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Abstract. Evapotranspiration (ET) is an important vari-
able for analyzing ecosystems, biophysical processes, and
drought-related changes in the soil–plant–atmosphere sys-
tem. In this study, we evaluated freely available ET prod-
ucts from satellite remote sensing (i.e., the Moderate resolu-
tion Imaging Spectroradiometer, MODIS; the ESA’s Spin-
ning Enhanced Visible and Infrared Imager, SEVIRI; and
the Global Land Evaporation Amsterdam model, GLEAM)
as well as modeling and reanalysis (i.e., the land compo-
nent of the Earth system modeling product European Re-
Analysis, ERA5-land, and Global Land Data Assimilation
System version 2, GLDAS-2) together with in situ observa-
tions at eight Integrated Carbon Observation System (ICOS)
stations across central Europe between 2017 and 2020. The
land cover at the selected ICOS stations ranged from de-
ciduous broad-leaf forests, evergreen needle-leaf forests, and
mixed forests to agriculture. Trends in ET were analyzed to-
gether with soil moisture (SM) from the Soil Moisture Ac-
tive Passive (SMAP) mission and the water vapor pressure
deficit (VPD) from FLUXNET field measurements over 4
years, including a severe summer drought in 2018 and con-

trasting wet conditions in 2017. The analyses revealed the in-
creased atmospheric aridity and decreased water supply for
plant transpiration under drought conditions, showing that
ET was generally lower and VPD higher in 2018 compared to
in 2017. Across the study period, results indicate that during
moisture-limited drought years, ET strongly decreases due
to decreasing SM and increasing VPD. However, during nor-
mal or rather-wet years when SM is not limited, ET is mainly
controlled by VPD and, hence, the atmospheric demand.

The comparison of the different ET products based on
time series, statistics, and extended triple collocation (ETC)
shows generally good agreement, with ETC correlations be-
tween 0.39 and 0.99, as well as root-mean-square errors
lower than 1.07 mm d−1. The greatest deviations were found
at the agricultural managed sites Selhausen (Germany) and
Bilos (France), with the former also showing the highest po-
tential dependencies (error cross-correlation (ECC)) between
the ET products (up to 7.6 and outside the acceptable range of
−0.5<ECC< 0.5). Thus, our results indicate that ET prod-
ucts differ most at stations with spatiotemporally varying
land cover conditions (a variety of crops over growing pe-
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riods and between seasons). This is because complex het-
erogeneity in land cover complicates the estimation of ET,
while ET products agree well at evergreen needle-leaf sta-
tions with fewer temporal changes throughout the year and
between years. The ET products from SEVIRI, ERA5-land,
and GLEAM performed best when compared to ICOS obser-
vations, with either the lowest errors or the highest correla-
tions.

1 Introduction

Land–atmosphere dynamics and interactions are of key im-
portance for understanding exchange processes in the global
water, energy, and carbon cycles (Zhou et al., 2016). For
a holistic and well-founded ecosystem survey, the uptake,
consumption, and release of matter and energy need to be
monitored. Especially in times of climate change, the avail-
ability of terrestrial water and agricultural productivity as-
suring food security, as well as forest health guaranteeing,
for instance, carbon uptake and biodiversity preservation, are
mainly monitored using soil moisture (SM) and water vapor
pressure deficit (VPD; as a measure of atmospheric aridity)
(Novick et al., 2016; Zhou et al., 2019; Liu et al., 2020).
Many studies focus on these two variables when analyz-
ing drought-related terrestrial ecosystem productivity and its
spatiotemporal changes (Fu et al., 2022; Zhang et al., 2021).
Evapotranspiration (ET) is an important proxy for analyz-
ing water stress and its effects on ecosystems since precipi-
tation (P) and evaporation are the two key components of the
global water cycle (Miralles et al., 2011). As the sum of evap-
oration from land, vegetation, and water surfaces as well as
transpiration from vegetation, ET directly links the terrestrial
energy, water, and carbon cycles (Zhang et al., 2016; Zhou
et al., 2016) and integrates meteorological conditions along
SM (Bayat et al., 2022). Hence, ET is an important variable
for quantifying biophysical processes, ecosystem function-
ing, and land surface energy and water budgets, as well as
improving weather and climate model predictions (Bayat et
al., 2024; Zhang et al., 2016; Zhou et al., 2016). For exam-
ple, Zhou et al. (2019) reported negative SM–VPD coupling,
meaning low SM and high VPD due to land–atmosphere
feedbacks, since high VPD stimulates ET, which reduces
SM. Although whether ET alone determines SM or whether
other factors such as precipitation should also be consid-
ered is debatable, as reduced P for constant ET can lead to
lower SM (Rahmati et al., 2023), ET should, in any case, be
one of the essential variables to inform us about ecosystem–
atmosphere dynamics and interactions, along with SM and
VPD (Bayat et al., 2021).

ET is controlled by biological (e.g., plant growth and plant
stomatal regulation) and physical (e.g., temperature) pro-
cesses. For example, vegetation controls interannual changes
and affects spatiotemporal patterns and trends in ET (Zhang

et al., 2016). ET can be theoretically linked to the indepen-
dent physical control factors of demand (humidity, tempera-
ture) and supply (precipitation). Depending on environmen-
tal and meteorological conditions, ET is primarily influenced
by one of these three factors. For instance, across central Eu-
rope, ET is mainly driven by the available energy due to re-
duced solar radiation under cloudy skies (Zhang et al., 2016).
However, Seneviratne et al. (2010) stated that decreasing SM
leads to decreasing ET due to less accessible SM for plant
water uptake and to increasing soil suction.

During summer 2018, Europe experienced a drought event
comparable to previous extreme droughts, such as in 2003
and 2010, with a temperature anomaly of +2.8 K (Rakovec
et al., 2022) and abnormally reduced SM and increased VPD
(Fu et al., 2022). This extreme drought was characterized
by a unique geographical distribution focused on regions at
higher latitudes (central and northern Europe), a rapid change
from a wet spring to a dry summer, and an intense heat wave
in the spring of 2018 (Bastos et al., 2020). As a result, it
caused severe tree stress in central Europe, with low leaf
water potential, leaf discoloration, and premature shedding,
leading to significant tree mortality and heavy drought legacy
effects in 2019 and leaving trees vulnerable to further dam-
age from pests and pathogens (Schuldt et al., 2020).

The significance of ET can also be seen in relation to
the precise parametrization of SM and in the concept of
soil moisture memory, when analyzing soil moisture and its
anomalies over time in land surface models (LSMs) (Rah-
mati et al., 2024). Due to its importance and its influence on
the entire soil–plant–atmosphere system (SPAS), tracking ET
in time and space, meaning from seasonal to multiyear scales
and for wide areas, is necessary and calls for a satellite re-
mote sensing approach (complementary to current modeling
and reanalysis approaches). Although ET is not directly mea-
surable from remote sensing acquisitions, optical, thermal,
infrared, or microwave observations are used to derive ET
based on the surface energy balance and physical and empiri-
cal models (Zhang et al., 2016; Rahmati et al., 2020; Singh et
al., 2020; Bayat et al., 2021; Bhattacharya et al., 2022; Bayat
et al., 2024). Still, research comparing the performance of re-
mote sensing with model and reanalysis data under drought
conditions is lacking, and an analysis of the main ET drivers
(SM and VPD) that impact these ET products is also needed.
Bridging this gap is important to assess the products and the
conditions that are more suitable for tracking ET, especially
under the increasing frequency and severity of droughts due
to climate change.

Several regional studies exist to compare various ET prod-
ucts, e.g., over China (Meng et al., 2024; Xu et al., 2024),
across the USA (Carter et al., 2018; Xu et al., 2019), over
Africa (Trambauer et al., 2014), and across Europe (Ahmed
et al., 2020; Stisen et al., 2021). However, due to the com-
plexity of ecosystems, findings from specific regions (e.g.,
China, USA, Africa) cannot be generalized to other regions
(e.g., Europe). Further, individual European studies focused
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on only one of the following: spatial product comparisons,
evaluating the performance of hydrological models (e.g.,
Stisen et al., 2021) using time periods (e.g., 2003–2013) at
the basin scale (Liu et al., 2023), analyzing drought impacts
on ET dynamics using a single ET product (e.g., Sepulcre-
Canto et al., 2014; Ahmed et al., 2020), and evaluating new
ET products (e.g., Hu et al., 2023). For example, the focus
of the study of Stisen et al. (2021) was the evaluation of the
spatial pattern performance of different hydrological mod-
els for ET estimation. For this, four remote-sensing-based
ET products were compared for the years 2002–2014, and
they found high agreement in spatial patterns across conti-
nental Europe (Stisen et al., 2021). Further, Ahmed et al.
(2020) investigated the 2018 drought impact on the MOD-
erate Resolution Imaging Spectroradiometer (MODIS) ET
across European ecosystems and found that ET decreased
up to 50 % compared to a 10-year reference period, with
agricultural areas and mixed natural vegetation being the
most affected (Ahmed et al., 2020). However, there is a lack
of studies comparing various ET products with each other
and with in situ measurements across central Europe, espe-
cially during severe-drought years (e.g., 2018), as well as
evaluating the potential of remote sensing for tracking sea-
sonal ET dynamics. The evaluation of the varying retrieval
techniques employed (e.g., eddy covariance, land surface
schemes, Penman–Monteith equation) for commonly used
ET products under drought conditions is important for as-
sessing whether they capture ET dynamics correctly.

In this study, we first compare the most common ET prod-
ucts from field measurements, modeling, and remote sensing
across central Europe for the period of 2017–2020. The six
products selected, the Integrated Carbon Observation System
(ICOS), the Moderate resolution Imaging Spectroradiometer
(MODIS), the ESA’s Spinning Enhanced Visible and Infrared
Imager (SEVIRI), the land component of the Earth sys-
tem product European Re-Analysis (ERA5-land), the Global
Land Data Assimilation System version 2 (GLDAS-2), and
the Global Land Evaporation Amsterdam Model (GLEAM),
are well-known, commonly employed, and freely available.
The focus hereby is on the evaluation and quality assessment
of the individual products regarding the estimation of abso-
lute ET values and their time dynamics. Second, we compare
ET products in the context of SM and VPD, disentangling
the relative roles of all three variables within the SPAS un-
der severe-drought conditions in 2018 in comparison to the
rather-wet year 2017. This is to analyze how the ET products
identify drought conditions and to what extent they can be
used as indicators of drought events.

2 Materials and methods

2.1 Study area

The focus is on eight Integrated Carbon Observation System
(ICOS) (Rebmann et al., 2018) stations within central Eu-
rope between 2017 and 2020, where field-scale in situ eddy
covariance (EC) ET measurements are available (see Fig. 1).

The study comprises two deciduous broad-leaf forests
(DBF) – the German Hohes Holz (DE-HoH) and Hainich
(DE-Hai); two evergreen needle-leaf forests (ENF) – the Ger-
man Wuestebach (DE-Ruw) and Finnish Lettosuo (FI-Let);
and two mixed forest (MF) stations – the Czech Landzhot
(CZ-Lnz) and the Swiss Laegern (CH-Lae), as well as two
agricultural stations – the German Selhausen (DE-Rus) and
the French Bilos (FR-Bil). Details regarding coordinates, al-
titude, and climate zone for every station are given in Ta-
ble S1. At every station, a footprint with a 3 km radius is an-
alyzed to account for differences in spatial resolutions among
the datasets employed (see Sect. 2.2). As displayed in Fig. 2
and Table S2 (Supplement), the land cover types and their
homogeneity within the 3 km× 3 km footprint around every
station were analyzed based on the Corine land cover (CLC)
2018 classification from the Copernicus Land Monitoring
Service at a 100 m spatial resolution (European Environment
Agency, 2019).

According to this classification, two stations can be con-
sidered homogeneous, with one dominant land cover class,
i.e., 86.7 % coniferous forest at DE-Ruw and 82.4 % broad-
leaf forest at DE-Hai. The station DE-Rus is mainly (63.1 %)
covered by non-irrigated arable land. Further, two stations
show two-part split land cover, with two almost equally
dominant classes. At DE-HoH, 45.6 % is covered by non-
irrigated arable land, and 45.5 % is covered by broad-leaf for-
est. At FR-Bil, although it is officially labeled as an ENF sta-
tion, 44.4 % is covered by transitional woodland shrub, while
41.4 % is covered by coniferous forest, a managed pine forest
plantation (Loustau et al., 2022). Hence, due to this hetero-
geneity and the fact that 14.2 % of the non-irrigated arable
land (see Table S2) is mostly located near the station (see
Fig. 2), we ranked it as an agricultural station in order to
account for the frequently changing land cover conditions
and spatial heterogeneity. All other stations are rather het-
erogeneous, with a mix of more than two different land cover
classes (see Table S2 and Fig. 2). However, it is worth noting
that the CLC 2018 classification is based on data from 2017
to 2018. Hence, changes in the land cover at each station
between 2017 and 2020, e.g., differences between summer
and winter months, deforestation, weather extremes (storms,
floods), or varying agricultural crop cultivation, are not in-
cluded here.

Figure 3 illustrates the meteorological conditions (precip-
itation P and air temperature Tair) at every station during the
investigation period. The mean annual P and Tair values are
summarized in Table S1. Note that the in situ P measure-
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Figure 1. Locations of the eight Integrated Carbon Observation System (ICOS) stations in central Europe and their classifications according
to the dominant land cover classes. DBF= deciduous broad-leaf forest, ENF= evergreen needle-leaf forest, MF=mixed forest.

ments contain missing values at the stations DE-HoH, CZ-
Lnz, and CH-Lae in 2020. The overall-lowest Tair is found
at the northernmost ICOS station, FI-Let, varying between
−12.6 °C (absolute minimum) and 22.75 °C (absolute maxi-
mum) in the years 2017–2020, with an interannual average of
5.67 °C. In contrast, the highest average Tair (between 2017
and 2020) of 14.1 °C is found at the southernmost ICOS
station, FR-Bil, which also has the highest average P value
of 3.04 mm d−1. The lowest P is found at DE-HoH, with
an average of 1.26 mm d−1, which is similar to that of the
other stations in the midlatitudes (see Table S1). The overall-
highest Tair and lowest P at every station are always found
in 2018, with an average of 1.7 °C higher Tair and 0.76 mm
higher annual P compared to the second-hottest and second-
driest year in each case. Exceptions can be found at the sta-
tion FR-Bil, where the highest Tair is recorded in 2019 and
the lowest P in 2017, and at DE-Ruw and CH-Lae, where the
lowest average annual P is recorded in 2020.

Based on the standardized precipitation–
evapotranspiration index (SPEI) (Beguería et al., 2023)
(see Fig. S1), which describes drought based on the amount

and duration of the water deficit (Yu et al., 2023), distinctly
dry and wet years are identified for each ICOS station. While
all stations show abnormally dry periods, especially in 2018,
only the stations FI-Let and FR-Bil show abnormally wet
periods at the end of 2017 and 2019. These two are the
northernmost and southernmost stations (see Fig. 1). The
choice of SPEI to identify drought conditions instead of
the standardized precipitation index (SPI) or other indices
(i.e., Palmer drought severity index) is due to the fact that
the SPEI considers implicitly temporal changes in ET and,
hence, temperature, which is relevant for identifying abnor-
mal (drought) conditions and for this study with a focus on
ET variations. Previous studies showed that not only the
lack of precipitation but also the level of temperature and
consumption of rainfall by evaporation and/or transpiration
define drought events (Vicente-Serrano et al., 2010).

2.2 Database

In the first part of this study, different ET products (see Ta-
ble 1) are compared in order to evaluate the potential of re-
mote sensing for tracking seasonal ET dynamics. The in situ
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Figure 2. Overview of land cover classes according to Corine land cover (CLC) 2018 (European Environment Agency, 2019) within the
3 km× 3 km footprint around every ICOS station investigated. Percentages inside the circles indicate the dominant land cover classes. The
percentages of all land cover classes at every station can be found in the Supplement (see Table S2).

ET data, recorded at the ICOS stations at the field scale, are
mass-balance-based measurements of sensible heat (H ) and
latent heat (LE) fluxes through the covariance of heat and
moisture fluxes, respectively. The LE [W m−2] can then be
converted to ET by dividing it by the latent heat of vaporiza-
tion (2.434 [MJ kg−1] at 20 °C air temperature) (Allen et al.,
1998). The ICOS network has made significant efforts to en-
sure consistently high-quality LE measurements across sta-
tions (Rebmann et al., 2018). Aside from in situ ET measure-
ments, we employ some of the most commonly employed
optical/thermal remote sensing products from NASA’s (Na-
tional Aeronautics and Space Administration) Moderate-
resolution Imaging Spectroradiometer (MODIS) sensor on
the Terra satellite (Running et al., 2017), ESA’s Spinning
Enhanced Visible and Infrared Imager (SEVIRI) sensor on
board the Meteosat Second Generation (MSG) satellites, and
the Global Land Evaporation Amsterdam Model (GLEAM)
(Martens et al., 2017). Further, well-known reanalysis and
modeling products from the land component of the Earth sys-
tem modeling product European Re-Analysis (ERA5-land)
from the European Centre for Medium-range Weather Fore-
casts (ECMWF) (Muñoz Sabater, 2019) and from NASA’s
Global Land Data Assimilation System version 2 (GLDAS-
2) (Beaudoing et al., 2020) are also used (see Table 1). It
should be noted that the GLEAM product is based on various
remote sensing observations and reanalysis datasets from,

e.g., NASA’s SMOS (soil moisture and ocean salinity) mis-
sion, MODIS, GLDAS-Noah, and ERA-Interim (Martens et
al., 2017). The MODIS product with a nominal spatial reso-
lution of 500 m is aggregated to the 3 km footprint, while the
SEVIRI, ERA5-land, GLDAS-2, and GLEAM products are
maintained at their original spatial resolutions of 3, 9, 25 and
25 km, respectively. Although several downscaling methods
and data fusion techniques exist for improving the spatial res-
olution of remote sensing products (Ha et al., 2013; Mahour
et al., 2017; Peng et al., 2017), we decided to keep ET prod-
ucts with a spatial resolution lower than 3 km at their original
resolutions (i.e., GLEAM at 25 km). First, the intention of
this study is a comparison of well-known and established ET
products and not an optimization of rescaled comparisons.
Second, we did not want to include additional uncertain-
ties potentially originating from the downscaling method em-
ployed or from auxiliary datasets. In particular, downscaling
approaches intend to statistically correlate coarse-scale data
and fine-scale auxiliaries, yielding interpolation uncertainties
and errors that cannot be quantified (Peng et al., 2017). All
datasets are, however, temporally aggregated to daily time
series in order to provide a temporal basis for comparison
and analysis of the signal dynamics.

In Table 1, the retrieval methods for each ET product are
given. MODIS and GLDAS-2 are based on physically based
methods employing the Penman–Monteith equation (Pen-
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Figure 3. Daily in situ measured precipitation (P) [mm d−1] and air temperature (Tair) [°C] at the ICOS stations investigated. Tair was
cleaned for daily and weekly dynamics using a Savitzky–Golay (Savitzky and Golay, 1964) filter with a window size of 31 d.

man, 1948; Monteith, 1965), while GLEAM is based on the
Priestley–Taylor equation (Priestley and Taylor, 1972), and
ERA5-land uses the ECMWF integrated forecasting system
(IFS) and is derived from the ERA5 product where the land
surface model is based on Hydrology Tiled ECMWF Surface
Scheme for Exchange Processes over Land (H-TESSEL)
(Hersbach et al., 2020). Further, SEVIRI employs a soil–
vegetation–atmosphere transfer (SVAT) approach also based
on the physics of the TESSEL and H-TESSEL land surface
schemes (Balsamo et al., 2009; Bayat et al., 2024; Ghilain et
al., 2011). The officially reported ET biases after evaluation
of each product (based on comparison with multiple EC flux
tower measurements) range from −0.11 mm d−1 (MODIS)
(Running et al., 2019) and −0.12 mm d−1 (SEVIRI) (The
EUMETSAT Satellite Application Facility on Land Surface
Analysis, 2024) to −5 % (GLEAM) (Miralles et al., 2011).
This means that all three products show, on average, slightly
lower ET values compared to EC flux tower measurements.
All other products indicate no bias but either employ bias-
corrected atmospheric reanalysis data for the forcing to avoid
discontinuity in ET retrievals (GLDAS-2) (Rui and Beaudo-

ing, 2022) or found no significant difference in comparison
to other products (ERA-land) (Muñoz-Sabater et al., 2021).
The Priestley–Taylor equation does not consider the impact
of VPD or canopy conductance (Wang and Dickinson, 2012),
while within the Penman–Monteith equation VPD and rel-
ative humidity (RH) are used according to the function of
Fisher et al. (2008) to account for soil water stress when
calculating the actual soil evaporation. Further, the canopy
conductance is retrieved from stomatal and cuticular conduc-
tance depending on the leaf area index (LAI) and the wet-
surface fraction, with the stomatal conductance constrained
by VPD and minimum air temperature and the cuticular con-
ductance fixed to a constant of 0.01 [mm s−1] (Running et
al., 2019; Wang and Dickinson, 2012). As stated by He et
al. (2022), the Penman–Monteith equation includes the most
important modifications by accounting for the physiological
controls on ET, using stomatal resistance to explain water
movement from leaves to the atmosphere and aerodynamic
resistance to describe heat and water vapor transfer from the
dry canopy surface to the air above (Running et al., 2019).
Hence, the Penman–Monteith equation is, in theory, more
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Table 1. Overview of ET and auxiliary products investigated, presenting the data source, the original spatial and temporal resolution, and the
retrieval basis and method of each product.

Product (name) Source Original spa-
tial/temporal
resolution

Retrieval basis Retrieval method

ET products

ICOS (level 2) ICOS
(ICOS RI et al., 2024)

Point
scale/half-
hourly

In situ measurements Eddy covariance technique

MODIS (MOD16A2) NASA
(Running et al., 2017)

500 m/8-daily Remote sensing Penman–Monteith

ERA5-land ECMWF
(Muñoz Sabater, 2019)

9 km/hourly Reanalysis ECMWF’s IFS,
H-TESSEL land
surface scheme

SEVIRI (METV3) ESA (LSA Satellite
Application Facility and
EUMETSAT satellite
application facility (SAF)
on land surface analysis,
2019)

3 km/half-
hourly

Remote sensing SVAT, (H-)TESSEL land
surface scheme

GLDAS-2
(GLDAS_NOAH025
_3H_2.1)

NASA
(Beaudoing et al., 2020)

25 km/3-hourly Land surface model
(NOAH) L4

Penman–Monteith

GLEAM (v3) University of Amsterdam
(Miralles et al., 2011;
Martens et al., 2017)

25 km/daily Remote sensing Priestley–Taylor

Auxiliary products

FLUXNET2015 (Pastorello et al., 2020;
Warm Winter 2020 Team et
al., 2022)

Point
scale/half-
hourly

In situ measure-
ments/reanalysis

Downscaled and
consolidated from
ERA5-interim reanalysis
data and gap filled

SMAP MT-DCA v5 (Feldman et al., 2021) 9 km/daily Remote sensing Tau–omega,
multi-temporal dual
channel algorithm
(MT-DCA)

SPEI v2.8 (Beguería et al., 2023) 0.5°/3-monthly Remote
sensing/modeling

FAO-56 Penman–Monteith
method

accurate than the Priestley–Taylor equation but, in turn, re-
quires more “parameters that are difficult to characterize”
(Fisher et al., 2008). Within the TESSEL and H-TESSEL
schemes, canopy conductance is formulated according to the
modified Jarvis function and is based on the stomatal conduc-
tance (retrieved from net assimilation and Kirchhoff’s resis-
tance/conductance analogy) and cuticular conductance (fixed
between 0 and 0.25 mm s−1 according to vegetation type),
while SM in four layers and therefore also in the deeper soil
layers is accounted for when defining the soil water stress
on soil evaporation (ECMWF, 2018). Lastly, for this study,
it is interesting to note that GLEAM and ERA5-land employ

the ECMWF atmospheric reanalysis data (Li et al., 2022),
while GLDAS-2 is based on MODIS land surface parame-
ters (Rui and Beaudoing, 2022). These product interdepen-
dencies should be kept in mind during interpretation of re-
sults.

In the second part of this study, the ET products are com-
pared in relation to two dominant parameters of the SPAS,
namely SM and VPD. While VPD comes from in situ mea-
surements of the FLUXNET network (point precise), SM
comes from NASA’s Soil Moisture Active Passive (SMAP)
mission and from the multi-temporal dual channel algorithm
(MT-DCA) L-band (1.4 GHz) dataset (9 km spatial resolu-
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tion) (Konings et al., 2016; Feldman et al., 2021) (see Ta-
ble 1). We employed the SMAP SM in this study instead of
using available in situ measurements from the FLUXNET
network since the latter were of poor quality at several sta-
tions and for several years, and we wanted to build our
analyses on one continuous dataset. The SMAP MT-DCA
dataset is quality controlled and filtered, e.g., for snow,
frozen ground, and water bodies (Feldman et al., 2021).

2.3 Methods

2.3.1 Extended triple collocation

For the comparison of different ET products in Sect. 3.1.,
the extended triple collocation (ETC) method (McColl et al.,
2014) is employed. The ETC technique provides not only the
root-mean-square error σε [mm d−1] of the classical triple
collocation (TC) method (Stoffelen, 1998) among three in-
dependent measurement systems but also the correlation ρt,X
[–] among them, giving the sensitivity of the measuring sys-
tems. The most important advantage of the TC and ETC tech-
niques is that one can calculate σε and ρt,X without consider-
ing any of the systems the necessary reference. The product
with the lowest σε and highest ρt,X is the one with the low-
est uncertainty. As input to the ETC, the daily ET time se-
ries are filtered for the growing season (April to October) of
each year. With the aim of evaluating the performance of the
remote sensing products (SEVIRI, MODIS, GLEAM), we
compare them individually with ERA5-land and with in situ
measurements (ICOS) on the one hand and with GLDAS-2
and ICOS on the other hand. Sanity checks for Gaussian dis-
tributions and large sample sizes of∼ 853 values per product
ensure precise and representative ETC analyses. Addition-
ally, since one of the requirements for thorough ETC analy-
ses is the independence among the datasets evaluated (Mc-
Coll et al., 2014), the error cross-correlation (ECC) values
(Gruber et al., 2016) are calculated in order to evaluate prod-
uct dependencies. In the case that the ECC lies between−0.5
and 0.5, the datasets can be regarded as independent from
each other. The ECC for each product comparison (with the
ET product∈ [i,j,k, l]) is calculated from the error cross-
covariance σεiεj between two products, as well as the random
error variance σ 2

εi
of each dataset (Gruber et al., 2016):

ECCij =
σεiεj

σ 2
εi
σ 2
εj

, (1)

with

σεiεj = σij −
σikσj l

σkl
(2)

and

σ 2
εi
= σ 2

i −
σijσik

σjk
. (3)

2.3.2 Anomalies

For the comparison of different SPAS parameters in
Sect. 3.2., the seasonal imprint is removed from the signals
in order to focus on exceptional events in the time series. For
that, we calculated the 30 d anomaly time series for each pa-
rameter. To do so, the daily average over all 4 years was cal-
culated first. The resulting daily average was then smoothed
using a Savitzky–Golay (Savitzky and Golay, 1964) filter
with a window size of 61 d. Lastly, for every day between
2017 and 2020, the difference between the day of interest
and the 30 d average of the filtered daily average before that
day was calculated.

2.3.3 Binning

To analyze the effects of water supply and demand on ET,
we binned daily ET values into a grid of 30 by 30 SM and
VPD conditions, with SM ranging between 0.0001 vol % and
40 vol % and VPD ranging between 0.0001 and 25 hPa, both
in 31 steps (to create a grid of 30 by 30). While SM is in-
dicative of the available water supply, VPD is an indicator
of atmospheric water demand. The co-regulation of ET by
SM and VPD is complex, as it depends on stomatal and sur-
face conductance, which in turn are dependent on SM and
VPD, as well as vegetation and soil properties (Carminati and
Javaux, 2020; Zhang et al., 2021; Vargas Zeppetello et al.,
2023). To understand the main directionality of ET changes
relative to SM, we calculated the average slopes of ET rela-
tive to SM (equivalent to 1ET

1SM ). The same applies when we
examine the directionality of the ET changes with respect to
VPD ( 1ET

1VPD ). These analyses are done in order to obtain an
indication of the dominating control of ET.

3 Results

3.1 Differences in examined ET products

In Fig. 4, times series of the ET products employed (see Ta-
ble 1) are shown at all the ICOS stations investigated (see
Fig. 1) for the period of 2017–2020. Apart from the sea-
sonal dynamics of ET, with the highest values in the summer
months (June, July, August) and low values but with more
frequent changes in the winter months (November, Decem-
ber, January), the overall good consistency between the dif-
ferent ET products can be noted.

The highest variability among products and ET dynam-
ics can be observed during summer months, with the great-
est differences at the stations DE-Hai and DE-Ruw when
comparing all products to the ICOS measurements. Here, the
ground-based ET always shows lower values across all years
for DE-Hai and in 2018 and 2019 for DE-Ruw. Additionally,
for each year, the ICOS ET rises a few weeks later than the
other products at both stations but decreases together with
all other ET products. These differences and the delayed sea-

Biogeosciences, 22, 3721–3746, 2025 https://doi.org/10.5194/bg-22-3721-2025



A. Fluhrer et al.: Assessing evapotranspiration dynamics 3729

Figure 4. Comparison of seasonal dynamics of ET [mm] products for the period of 2017–2020 at the ICOS stations investigated. All time
series were cleaned for daily and weekly dynamics using a Savitzky–Golay (Savitzky and Golay, 1964) filter with a window size of 31 d.

sonal increase in remote sensing, modeling, and reanalysis
products compared to the ICOS measurements at the DBF
and ENF stations occur, for one, due to the discrepancies
in spatial resolutions (point scale versus kilometer scale).
Second, ICOS field measurements provide different sensi-
tivities to vegetation phenology than the other remote sens-
ing and modeling products due to measuring directly above
the canopy. At the station CZ-Lnz, ERA5-land shows the
overall-lowest ET values during the growing period (April–
October). Further, the highest ET values are found at the sta-
tion FR-Bil for the GLDAS-2 product, with the most pro-
nounced differences compared to all other products in 2018,
while the overall-lowest values across all years and ET prod-
ucts are displayed at DE-Rus. At the latter, ET values never
exceed 4 mm d−1. From these daily time series analyses, the
largest differences among ET products can be seen at the
DBF stations DE-Hai, at the MF station CZ-Lnz, and at the
agricultural station DE-Rus. At DE-Hai, the ICOS ET is
overestimated by all other products; at CZ-Lnz, the ERA5-
land product is lower compared to all other ET products, es-
pecially in the summer months; and at DE-Rus, the MODIS
and often also the ICOS product are overestimated by the
ERA5-land and SEVIRI products. Hence, no clear pattern at

all stations and between different land cover classes can be
found.

For more detailed analyses, daily time series of ET prod-
ucts are averaged to 8-daily sums in order to account for the
coarse temporal resolution of the MODIS product (see Ta-
ble 1). In Fig. 5, the 8-daily ET products are compared with
each other at the two agriculture stations. The same illus-
trations for the forest stations can be found in the Supple-
ment (see Figs. S2–4). These figures show the scatter plots
between ET products, giving the probability density func-
tion (PDF) of points (by color) below (left panels) and above
(right panels) the matrix diagonal, as well as the PDF curves
for each site and product in the diagonal of the matrix. They
support the previously stated good consistency between ET
products but outline the exact differences on the 8 d scale in
more detail. The highest density of values can be observed
between 0 to 10 mm (8 d)−1 at all stations except at DE-Ruw
and FR-Bil. This comes from the rather-low ET values dur-
ing the autumn, winter, and spring seasons due to the overall-
reduced solar radiation combined with decreased vegetation
cover during cold months. However, at the stations DE-Ruw
(see Fig. S3, right panels) and FR-Bil (see Fig. 4, left pan-
els), the density of values is shifted towards higher ET (0 to
20 mm (8 d)−1). These are two out of the three stations cov-

https://doi.org/10.5194/bg-22-3721-2025 Biogeosciences, 22, 3721–3746, 2025



3730 A. Fluhrer et al.: Assessing evapotranspiration dynamics

ered by coniferous forest. While FR-Bil has two-part split
land cover in the footprint (shrubs and coniferous forest),
DE-Ruw is almost homogeneously covered by coniferous
forest (see Fig. 2), and both stations show higher ET values
during autumn and spring seasons compared to all other sta-
tions due to, e.g., the lack of leaf-off conditions during that
period. The third station covered by coniferous forest (FI-
Let), however, shows the density of values between 0 and
10 mm (8 d)−1 (see Fig. S3, left panels), similar to at the DBF
and MF stations. This is the northernmost station, typically
covered by snow between November and March.

Further, the over- or underestimation of values between
two products can be seen, such as the overestimation of ICOS
compared to all other ET products at DE-Hai for higher ET
values, affirmed by the PDF for ICOS peaking at the highest
density (see Fig. S2, left panels). There is also an overesti-
mation of MODIS compared to all other products at DE-Rus
(see Fig. 5, right panels) and CH-Lae (see Fig. S4, left pan-
els) when ET values are higher. DE-Rus is the only homo-
geneously covered agricultural station, with potentially the
most changes in land cover classes during the seasons and
years, showing the greatest differences in ET products due to
the overall-higher complexity of agricultural plants and more
frequent alterations. While the PDF of MODIS at DE-Rus
peaks at the highest density and gives the smallest range of
ET values across all stations, a bimodal distribution of den-
sities is displayed at CH-Lae. This bimodal distribution of
densities is also noticeable from other products and at other
stations but is always stronger for MODIS.

This visual interpretation is also supported by the statis-
tics in Supplement Figs. S5–7. In general, the highest coef-
ficient of determination, R2 [–], among all products can be
found at the station CH-Lae, while the overall-lowest root-
mean-square errors, RMSEs [mm (8 d)−1], are retrieved at
both ENF stations (DE-Ruw, FI-Let). DE-Ruw is also the
station with, in general, the lowest percentage bias, PBIAS
[%], among all ET products. In detail, the highest R2 of 0.94
is found between GLEAM and GLDAS-2 at CH-Lae, while
the lowest RMSE of 2.3 mm (8 d)−1 and the lowest PBIAS of
−0.05 % are found between GLEAM and ERA5-land, again
at CH-Lae. The lowestR2 of 0.62 and highest PBIAS of 91 %
are found between ICOS and MODIS at the agricultural sta-
tion DE-Rus, while the highest RMSE of 8.8 mm (8 d)−1 is
found between MODIS and ERA5-land, again at DE-Rus.
In summary, the statistics indicate overall-worse consistency
among products at the rather-mixed agricultural station (DE-
Rus) and better consistency at ENF stations.

In order to evaluate the performance of each ET product
in more detail, the ETC method (McColl et al., 2014) is em-
ployed. Here, we use the ETC approach to compare the three
remote sensing products individually, first with ERA5-land
and ICOS and then with GLDAS-2 and ICOS. The preceding
calculation of ECC values among all products (see Fig. S8)
is conducted to ensure the independence of the products ex-
amined, which is required by ETC analysis (see Sect. 2.3.1).

Overall, ECC values are always around zero or within the
acceptable range of −0.5 to 0.5. Only at the station DE-
HoH between GLDAS-2 and GLEAM, at CZ-Lnz between
ERA5-land and GLEAM, at CH-Lae between ERA5-land
and MODIS, and for all product comparisons at DE-Rus
(except between ERA5-land and SEVIRI) can ECC values
outside the acceptable range be found (see Fig. S8). The
high ECC values at DE-HoH, CZ-Lnz, and DE-Rus between
GLEAM and GLDAS-2 or ERA5-land are not surprising
since the GLEAM product is based on various remote sens-
ing and reanalysis datasets, along with GLDAS and ERA5
(see Sect. 2.2). Hence, at most stations, ET products can be
regarded as statistically independent from each other. Only
some potential product dependencies, especially at the agri-
cultural station DE-Rus, should be kept in mind during the
interpretation of ETC results.

In Fig. 6, the ETC statistics for the product combinations
applied to all stations are shown. While the x and y axes rep-
resent the estimated root-mean-square error σε, the arcs give
the correlation ρt,X. Hence, numbers (representing the eight
stations) close to zero on the x and y axes and close to 1 on
the arcs give the best ETC results, meaning the lowest uncer-
tainty in the ET product (represented by colors) compared to
the other two products. It can be seen that all σε values are be-
low 1.07 mm d−1 due to the overall high consistency among
ET products, with correlations between 0.39<ρt,X < 0.99.
However, products with the highest ρt,X do not necessarily
have the lowest σε. Hence, the discrepancy between products
varies but does not dominate differences in the sensitivity
among products. The highest σε is found at the station FR-
Bil for GLDAS-2 when comparing GLDAS-2 with GLEAM
and ICOS. The lowest ρt,X of 0.33 is found at the station
DE-Ruw for ICOS as a result of the ETC among GLDAS,
MODIS, and ICOS. Despite the high ECC values at DE-
Rus (see Fig. S8) and, hence, potential product dependencies,
ETC results at this station are not notable, with comparable
errors and correlations. Overall, ERA5-land, SEVIRI, and
GLEAM perform better at all stations, with either the lowest
errors or the highest correlations within their ETC triplets.
In summary, compared to ERA5-land and ICOS, the remote
sensing products (SEVIRI, MODIS, GLEAM) show similar
uncertainties to ERA5-land, but at most stations, ERA5-land
outperforms GLEAM and MODIS (see Fig. 6, upper row).
Further, compared to GLDAS-2 and ICOS, the remote sens-
ing products in most cases outperform GLDAS-2 and ICOS,
showing the lowest uncertainties, i.e., lower errors and higher
correlations (see Fig. 6, lower row). During all analyses,
ICOS generally shows the highest uncertainties. A potential
explanation is the discrepancy in spatial resolutions (see Ta-
ble 1), which will be discussed in more detail in Sect. 4.

3.2 Drought impacts on ET products

As shown in Figs. 3 and S1, 2018 was an exceptional dry
year across central Europe. In this section, the impact of the
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Figure 5. Comparison of seasonal dynamics of ET [mm (8 d)−1] products for the period of 2017–2020 at the ICOS stations DE-Rus (right
panels above the diagonal of the matrix) and FR-Bil (left panels below the diagonal of the matrix). All time series were averaged to 8-daily
sums at MODIS dates and were cleaned for daily and weekly dynamics using a Savitzky–Golay (Savitzky and Golay, 1964) filter with a
window size of 31 d. All statistics are included in Supplement Figs. S5–7.

drought in 2018 on ET is investigated by comparing ET to
SM and VPD, the two main parameters that are used for
monitoring drought-related terrestrial ecosystem productiv-
ity (see Sect. 1). For that, we will always compare 2018 to
the rather-wet year 2017 to identify significant changes.

In Fig. 7, the time series of ICOS ET, SMAP SM, and
in situ measured VPD for 2017 and 2018 are compared to
their calculated anomalies (see Sect. 2.3.2) for the DBF (DE-
HoH, DE-Hai) and ENF (DE-Ruw, FI-Let) stations. While
ET and VPD show distinct seasonal patterns at all stations,
with the highest values during summer months, SM shows a
less clear seasonal pattern with more inter- and intra-annual
variations. At both the DBF stations and the ENF station DE-
Ruw, the highest SM values are generally found during the
winter months. In contrast, at the ENF station FI-Let, an al-
most constantly increasing SM in 2017 can be observed, with
a distinct drop from in January 2018 and a subsequent dis-
tinct increase in April 2018. The SM also stays at high values

throughout the entire summer until mid-October 2018, aside
from a smaller decrease from end the of May until August.
However, these SM values may be an artifact of snow cover
or frozen ground at the northernmost station and should be
treated carefully, although the MT-DCA is quality controlled
and filtered for that (see Sect. 2.2).

From these time series, in general, lower ET and higher
VPD values can be found in 2018 compared to in 2017, re-
flecting the drought conditions with higher atmospheric arid-
ity and decreased water supply for plant transpiration and
soil evaporation in 2018. At the MF (CZ-Lnz, CH-Lae) and
agricultural (DE-Rus, FR-Bil) stations, the same trends can
be observed but with minor differences in VPD maxima be-
tween 2017 and 2018 and sometimes higher ET peaks in
2018 at the stations CZ-Lnz and FR-Bil (see Fig. S9). The
overall-lowest SM values can also be found in 2018, except
at the station FI-Let. At the DBF stations and the station DE-
Ruw, consistently low SM values over several months from
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Figure 6. Estimated root-mean-square-error (σε) [mm d−1] (on the x and y axes) and correlation (ρt,X) [–] (on the arcs) among ET products
at all stations based on the extended triple collocation (ETC) method from McColl et al. (2014). Numbers represent the eight stations and
colors the different ET products. ETC between the (a) SEVIRI, (b) MODIS, or (c) GLEAM datasets and ERA5-land and ICOS. ETC between
the (d) SEVIRI, (e) MODIS, or (f) GLEAM datasets and GLDAS-2 and ICOS.

mid-April to mid-October are shown without any significant
increase during this time in 2018 (see Fig. 7). The same is
true at the MF station CH-Lae and at the agricultural sta-
tions. At the station CZ-Lnz, SM varies monthly at low val-
ues between ∼ 5 vol % and 18.6 vol % (see Fig. S9). When
analyzing the anomaly time series (seasonal detrending; see
Sect. 2.3.2) of each parameter and station, in general, higher
ET and VPD anomalies and lower SM anomalies are found
in 2018 compared to in 2017, except at the station FI-Let,
with higher SM anomalies in 2018 compared to in 2017 (see
Figs. 7 and S9).

These anomalies are subsequently used in Fig. 8 to visu-
alize the kernel densities of SM, VPD, and ET anomalies
of all stations for 2017 and 2018. In Fig. 8, only the veg-
etation periods from April to October within each year are
analyzed. It can be seen that in 2018 (drought year), the
SM and ET anomalies peak at lower, negative values com-
pared to in 2017, where they peak around zero, while the
VPD anomalies peak at higher, positive values compared to

in 2017. Also, the respective anomaly medians are lower for
SM and ET and higher for VPD in 2018. The calculated p
values that are always ≤ 0.045 prove the shift in yearly me-
dian values at the 5 % significance level.

When comparing the anomalies for different ET products
(see Fig. 9), a similar shift towards lower values for 2018
compared to 2017 can be found for the MODIS and ERA5-
land products. For SEVIRI, GLDAS-2, and GLEAM, a shift
towards higher anomalies in 2018 is found, with medians at
slightly higher values compared to in 2017. However, while
the ICOS p value of 0.045 is close to the 5 % significance
level of equal medians, the values for SEVIRI, GLDAS-
2, and GLEAM are more significant around zero. GLEAM
anomalies peak at the same value for both years but with
higher positive anomalies for 2018 at values greater than 0.6.
In general, Gaussian distributions around zero are evident
for both years and for all anomalies of ET products. Only
in MODIS can a clear bimodal distribution in ET anomalies
in 2018, with a first peak around −0.4 and a subsequent sec-
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Figure 7. Time series of daily ICOS ET [mm d−1], SMAP SM [vol %], and in situ VPD [hPa] for 2017 and 2018 at the DBF (DE-HoH,
DE-Hai) and ENF (DE-Ruw, FI-Let) stations compared to their respective anomalies (see Sect. 2.3.2). All time series were cleaned for daily
and weekly dynamics using a Savitzky–Golay (Savitzky and Golay, 1964) filter with a window size of 31 d.

Figure 8. Kernel density estimates of daily SMAP SM, in situ VPD, and ICOS ET anomalies (see Sect. 2.3.2) from April to October of
2017 and 2018 across all stations investigated. The dashed lines represent the seasonal medians of the respective parameters and years.
The p values of a two-sided Wilcoxon rank sum test indicate the acceptance (> 0.05) or rejection (< 0.05) of the null hypothesis regarding
continuous distributions with equal medians at the 5 % significance level.

ond, smaller peak at 0.55, be found. This is also the ET prod-
uct with the smallest anomaly range, from −1.5 to 2.5. All
other ET products vary at least between −3 and 3. For the
ET products ERA5-land, GLDAS-2, and GLEAM, a non-
linear decrease in 2018 can be found with almost stagnat-
ing anomalies around 1. For the ICOS and SEVIRI data, this
trend is first visible at values greater than 1. In contrast, the
density curves of ET anomalies for 2017 are smoother for
all products, showing a clear Gaussian distribution. Again,
the calculated p values of ≤ 0.02 prove the shift in yearly
median values at the 5 % significance level, except for the
MODIS product (p value< 0.1). The MODIS product is also
the ET product with the lowest temporal resolution, 8 d (see

Table 1). When analyzing all other ET products at the same
8-daily resolution (see Fig. S10), similar bimodal distribu-
tions in 2018 can be found for ERA5-land, SEVIRI, and
GLEAM. GLDAS-2 even shows a trimodal distribution, with
the highest density of ET anomalies around −4.5, a second
peak around 1.4, and a third peak around 6.3. Although no
clear bimodal distribution can be seen for ICOS even at an
8-daily resolution, the distribution smoothly increases from
−15 to−4 and then nonlinearly decreases, with at least three
smaller plateaus (see Fig. S10). Even in 2017, the Gaussian
distributions are not as smooth as they are for the daily anal-
yses. More detailed analyses revealed that there is a distinct
drop in the 8-daily anomaly time series, leading to this bi-
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modal distribution. In April and August, mostly positive ET
anomalies are found, while during September and October
mostly negative anomalies are found. The same trend is, of
course, also visible for the daily time series, but due to the
preserved daily and intra-weekly dynamics, the difference
between positive and negative anomalies during both peri-
ods (April–August and September–October) is not that dis-
tinct. These small-scale dynamics are excluded in the 8-daily
analyses. However, the differences in ET anomalies between
2017 and 2018 are greater for the 8-daily anomaly analyses
(see Fig. S10) compared to the daily anomaly analyses (see
Fig. 9), indicating that drought impacts on ET are more pro-
nounced at longer timescales (more than a week, monthly)
than at shorter timescales (less than a week, daily). In sum-
mary, the reason for the bimodal distribution in ET anomalies
within the MODIS products is the lower temporal resolution.

To analyze the dependencies between ET, SM and VPD,
the respective ET products in SMAP SM and in situ mea-
sured VPD bins (see Sect. 2.3.3) are visualized for the wet
year 2017 (see Fig. 10) and the dry year 2018 (see Fig. 11)
across all stations. ET for all stations and both years is simi-
larly distributed across the SM- and VPD-phase space.

For the rather-wet year 2017, a general decreasing trend in
ET values along increasing VPD and increasing SM can be
found for all ET products except SEVIRI. Here, a decreasing
trend along increasing VPD but decreasing SM is visible, as
indicated by the arrow within the inset plot (see Fig. 10).
Overall, ET varies more with VPD than with SM. Only ET
from ICOS and, to some extent, ERA5-land and GLEAM
has the highest values at intermediate VPD and SM and has
lower ET at low SM. In particular, the ET products SEVIRI
and GLDAS-2 do not display any reductions at low SM.

For the dry year 2018, only MODIS and GLDAS-2 still
show a decreasing trend along increasing VPD for increasing
SM. All other products indicate decreasing ET for increasing
VPD and decreasing SM (see Fig. 11). For SEVIRI, the slope
in the SM direction is twice as low in 2018 compared to in
2017, but it is almost the same for VPD, meaning a greater
decrease in ET along with SM during the dry year. A sim-
ilar trend is observable for MODIS, with half of the slope
along SM in 2018 compared to in 2017, meaning that the
increase in ET values with SM is half as strong during the
drought-affected year 2018. Lastly, for GLDAS-2, the slope
along SM bins is increased by a factor of almost 7 in addition
to a reduced VPD slope of ∼ 0.1 hPa in 2018, meaning that
a stronger increase in ET values at increasing SM at simulta-
neously decreases VPD during the drought year. Further, ET
values are in general lower in 2018 compared to in 2017, but
in 2018, bins at higher VPD values with low ET can be found
across the entire SM range (see Fig. 11).

In summary, for both years, ET is generally higher at
high VPD, i.e., higher atmospheric water demand, and much
lower below a VPD of 5 hPa. In Figs. 10 and 11, we do
not really see very clear reductions in ET with decreasing
SM. Hence, ET varies more with VPD than with SM. The

influence of SM on ET is only noticeable when comparing
the wet (2017) and dry (2018) years with each other, as the
change along SM ( 1ET

1SM ) is significantly higher during the
drought-affected year.

For more detailed analyses regarding the drought effect
on ET products, we calculated the coefficient of variation
(CV) [%] for 2017 and 2018 (see Fig. 12) for each ET bin
relative to the SM and VPD ranges (see Sect. 2.3.3.). CV
is defined as the ratio between the standard deviation and
the mean and provides the relative dispersion or amount of
uncertainty in the data. As can be seen, the differences in
CV between 2017 and 2018 are highest for low SM. Here,
the variability in ET values during the drought year of 2018
reaches higher VPD values compared to in 2017. Further-
more, overall-higher CVs are estimated for low VPD across
the entire SM range in 2018 compared to in 2017. In contrast,
2017 shows slightly higher CV values for intermediate values
(SM between 10 vol % and 30 vol % and VPD between 4 and
8 hPa). When comparing the different ET products among
each other, the CVs show similar patterns overall. However,
for both years, the CV median for ICOS (49.23 %, 48.43 %)
is always the highest compared to all other products, indi-
cating a greater dispersion of data points within the ET time
series. The lowest median CVs are found within ERA5-land,
at 33.28 % in 2017 and 36.48 % in 2018 (see Fig. 12), indi-
cating the overall-lowest amount of uncertainty in ET data.

4 Discussion

4.1 Differences in ET products examined

When evaluating the performance of all ET products from re-
mote sensing, reanalysis, modeling, and ground-based eddy
covariance measurements, analyses of their time series re-
vealed that the ICOS ET almost always shows a time lag of
a few weeks during the spring ET rise compared to all other
products (see Fig. 4). This could be explained by the dis-
crepancy in spatial resolutions, with the ICOS product pro-
viding local point-scale measurements compared to the other
larger-scale remote sensing and modeling ET products. This
spatial mismatch alters the vegetation impact within the ET
signal. Another reason is the dependence of models on indi-
cators for phenological changes in vegetation. For example,
many models use the leaf-area index (LAI) to track phenol-
ogy dynamics, which influence ET simulations (Adeluyi et
al., 2021). Further, the overall-lowest ET values were found
for all products at the agricultural station DE-Rus, while the
highest values were found at the southernmost station FR-
Bil, where the highest average precipitation was recorded be-
tween 2017 and 2020 (see Fig. 3). The reasons for that are (1)
reduced transpiration at agricultural sites throughout the year
compared to at the forested sites and (2) the humid Atlantic
climate at the southernmost station at the lowest altitude (see
Table S1). Further, the mostly non-irrigated arable land at
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Figure 9. Kernel density estimates of daily ET anomalies (see Sect. 2.3.2) for all ET products investigated from April to October of 2017 and
2018 across all stations investigated. The dashed lines represent the seasonal medians of the respective parameters and years. The p values
of a two-sided Wilcoxon rank sum test indicate the acceptance (> 0.05) or rejection (< 0.05) of the null hypothesis regarding continuous
distributions with equal medians at the 5 % significance level.

Figure 10. ET [mm] relative to SMAP SM [vol %] and in situ VPD [hPa] for all ET products investigated, averaged over all ICOS stations
investigated in 2017. The inset plots provide the corresponding median slopes in SM and VPD changes.
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Figure 11. ET [mm] relative to SMAP SM [vol %] and in situ VPD [hPa] for all ET products investigated, averaged over all ICOS stations
investigated in 2018. The inset plots provide the corresponding median slopes in SM and VPD changes.

the station DE-Rus (see Fig. 2) shows relatively low vege-
tation cover (LAI< 2; normalized difference vegetation in-
dex (NDVI) around 0.5 during summer months (not shown))
compared to at the forested sites (LAI> 5, NDVI around 0.8
during summer months (not shown)), which can lead to an
underestimation of ET when using models that rely on veg-
etation indices (i.e., NDVI, LAI). Combined with the sea-
sonal vegetation dynamics of this station and the lack of ir-
rigation, this explains the lower ET values compared to in
forested areas with more consistent canopy cover. The 8 d
analyses showed that MODIS gives higher values compared
to all other ET products at two stations, while ICOS is higher
than all other ET products at one station. Further, the high-
est density of values was found between 0 and 10 mm (8 d)−1

due to the seasonal imprint of reduced ET across Europe dur-
ing months with reduced solar radiation and vegetation cover
(November–March). Only at the two coniferous forest sta-
tions (DE-Ruw, FR-Bil) was the highest density of values be-
tween 0 and 20 mm (8 d)−1, with lower ET values only dur-
ing winter months (December–February). However, this does
not apply to the third coniferous station, FI-Let, the north-
ernmost station with less dense forests and more snowfall
between November and March, which influences the estima-

tion of ET. Hence, the lack of leaf-off conditions and the re-
duced number of days with snow cover influence the amount
of ET. The statistics conducted confirmed the noticeable dif-
ferences among ET products and ICOS stations, which indi-
cated overall-lower agreement among products at the rather-
mixed agricultural station (DE-Rus) and better consistency at
the ENF stations (DE-Ruw, FI-Let). Hence, products differ
most at stations with complex land cover conditions, where
varying crops and growing seasons (changing phenology)
make the estimation of ET more difficult, while evergreen
needle-leaf stations with fewer changes throughout the year
and between years are easier to define (temporal homogene-
ity).

For more detailed product performance analyses, the ex-
tended triple collocation (ETC) method (McColl et al., 2014)
and SM–VPD binning revealed the highest uncertainties
(see Fig. 6) and coefficients of variation (see Fig. 12) for
the ICOS product and the lowest uncertainties for SEVIRI,
GLEAM, and ERA5-land. The highest ETC error was esti-
mated for GLDAS-2 when analyzed together with GLEAM
and ICOS, while the lowest sensitivity (correlation) was
found for ICOS when analyzed together with GLDAS-2 and
MODIS (see Sect. 4.1). Hence, the remote sensing products
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Figure 12. Coefficient of variation (CV) [%] of ET values relative to SMAP SM [vol %] and in situ VPD [hPa] for all ET products investi-
gated, averaged over all ICOS stations investigated in 2017 (upper two rows) and 2018 (lower two rows). Inset plots give the histograms of
the displayed CV values, with the red line indicating the location of the given median for each product.

(SEVIRI, GLEAM) and the reanalysis product (ERA5-land)
differed most from the in situ field-scale (ICOS) and model-
ing (GLDAS-2) products. One reason for the mismatch be-
tween the ICOS product and SEVIRI, GLEAM, and ERA5-
land is surely the spatial mismatch between the point-scale
ground-based EC tower measurements and the remote sens-
ing (3 km) or reanalysis (9 km) products. However, in order
to capture vegetation stress, ecosystem health, and fine-scale
variability in ET globally, adequate spatial (and temporal)
resolutions are necessary. Here, detailed research regarding
downscaling techniques (as reviewed in, e.g., Mahour et al.,

2017, and Peng et al., 2017) that combine medium-scale ET
data with fine-scale auxiliaries in order to improve the spa-
tial resolution are needed to understand its uncertainties and
impact on product comparisons. Further, ET measurements
based on the eddy covariance method tend to underestimate
sensible heat (H ) and latent heat (LE) fluxes (Petropoulos
et al., 2015), are often too short temporally and too sparse
spatially to sample drought conditions correctly (Zhao et al.,
2022), and suffer from challenges closing the energy bal-
ance (Yu et al., 2023). Several studies (Twine et al., 2000;
Petropoulos et al., 2015; Barrios et al., 2024) reported an er-
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ror range in EC measurements of ∼ 10 %–30 % due to, e.g.,
a “systematic closure problem in the surface energy budget”
(Twine et al., 2000). In order to identify potential product
dependencies that may impact the ETC results, the estimated
error cross-correlations (ECCs) were calculated, with high
ECCs between GLDAS-2 and GLEAM (at DE-HoH), be-
tween ERA5-land and GLEAM (at CZ-Lnz), and between
all products and GLEAM (at DE-Rus). These need to be ac-
counted for when analyzing the differences among ET prod-
ucts. Although in this study we have analyzed different land
cover classes within a 3 km footprint around every ICOS sta-
tion at a daily resolution to account for the different resolu-
tions, the SEVIRI product provides ET data every 30 min at
a moderate spatial resolution (3 km) and showed the ability
to capture ET dynamics at small as well as larger temporal
scales comparably to or even better than the other products
examined, as also reported by previous studies (e.g., Hu et
al., 2015; Petropoulos et al., 2015; De Santis et al., 2022).
None of the other products examined can provide similar
spatiotemporal coverage due to either lower temporal res-
olution (MODIS) or coarser spatial resolution (ERA5-land,
GLDAS-2, GLEAM). Only the ICOS data provide a similar
temporal resolution to SEVIRI but at the point scale, which
disqualify it for global analyses. Although other ET prod-
ucts from remote sensing and modeling exist (e.g., Jiménez
et al., 2011; Mueller et al., 2013; Fisher et al., 2020; De
Santis et al., 2022; Yu et al., 2023), the ET products ex-
amined in this study are appropriate when addressing global
analyses since other products have at least one of the fol-
lowing: a coarser spatial or temporal resolution (Yu et al.,
2023); a limitation to only clear-sky conditions (De Santis
et al., 2022), which prohibits continuous time series of ET
measurements; or higher-order derivatives from either field-
measured or merged remote-sensing-based products (Jung et
al., 2019; Chen et al., 2021). We also analyzed data from the
ECOsystem Spaceborne Thermal Radiometer Experiment on
Space Station (ECOSTRESS) launched by NASA in June
2018 (Fisher et al., 2020) at the beginning of our analyses.
However, we found several problems with this product and
worse performance compared to other ET products, meaning
a clear overestimation using the ECO3ETPTJPL product, as
has also been reported by previous studies (e.g., Liu et al.,
2021; De Santis et al., 2022; Wu et al., 2022). In our research
with ECOSTRESS, data were unavailable at CZ-Lnz and
FI-Let. Another ECOSTRESS ET product, ECO3ETALEX
(based on the DisALEXI model), has shown better perfor-
mance, but it is more suited for agricultural applications and
is limited to the United States (Cawse-Nicholson and An-
derson, 2021). ECOSTRESS level 3 ET data come with the
advantage of a high spatial resolution (70 m), but their tem-
poral resolution is irregular due to the International Space
Station (ISS) orbit, and the dependence on the product type
and study region limited our preliminary analyses. For these
reasons, we decided not to include it in our research.

4.2 Impact of droughts on ET products

Since remote-sensing-based ET products are not purely ob-
servational, the performance of an ET product is highly de-
pendent on the retrieval model employed for ET estimation.
This, in turn, is dependent on how the model deals with limi-
tations in SM or VPD and the responses under drought condi-
tions. Every retrieval method has its own strengths and weak-
nesses, but especially under drought conditions, the ability
of the employed algorithm to deal with water shortage and
vegetation stress is essential for valid ET estimation. Vary-
ing types of vegetation have different strategies to deal with
water stress, e.g., by closing stomata to prevent water loss
through leaves and by increasing the water uptake from the
soil or from deeper soil depths by increasing the water resis-
tance (He et al., 2022). Many studies reported decreasing ET
during droughts due to reduced SM supply and, hence, de-
creasing evaporation, but they also reported decreasing tran-
spiration since plants close their stomata to prevent water
loss (Novick et al., 2016; Zhao et al., 2022). However, dur-
ing drought conditions with increasing air temperatures, ET
can also increase due to the higher atmospheric moisture de-
mand (increasing VPD). Further, the generic statement that
ET decreases due to decreasing SM often ignores the fact
that plants have access to SM from greater soil depths, which
are not immediately affected by meteorological droughts, or
have different strategies for drought resistance (Gupta et al.,
2020; He et al., 2022; Feldman et al., 2024). Hence, the dy-
namics of ET under drought conditions remain highly vari-
able (Zhao et al., 2022). Novick et al. (2016) pointed out
that SM and VPD may become more decoupled in the fu-
ture, and models need to resolve limitations in SM and VPD
independently from each other in order to correctly cap-
ture the response of ecosystems to water stress (Novick et
al., 2016; Zhao et al., 2022). How models react to limita-
tions in SM and VPD varies significantly, which impacts
the resulting ET. Analyses performed in this study revealed
that during the rather-wet year 2017, ET varied more with
VPD than with SM, with almost no dependency of ET on
SM in the SEVIRI and GLDAS-2 products. Here, our re-
sults indicate that ET is controlled more by atmospheric de-
mand instead of water supply from the atmosphere (precip-
itation) and soil (soil moisture), as reported also by Zhou
et al. (2019). However, it has been suggested by previous
work and by the Budyko framework (Budyko and Miller,
1974) that ET should exhibit some level of dependence on
SM (Porporato et al., 2002; Zhang et al., 2021). One rea-
son could be that forests at the ICOS stations selected might
have substantial access to deeper SM (root zone) that ex-
ceeds the measurement depths of the SMAP satellite (the first
25 cm) (Feldman et al., 2022). When analyzing the controls
of SM and VPD on ET during the dry year 2018, however,
all ET products except MODIS and GLDAS-2 showed that
ET decreases with increasing VPD and decreasing SM. For
SEVIRI, a decrease in ET by a factor of 2 along with SM
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during the drought year was observed compared to ET in
the rather-wet year. This declining trend in ET during dry
years, when ET is limited by moisture and VPD increases
due to increasing air temperatures, is in line with previous
studies (Jung et al., 2010; Seneviratne et al., 2010; Zhou et
al., 2019). Further, results show that VPD and SM are neg-
atively coupled during extreme events, as reported also by
Zhou et al. (2019) and De Santis et al. (2022). However,
MODIS and GLDAS-2 products showed an increase in ET
with increasing SM and with decreasing VPD during 2018
(see Fig. 11). These are the two products that are based on
the Penman—Monteith equation (see Table 1) and that were
outperformed by SEVIRI, ERA5-land, and GLEAM in the
ETC analyses (see Fig. 6). For MODIS, one reason for the
worse performance was found to be the coarse temporal reso-
lution of 8 d since at this timescale the temporal variability in
ET is significantly different, lacking all diurnal and day-to-
day ET dynamics. The underperformance of MODIS com-
pared to in situ EC measurements was also reported by De
Santis et al. (2022), who found that MODIS overestimated
in situ ET measurements at stations in Italy, as well as Yu
et al. (2023), who investigated several stations with differ-
ent types of land cover and varying climatic zones across the
USA. They concluded that daily or monthly ET products per-
formed best compared to EC tower measurements (Yu et al.,
2023). Due to the temporal resolution, MODIS is the only
product showing a bimodal distribution of ET anomalies with
a p value above the 5 % significance level (see Fig. 9). In this
study, we were able to show that differences in ET anomalies
between 2017 and 2018 are greater for the 8-daily anomaly
analyses (see Fig. S10) compared to the daily anomaly anal-
yses (see Fig. 9), indicating that drought impacts on ET are
more pronounced at longer timescales (more than a week,
monthly) than on shorter timescales (daily, less than a week).
Hence, the temporal scale of ET analyses is crucial for the se-
lection of the temporal component of the ET dynamics that
should be considered for each respective application.

Further, although GLEAM is built on the Priestly–Taylor
equation, which is less parameterized compared to the
Penman–Monteith equation since it does not consider the ef-
fects of VPD or canopy conductance on soil water stress, the
GLEAM ET product delivered better ETC results and statis-
tics in this study. Comparable or even better performance
of the Priestley–Taylor equation compared to the Penman–
Monteith equation has also been reported in previous studies
(e.g., Akumaga and Alderman, 2019; Bottazzi et al., 2021).
Reasons could be the uncertainties in input variables within
the Penman–Monteith equation (e.g., for stomatal, canopy,
or aerodynamic resistances, which are often unknown, ap-
proximated (Widmoser, 2009), or parameterized based on
the wrong variable (Hu et al., 2015)); could be due to the
overestimation of specific parameters, such as the net radi-
ation; or could be caused by other aerodynamic factors re-
ported by Hao et al. (2018). Similar, Hu et al. (2015) stated
that MODIS tends to overestimate water stress during the

thawing of frozen soil in spring or over irrigated land, which
leads to an underestimation of soil evaporation. Moreover,
several studies pointed out that the Penman–Monteith equa-
tion needs to be adapted for climate/weather extremes and
vegetation-limited cases (e.g., Widmoser, 2009; Hao et al.,
2018; McColl, 2020).

The estimated coefficient of variation (CV) showed that
during the drought year 2018, ET values display the high-
est uncertainty for low SM or low VPD, while during the
rather-wet year 2017, the highest variability was found for
intermediate SM and VPD values. Hence, our results show
that during drought conditions, the estimation of ET leads
to highest uncertainties and is most difficult for low SM and
low VPD depending on the assumptions for controlling fac-
tors on ET. For example, within the Penman–Monteith equa-
tion, aerodynamic as well as stomatal resistances are consid-
ered, but since they can vary significantly for drought and
non-drought conditions, erroneous assumptions for them can
lead to significant errors. During normal or wet conditions,
as shown for 2017, CV results do not vary that much be-
tween the ET products investigated but indicate the highest
variability for intermediate values of SM and VPD for all
products, which originate most probably from the different
vegetation and ecosystem types. Here, more research on in-
dividual ecosystem types is required to further address ET
controls, as vegetation is the controlling factor of ET esti-
mates when SM and VPD are not limited (Brown et al., 2010;
Jin et al., 2017).

In summary, it is important for ET retrieval algorithms to
account for water droughts and vegetation stress, as is done
with adaptable stomatal closure and canopy resistance within
the Penman–Monteith equation. However, analyses showed
that false assumptions related to these physiological stress
indicators can decrease the performance, and this equation’s
performance can be exceeded by less parameterized and sim-
pler retrieval algorithms like the Priestley–Taylor equation.

5 Conclusion and outlook

In this study, eight different ET products with varying tem-
poral and spatial resolutions as well as varying ET retrieval
methods (see Table 1) are analyzed across central Europe
for the period of 2017–2020. Despite the spatial mismatch
(in situ versus remote sensing) and the spatial heterogeneity
of the landscapes analyzed (see Fig. 2), all products showed
a concurrent seasonal pattern and overall-low uncertainties
during ETC analyses. It was shown that ET varied from year
to year for the different forest and agricultural stations due
to changing seasonal weather and vegetation conditions over
the years. Analyses revealed that temporal and spatial ho-
mogeneity helps with the consistency and interpretability of
the ET estimates. This is because products were most consis-
tent with each other at stations with less complex land cover
conditions and less complex changes throughout the seasons
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(the evergreen needle-leaf stations DE-Ruw and FI-Let). De-
spite the good match in seasonal patterns, differences in ET
products were noticeable. The remote sensing products, SE-
VIRI, MODIS, and GLEAM, performed equally well or even
better than the in situ measured (ICOS), modeled (GLDAS-
2), or reanalysis (ERA5-land) products for this specific study
concept (3 km footprint, daily analyses). Extended triple col-
location (ETC) and SM–VPD binned ET analyses revealed
that SEVIRI and ERA5-land (the two products based on
the (H-)TESSEL land surface scheme) perform best. They
provide low uncertainties when compared with other prod-
ucts and reasonable SM and VPD controls on absolute ET.
GLEAM also shows good performance, although this result
should be taken with caution since potential product depen-
dencies with ERA5-land and GLDAS-2 may have affected
the ETC results. When analyzing the behavior of ET in the
context of SM and VPD during the rather-wet year 2017 and
the dry year 2018, it was found that in 2017, ET was highly
dependent on VPD and less dependent on SM. Hence, with
sufficient moisture supply, ET is mainly controlled by atmo-
spheric demand and vegetation transpiration. In contrast, in
2018, the limited moisture supply because of decreasing SM
and increasing VPD, which were in turn due to increasing
air temperatures, led to a decline in ET, in line with previ-
ous studies. Further, during the dry year 2018, SM and VPD
were more negatively coupled, which could also have had an
impact on the ET decline. These behaviors were consistently
found in all ET products except for GLDAS-2 and MODIS,
the two products whose retrieval methods are based on the
Penman–Monteith equation. Hence, although GLEAM is
based on the less parameterized Priestley–Taylor equation,
compared to the Penman–Monteith equation, it outperforms
GLDAS-2 and MODIS within this study setup, which sup-
ports the idea of adapting the Penman–Monteith equation,
as reported by previous studies (e.g., Widmoser, 2009; Hao
et al., 2018; Akumaga and Alderman, 2019; McColl, 2020;
Bottazzi et al., 2021).

Further, the comparison between estimated coefficients of
variation (CVs) for 2017 and 2018 showed that the dispersion
of data is higher during the extreme-drought year 2018 for
extreme conditions, such as low SM or low VPD across all
SM values. In contrast, 2017 showed higher CVs for interme-
diate conditions. However, the difference between the prod-
ucts investigated is rather minor, with median CVs between
33.28 % (ERA-land) and 49.23 % (ICOS), and should be an-
alyzed in future studies for individual stations and ecosys-
tem types (requiring longer time series and more stations to
have enough data points for binning) to determine the im-
pact of varying vegetation types on ET controls. In summary,
when considering all analyses together (spatial and tempo-
ral resolutions, product dependencies, ETC results, SM and
VPD controls on ET), the remote sensing products SEVIRI
and GLEAM as well as the reanalysis product ERA5-land
seem to provide the most reasonable results compared all
other ET products, with SEVIRI providing a higher tem-

poral and spatial resolution compared to those of GLEAM
and ERA5-land. Hence, despite their coarse spatial resolu-
tion, GLEAM and ERA5-land are able to capture ET dy-
namics sufficiently even under drought conditions. Future re-
search regarding data fusion techniques and downscaling ap-
proaches that combine coarse- or medium-scale ET data with
fine-scale auxiliaries in order to improve the spatial resolu-
tion of certain ET products may help to decrease the spatial
mismatch and optimize the comparison between point-scale
field measurements and satellite remote sensing or modeling
data.

This study served as a pathfinder, comparing freely avail-
able and commonly employed ET products at highly mon-
itored EC towers across central Europe. Whether these re-
ported findings hold true across space and for other drought
events has to be analyzed further, with a focus on spatially
larger regions and longer time series. Additionally, potential
add-on studies could include the examination and compar-
ison of ET dynamics from optical/thermal remote sensing
observations with microwave remote sensing data, e.g., the
Sentinel-1 backscatter, in order to evaluate the potential of
active microwave remote sensing for drought monitoring
(e.g., Mueller et al., 2022; Jagdhuber et al., 2023). In order to
identify relevant conditions and causal strengths with lagged
and contemporaneous causal dependencies between differ-
ent variables, like ET, the Sentinel-1 backscatter and other
important SPAS parameters, like air temperature, relative hu-
midity, and water potential, using of emerging powerful tools
for causal discovery could prove useful (Runge et al., 2019;
Díaz et al., 2022). Previous studies already outlined the po-
tential of identifying causal relations between Earth system
parameters (i.e., precipitation, ET, SM, air temperature) us-
ing the wavelet coherency analysis (WCA) (Graf et al., 2014;
Rahmati et al., 2020) or the PC algorithm momentary condi-
tional independence (PCMCI) method (Runge et al., 2019,
2023).

Data availability. The SMAP MT-DCA v5 soil moisture dataset
is available at https://zenodo.org/records/5619583, last ac-
cess: 11 May 2022 (Feldman et al., 2021). The SPEI dataset
is available at https://spei.csic.es/database.html (Beguería et
al., 2023), last access: 18 November 2023. The evapotran-
spiration products are available as follows: ICOS data are
available at https://www.icos-cp.eu/ (ICOS RI et al., 2024),
last access: 20 November 2023. SEVIRI data are available at
https://datalsasaf.lsasvcs.ipma.pt/PRODUCTS/MSG/MDMETv3/
(LSA SAF and EUMETSAT SAF CE12 on Land Surface
Analysis, 2019), last access: 21 November 2023. MODIS data
are available at https://lpdaac.usgs.gov/products/mod16a2v061/
(Running et al., 2017), last access: 20 November 2023. ERA5-
land data are available at https://cds.climate.copernicus.eu/
datasets/reanalysis-era5-land?tab=overview (Muñoz Sabater,
2019), last access: 20 November 2023. The GLDAS-2 data
are available at https://ldas.gsfc.nasa.gov/gldas/model-output
(Beaudoing et al., 2020), last access: 22 November 2023.
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The GLEAM data are available at https://www.gleam.eu/
(Miralles et al., 2011; Martens et al., 2017), last access: 23 Au-
gust 2024. The Corine land cover classes are available at
https://land.copernicus.eu/en/products/corine-land-cover/clc2018?
hash=4ecde146e6ca8dd7a42f68a9f5370153d9731a95 (European
Environment Agency, 2019), last access: 14 March 2024.

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/bg-22-3721-2025-supplement.
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