cropland is
exactly zero, seems unlikely as Indonesia has experienced
continuous increased development in agriculture during re-
cent decades (Gandharum et al., 2022; Maheng et al., 2021).
Other than that, MB1 shows a decrease in cropland area in
2019, but this year has low confidence for MB1, as 2019 is
the final year of the dataset and the Mapbiomas methodology
needs validation from 1 year before and 1 year after (Map-
biomas Indonesia, 2022). This is confirmed in MB2, which
shows no decrease in cropland in 2019. Annual cropland
changes in MB2 increased from 2000 to 2011/2012, with a
peak of about 1.2 Mha cropland expansion and a slow de-
crease thereafter.

The differences in cropland change in Indonesia across
the datasets can also be observed from their spatial distribu-
tion. All three datasets, LUH2-GCB2022, MB1, and MB2,
agree that most cropland areas are concentrated on the three
main islands of Sumatra, Kalimantan, and Java, with smaller
areas found in Bali, Nusa Tenggara, Sulawesi, Papua, and
Maluku (Fig. 2c–k). When examining the spatial distribution
of the cropland total, MB1 and MB2 show higher cropland
fractions in Sumatra, Kalimantan, and Java compared to the
LUH2-GCB2022 dataset in 2000 and 2018 (Fig. 2c, d, f, g,
i, and j). The LUH2-GCB2022 dataset shows a significantly
larger increase in cropland fractions compared to Mapbiomas
in Sumatra and Java over the 2 decades (Fig. 2e, h, and k).

However, this does not mean that Mapbiomas is less un-
certain than LUH2-GCB2022. For instance, MB1 and MB2
have different spatial distributions to some extent, although
they both come from the same source with different ver-
sions. For example, in Sumatra in 2000, MB1 shows that a
high cropland fraction is distributed across the island (Fig
2f), while MB2 is more concentrated on the southern part of
the island (Fig. 2i). This is also seen clearly in Kalimantan
(Fig. 2h and k).

3.2 Annual model ELUC estimation

There are two sources of uncertainty in determining the
ELUC magnitude and trend in Indonesia: first the driving
LULCC datasets and second the fate of the different car-
bon reservoirs (vegetation, litter, and soils) after LULCC.
We first investigate the uncertainty from LULCC by perform-
ing simulations with the different cropland datasets (LUH2-
GCB2022, MB1, and MB2) in the same DGVM, JULES-ES
(Fig. 3a).

Unsurprisingly, JULES-ES driven by LUH2-GCB2022
shows the largest interannual variability in ELUC, con-
sistent with the changes in cropland areas in that forc-
ing (Fig. 2b), showing higher emissions of more than
0.15 PgC yr−1 in 2004 and 2017, and following the largest
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Figure 2. The comparison of data driver time series of (a) cropland areas (Mha) and (b) annual cropland area change (Mha) as well as the
spatial distributions of cropland fractions in (c) LUH2-GCB2022 in 2000, (d) LUH2-GCB2022 in 2018, (e) LUH2-GCB2022 between 2000
and 2018 (2018 fraction minus the 2000 fraction), (f) MB1 in 2000, (g) MB1 in 2018, (h) MB1 between 2000 and 2018 (2018 fraction minus
the 2000 fraction), (i) MB2 in 2000, (j) MB2 in 2018, and (k) MB2 between 2000 and 2018 (2018 fraction minus the 2000 fraction).

cropland changes that happened the year before in the LUH2-
GCB2022 dataset. The ELUC mean and internal variability
from LUH2-GCB2022 is 0.11± 0.03 PgC yr−1. These pat-
terns do not appear in JULES-ES when forced by either MB1
or MB2, with the simulated ELUC showing less year-to-year
variability and being 0.08± 0.01 and 0.06± 0.01 PgC yr−1,
respectively, for the last 2 decades. However, notable differ-
ences also exist between ELUC driven by MB1 and MB2,
following the cropland patterns shown in Fig. 2. The MB2
ELUC is lower than the MB1 ELUC, as cropland expansion
is generally lower in MB2 (Fig. 2b). The average estimation
of the Indonesian ELUC of JULES-ES from different driving
LULCC is 0.08 [0.06–0.11] PgC yr−1.

We now turn to the second source of uncertainty which
comes from the representation of ELUC dynamics in mod-
els. This is illustrated in Fig. 3b, which shows 18 DGVMs
(including JULES-ES) from GCB 2023. All of the DGVMs

have the same cropland input MB1, similar to GCB 2023.
The result shows that there is little agreement on the magni-
tude and year-to-year variability of ELUC across the mod-
els. The ELUC estimates from various carbon reservoir
models in TRENDY v12 are 0.12± 0.02 PgC yr−1 (α =
0.05). Moreover, there is a large range from −0.04 to
0.35 PgC yr−1, much larger than the range of ELUC esti-
mates from various drivers.

In addition, we can see the impact of different driver data
from their spatial distribution. The higher cropland change
in LUH2-GCB2022 (Fig. 2e) results in a higher estimation
of ELUC, mainly in Kalimantan, Sumatra, and Java (Fig. 3c
and f). The JULES-ES simulations based on input from MB1
and MB2 are more similar but still show some differences in
the fine spatial details (Fig. 3d, e, g, and h). For example, in
Sumatra, JULES-ES (MB2) shows higher carbon emissions
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Figure 3. The ELUC model comparison: (a) JULES-ES with various drivers+ ensemble in TRENDY v12 and (b) various DGVMs in
TRENDY v12 using MB1 as the driver. Spatial and decadal changes of (c) JULES-ES (LUH2-GCB2022) for 2000–2009, (d) JULES-ES
(MB1) for 2000–2009, (e) JULES-ES (MB2) for 2000–2009, (f) JULES-ES (LUH2-GCB2022) for 2010–2019, (g) JULES-ES (MB1) for
2010–2019, and (h) JULES-ES (MB2) for 2010–2019.

in the centre of the island, while the JULES-ES (MB1) sim-
ulation has emissions spread more evenly across the island.

3.3 Comparison of ELUC with other products

In addition to analysing the uncertainties caused by land
use change drivers and the land cover change dynamics in
DGVMs, we compare our findings with other estimates such
as those from BKMs and those from the NGHGI. From the
Global Carbon Budget 2023, there are three BKMs, which is
comparable to the DGVMs analysed above. For the NGHGI,
there are BUR2 and BUR3, released by the Ministry of En-
vironment and Forestry of the Republic of Indonesia and
covering the 2000–2016 and 2000–2019 periods, respec-
tively. Then the FAO GHG inventory (FAO, 2023; Francesco
Tubiello, 2020; Tubiello et al., 2021) is also compared.

The result shows that the ensemble of the TRENDY v12
ELUC mean and internal variability is similar to the book-
keeping model BLUE’s ELUC estimation, with 0.12± 0.02

and 0.12± 0.02 PgC yr−1, respectively, both showing a
steady trend (Fig. 4a). The other BKMs H&C and OSCAR
result in 0.14± 0.05 and 0.15± 0.03 PgC yr−1. The BKM
mean is 0.14 [0.12 to 0.15] PgC yr−1. The FAO GHG esti-
mates lower carbon emissions of 0.10± 0.06 PgC yr−1. The
NGHGI’s BUR3 estimates the lowest carbon emission mean
and internal variability of 0.06± 0.06 PgC yr−1, with an in-
creasing trend. Furthermore, BUR3 and the FAO GHG have
different annual patterns.

These emissions are much higher when the peat
emissions are included. The carbon emissions are dou-
bled: TRENDY v12= 0.23± 0.05, BLUE= 0.22± 0.06,
and BUR3= 0.13± 0.10 PgC yr−1. This is consistent with
other BKMs such as H&C and OSCAR with estimations
of 0.25± 0.07 and 0.25± 0.06 PgC yr−1. The FAO GHG
with peat emissions estimates 0.20± 0.09 PgC yr−1. Also,
another NGHGI, BUR2, estimates 0.18± 0.07 PgC yr−1 of
the carbon emission total with peat. A distinct difference
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is also shown by all DGVMs and BKMs having a steady
trend, while the NGHGI tends to have an increasing trend
and higher variability. We also found that all of the models
and products show the same peaks in the years 2002, 2006,
2009, 2015, and 2019 (Fig. 4b). This does not appear in the
emissions without peat (Fig. 4a), except for the FAO GHG
inventory. This is the exact same year of moderate to high El
Niño.

4 Discussion

This research analyses land cover products that are used
to estimate Indonesian ELUC fluxes. The LULCC driving
dataset is one of the main sources of uncertainty in ELUC
trends in Indonesia (Bastos et al., 2020; Gasser et al., 2020).
Thus, we compare LUH2-GCB22, which is derived from a
national-statistics-based dataset of FAO and which is used
widely for ELUC, including for the Global Carbon Budget
until its 2022 version, with the new satellite-based dataset
Mapbiomas Indonesia 1.0, which is utilized as a driver
dataset in GCB 2023. In addition, we investigate the latest
version of Mapbiomas Indonesia 2.0, which has not yet been
used in any GCB assessments. Results show that all of the
datasets have an increase in cropland area over the period
2000–2022, but the magnitude and year-to-year change show
limited agreement across the datasets. This greatly impacts
the simulated annual emissions of ELUC using our carbon
cycle model, JULES-ES.

Many models and simulations use changes in agricultural
areas based on statistical data reported by countries to FAO
as a forcing for tree cover loss. They show that FAO agri-
cultural statistics have high uncertainties (Ajaz, 2016; De-
siere et al., 2016). However, the FAO dataset has the capabil-
ity to be used for net deforestation (Tubiello et al., 2021).
On the other hand, the use of satellite-based estimates of
land cover changes for land use changes has some limita-
tions and uncertainties (Tubiello et al., 2023). This means
that both national-statistics-based and satellite-based datasets
have their own advantages and disadvantages, which should
be treated with caution in order to improve our understanding
of carbon emissions from LULCC.

Cropland transition is essential. For example, in south-
ern Sumatra, where the national-statistics-based (LUH2-
GCB2022) and satellite-based (MB1 and MB2) datasets
show distinct differences, LUH2-GCB2022 shows a much
smaller cropland area compared to Mapbiomas in 2000
(Fig. 2c, g, and i). In this region, forest cover shrank rapidly
between 1996 and 2000 (Purnomo et al., 2023). However,
this was not directly converted into cropland: it became
shrubland in 2000 and was then converted into pulpwood
plantation and oil palm from 2000 onwards (Gaveau et al.,
2007; Purnomo et al., 2023). This process might have caused
different classifications between satellite and national statis-
tics. Furthermore, it can be seen in Java, where a national-

statistics-based dataset shows a higher increase in cropland
change. Meanwhile, Java has been experiencing massive in-
frastructure development that limits the potential expansion
of agriculture in this period (Gandharum et al., 2022; Ma-
heng et al., 2021).

This Mapbiomas difference with LUH2-GCB2022 aligns
with other research that shows Kalimantan and Sumatra hav-
ing the highest rate of deforestation before 2000 (since 1950)
(Gaveau et al., 2022; Santoro et al., 2023). Deforestation
in Java and Bali already occurred before 1950 (Gaveau et
al., 2022; Santoro et al., 2023). This means that all three
of the main islands already had large cropland areas before
2000. There are also large differences in the border regions
of Kalimantan and Sumatra. These areas are known for their
dense forests and have experienced major forest fires during
El Niño events in the last 2 decades (2000–2020) (Brasika,
2023; Fanin and van der Werf, 2017).

The satellite-based dataset has more consistency with
cropland expansion in Indonesia, which is related to other
LULCC like deforestation and urbanization. This aligns with
other research (Gaveau et al., 2022) that shows that forest
conversion to agriculture (specifically oil palm) increased
during the 2000s, peaked around 2009–2012, and steadily
declined thereafter. Also, MB2 does not show peculiar years
when cropland area changes would be exactly zero. Overall,
we expect MB2 to be the most accurate representation of the
croplands we assess in this study.

In our current model, we use grazing lands from the
LUH2-GCB2022 dataset as input for all simulations in
JULES-ES. This might cause some double accounting of
grazing land in our satellite-based simulations, where graz-
ing land might be counted as both cropland and grazing land.
However, this effect should be very small as grazing land
covers a small area in Indonesia (around 3 Mha) and has been
considerably steady for the last 2 decades (FAO, 2022; Map-
biomas Indonesia, 2022). Also, in the JULES-ES simulation,
there is no large difference in the carbon emissions caused by
forest conversion to cropland or grazing land (Burton et al.,
2019).

Furthermore, another potential misrepresentation in our
model is ELUC from palm oil. As palm oil makes significant
contributions to the forest–agricultural dynamic in Indone-
sia (Cisneros et al., 2021; FAO, 2023; Gaveau et al., 2021;
Tsujino et al., 2016), it should be represented in the model
as a specific plant functional type (PFT). Unfortunately, we
currently follow the Mapbiomas Indonesia definition of agri-
culture, which categorizes palm oil (together with rice paddy,
pulpwood plantation, and other agriculture) as cropland, be-
cause there is no PFT for palm oil in our model. The lack
of a palm oil vegetation type is likely to cause an inaccuracy
of ELUC. As Mapbiomas Indonesia has palm oil in Indone-
sian land cover (Mapbiomas Indonesia, 2022), future model
simulations should consider this separation.

Another interesting aspect is how these products might re-
veal the connection between carbon emissions and climate
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Figure 4. ELUC comparison of different models over the period 2000–2022. (a) Annual ELUC from the DGVMs, BKMs, and NGHGI. (b)
Annual ELUC from the BLUE and BUR3 models with and without peat emissions+ ensemble TRENDY v12.

dynamics. All DGVMs, BKMs, and the NGHGI with peat
emissions show a strong relation to climate events, which
shows that the peak in carbon emissions is in exactly the
same year of moderate to strong El Niño. This appears in
2002, 2006, 2009, 2015, and 2019. It is mainly contributed
by the carbon emissions from peat fire and peat drainage.
During the El Niño year, Indonesia experiences drier and
hotter climate conditions, especially in Sumatra and Kali-
mantan (Brasika, 2021; Nurdiati et al., 2022). This condition
is favourable for fire regimes in the area that burn not only
the above-ground biomass, but also the peat soil below the
ground (Brasika et al., 2021; Fanin and van der Werf, 2017).
As peat contains a lot of carbon and peat fire is hardly de-
tected and managed (Indradjad et al., 2024), this results in
the massive peat fire release of carbon during the hot and
dry El Niño year (Stockwell et al., 2016). However, ELUC
without peat emissions has almost zero connection to these
El Niño dynamics. This is confirmed by all of the products
of the DGVMs, BKMs, and NGHGI. The carbon emissions
from peat play a key role in Indonesia, with fluxes 1–3 times
higher than ELUC and stronger in El Niño years. This should
not be neglected in future simulations.

5 Conclusions

Both the national-statistics-based and satellite-based datasets
have their own strengths and weaknesses. The national-
statistics-based dataset has lower confidence as it has no spa-
tial distribution, while the satellite-based dataset has limited
temporal availability. Addressing these differences might im-
prove our understanding of uncertainties in carbon emis-
sion estimates caused by the drivers. However, improving the
driver dataset is not the only issue: the model itself has po-

tential uncertainties as each of them is created with different
approaches. This can be seen in how all of the DGVMs in
TRENDY v12 have the same input drivers but result in dif-
ferent patterns and magnitudes of carbon emission simula-
tions. Our best estimation of Indonesian ELUC for the last 2
decades is 0.12± 0.02 PgC yr−1. As this is the mean of all of
the DGVMs, it is also consistent with BKMs. This emission
is doubled to 0.23± 0.05 PgC yr−1 if we include the peat fire
and peat drainage emissions.

We find some important issues that should be addressed
carefully in order to reduce these uncertainties in the fu-
ture. First, the combination of the national-statistics-based
and satellite-based datasets improves our understanding of
the uncertainties of carbon emissions. Second, the inclusion
of peat emissions and the climate effect (El Niño) in the mod-
els makes major contributions to the carbon emissions in In-
donesia. Third, palm oil representations, which are dominant
in Indonesia’s agriculture with a distinct carbon cycle, have
been simplified here.

Apart from the many uncertainties created by the drivers
and models and some representations such as peat emis-
sions, palm oil, and climate dynamics, we found several ro-
bust agreements between these models and products. First,
all of the products agree that Indonesian carbon emissions
from LULCC have had no decreasing trend for the last 2
decades. Second, the peat fire and peat drainage have dou-
bled the carbon emissions. Third, it is highly confident that
carbon emissions of peat have a strong relation to El Niño but
not carbon emissions from land use change. Fourth, Sumatra,
Kalimantan, and Java are the main islands which contribute
to Indonesian carbon emissions. Last, it seems that preven-
tion of deforestation and fire had a low effect in Indonesia in
reducing carbon emissions when addressing climate change.
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