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Abstract. In this paper, we investigate the influence of un-
certainties in inherent optical properties on the modelling
of radiometric quantities by an ocean radiative transfer (RT)
model, particularly irradiance and reflectance. The radiative
transfer model is coupled to a 3D physical-biogeochemical
model of the Black Sea. It describes the vertical propagation
of incident irradiance within the water column along three
streams in downward (direct and diffuse) and upward direc-
tions, with a spectral resolution of 25 nm in the visible range.
The propagation of irradiance streams is governed by the in-
herent optical properties of four major optically active con-
stituents found in seawater and provided by the biogeochem-
ical model: pure water, phytoplankton, non-algal particles,
and coloured dissolved organic matter (CDOM). Sea surface
reflectance is then derived as the ratio between the simulated
upward and downward irradiance streams, directly connect-
ing the model with remote-sensed data. In this configuration,
the coupling is one-way: the radiative transfer model is pro-
jecting model variables into the space of satellite observa-
tions, working as an observation operator. In the stochastic
version of the model, uncertainties are injected in the form
of random perturbations of the inherent optical properties of
the water constituents. Different ensemble configurations are
derived, and their quality is assessed by comparison with in
situ and remote-sensed observations.

We find that the modelling of the uncertainties in the ra-
diative transfer model parameterisation allows us to simulate
distributions of radiative fields that are partially consistent
with observations. The ensemble is consistent with remote-
sensed reflectance data in summer and autumn, especially
in the central parts of the basin. The quality of the ensem-

ble is lower in winter and early spring, suggesting the ex-
istence of another major source of uncertainty or that the
quality of the deterministic solution is insufficient. CDOM
dominates absorption in short wavebands with a relatively
high uncertainty that influences irradiance and reflectance
outputs. This dominant role calls for better representation
of CDOM to improve model calibration. Contributions from
phytoplankton and non-algal particles are more significant
for (back)scattering. The results of this paper suggest that
the integration of a radiative transfer model into a physical—
biogeochemical model would be beneficial for calibration,
validation, and data assimilation purposes, offering a better
link between model variables and radiometric observations.

1 Introduction

The spectral distribution of light in the ocean is closely linked
to biological activity, biogeochemical cycles, and upper-
ocean physics (Mobley et al., 2015). The biological produc-
tivity of the ocean is directly controlled by the amount of
light available to phytoplankton for photosynthesis (Kettle
and Merchant, 2008; Gregg and Rousseaux, 2016). The spec-
tral range for photosynthetically active radiation (PAR) cor-
responds mainly to the visible range and represents about
45 % of the total incident radiation at sea surface. Upon
reaching the ocean surface, a small part of the incoming ra-
diation is directly reflected depending on the surface albedo.
The rest of the solar irradiance is transmitted to the ocean,
and its vertical spectral distribution is determined by the
optical properties of seawater components such as water
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molecules, dissolved and particulate materials of various
sizes, and living material (Mobley et al., 2015). The char-
acterisation of those properties is therefore essential. Marine
optics also influences temperature, as most of the absorbed ir-
radiance is converted into energy to heat up the water column
(Baird et al., 2020). Those processes participate in modifying
the upper-ocean stratification and turbulence, thus influenc-
ing the distribution of optically active components close to
the ocean surface. As such, a bio-optical feedback exists be-
tween phytoplankton, upper-ocean physics, and surface cir-
culation (Fujii et al., 2007; Cahill et al., 2008, 2023; Skakala
et al., 2022).

Optically active constituents are defined by their ability to
absorb and scatter radiation, called inherent optical proper-
ties (IOPs). IOPs depend on the medium and are indepen-
dent of the ambient light field. They can be described by the
absorption and (back)scattering spectra of each water con-
stituent. The determination and parameterisation of IOPs are
a major challenge in modelling coupled physical and bio-
optical processes (Manizza et al., 2005; Werdell et al., 2018).
Most of the vertically resolved biogeochemical models solve
only the direct downward component of light in a one-stream
model, with a single equation describing the decrease in irra-
diance with depth following Beer’s law (e.g. Lengaigne et al.,
2007), in a limited number of spectral bands, usually two or
three. They differentiate the red part from the rest of the vis-
ible range, which is further separated in some cases between
the blue and green wavebands (Aumont et al., 2015; Buten-
schon et al., 2016). The absorption and (back)scattering pro-
cesses are then not distinguished and are merged within a
more general attenuation coefficient to represent the attenu-
ation of light over the water column. Over the years, models
were developed with different approaches to refine the repre-
sentation of light (Ackleson et al., 1994; Bissett et al., 1999;
Gregg and Casey, 2009; Mobley, 2011).

Remote-sensed optical observations rely on passive ra-
diometers to measure top-of-atmosphere radiance in the vis-
ible and near-infrared bands. Then, the use of atmospheric
corrections allows us to estimate water-leaving irradiance to
compute remote-sensed reflectance (Rrs) in several wave-
bands. In units of st~ !, Rgs is a measure of the water-leaving
irradiance normalised by the above water downwelling ir-
radiance. To compare these data with biogeochemical vari-
ables, inversion ocean colour algorithms compute interme-
diate products such as surface chlorophyll from reflectances
in selected wavebands. These algorithms remain rather un-
certain, and a more straightforward use of reflectance would
mitigate the influence of imperfect inversion algorithms.
However, a one-stream optical model does not simulate the
upward irradiance and thus cannot provide estimates of sea
surface reflectance. So far, limited use of optical properties
has been made in data assimilation (Ciavatta et al., 2014;
Jones et al., 2016), which could change with recent hyper-
spectral sensors such as those of the PRISMA and PACE mis-
sions. In recent years, new optical models have emerged to
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fill this gap and resolve sea surface reflectance (Dutkiewicz
et al., 2015). Some of these models resolve three streams of
irradiance by considering scattered irradiance in both down-
ward and upward directions, with higher spectral resolution
matching the measured wavebands. As a three-stream optical
model adds complexity to coupled modelling frameworks, it
also becomes necessary to assess the relative uncertainties in
the information produced by the model and by satellite sen-
SOrs.

In this paper, we couple a 3D ocean physical-
biogeochemical model implemented in the Black Sea with
a radiative transfer (RT) model as previously used in a global
setup as in Dutkiewicz et al. (2015). The RT model de-
scribes the in-water irradiance along the vertical and in three
streams: direct downward, diffuse downward, and diffuse
upward. Its spectral range includes the wavebands corre-
sponding to those typically used in remote sensing (e.g. 412,
490, or 555nm). The penetration of spectral irradiance is
determined in 33 wavelengths by the absorption and scat-
tering properties of the medium that are derived from con-
centrations of optically active components. According to the
literature, four main optically active elements are consid-
ered: water molecules, phytoplankton, non-algal particles,
and coloured dissolved organic matter (CDOM). Based on
the simulated irradiance streams, the RT model is used to es-
timate sea surface reflectance. Then, we combine the model-
derived reflectances in selected wavebands to obtain an es-
timation of surface chlorophyll, as it is done in satellite in-
version algorithms. With this approach using reflectance-
derived chlorophyll, the difference between model- and
satellite-estimated chlorophyll is reduced thanks to the com-
mon use of empirical inversion algorithms. Dutkiewicz et al.
(2018) presented a proof of concept for the use of a new esti-
mate of chlorophyll (they introduced a proxy for chlorophyll
called “derived chlorophyll a”), enquiring on the opportu-
nities provided by the use of RT within a coupled biogeo-
chemical framework. They found that this proxy compared
better to measurements than the “actual” chlorophyll from
their biogeochemical model, with better performances using
region-specific methods rather than a global method. In this
paper, we use a similar proxy in the Black Sea to evaluate its
potential use in this region. We also aim at building up from
their work by analysing more thoroughly the inner operation
of the RT model with regard to the propagation of uncertain-
ties in such a framework. Here, we focus on the deep sea,
where BGC-Argo data are available to estimate the contri-
bution of CDOM. Due to a lack of information on CDOM in
the shelf region, the results presented in this paper are mainly
valid for the deeper parts of the Black Sea (Grégoire et al.,
2023).

By perturbing the optical properties of the four selected
water constituents, we also aim to use this implementation to
assess the intrinsic uncertainty of the RT model. An ensem-
ble simulation strategy is set up to inject perturbations in the
IOPs and evaluate their influence on the outputs of the RT
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model: irradiance and sea surface reflectance. This analysis
comes in three steps:

1. Assessment of the effect of uncertainties in the param-
eterisation of absorption and (back)scattering for each
constituent separately.

2. Estimation of the combined effect of uncertainties for
all uncertain constituents on irradiance and reflectance
fields.

3. Evaluation of our ability to provide distributions of sea
surface reflectance that are consistent with observations
by modelling these uncertainties.

To focus the analysis on the RT model, we use it as an ob-
servation operator. The RT model takes information from the
biogeochemical model without feeding back to the hydrody-
namics and biogeochemistry models and therefore does not
influence temperature and primary production.

The following section presents the deterministic coupled
modelling framework and the parameterisation of the opti-
cally active components available in the RT model. Section 3
describes the stochastic modelling approach and the intro-
duction of uncertainties within the RT equation. In Sect. 4,
we describe the ensemble simulations and results, investigat-
ing the impact of uncertainties and the ability of the model
to produce relevant surface reflectance distributions. Finally,
in Sect. 5, we discuss the assumptions and limitations of the
study and provide an outlook for future work.

2 Deterministic modelling framework

In this section, we describe the modelling framework and
the observations used for system validation. A schematic de-
scription of the modelling framework, the diagnostics pro-
vided by the RT model, and the relevant observations (de-
tailed in Sect. 4) are presented in Fig. 1. The determinis-
tic model couples a physical-biogeochemical model for the
Black Sea with a three-stream RT model. Gathering infor-
mation from the biogeochemical and hydrodynamics models
(Sect. 2.1), the three-stream RT model (Sect. 2.2) computes
fields of irradiance and sea surface reflectance. These can be
compared to both in situ and remote-sensed data (Sect. 2.3).
The required inputs to perform this operation are provided by
the NEMO-BAMHBI system for IOPs (Sect. 2.4) and forced
from simulation outputs from a regional atmospheric model
(MAR) configuration (Sect. 2.5) for above-water irradiance.

2.1 Physical-biogeochemical coupled system
NEMO-BAMHBI

The physical-biogeochemical coupled system NEMO-
BAMHBI is implemented within the Black Sea Monitoring
and Forecasting system of the Copernicus Marine Service.
The hydrodynamics are solved with NEMO 4.2, which is
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online coupled to the biogeochemical model. The Biogeo-
chemical Model for Hypoxic and Benthic Influenced areas
(BAMHBI) is a biogeochemical model that describes the bio-
geochemical cycles of carbon and nitrogen through the food
web, from bacteria up to mesozooplankton (Grégoire et al.,
2008; Grégoire and Soetart, 2010; Capet, 2014). It explicitly
represents processes in the anoxic layer, with a 28-variable
pelagic component (including the carbonate system) and a
6-variable benthic component.

The default light penetration scheme used in BAMHBI is a
one-stream (i.e. direct downward) RT scheme in three wave-
bands: two in the visible range and one in the infrared. The
sea surface radiation is computed using astronomical forcing
to estimate the radiance at the top of the atmosphere and is
propagated to the sea surface using the cloud cover data from
a regional atmospheric model (MAR) run for the Black Sea.
The sea surface radiation is then attenuated with depth fol-
lowing Beer’s law with attenuation derived from concentra-
tions of biogeochemical variables: pure water, phytoplank-
ton, suspended minerals, and CDOM. This simple RT model
is then used to derive PAR, and the amount of irradiance ab-
sorbed is a source term in the equation of conservation of
thermic energy in NEMO.

In operational and reanalysis mode, the coupled model
works with a horizontal resolution of 2.5 km and 59 unevenly
distributed vertical levels, with thinner layers close to the sur-
face and the pycnocline. However, in this study, we use a
horizontal resolution of 15km with the same vertical levels.
The reduced horizontal resolution is chosen here to minimise
computational costs for ensemble runs. In the configuration
used in this study, we use a velocity forcing as a bound-
ary condition at the Bosphorus Strait for exchanges with
the Mediterranean Sea, as described in Stanev and Beckers
(1999). It is assumed that there are no exchanges with the
Azov Sea. River runoffs and atmospheric deposition of nu-
trients (phosphorus, nitrate, and ammonium) are based on
climatology. The initial conditions for the simulations per-
formed in this study are taken from a longer stable run in a
similar model configuration.

2.2 The radiative transfer observation operator

The 1D three-stream RT model is directly inspired by
the model described in Dutkiewicz et al. (2015) within
the framework of the global MITgcm. Three streams of
irradiance are computed based on the absorption and
(back)scattering properties of the medium: a downward di-
rect irradiance (Eq) that accounts for transmitted light, a
downward scattered irradiance (Es) that accounts for light
that has been scattered in the forward direction, and an up-
ward irradiance (E,) that accounts for light that has been
backscattered towards the ocean surface. Resolving the three
irradiance streams allows comparison with remote-sensed
data thanks to the computation of the upward E, stream at
the surface, while the downward E4 and E streams are a
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Figure 1. Coupled NEMO-BAMHBI modelling framework with the three-stream RT model functioning in one-way coupling. The RT model
is used as an observation operator, projecting model variables into the space of observations. Since it does not feed back to NEMO-BAMHBI,
a simple one-stream RT model is kept to compute temperature. Among the outputs of the RT model, irradiance is compared to BGC-Argo data
and reflectance is compared to remote-sensed data and BGC-Argo data, through inversion algorithms used to retrieve surface chlorophyll.

decomposition of the single stream found in one-stream RT
models.

The RT model simulates irradiance streams in 33 wave-
bands ranging between 250 and 4000 nm, with a finer 25 nm
resolution in the visible range. This operator is 1D and there-
fore processes each water column individually. On the verti-
cal, we consider that all scattering happens only either for-
wards or backwards. We only represent elastic scattering, as-
suming that inelastic scattering processes are of lower mag-
nitude. The attenuation coefficients are derived from absorp-
tion (a), scattering (), and backscattering (by) coefficients,
all in units of m~!. The propagation of light in the water col-
umn is then described by the following system of equations:

u?u):_auy+4§+wumEﬂm, "
Z Ud
d&@)__au»t?muaEO)+nmmmE(M
dz Us
+lfmm @
CABG) _aG)tnbe®) o ne)
dZ Uy Us
by (A
+ oW o, 3)
Ud

where rg and r, are dimensionless normalised effective scat-
tering coefficients and vg, Us, and U, are average cosines ac-
counting for the angle of incidence of light, also dimension-
less (Aas, 1987). These coefficients are approximated with
constant values and are detailed in Table 1. This system is
closed for each water column, with two surface conditions
provided by the radiative forcing on Eq and E and one bot-
tom condition imposing Ey to 0.

We define PAR as the total irradiance in the visible range,
scaled by the angular coefficients vq, Us, and Uy. Although
the PAR simulated by the RT model is not used in the coupled
framework in a one-way configuration, it is a useful quantity
that can be used for comparison with in situ data. In units of
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We then define the sea surface reflectance R in the upper
layer z = 0 (below surface) based on the three streams of ir-
radiance as follows:

EZ0)
EX00)+ EF00

R\ = &)
The simulated reflectance is not strictly the same quantity
as the remote-sensed reflectance RRrs, which is estimated
above the sea surface. Following Dutkiewicz et al. (2018),
two corrections are made to make the modelled reflectance
comparable to Rgrg satellite measurements. The subsurface
reflectance is first adjusted so that the upwelling irradiance
stream E, is transformed into upwelling radiance as seen
by satellite instruments. This transformation is performed ac-
cording to the bidirectional reflectance distribution function
(BRDF) of the ocean surface. The BRDF depends on many
variables, such as the wave state at the surface, the solar
zenith angle, and the optical properties at the air—sea inter-
face (Morel et al., 2002). It is simplified here in a constant
coefficient Q. Q is generally estimated between 3 and 6 sr.
In this study, we set Q to 4.5 sr.

below()h) R()‘) (6)

0

An additional correction is performed to account for inter-
face effects. It aims to translate subsurface remote-sensed re-
flectance to above-surface remote-sensed reflectance follow-
ing Lee et al. (2002).

0.52R%°% (1)

Rrs(h) = ————RS %)
rs(}) 1— L7REV ()

)

Rrs(A) is now directly comparable to remote-sensed re-
flectance data. Among the available satellite products, we
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Table 1. Average cosines and normalised effective scattering coef-
ficients used in RT equations.

Parameter Value Unit
vq 1.5 [-]
Ug 0.83 [-]
Uy 04 [-]
rs 1.5 [+]
u 3 [-]
(0] 45 sr

will be using the multi-satellite product provided by the
Copernicus Marine Service for the Black Sea for valida-
tion and comparison. It combines measurements from the
Sentinel-3A, Sentinel-3B, Aqua, Suomi NPP, and JPSS-1
satellites. This L3 product is available from 1997 and pro-
vides daily measurements of sea surface reflectance with a
horizontal resolution of 1km in six wavebands centred on
412, 443, 490, 510, 555, and 670 nm.

2.3 Ocean colour algorithms

Ocean colour algorithms are used to estimate surface chloro-
phyll from sea surface reflectance. In the Black Sea, the
Copernicus Marine Service uses a merged product between
two algorithms: a band-ratio algorithm and a neural-network-
based method (Zibordi et al., 2015). The neural network is
used primarily for complex waters, such as coastal areas
of the northwestern continental shelf of the Black Sea. The
blue/green band-ratio algorithm is based on reflectances in
the 490 and 555 nm wavebands and is used to derive an es-
timate of surface chlorophyll (Kajiyama et al., 2018). We
choose to reproduce the band-ratio algorithm to derive an es-
timate of surface chlorophyll based on the reflectances simu-
lated in the RT model (Dutkiewicz et al., 2018). This choice
over the neural network approach is motivated by our focus
on the deep parts of the basin, where the band-ratio algo-
rithm is predominantly used. In the following, we call this
the reflectance-derived chlorophyll estimate (fCHL):

3 k
_ RRrs(490)
log(rCHL) = ];:0 Ck X |:log <—RRS 555) >:| . (8)

The algorithm described in Kajiyama et al. (2018) provides
the ¢, coefficients for the western Black Sea. We choose
here to expand this formulation to the entire basin. This new
estimate is not independent of the chlorophyll simulated in
BAMHB]I, since outputs of BAMHBI intervene in the sim-
ulation of reflectances, but it provides a quantity that corre-
sponds more closely to satellite chlorophyll products. From
the perspective of modelling, using a reflectance ratio is also
interesting, as it removes the uncertainty that arises from the
simplification of BRDF.
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2.4 Optically active components

The absorption and scattering of light by seawater are mod-
elled as the linear combination of individual contributions
from pure water, phytoplankton, non-algal particles, and
CDOM. Sources from the literature for specific coefficients
used to derive each contribution are summarised in Ta-
ble 2. In the following, the subscripts “w”, “phy”, “prt”,
and “cdom” denote their respective contributions. We assume
here that CDOM only participates in absorption and not in
scattering as in Dutkiewicz et al. (2015) and Alvarez et al.

(2023).

a(A) = aw(A) + aphy(A) + aprt (L) + dedom (A) )
b(A) = by (A) + bphy (M) + bpre (1) (10)
by(A) = by,w (L) + bp phy (L) + bp prt (1) (11)

2.4.1 Water

The absorption and scattering properties of water (ay, bw,
and by w) have been well documented by laboratory experi-
ments (Pope and Fry, 1997; Morel et al., 2007; Mason et al.,
2016). Water is an important constituent with a very high
absorbing power in the infrared and ultraviolet and a lower
absorbing power in the visible range. Scattering by water is
considered isotropic, meaning that, in 1D, by = by y. Ab-
sorption and scattering spectra for water in the visible range
are provided in Fig. 2, with higher absorption and lower scat-
tering for longer wavelengths.

2.4.2 Phytoplankton and non-algal particles

Absorption and (back)scattering by phytoplankton (aphy,
bphy, and by phy) are modelled as the sum of individual
IOPs for each phytoplankton functional type (PFT) solved
in BAMHBI: these are large flagellates (representative of
dinoflagellates), small flagellates (representative of coccol-
ithophores), and diatoms, all of which are the dominant
species in the Black Sea (Silkin et al., 2021). The specific
absorption and (back)scattering coefficients associated with
phytoplankton are adapted from Alvarez et al. (2022) to the
PFTs modelled in BAMHBI. Specific coefficients for ab-
sorption (a;hy) have units of m*> mgChl~!, while specific

coefficients for scattering (bphy and bb,phy) have units of

m? mmolC~!:
aphy(\) = Y _aly (WCHL', (12)
i
bphy (1) = Zb;hy()‘)céhl’ (13)
i
bo.phy (M) = > B oy M) Cl. (14)
i

where CHL! is the chlorophyll concentration for each PFT
in units of mgChlm—> and C{y 1s the carbon content in each
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PFT in units of mmolC m~3. Specific absorption and scatter-

ing spectra for phytoplankton are provided in Fig. 2.
Similarly, the optical properties of non-algal particles (ap,

bprt, and by pr) are derived from specific coefficients (a®

prt>
bgn, and bg’pﬁ, respectively) from Gallegos et al. (2011) and

Alvarez et al. (2022). The computation of these coefficients
relies on the use of particulate organic carbon (POC; com-
puted dynamically in BAMHBI) as a proxy for particle con-
centration, assuming uniformity in the size and distribution
of particles as in Dutkiewicz et al. (2015). Specific absorp-
tion and scattering spectra for particles are provided in Fig. 2.

api (1) = ap, (A\)POC (15)
bprt(1) = b3 (MPOC (16)
b prt(A) = by (W)POC (17)
243 CDOM

Although CDOM is a major contributor to irradiance absorp-
tion within the water column, it is not explicitly simulated in
the NEMO-BAMHBI framework. We choose here to derive
a forcing for acgom from a collection of BGC-Argo profiles.
The RT model is run by deriving IOPs from BGC-Argo data
to reproduce irradiance profiles at a reference wavelength
Aref = 412 nm by optimising dcdom to fit the measured pro-
files. The description of data and the setup and detail of the
method of this experiment are presented in Appendix A.

The forcing for acgom(Arer) depends on time and seawater
density p as a way to account for ocean physics and spatial
and seasonal variability. It also accounts for the increase in
CDOM, and therefore in acgom, With depth. This approach is
not valid in coastal areas and on the continental shelf, where
we observe low densities due to large freshwater discharges
from rivers. With this method, low-density areas are associ-
ated with low CDOM, which goes against the high biological
activity observed around river estuaries. Since this forcing is
generated using data from the central parts of the basin, we
acknowledge that it will not be representative of shallow ar-
eas. We interpolate this dataset to generate annual cycles for
each density scale.

CDOM is dominant in the blue and decreases for longer
wavelengths, parameterised with an exponential law for the
absorption coefficient of parameter Scgom (Twardowski et al.,
2004; Kitidis et al., 2006; Dutkiewicz et al., 2015). A range
of values for this slope is prescribed in Alvarez et al. (2022),
and we fit it using BGC-Argo irradiance profiles at 380
and 490 nm in a benchmark 1D RT model. We use Scqgom =
0.02 nm~! for our model, leading to the spectrum in Fig. 3.
The uncertainty associated with this extrapolation coefficient
will be studied in the next section of the paper. Our forcing
for acqom 1s finally written as

dedom (P, A) = acdom (05 Aref) ¢ Sedom (- =Aret) (18)
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2.5 Atmospheric forcing

The ocean model is forced with the outputs of an MAR re-
gional atmospheric model configuration (Gallée et al., 2013).
When run over the Black Sea, MAR provides the bound-
ary conditions for ocean physics: wind velocity, humidity,
precipitation, 2 m temperature, mean sea level pressure. The
spectral RT model also requires a boundary condition for
spectral irradiance. MAR has been extended with a spec-
tral radiative scheme, ecRad, developed by Hogan and Bozzo
(2018) to represent the radiative effect of clouds and aerosols
in the ECMWF integrated forecasting system. An accurate
description of gas optics is also included in the ecCKD tool
used in ecRad (Hogan and Matricardi, 2022). Using this ex-
tension, MAR provides direct and scattered downward irradi-
ance just above the sea surface in the 33 wavebands selected
for the ocean RT model. The irradiance below sea surface
is then derived considering surface albedo. The MAR con-
figuration extended with the ecRad scheme is described and
validated in Grailet et al. (2025).

In this study, we consider the surface radiative forcing to
be accurate and therefore ignore its uncertainty. Although an
error in the surface irradiance propagated within the water
column, the IOPs would not be altered. Irradiance fields in
the water column would be biased due to surface error, but
reflectance would not be significantly influenced as it is a
variable that is normalised by the incident light. We would
therefore obtain very similar results regardless of the surface
forcing. This change also would not influence the rest of the
NEMO-BAMHBI system in the one-way configuration of
the coupled model. The scope of this paper is thus focused
on the parameterisation of IOPs in the RT model used as an
observation operator.

3 Modelling of uncertainties

In this section, we describe the method we applied to trans-
form the deterministic RT model into a probabilistic model,
explicitly simulating the internal sources of uncertainties of
the model. Within the RT operator, the optical properties of
phytoplankton, non-algal particles, and CDOM are uncer-
tain. We aim at quantifying the influence of these uncertain-
ties on the computation of irradiance and reflectance fields.
A generic method is presented in this section to perturb IOPs
in a similar way for the three constituents.

3.1 Stochastic fields

All stochastic perturbations introduced in the model are pro-
duced using the generic approach implemented in the NEMO
framework by Brankart et al. (2015) and subsequently used
in the context of coupled physical-biogeochemical mod-
elling by Garnier (2016) and Popov et al. (2024). We start by
generating Gaussian processes, characterised by their mean
and time—space covariance. The stochastic processes are up-
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L. Macé et al.: Ensemble radiative transfer modelling 3753

(a)

0.50 — 3
£ € 50 €
= 0.25 i =2
E = 3
o g 2.5 S1
0.00
400 500 600 700 700 400 500 600 700
R C (d) . 51 0]
L ) Y o010
9 \ g £ —— Water
E 2 ”\ £ \ £ —F
E \ E \ \J\ £ "1 — Diat.
= \J\ Y : 2 SF
w0 280 e = ———— NAP
400 500 600 700 400 500 600 700 400 500 600 700
. 2 (g) _ (h) — le-3 (i)
S Q 040 g 20
£ 2 £ £
£ E -~ 1.8
= < 035 T
E E E
" £ 16
omﬁ 0 ?DE D.:::
400 500 600 700 400 500 600 700 400 500 600 700
A [nm] A [nm] A [nm]
Figure 2. Optical properties for water (aw, bw, and b a—c), phytoplankton at ,bi , and bi d-f), and non-algal particles (NAP
g P prop b,w phytop phy” Zphy b, phy galp

(agrt, bgn, and bg prt) (g—i). The three PFTs represented here are large flagellates (LF), diatoms (Diat.), and small flagellates (SF). Spectral
resolution in the model is 25 nm in the visible range (400-700 nm).

Table 2. Specific IOPs for the main water constituents and their references.

—1

aw, bw, bp w m Pope and Fry (1997); Morel (1974)
af)hy m? mgChl_1 Adapted from Alvarez et al. (2022)
b;hy’ b{) phy m? mmolC~! Adapted from Alvarez et al. (2022)
agees b by pry. M mmolC™! - Gallegos et al. (2011)

dedom m~! Calibrated with BGC-Argo data
Sedom nm~! Calibrated with BGC-Argo data

th—1:

~N ® Reference wavelength k=1
!
= 1.0
§ n(tx) = e n(te—1) +/ 1 — 2w, (19)
]
EE 05 where w is a random Gaussian noise of mean po and stan-
2 dard deviation oy, and
© 0.0

400 450 500 550 600 650 700 p=e V7, (20)

A [nm]

where w is a normalised white noise (with zero mean and
unit standard deviation). With Eq. (19), we can produce AR1
processes with a correlation function given by

Figure 3. Absorption spectrum for CDOM as the ratio with absorp-
tion at the reference wavelength Aef = 412 nm.

corr(At) = exp(—At/7), 21

where At is the time difference and 7 is the decorrelation

dated at each time step of the model to simulate the evolu- length scale (both in number of time steps). It represents a

tion of uncertainties and are correlated in time with a time
correlation parameter representative of biogeochemical pro-
cesses. In our application, we use first-order autoregressive
processes (AR1), which means that the value of the process
n at time step #; only depends on 7 at the previous time step

https://doi.org/10.5194/bg-22-3747-2025

decorrelation time at which the influence of a perturbation
is 1/e, after which it tends to 0. With Eq. (19), we obtain
processes with zero mean and unit standard deviation, which
can then be rescaled to obtain processes with the required
mean (pg) and standard deviation (op).
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By applying this method independently at each model grid
point, we obtain maps of independent stochastic processes
that are uncorrelated in space. The space correlation is ob-
tained by applying a filtering operator to the uncorrelated
noise. Here, we use a Laplacian filter to generate a perturba-
tion field n’ from the above time-correlated point-wise time
series of perturbations of the four neighbouring grid points.

ni () = 0.5n; j (1) +0.125(mi—1j (1) + i1, (1)
+ i, j—1 ) + 1, j+1 (), (22)

where (i, j) is the index of any grid point. This filtering pro-
cess can be repeated several times to widen the spatial corre-
lation. In this study, this filtering is repeated five times, thus
generating a spatial correlation length scale of 75 km (i.e. 5
times the spatial resolution of 15km). The resulting field is
normalised again to maintain the required standard deviation.
This transformation produces stochastic fields with space
and time correlation structures that remain Gaussian. As we
want to simulate fields of multiplicative noise, we need ran-
dom positive numbers. Gaussian processes are thus inappro-
priate, and we apply an exponential transform to convert the
distribution towards a log-normal distribution, noted r”.

i () = e (23)

The exponential transform of a Gaussian law transforms the
mean and standard deviation of the initial Gaussian distribu-
tion. We want the resulting log-normal distribution to have
a unit mean and a standard deviation o to generate a spread
without introducing bias. This constrains the choice for pg
and oy in the initial Gaussian distribution that are obtained
with

02
o =-=. (24)
of =In(140?). (25)

The resulting 2D maps of stochastic fields follow a log-
normal distribution of unit mean and standard deviation o.
The time—space correlation structure of these AR1 processes
can be tuned with the correlation timescale t and the num-
ber of passes of the horizontal Laplacian filter. In the fol-
lowing, we call this field of perturbation 7. These stochastic
processes are used as multiplicative noises applied to IOPs in
the RT model, with parameters as described in Table 3.

3.2 Uncertainties on phytoplankton and non-algal
particles

Uncertainties in IOPs are the joint effect of uncertainties
in both the concentrations simulated by BAMHBI and the
parameterisation of the optical properties (i.e. specific ab-
sorption and scattering coefficients) of active components
(Egs. 12 to 17). Since the modelling of the effect of these
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two sources of uncertainty on the IOPs can be done in a sim-
ilar way, we consider that perturbing the abundance of the
optically active component mimics the effect of uncertainty
in both the abundance and the parameterisation. It should be
noted that BAMHBI may miss a phytoplankton group that is
important in the Black Sea, besides the three PFTs it solves,
but this uncertainty is not considered here.

Similarly for non-algal particles, we find uncertainties in
both the parameterisation of their optical properties and the
concentrations. We assume that particles are uniform in size
and therefore all share the same specific optical properties.
In reality, non-algal particles come in a larger range of sizes,
and this assumption of uniformity injects uncertainty into the
model. Furthermore, the derivation of the particle concentra-
tion from POC may also be inaccurate. For both chlorophyll
and non-algal particles, the perturbations that are applied are
in the form of 2D horizontal fields as described in Sect. 3.1.
As such, the perturbation does not modify the vertical struc-
ture of the chlorophyll and POC fields and cannot account
for inaccuracy on the depth of chlorophyll or POC maxima.

We choose to model the uncertainties associated with the
abundance of optically active components in the model by
introducing multiplicative coefficients nphy and npoc into the
computation of absorption and scattering coefficients. The
Nphy and npoc fields are generated following the method de-
scribed in Sect. 3.1. As such, chlorophyll and POC concen-
trations are perturbed only at the interface between BAMHBI
and the RT model, without influencing the biogeochemical
processes described in BAMHBI. Absorption and scattering
coefficients thus become

a0, (1) = phyaphy (1), (26)
DY (1) = lphybphy (1), @7)
By () = Tphybb phy () (28)
a3 (1) = Npocttpr (1), (29)
B () = Mpocbpr (1), (30)
DY 1) = Tpocbb,pre(4). (31)

The decorrelation time is set to 30d, consistent with the
scale of biogeochemical changes in the Black Sea. Lapla-
cian filtering generates a spatial correlation length scale of
approximately 75 km. Finally, the standard deviation is set
here to 0.5, based on the ranges of inherent optical proper-
ties found in the literature (Gallegos et al., 2011; Dutkiewicz
et al., 2015; Alvarez et al., 2022). An example of the result-
ing field is shown in Fig. 4. The same perturbation field is
used for all 59 vertical layers of the model.

3.3 Uncertainty on CDOM

Since CDOM is not explicitly simulated in BAMHBI, its ab-
sorption is parameterised from BGC-Argo data. However,
the data do not cover the entire basin at all seasons, and
we rely on extrapolations to cover the remaining areas and
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Table 3. Time and spatial correlation properties of the stochastic fields generated to perturb IOPs, with standard deviations of each perturba-

tion.

Field Perturbation Decorrelation time  Laplacian filtering o

nphy ~ Phytoplankton 30d x5 0.5

Npoc  Non-algal particles 30d x5 0.5

Nel CDOM absorption at A  30d x5 0.5

Ne2 CDOM spectral slope 30d x5 0.25

Table 4. Overview of ensembles E1, E2, E3, and E4.
46°N 14
45°N 1.2 Ensemble Members Perturbation of IOPs
44°N 10
43°N 0.8 El 10  Phytoplankton
42°N ’ E2 10  Non-algal particles
A1°N 06 E3 10 CDOM
E4 20  Combined

Figure 4. Perturbation field generated according to the method de-
scribed in Sect. 3.1, following a log-normal distribution with unit
mean and standard deviation 0.5, with five passes of Laplacian fil-
tering for space correlation. The black star indicates the location of
coordinates 43.22° N, 36.63° E used in later sections to describe the
results in this paper.

times. This likely introduces uncertainties in the model, in
addition to potential observation errors. The approximation
of the CDOM absorption spectrum by a decreasing exponen-
tial law may also lead to uncertainties in the representation
of CDOM in the RT model, as indicated by the numerous
ranges that can be found in the literature for Scgom (Terzié
et al., 2021). Uncertainty in CDOM absorption is modelled
in two steps, perturbing separately the reference absorption
profile at 412 nm and the exponential slope of the absorption
spectrum, both described in Sect. 2.4.2.

We therefore introduce uncertainty on CDOM absorption
in two ways. Firstly, a multiplicative factor field 7. is used
to perturb the reference absorption coefficient from the ref-
erence profile. Then, an 7., field is used to perturb the ex-
ponential slope. Both fields are generated according to the
method presented in Sect. 3.1.

st —ne2 S A—A
a;d(Z)m (0, A) = Ne1aedom (0, Aref) X € 72 Sedom (A —Aret)

(32)
As for chlorophyll and non-algal particles, the decorrelation
time is set to 30d and the spatial correlation length scale
is set to 75 km. The standard deviation for the perturbation
of the reference profile is set to 0.5, based on the ranges of
CDOM profiles found in the BGC-Argo observations. This
standard deviation accounts for the rather simplified repre-
sentation of spatial and temporal variability in the CDOM
concentration and absorption power. The standard deviation
for the exponential slope is set to 0.25 based on the range of
possible values found in the literature (Terzi¢ et al., 2021).
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The same perturbation field is used for all 59 vertical layers
of the model.

4 Ensemble simulations

In this section, we explore the impact of simulating uncer-
tainties as described in Sect. 3 in the modelling framework
complemented by the RT model described in Sect. 2. A de-
terministic reference simulation and four distinct ensembles
are simulated. E1 and E2 are 10-member ensembles each
with perturbations on the optical properties of phytoplank-
ton only and non-algal particles only, respectively, as de-
scribed in Sect. 3.2. E3 is a 10-member ensemble with per-
turbations on the optical properties of CDOM only, as de-
scribed in Sect. 3.3. In this ensemble, both the reference pro-
file for CDOM absorption at At and the spectral dependence
of CDOM absorption are perturbed. E4 is a 20-member en-
semble combining the perturbations used in E1, E2, and E3
(i.e. on chlorophyll, non-algal particles, and CDOM).

All ensemble simulations are performed over 15 months:
a spin-up time of 3 months between October and Decem-
ber 2016 followed by the simulation of 2017. The whole
Black Sea domain is simulated. A total of 10 members are
simulated for ensembles E1, E2, and E3, as few members
are deemed enough to evaluate the influence of each pertur-
bation. The most important results described in this section
come from ensemble E4, which combines perturbations. As
such, 20 members were simulated to allow a more reliable
statistical analysis of the ensemble. However, when E4 is di-
rectly compared to E1, E2, or E3, it is limited to its first 10
members for consistency.

We begin by studying the individual influence of perturba-
tions on spectral irradiance profiles and surface reflectance.
Then, we assess the impact of the combination of uncertain-
ties in E4. Finally, we compare the ensemble results to the
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observation data to evaluate the ability of the different en-
sembles to produce distributions that are consistent with the
observations.

4.1 Influence of perturbations on radiative transfer

The perturbation of IOPs influences the vertical propagation
of irradiance in the water column by modifying the absorp-
tion and (back)scattering properties of the medium. In the
case of CDOM, the perturbation only modifies absorption
(see Egs. 1, 2, and 3). Modifying the absorption affects the
total amount of irradiance propagating in the water column,
while a modification of the (back)scattering coefficients af-
fects the direction of light (downward or upward). The three
irradiance streams, Eq, Es, and E,, are affected by absorp-
tion and backscattering. The perturbation of scattering coef-
ficients changes the amount of direct irradiance that is scat-
tered but does not influence the backscattered stream or re-
flectance. It also has no influence on the total downwelling
irradiance defined as the sum of direct and scattered streams.

The dominant optical constituent for absorption and
(back)scattering varies during the season, region, and wave-
band. In the following, we focus on the spectral bands used
in satellite inversion algorithms in the Black Sea to compute
surface chlorophyll: 490 and 555 nm. Appendix B provides
an overview of the model performance in other wavebands
in the visible range. Figure 5 presents a time series of per-
turbed IOPs at 490 nm in ensembles with individual pertur-
bations throughout 2017, in the eastern part of the basin and
at shallow depth (10.6 m). For absorption, we note that the
spread around CDOM is the largest, in agreement with the
high uncertainty set for CDOM absorption that is not explic-
itly modelled in BAMHBI. Scattering coefficients are 10 to
100 times larger than absorption coefficients, while backscat-
tering is about 10 times lower. Figure 7 below illustrates
how the perturbation of these coefficients influences the ir-
radiance streams in E4, highlighting that most of the light is
converted into the downward diffuse part Ej.

In the eastern gyre, CDOM has no clear seasonality. It
dominates absorption throughout the year, with lower values
at the end of summer and autumn. (Back)scattering is mainly
dominated by non-algal particles, except at the end of the
year, when phytoplankton reaches a similar and even larger
contribution. Overall, we identify three different regimes
throughout the year. In spring, we observe high biological ac-
tivity associated with a phytoplankton bloom. Absorption is
mostly dominated by CDOM, with high phytoplankton con-
tribution, while scattering is dominated by non-algal parti-
cles, as their concentration increases after the phytoplank-
ton bloom. During summer, we observe a regime of low bio-
logical activity once the high concentrations of phytoplank-
ton and particles start to decrease after the bloom. At this
stage, CDOM dominates absorption, whereas backscattering
is dominated by non-algal particles. During the autumn, the
contribution of phytoplankton increases again until it reaches
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Figure 5. Time series of absorption, scattering, and backscattering
coefficients at 490 nm from the perturbed runs at 43.22°N, 36.63° E
(see location in Fig. 4) in 2017, at 10.6 m depth. The solid lines
represent the ensemble mean, and the shaded areas cover 1 standard
deviation around the ensemble mean.

a level similar to that of CDOM and water for absorption. For
scattering, both contributions from phytoplankton and parti-
cles gradually increase in autumn. It is worth noting that the
introduction of perturbations in this setup allows a change
in the constituent dominating absorption or (back)scattering.
For instance, during blooms, perturbing the model may cre-
ate a switch from a domination of absorption by CDOM to
a domination by phytoplankton or, conversely, when contri-
butions are of similar magnitude in the deterministic simula-
tion. These three regimes are valid for the deep sea. In coastal
and shallow areas, such as the northwestern shelf, biological
activity follows different patterns. There, the contributions
of phytoplankton and particles remain high throughout the
year, with a lower contribution of CDOM to absorption. On
the shelf, scattering and backscattering are mostly dominated
by non-algal particles. However, in this paper, we focus on
the deep central areas of the basin, as it is where the CDOM
forcing is the most reliable.

Figure 6 presents the seasonal cycle of the surface re-
flectance Rrs(490) and rCHL (as defined in Eq. 8) gen-
erated by the ensembles. Perturbations in backscattering
and absorption influence the upward diffuse irradiance (see
Fig. 7), which in turn modifies surface reflectance. Although
backscattering directly influences the fractions of light scat-
tered upward in the E, stream, absorption is also of signifi-
cant importance, as it drives the ability of the water column
to propagate irradiance streams. For instance, with low ab-
sorption, the thickness of the surface layer in which backscat-
tered light eventually reaches back to the surface increases. In
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spring, perturbations of chlorophyll and CDOM generate the
largest dispersion (Fig. 6). Low biological activity in summer
leads to reduced dispersion in ensembles E1, E2, and E3, un-
til it increases again in autumn and triggers the dispersion of
members. Perturbing the optical properties of non-algal par-
ticles seems to only have a limited influence on rCHL, and
the perturbations remain significant in their influence on sur-
face reflectance.

Although CDOM shows a large spread at 490 nm, it has
little influence on reflectance at 555 nm, as its contribution
to absorption is lower at longer wavelengths. On the other
hand, the perturbation of contributions from phytoplankton
and non-algal particles has a greater influence on reflectance
at 555 nm. We also notice that some members drift from the
deterministic run or from the ensemble mean. For instance,
in the E1 ensemble (perturbation of phytoplankton optical
properties), one member (in grey) reaches high values for
rCHL during the diatom bloom, while reflectance values at
490 nm remain rather close to those of the other members.
In this case, it is associated with higher absorption at 555 nm
that lowers the backscattered signal. In all of the experiments,
the ensemble means remain rather close to the deterministic
run, showing that no significant bias is introduced with the
ensemble.

4.2 Combined vs. individual perturbations

The different regimes evidenced with individual perturba-
tions are also highlighted in the E4 ensemble with combined
perturbations. The evolution of reflectance and rCHL (Fig. 6)
simulated by the E4 ensemble exhibits patterns similar to
those observed in the E1, E2, and E3 ensembles. For surface
reflectance, early in the year, the spread of the E4 ensemble
is only slightly larger than that of the E3 ensemble at 490 nm
in which only the optical properties of CDOM are perturbed.
During spring bloom, the spread in E4 becomes larger as the
result of a combined effect of CDOM (E3), phytoplankton
(E1), and non-algal particles (E2). Similarly, in summer, and
despite the low dispersion observed in E1 and E2, the spread
in E4 is greater than with individual perturbations, suggest-
ing the influence of non-linearities. CDOM contributes the
most to the uncertainty of Rrs at 490 nm, which is consistent
with its higher absorption power in shorter wavelengths. At
555 nm, CDOM contributes less to absorption with a greater
influence of phytoplankton and non-algal particles. The sea-
sonal evolution of rCHL (right-hand panels of Fig. 6) simu-
lated by E4 suggests a dominance of phytoplankton early in
the year with a lower contribution of CDOM in the ensemble
spread. The extent of the spread is much higher in E4 during
the spring bloom than in E1 or E3, again exhibiting the non-
linear character of the perturbations and amplification by the
model non-linear dynamics. In both E1 and E4, one mem-
ber of each ensemble presents much higher values of rCHL
compared to the ensemble mean, thus largely increasing the
spread of the ensemble. In summer, perturbations in CDOM
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and phytoplankton dominate the E4 spread with a lower in-
fluence of non-algal particles. In autumn, CDOM perturba-
tions again dominate the spread of rCHL.

Figure 7 shows the effect of combined perturbations of
absorption and (back)scattering coefficients on the three
streams of irradiance in the eastern gyre of the Black Sea in
early summer. The influence of perturbations is represented
with both the ensemble mean (dotted lines) and the standard
deviation of the ensemble. This figure shows that CDOM
dominates absorption at depth at 490 nm, consistent with the
results presented in Fig. 5. (Back)scattering gradually in-
creases with depth and is dominated by phytoplankton and
particles that result from a former bloom, also with a signifi-
cant contribution of water to backscattering at surface. Below
2-3m, the downward diffusion stream largely dominates the
other two streams and penetrates waters below 40 m. The di-
rect downward stream Eq4 at 490 nm is fully absorbed after 5
to 7m, mostly by CDOM, and is (back)scattered by phyto-
plankton and non-algal particles. The upward backscattered
stream E,, which contributes to the reflectance, is the small-
est one and is present up to around 30 m.

Most of the simulated variability in the total stream Eyg
occurs at low depths and is mainly due to the variability in the
scattered stream Es. The impact of the uncertainty in IOPs
on direct and backscattered irradiances (E4 and E\) is lower
in magnitude due to lower absorption and backscattering co-
efficients. In this example, the combined effect of perturba-
tions results in an increase in the total absorption (i.e. the
ensemble mean is larger than the deterministic solution over
the whole column), while for (back)scattering it is opposite.
This results in a lower ensemble mean irradiance compared
to the deterministic simulation close to the surface, while the
backscattered E, stream is also lower (Fig. 7a). The uncer-
tainty in total light increases with depth and below 20 m has
a spread comparable to the average light. At depth, this range
is consistent with higher chlorophyll-a dynamics. For com-
parison, the standard deviation of E\y is 21 % at 10 m depth
and 53 % at 30 m depth.

Figure 8 presents the spread of the upward diffuse irradi-
ance E, at 490 nm at the surface simulated over the whole
Black Sea in summer in the four ensemble experiments.
Since the incident irradiance is the same in all ensembles, the
difference in E, results only from the perturbation of IOPs.
It shows that the perturbation of CDOM has the largest in-
fluence on E,, which subsequently influences sea surface re-
flectance. Although CDOM does not backscatter light, it ab-
sorbs the three streams including E, (Eq. 3). The perturba-
tion of phytoplankton IOPs has the second-largest influence,
with non-algal particles having the least influence. Their con-
tribution is 2-fold: directly on backscattering and through ab-
sorption. The standard deviations and ensemble means are
summarised in Table 5. It is worth noting that the ensemble
means are kept close to 1, again showing that no bias is in-
troduced with the perturbations.

Biogeosciences, 22, 3747-3768, 2025



3758

L. Macé et al.: Ensemble radiative transfer modelling

0.01

Rrs(490) [1/sr]

0.00

5

=)

& 0.01

[Ta]

[T

E

& 0.00
E4 4
k=)
'E‘2 2
T | g,
=} 0 e, S E T 0

Mar  Jul Nov Mar  Jul Nov Mar  Jul Nov Mar  Jul Nov
== Det. El — E2 E3 — E4

Figure 6. Time series of sea surface reflectance at 490 nm (RRrs(490)) and reflectance-derived chlorophyll (rCHL) in 2017 at the location
43.22°N, 36.63°E. For each ensemble, the standard deviation is represented with a shaded area. Phytoplankton, non-algal particles, and
CDOM optical properties are perturbed in E1 (in orange), E2 (in green), and E3 (in red), respectively. All optical properties except pure
water are perturbed in E4 (in purple). Each thinner grey line represents an individual member of the ensemble.
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Figure 7. Irradiance (a) and IOP (b-d) profiles at 490 nm. Profiles
are taken here at 43.22° N, 36.63° E on 23 June 2017, at solar zenith.
Solid lines represent the ensemble mean with shaded areas repre-
senting standard deviation of the ensemble. Dotted lines represent
the deterministic run.

Biogeosciences, 22, 3747-3768, 2025

2.0

1.5

. El
¥ T » B
R ; 1 E
[T, —— N E4
0.5

0.0

E1l E2 E3 E4

Figure 8. Distributions of E,(490) at sea surface normalised by
its deterministic value for the whole basin on 23 June 2017 and
for each experiment. Circles and black lines represent the ensemble
mean and standard deviation.

In Fig. 8, E4 shows greater extrema in the ensemble than
El, E2, and E3, but the standard deviation of E, remains
rather close to that of E3, where only the CDOM was per-
turbed, with 20.7 % for E4. The amplitude of the combined
perturbation is therefore lower than the sum of amplitudes of
individual perturbations, exhibiting the non-linearity of this
relationship. The increase in spread still shows that perturba-
tions are amplified when combined and do not cancel each
other out. It should also be noted that the standard deviation
for each ensemble is lower than the 50 % standard deviation
used to generate perturbations.

4.3 Comparison to observations
In this subsection, we assess the quality of the E4 ensemble

by comparing the distribution of simulated irradiance and re-
flectance fields with observations.
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Table 5. Ensemble statistics for normalised upward irradiance fields
Eu/E™f

Eyat490nm  Ensemble mean  Standard deviation
El 0.985 11.4 %
E2 0.993 6.5 %
E3 1.013 18.8 %
E4 0.996 20.7 %
5 5
10 10
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Figure 9. Profiles of downwelling irradiance Egown at 490 nm and
PAR from BGC-Argo data and the E4 ensemble normalised by their
surface values. Each thinner grey line represents an individual mem-
ber of the ensemble.

4.3.1 BGC-Argo profiles

A collection of 108 BGC-Argo profiles from floats 6901866
and 7900591, collected during 2017 in the eastern gyre of
the Black Sea, is used to compare the ensemble E4 with
in situ observations. As we want to assess the representa-
tion of marine optics within the water column regardless of
the surface forcing, we normalise the irradiance profiles by
their surface values. PAR data from BGC-Argo floats are
given in units of umols~' m~2. The conversion to Wm™2,
the unit used in the model outputs, is performed using
I1Wm2=4.6umols~! m~2 to obtain comparable quanti-
ties. This approximation is given for daylight conditions in
Thimijan and Heins (1983). In sunny conditions, this co-
efficient would normally have to be lower. Figure 9 shows
the average normalised profiles of the simulated and mea-
sured downwelling irradiance at 490 nm and PAR. The down-
welling irradiance Egown is defined here as the sum of the
direct and scattered irradiance streams E4 and Es. It shows
that, while there is good agreement close to the surface for
both variables, divergences appear at depths greater than
15m. This result, while expected, since the calibration of
CDOM optics was performed on the same type of data, illus-
trates that the RT model is able to represent the total amount
of light in a way that is consistent with in situ data at shallow
depths. Below 15 m, when the signals begin to diverge, about
70 % of the irradiance has already been absorbed.
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The comparison to BGC-Argo measurements reveals a
rather strong agreement between observed irradiance pro-
files and their equivalent computed by the RT model, al-
though not all of the observed profiles fall within the ensem-
ble spread throughout the year. Figure 10 shows the time se-
ries of Egown(490) and PAR at 10.6 m depth, both directly
and normalised by their surface values. Although the obser-
vations remain contained within the ensemble spread during
winter and spring, the ensemble then overestimates the irra-
diance and PAR (i.e. does not absorb enough) during early
summer. For PAR data, some of the discrepancies in summer
could be explained by inconsistent unit conversion in sunny
conditions. Some residual error can likely be attributed to
the BGC-Argo measurements (e.g. sensor drift, sensitivity to
temperature), in particular, close to the surface. The agree-
ment is then better during the early autumn, still with an
overestimation in the final months of the year. This appears
more clearly in the normalised profiles, where the biases ap-
pear distinctly in summer and at the end of the year. We also
notice some outliers in the observations that seem to indi-
cate isolated events of underestimated irradiance, but those
data points may indicate local fine-scale variations that are
not captured or observation error.

Although some of the data remain outside the ensemble
spread, it seems that the ensemble is able to capture most of
the measurements from BGC-Argo data. Figure 11 shows
a rank histogram that gathers the normalised data from the
time series in Fig. 10 illustrating the dispersion of the obser-
vation data within the ensemble members. A rank histogram
(Candille and Talagrand, 2004) aims at assessing the reliabil-
ity of an ensemble. A rank is attributed to each observation
that is equal to its relative position among the realisations of
the ensemble for this observation. The entire set of observa-
tions is ranked within the sorted ensemble of corresponding
simulated data. A flat histogram evidences perfect reliability,
i.e. an ensemble distribution that matches the distribution
of observations. A convex rank histogram suggests that
the ensemble is over-dispersive (all observations tend to
be within the ensemble), while a concave rank histogram
suggests that the ensemble is under-dispersive (observations
tend to be outside of the ensemble). The extreme ranks
correspond to observations that are lower or higher than all
realisations of the ensemble. To compute this histogram,
we consider an observation error of 6 % on the normalised
irradiance measured by the BGC-Argo floats. This value
is the one prescribed for the satellite products (informa-

tion from manufacturer — https://biogeochemical-Argo.
org/measured-variables- general-context.php, last access:
13 May 2025).

Some observations are not captured by the ensemble
(Fig. 11), suggesting that the ensemble is under-dispersed.
Figure 9 shows that, despite excellent agreement close to the
surface (also evidenced in Fig. 10), irradiance tends to be
slightly overestimated deeper in the water column, regardless
of the perturbation. Nonetheless, the ensemble is close to rep-
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Figure 10. Time series in 2017 of downwelling irradiance (i.e. Eq + Es) at 490 nm (a) and PAR at 10.6 m depth (b) for the E4 ensemble and
BGC-Argo data from floats 6901866 and 7900591. They are also shown normalised with their surface value (c, d). Floats here both drift in
the eastern part of the basin during this period. Each thin grey line represents an ensemble member. The standard deviation of the ensemble
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Figure 11. Rank histograms using BGC-Argo data in 2017 for
E4own(490) (a) and PAR (b), at 10.6 m depth. Observations are
sorted within the E4 ensemble.

resenting the distribution of measured irradiance streams. It
is worth mentioning that the number of observations may not
be sufficient here to provide a full picture of the reliability of
the ensemble. Although it provides an overview of the abil-
ity of the model to reproduce the distribution of downwelling
irradiance, the greater number of observations provided by
satellite data offers a larger dataset to assess the ensemble
skill.

4.3.2 Remote-sensed data

Comparison with remote-sensed data allows better cover-
age of the basin both spatially and temporally. We start by
studying the temporal signature of the ensemble by compar-
ing time series of reflectance in the eastern gyre at 490 and
555nm and rCHL. Figure 12 shows that the simulated re-
flectances are higher than observations for most of the year,
with the exception of the summer period, where higher re-
flectances are sensed by satellite instruments. These likely
correspond to a coccolithophore bloom (Kubryakov et al.,
2021), of which the magnitude is largely underestimated in
the model. This underestimation of reflectance by the model
is observed for both the 490 and 555 nm wavebands. Interest-
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Figure 12. Time series in 2017 of RRrg at 490 (a) and 555 nm (b)
and of reflectance-derived chlorophyll (c). Series are taken in the
eastern gyre (43.22° N, 36.63° E). The standard deviation of the en-
semble is represented by shaded blue areas, and each thin grey line
corresponds to a member of the ensemble.

ingly, the chlorophyll from remote-sensed reflectance does
not peak during the coccolithophore bloom event. The bias
is greatly reduced in the estimation of rCHL. Indeed, as this
quantity is a ratio between reflectances in two wavebands that
are rather close, uncertainties on measurement and correc-
tions such as the BRDF coefficient partly cancel out. How-
ever, we still observe a clear overestimation in the model dur-
ing winter and early spring. From June and until the end of
the year, observations are captured by the ensemble at this
location of the eastern gyre.

To better characterise the quality of the ensemble of rCHL
outputs, we compute the rank histograms over the whole
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basin at three dates selected in winter (5 March), at the end
of spring (8 June), and at the end of summer (13 Septem-
ber) during days with limited cloud cover for better satel-
lite coverage over the whole basin. The observation error
used to generate these rank histograms is set to 30 %, as in
Popov et al. (2024). Figure 13 presents the resulting rank his-
tograms and the associated maps. Rank maps show the spa-
tial distribution of observation ranks. In this representation,
we discard coastal and shallow areas, as these are more com-
plex waters where the ocean colour algorithm described in
Sect. 2.5 shows weak performances. Therefore, only areas of
the basin with a depth greater than 150 m are considered.

Figure 13 shows the spatial and temporal location of the
bias in rCHL. It confirms the presence of the bias at the be-
ginning of the year, such as on the 5 March, with few obser-
vations that are captured by the ensemble in the south of the
Black Sea. In June, the bias seems to decrease with a greater
number of observations that are captured by the ensemble in
the eastern part of the basin. This is confirmed by the rank
histogram that presents a lower peak and better-distributed
data. However, data remain gathered on the left side of the
rank histogram, exhibiting an overestimation of rCHL by the
ensemble. The bias there seems to be mainly located at the
periphery of the gyres, whereas observations close to the cen-
tre of both gyres appear to be better captured. In September,
the flatter rank histogram shows that the model captures the
observations in a more consistent way. We may still observe
a positive bias in the southwestern parts of the basin, but cen-
tral areas are consistently represented.

Finally, we proceed to a more complete comparison be-
tween the chlorophyll estimated by the satellite and the BGC-
Argo with that predicted by the BAMHBI model and esti-
mated from the reflectance rCHL. We subsample model and
satellite surface chlorophyll data at the times and locations of
BGC-Argo measurements. For the BGC-Argo and BAMHBI
deterministic run, surface chlorophyll is defined as the aver-
age concentration over the top 10 m, which corresponds to
the average water optical depth in the Black Sea (Peneva
and Stips, 2005). The resulting time series are presented in
Fig. 14.

Despite the bias observed in rCHL in the first months of
the year, surface chlorophyll derived from reflectance ap-
pears to be closer to observations than the chlorophyll com-
puted by the biogeochemical model. In winter, both estimates
of chlorophyll overestimate its concentration, but the devia-
tion is lower with rCHL. Then, both methods provide similar
estimates in spring before exhibiting contrasting results in
summer and autumn with a slight overestimation for rCHL
and an underestimation for BAMHBI chlorophyll. In the last
months of the year, both estimates remain close to observa-
tions. Despite the use of BAMHBI chlorophyll as an optical
component that governs the propagation of light and then the
surface reflectance from which rCHL is derived, both signals
do not seem to always follow similar patterns throughout the
year, even during blooms. This highlights the role of the other
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constituents when biological activity is high. We also note
that the in situ BGC-Argo data are rather consistent with the
remote-sensed data.

5 Discussion

In this section, we first analyse the quality of the generated
ensemble to represent the variability in the observations be-
fore summarising the main impacts of IOP uncertainties on
the simulated radiative fields. Limitations of the approach are
discussed, and the potential of using radiometric data to bet-
ter constrain biogeochemical models is discussed based on
our results.

5.1 Quality of the ensemble

Taking uncertainties into account in the formulation of the
RT model, we produce ensemble distributions of irradiance
and rCHL that provide enriched information compared to
a single deterministic simulation. To test the quality of the
ensemble, we assess the consistency of the simulated dis-
tribution of irradiance and reflectance-derived chlorophyll
(rCHL) with remote-sensed and in situ observations. The
ensemble E4 that combines all the perturbations under-
disperses the distribution of the downwelling irradiance at
490 nm and PAR when compared to BGC-Argo data, with an
increasing bias observed with depth.

From the analysis of surface reflectance distributions, we
notice that the consistency of the ensemble-generated rCHL
with satellite data varies throughout the year. The ensemble
shows good agreement from the end of spring until late au-
tumn in most parts of the basin (excluding shallow areas such
as the continental shelf). The rank histograms (Fig. 13) show
that the distribution of rCHL is closer to that of observations
in the second half of the year. In winter and early spring, the
consistency of the ensemble data with observations is lower
and observations are not captured. In fact, this is the time pe-
riod during which the deterministic biogeochemical model
strongly overestimates chlorophyll as measured by satellites.
Further calibration of the biogeochemical model or better
parameterisation of its uncertainties, including from other
sources that were not accounted for, is needed under those
conditions to first improve the deterministic solution.

It should be noted that this analysis is essentially valid in
the surface layer and the visible spectral range. Comparison
to BGC-Argo profiles shows a mismatch at depth over 15 m
(Fig. 9), where about 30 % of the incident irradiance is still
propagating downward. There, the current parameterisation
of absorption may be lacking to accurately represent irra-
diance profiles. The uniformity of perturbations applied on
the vertical also does not allow us to account for an inac-
curate depth of phytoplankton maximum, for instance, that
has a significant influence on the propagation of irradiance
in lower depths. The results obtained at the surface remain
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Figure 14. Surface chlorophyll estimated by BGC-Argo, satellite,
the biogeochemical model (dynamically simulated by BAMHBI)
and estimated from reflectance (rCHL). Comparisons are shown
at times and locations of BGC-Argo measurements in 2017, along
BGC-Argo float 6901866.

close to the observations and confirm the benefits of using
ensemble methods to describe uncertain processes and pa-
rameters such as IOPs.

5.2 Influence of uncertainties in IOPs on radiative
fields

As shown in the time series in Fig. 5, CDOM has the greatest
influence on absorption in the blue end of the visible spec-
trum and less so at 555 nm. Phytoplankton and non-algal par-
ticles dominate scattering and backscattering with seasonal
variations in their relative dominance imprinted by the bloom
dynamics. With depth, all contributions increase as concen-
trations of phytoplankton, non-algal particles, and CDOM
gradually increase. The direct irradiance stream Ey only pen-
etrates a few metres due to the high scattering properties of
the water components, as seen in Fig. 7. Below, the light field
is strongly dominated by the downward diffuse stream Ej.

Biogeosciences, 22, 3747-3768, 2025

The upward stream E, is always of smaller magnitude and
almost null below 25 m. The spread in the vertical light field
is mostly due to the downward diffuse stream. As a conse-
quence of uncertainties in absorption and (back)scattering,
its spread increases with depth and below 10 m has a magni-
tude that can impact photosynthesis and then the amplitude
of the deep chlorophyll maximum. This effect is not tested
here, since the light generated by the RT model is not used to
force the biogeochemical model.

As presented in Fig. 7, with acqom, for instance, we some-
times observe a mean effect that deviates the ensemble mean
from the deterministic results. This is likely caused by model
non-linearities such as the Scqom coefficient in the formu-
lation of acgom and despite the introduction of perturba-
tions that do not create bias in the perturbed IOPs. It could
also be noted that this effect could be mitigated by increas-
ing the ensemble size, which could explain deviations in
(back)scattering coefficients. In general, combining pertur-
bations increases the spread of the ensemble compared to sin-
gle perturbations as shown in Fig. 8. The non-linear character
of the model, however, leads to lower spreads in E4 than the
simple sum of spreads with individual perturbations. In all
four ensembles, the spreads in irradiance and reflectance re-
main lower than the 50 % standard deviations used to perturb
the IOPs.

5.3 Importance of CDOM

CDOM largely dominates the absorption at short wave-
lengths (lower than 500 nm) and strongly influences the prop-
agation of the three light streams. Since CDOM is not ex-
plicitly simulated by the biogeochemical model, we assume
its uncertainty to be the largest. The comparison of ensem-
bles shows that the ensemble that combines the different
sources of perturbations has similar patterns to that obtained
with CDOM perturbations, only with a wider spread. The
high influence of CDOM perturbation on the outputs of the
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RT model shows how important this component is and what
variations its inaccurate estimation can generate. Perturbing
CDOM has a strong influence on E, and therefore on RRgs.
Unfortunately, most biogeochemical models either strongly
oversimplify or do not explicitly solve CDOM dynamics.
The reasons are the lack of knowledge and data to param-
eterise CDOM, although its inclusion in models was proven
relevant (Terzi¢ et al., 2019). In our study, CDOM is repre-
sented as a forcing derived from BGC-Argo data. This ap-
proach has limitations, since BGC-Argo floats do not cover
the shallow areas of the basin. In order to link CDOM sea-
sonal and spatial variability to ocean physics, the CDOM
forcing is scaled by seawater density, with CDOM being pa-
rameterised as an increasing function of density as described
in Sect. 2.4.3. However, this procedure results in low CDOM
values in low density areas that do not match the reality of
coastal areas largely influenced by river discharges. Although
the perturbation of CDOM absorption accounts for the uncer-
tainty that arises from the method used to derive its forcing,
the large variations that could be observed in coastal areas
are likely not captured by the ensemble due to the different
biogeochemical mechanisms at play. These results highlight
the need for better representation of CDOM in biogeochem-
ical models to successfully model RT in shorter wavelengths
and provide a more complete assessment of the spatial and
temporal variability in CDOM absorption.

5.4 Limitations of the approach

The optically active components considered here are
the three phytoplankton functional groups simulated in
BAMHBI, non-algal particles, and CDOM. The results of
this study are influenced by the way these components are
modelled in the biogeochemical model. Firstly, as described
above, the forcing used to represent CDOM absorption has
its limitations, especially near shallow areas. We also ig-
nore suspended minerals that can also be optically impor-
tant, limiting the accuracy of our study on the continental
shelf (Stramski et al., 2016). Moreover, as in Dutkiewicz
et al. (2015), the size of particles is assumed to be uniform,
which is an oversimplification. The modelling of phytoplank-
ton optics is also largely influenced by the PFTs simulated
in the model, which are representative of diatoms, dinoflag-
ellates, and small flagellates. This last group mainly inte-
grates coccolithophores, although BAMHBI does not con-
sider calcification. The analysis of reflectance fields clearly
shows that the model misses the reflectance peaks in June
associated with the coccolithophore bloom. During this pe-
riod, BAMHBI simulates a bloom of small flagellates, but its
optical signature is underestimated. This arises both from a
flawed parameterisation of IOPs and from an underestima-
tion of the bloom in BAMHBI. We could also investigate
the inclusion of more PFTs that are relevant for the Black
Sea, such as diazotrophs (Dechenne, 2023) or Synechococ-
cus (Uysal, 2001).
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There are still improvements to be made in the current for-
mulation of the stochastic RT model based on the current
variables provided by BAMHBI. Several challenges remain
in calibrating the deterministic RT model properly due to the
rather limited amount of optical in situ data in the Black
Sea and the composition of phytoplankton. The addition of
stochastic processes as described in this paper only allows
us to account for model uncertainty up to a certain extent.
For instance, the perturbations applied here do not influence
the depth of optically active constituents. This would likely
need to be perturbed, too, if we seek to explain discrepancies
with observations. With the current method, a phytoplankton
bloom that is too deep in the model will not see its depth
perturbed. In this study, we also chose to only perturb the
RT model with no feedback towards the hydrodynamical and
biogeochemical models (i.e. the modified light field is not the
one used in the coupled model). By considering it and other
sources of uncertainty, such as surface radiation, that affect
biological processes, we may be able to capture some of the
observations that remain outside of the ensemble E4 spread
and provide a more complete description of the sensitivity of
the RT model.

5.5 Radiometric observations to constrain coupled
physical-biogeochemical models

The analysis performed with this RT model also paves the
way to use radiometric quantities for calibration, validation,
and assimilation in a physical-biogeochemical model in the
Black Sea. Comparison to reflectance data still shows high
biases that would require prior corrections, but the defini-
tion of reflectance ratios, or associated variables such as
reflectance-derived chlorophyll (fCHL), shows promising re-
sults. Band ratios remove some of the uncertainties associ-
ated with corrections.

This study also provides a better understanding of the
strengths and limitations of ocean colour algorithms. While
those algorithms aim at estimating surface chlorophyll con-
centrations, the ocean colour products fundamentally remain
optical quantities that are compared to biogeochemical vari-
ables in models. Based on colour, the use of the blue/green
band ratio algorithm does not only “see” chlorophyll, but also
other types of in-water material. As such, reflectance-derived
chlorophyll proves itself to be closer to the satellite-retrieved
chlorophyll than the chlorophyll computed in BAMHBI.
Currently, ocean colour products are being assimilated in
biogeochemical models that rarely resolve reflectance. This
study hints at the opportunities provided by working directly
with ocean colour derived from reflectances, which accounts
for more than just chlorophyll and therefore may be closer to
the true meaning of such estimates. It also suggests that the
assimilation of satellite surface reflectances has the potential
to correct the IOPs and ultimately improve the simulation of
irradiance streams and reflectances.
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6 Conclusion and perspectives

The modelling of light in the coupled physical—
biogeochemical NEMO-BAMHBI framework for the
Black Sea is enriched by adding a spectral radiative transfer
model that explicitly solves the upward and downward light
field at high spectral resolution. This offers a direct connec-
tion between model variables and remote-sensed reflectance
data, without relying on inversion algorithms. Four optically
important water constituents are considered: pure water,
phytoplankton, non-algal particles, and CDOM. We aim at
assessing the relative contribution of each constituent while
accounting for the uncertainties in their IOPs using ensemble
simulations. CDOM clearly dominates absorption at short
wavelengths throughout the year, while phytoplankton and
non-algal particles dominate the (back)scattering, having the
largest influence during and following algal blooms.

As it is not explicitly simulated in BAMHBI, we assume
higher uncertainty on CDOM absorption than phytoplankton
and non-algal particles. The ensembles show that the pertur-
bation of CDOM has a dominant influence on the radiative
fields. Its major role highlights the need for a better repre-
sentation of this component in our biogeochemical model,
which will require high-quality data in the Black Sea. Such
data are currently practically non-existent in the central areas
and shelf zone, thus hampering modelling capabilities.

The quality of the generated ensembles is assessed by
comparing the ensemble distributions of irradiances, re-
flectances, and reflectance-derived chlorophyll (rCHL) with
observations. We find that the distributions generated by the
ensemble do not capture all the spatial and temporal variabil-
ity in the measurements performed in the Black Sea. This is
particularly the case in coastal areas and during winter and
important blooms. This suggests that the introduction of un-
certainties in IOPs is not enough to fully account for uncer-
tainties in the RT model. Firstly, vertical perturbations that
could influence the position of the deep chlorophyll maxi-
mum are missing and could be added to simulate uncertain-
ties more realistically. Other sources need to be considered,
such as forcings or parameterisation of the hydrodynamics
and biogeochemistry. Their influence has been studied in
other frameworks, such as in Garnier et al. (2016).

Comparison to remote-sensed data shows promising
agreement on reflectance ratios, even though the reflectances
themselves are less accurately modelled. Uncertainties on
the atmospheric correction or interface effects (e.g. BRDF)
are indeed removed using reflectance ratios between close
wavebands. We also show that rCHL provides estimates of
chlorophyll that are closer to remote-sensed data than the
chlorophyll modelled in BAMHBI based on biological mech-
anisms. Using reflectances could then allow us to better char-
acterise errors in the model.

Finally, in this paper, the coupling between the physical—
biogeochemical model and the RT model is one-way. This
means that the chlorophyll and non-algal particles simu-
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Figure 15. Time series of Rrs(490) (a) and rCHL (b) at 43.22° N,
36.63°E with the one-way (E4, in blue) and two-way (in orange)
configurations.

lated by BAMHBI are used to compute the IOPs in the RT
model, but the light field produced by the RT model is not
used to compute temperature and photosynthetic active ra-
diation. Rather, a simple one-stream optical model differ-
entiating three wavelengths is used to force the physical—
biogeochemical model. We test a two-way configuration that,
despite biases in the simulated radiative fields, shows promis-
ing results. The simulated time series of Rrs(490) and rCHL
agree better with satellite data (Fig. 15). We find that, in this
two-way configuration, the irradiance feedback towards the
coupled framework does not disrupt the simulation of re-
flectance, although it decreases Rrs(490) to bring it closer
to satellite observations. For rCHL, however, this first out-
look shows that we are able to better compare remote-sensed
data with this two-way configuration, especially in the first
months of the year. A two-way configuration for the cou-
pled framework NEMO-BAMHBI RT model will possibly
pave the way towards the explicit assimilation of multispec-
tral satellite reflectance in coupled physical-biogeochemical
ocean models.

Appendix A: Generation of acqom forcing

CDOM is a major contributor to absorption in seawater, but
it is not explicitly simulated in the NEMO-BAMHBI frame-
work. Therefore, we cannot use the same approach as for
phytoplankton and non-algal particles. We choose here to de-
rive a forcing for acgom from the in situ BGC-Argo data. A
collection of 625 profiles from floats 6901866 and 6903240
provides measurements of irradiance in three wavebands
(EArgo at 380, 412, and 490 nm), chlorophyll concentration
(chlargo), backscattering coefficient at 700 nm (bbp;, Argo),
and CDOM (cdomago). Some profiles are discarded de-
pending on the quality control flag for variables of inter-
est. Float 6901866 has measurements between June 2015
and June 2019 in the entire basin with limited coverage of

https://doi.org/10.5194/bg-22-3747-2025



L. Macé et al.: Ensemble radiative transfer modelling

the central parts. Float 6903240 has measurements between
April 2018 and July 2022, mostly around the western gyre.
Both floats do not cover the continental shelf, where the dy-
namics of CDOM are more complex.

In the RT model, we parameterise the optical properties
of phytoplankton and non-algal particles from biogeochem-
ical variables of BAMHBI. We use the same parameteri-
sation to derive acqgom- We choose a reference wavelength
Aret =412 1nm in the range of high CDOM absorption and
with irradiance profiles measured by BGC-Argo floats to de-
rive a reference acgom profile. We use the RT model to simu-
late the same profiles that are measured. Optical properties of
water are known in the same way as described in Sect. 2.4.1.
Optical properties of phytoplankton are derived using chloro-
phyll profiles from BGC-Argo data instead of BAMHBI vari-
ables. However, we cannot discriminate between PFTs and
therefore assume that chlorophyll is equally distributed be-
tween the three PFTs solved in BAMHBI. The optical prop-
erties of non-algal particles are derived from profiles of par-
ticulate backscattering coefficient at 700 nm bbpyg preo- We
assume this coefficient to be the sum of contributions from
phytoplankton and non-algal particles to derive a POC con-
centration that is used to apply our parameterisation:

bbp700, Argo — b,phy (700)

POC a0 =
Argo )

(AD)

We assume that the optical properties of CDOM on a water
column are a linear function of CDOM concentration; i.e. on
a water column, all CDOM has the same absorbing power.
We want acgom profiles to have the same shape as CDOM
profiles measured by BGC-Argo float. We therefore assume

Acdom = Kedom CdomArgo s (A2)

where kcgom is unknown. Starting with an initial value of
k=1m~!, we then compute the downwelling irradiance
stream Ejoop (Arer) for all profiles and compare them with the
BGC-Argo irradiance profiles. For each profile, the param-
eter k is then updated to minimise the difference between
the Eloop(Aref) and Eargo(Aref) profiles in the top 30 m of the
ocean (21 model layers), normalised by their surface value
for consistency in assessing the influence of IOPs. This sim-
ple optimisation problem is written as follows:

. 2! E loop (Aret) EArgo (Aret)
min Y (

k=1 Eloop (Aref) surf EArgo (Aref) surf

We use a deviation threshold of 2% to accept a value of
k for a given profile. Using this method for each profile of
our collection, we get a new collection of kargo and then of
Aedom (Mref) profiles. We now store values of acgom (Aref) ac-
cording to time and seawater density to link each time and
location of the basin to a value of acqom(412). We interpolate
this dataset to generate annual cycles for each density scale to
smooth out the forcing. Figure Al shows the resulting forc-
ing for acgom (Arer) for selected seawater densities.

). (A3)
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Figure Al. acqom forcing scaled in density for Ayef = 412 nm. This
forcing was generated using a collection of BGC-Argo profiles in
the deeper areas of the Black Sea.

Appendix B: Model performance in the visible spectral
range

In this paper, we focus on the wavebands that are used to
derive rCHL, centred on 490 and 555 nm, respectively, in
the blue and the green. More generally, we computed irra-
diance and sea surface reflectance in the six wavebands that
are found in the multi-satellite reflectance product for the
Black Sea made available by the Copernicus Marine Service,
centred on 412, 443, 490, 510, 555, and 670 nm. Figure B1
shows the average spectral sea surface reflectance in the east-
ern gyre of the Black Sea over 2017. As seen previously in
the 490 and 555 nm centred wavebands, the model tends to
overestimate sea surface reflectance. The model reflectance
is consistent with remote-sensed data up to around 475 nm,
after which the bias gradually increases for longer wave-
lengths. The deviation then decreases at the near-infrared end
of the spectral range.

0.008 Model
— 0.006 — Satellite
u
=
= 0.004
g
* 0.002

0.0004 ‘ : ; . :

400 450 500 550 600 650
A [nm]

Figure B1. RRrg average spectra in the eastern gyre over 2017.
Uncertainties in model and remote-sensed data are represented in
shaded areas.

Data availability. Ocean colour data were taken from https://doi.
org/10.48670/moi-00303 (CMEMS, 2025). BGC-Argo data were
collated within the Copernicus Marine Service (in situ) and EMOD-
net collaboration framework. Data are made freely available by
the Copernicus Marine Service and the programmes that contribute
to it (https://doi.org/10.13155/59938, Copernicus Marine in Situ
tac Data Management Team, 2023; https://doi.org/10.13155/43494,
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2000).
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