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Abstract. Nitrate is an essential inorganic nutrient limiting
phytoplankton growth in many marine environments. Eu-
trophication, often caused by nitrogen deposition, is a re-
occurring problem in coastal regions, including the North-
West European Shelf (NWES). Despite their importance, ni-
trate observations on the NWES are costly to obtain and
thus sparse in both time and space. We demonstrate that ma-
chine learning (ML) can generate, from sparse observations,
a skilled, gap-free, bi-decadal (1998–2020) surface nitrate
dataset. We demonstrate that the effective resolution (scales
on which the dataset is skilled) is slightly coarser than the
7 km and daily resolution of the product but still completely
sufficient to analyse nitrate dynamics on a monthly scale.
With such a dataset we are able to (i) highlight the coastal re-
gions that show strong summer nutrient limitation, covering
eutrophication problem areas identified by monitoring bod-
ies (i.e. OSPAR), but also other regions, such as the south-
ern Irish coastline and parts of the Irish Sea. Our results
could indicate greater potential for eutrophication events in
regions subject to high-riverine-nutrient-discharge scenarios.
(ii) We demonstrate that bi-decadal 1998–2020 trends in
coastal nitrate, responding to long-term policy-driven reduc-
tion in riverine discharge, are mostly modest, with a notable
exception of the Bay of Biscay. (iii) We show that winter ni-
trate plays a relatively minor direct role in the intensity of the
phytoplankton bloom the following spring, which can have
some implications for using winter inorganic nitrogen as an
indicator of eutrophication (as often included by OSPAR).
The last two results are consistent with recent findings in the
literature (Axe et al., 2022; Devlin et al., 2023; Van Leeuwen
et al., 2023). We propose using the nitrate dataset for data as-

similation and hypothesise that it has the potential to substan-
tially improve phytoplankton forecasts in operational runs.

1 Introduction

Nitrogen is one of the most important components of organic
matter, needed for primary production in relatively large
concentrations, as demonstrated by the Redfield ratios (Tett
et al., 1985). Despite its large abundance (the Earth’s atmo-
sphere comprises 78 % of nitrogen as N2), it is non-trivial to
obtain nitrogen in forms useful for plants. As a consequence,
nitrogen is often the most limiting nutrient for plant or al-
gae growth, including the coastal marine environment (Ry-
ther and Dunstan, 1971; Board and Council, 2000). Nitrogen
fixation, converting atmospheric nitrogen to forms useful for
life, happens through various biotic and abiotic pathways,
resulting in ammonium, nitrite, and nitrate (Noxon, 1976;
Hill et al., 1980; Postgate, 1998; Beman et al., 2008; Voss
et al., 2013). Nitrate in the ocean is the primary nutrient for
phytoplankton, with phytoplankton uptake enabling nitrogen
flows into higher trophic levels and various detrital and dis-
solved forms of organic matter. In a nitrogen-limited envi-
ronment, excess nitrate concentrations, primarily originating
from agricultural runoff and industrial wastewater discharge,
can stimulate harmful eutrophication events (Withers et al.,
2014; Nazari-Sharabian et al., 2018). The thick layer of algae
produced by these events may reduce oxygen ventilation at
the surface, and after the algae die off and sink, decomposers
may consume vast amounts of oxygen, leading to marine hy-
poxia in the bottom part of the water column (Rabalais et al.,
2002; Diaz and Rosenberg, 2008). Furthermore, eutrophica-
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tion events are often dominated by species that produce tox-
ins (leading to harmful algae blooms, HABs), which have
detrimental effects on the marine ecosystem by causing fish
kills, contaminating seafood, and even posing risks to human
lives (Anderson et al., 2012). Additionally, high nitrate con-
centrations may lead to excessive production of organic mat-
ter under certain circumstances, which, upon decomposition,
increases CO2 concentrations, contributing to ocean acidifi-
cation (Doney et al., 2009). Eutrophication is a fundamental
problem in many shelf sea and coastal areas (Rabalais et al.,
2009), where nitrate monitoring and prediction, along with
other indicators (e.g. chlorophyll, dissolved oxygen, phyto-
plankton species), provide an essential tool informing marine
management and policy.

An important region subject to eutrophication is the North-
West European Shelf (NWES). The NWES is impacted by
significant river inputs, such as the Elbe, Rhine, Loire, Seine,
Scheldt, Meuse, Humber, Weser, and Thames, which intro-
duce substantial freshwater and nutrients into the region,
influencing salinity and water properties (Sonesten et al.,
2022). Open ocean–shelf exchange, especially transport of
nutrients and carbon across the shelf break, plays another
vital role in the NWES ecosystem dynamics (Huthnance
et al., 2009). The NWES has high ecological importance
due to its high biological productivity, underpinning signif-
icant commercial fisheries and carbon sequestration (Pauly
et al., 2002; Borges et al., 2006; Jahnke, 2010). Until the
1980s, the NWES, particularly near the German Bight and
the Westerschelde Estuary, experienced notable shifts in nu-
trient distribution, primarily driven by increased continen-
tal nutrient inputs. Riverine discharges, particularly from the
Rhine and Elbe, have been identified as major contributors
to nutrient dynamics in the region (Brockmann and Eber-
lein, 1986; Radach, 1992), having adverse effects on the local
ecosystem. However, EU regulations following the OSPAR
Convention in 1992 have substantially decreased nitrate de-
position into the NWES (Soetaert et al., 2006; Radach and
Pätsch, 2007; Lenhart and Große, 2018; Burson et al., 2016;
Axe et al., 2022; Sonesten et al., 2022).

The NWES nitrate concentrations are operationally simu-
lated and predicted (Skákala et al., 2018); however, NWES
nitrate observations are too sparse to properly constrain the
simulated nitrate through data assimilation. Existing works
have developed statistical algorithms to derive nitrate from
satellite observations (Durairaj et al., 2015; Chen et al.,
2023), but these have so far been developed either for the
global open ocean or for regions other than the NWES (such
as different regions in Asia or California, Yu et al., 2021;
Chen et al., 2023), and those algorithms are unlikely to
work for the NWES. The current operational NWES sys-
tem is mainly constrained by much more robust satellite
temperature and chlorophyll observations (Skákala et al.,
2018, 2021, 2022) and avoids assimilating nutrients en-
tirely. Furthermore, due to its univariate nature, the oper-
ational system fails to directly constrain most of the non-

assimilated variables, including nutrients. Consequently, the
nitrate reanalyses and forecasts produced by the operational
system are known to have substantial biases, inherited from
the model free run (Skákala et al., 2018, 2022). Although
the simulated physics and chlorophyll from the reanaly-
sis are well validated against observations (Skákala et al.,
2018, 2022), the nitrate NWES product is of more limited
use.

In this work we develop and validate a new bi-decadal
NWES nitrate product derived from available observations
using advanced machine learning (ML) algorithms. The ni-
trate product is developed for the ocean surface, where nu-
trients have the potential to most significantly drive phyto-
plankton growth. This is, to our knowledge, by far the most
complete and detailed observation-based sea surface nitrate
dataset on the NWES. Unlike the NWES operational reanal-
ysis, the dataset validates skilfully against the independent
observations. Using our NWES nitrate product, we are able
to discuss several important topics, like the impact of winter
nitrate pre-conditioning on interannual phytoplankton vari-
ability, the most nutrient-limited coastal NWES geographic
areas, and the trends in nitrate concentrations on the NWES.
To do so, we maximise our reliance on the observational data
and use ML and modelling to effectively fill the large data
gaps, either through statistics or through dynamical consis-
tency imposed by deterministic modelling.

2 Methodology

2.1 The ML model

We used as the ML model a feed-forward neural network
(NN) designed through the Autokeras library using a struc-
tured data regressor (Jin et al., 2019). This approach stream-
lined the process of hyperparameter optimisation and model
architecture discovery through an automated procedure, sig-
nificantly reducing the need for manual intervention. The
routine follows an iterative trial-and-error approach by loop-
ing through several possible combinations of various hyper-
parameters, such as learning rate, optimisers, and the number
of dense layers with different combinations of nodes. It then
selects the best model architecture with the highest skill score
against the validation dataset and saves it for final prediction
against the test data.

The final model architecture comprised several layers (see
Fig. S1 in the Supplement): (i) the input layer, with 25 nodes,
corresponds to the input features or predictors; (ii) a multi-
category encoding layer, encoding categorical features (i.e.
month and day of the year) into a numeric form that can be
understood by the network; (iii) a normalisation layer, which
normalises the input data to improve model training by fa-
cilitating improved model convergence time and better per-
formance, avoiding dominance of features with larger mag-
nitudes, and providing better stability; (iv) two dense layers
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with 128 and 256 nodes, respectively, with each of these lay-
ers being followed by a rectified linear unit (ReLU) activa-
tion function to introduce non-linearity into the model; (v)
a dropout layer that is applied to prevent overfitting by ran-
domly dropping out a fraction of neurons during the training
phase; and (vi) a regression head with a single node that pro-
duces the final prediction, i.e. nutrient concentration. During
the training phase, the model’s performance was evaluated
using standard metrics, i.e. mean squared error (MSE), and
the relative error was then estimated with respect to the vali-
dation dataset.

2.2 Data

2.2.1 The input features

To avoid biases towards operational models, the NN model
input features were selected to be either observational
data or reanalyses of variables closely constrained by the
observations. One of the main challenges in developing
ML for environmental applications is combining (often
sparse) data with typically inconsistent domains of coverage
across various spatial and temporal scales. The most robust
NWES-focused observational datasets are obtained through
satellite optical measurements. For physics, these are data
such as sea surface temperature (SST) or altimetry. For bio-
geochemistry, the most typically derived dataset is surface
chlorophyll a concentration obtained from the ocean colour
(OC). Recently, new remote-sensing algorithms have been
developed to partition the total chlorophyll concentration
into phytoplankton functional types (PFTs) largely based on
phytoplankton size classes (Brewin et al., 2010, 2017), and
PFT chlorophyll products are now operationally assimilated
into the NWES model (Skákala et al., 2018). The reanalyses
from the NWES operational model have been found to
have very close match-ups with the assimilated observations
(Skákala et al., 2018, 2022) and act as natural extensions of
the observations, forming a complete dataset on a gridded
domain. We have extracted a range of NN model features
from NWES physical–biogeochemistry reanalysis prod-
ucts, namely NWSHELF_MULTIYEAR_BGC_004_011
and NWSHELF_MULTIYEAR-_PHY-_004_009
(downloadable from the EU Copernicus portal,
https://data.marine.copernicus.eu/product/NWSHELF_
MULTIYEAR_BGC_004_011/services, last access:
20 June 2025; see also Kay et al., 2016), covering the
1998–2020 period with daily and 7 km spatial resolution.
The product is based on assimilating satellite SST, temper-
ature, and salinity profiles, as well as OC PFT chlorophyll,
into the operational Nucleus for European Modelling of
the Ocean (NEMO; Madec et al., 2017) model coupled
through the Framework for Aquatic Biogeochemical Models
(FABM; Bruggeman and Bolding, 2014) to the biogeochem-
istry European Regional Seas Ecosystem Model (ERSEM;
Baretta et al., 1995; Butenschön et al., 2016). The extracted

features were for (i) SST; (ii) chlorophyll ocean surface
concentrations from four PFTs, which were assimilated
into NEMO-FABM-ERSEM (diatoms, microphytoplankton,
nanophytoplankton, and picophytoplankton); (iii) total
surface phytoplankton carbon; (iv) total surface chlorophyll;
and (v) total surface net primary production. Although these
features were selected from the reanalysis, they correspond
to either the assimilated variables (SST, PFT chlorophyll)
or the variables which are dynamically very close to the
assimilated PFT chlorophyll (phytoplankton carbon, net
primary production) and therefore well constrained by the
assimilation. Additionally, we also included SST observa-
tions from the global ocean OSTIA product (Good et al.,
2020; Donlon et al., 2012) in the input feature dataset.
Interestingly, our tests (not shown here) indicated that the
NN model did not perform as well without this additional
SST dataset, so both sources of SST information (reanalysis
and OSTIA) were used.

We have also used input features describing riverine dis-
charge into the ocean. These included riverine discharge data
for oxygen and nutrient loads (i.e. nitrate, phosphate, sili-
cate, ammonia, and oxygen) at all relevant river mouths in the
NWES domain. Daily time series of river discharge are used
for 1998–2017. From 2018, only climatologies were avail-
able and were used for the remaining 2018–2020 period. The
daily riverine data were obtained from an updated version
of the river dataset from Lenhart et al. (2010). The climatol-
ogy of daily discharge data was taken from the Global River
Discharge Database and the Centre for Ecology & Hydrol-
ogy (Young and Holt, 2007). Unlike a hydrodynamic model,
an NN model does not follow any advection mechanism or
transport to carry the effect of river discharge over space and
time. To account for advection, the NN model would have to
ideally include time-lagged riverine inputs, where the time
lag would increase with the spatial distance from the river
mouth. This would hugely increase the complexity of the NN
model. In this work we have decided to opt for less complex
models and avoid using time-lagged NN inputs. To consider
a nearly instantaneous riverine effect in a simplified way, we
have distributed the riverine discharge data around the river
discharge point sources. This was done by spatially extrapo-
lating all the runoff variables at all the daily discharge points
over a 50 km circular radius surrounding the main discharge
point, by making the inputs decay inversely from the max-
imum at the centre to a zero value at the edge (see Fig. 1).
However, such a scheme is clearly a major simplification of
the real river impact (e.g. Painting et al., 2013; Lenhart and
Große, 2018) and should ideally be improved upon in future
work.

Another dataset that was used as input features into the
NN model was the ERA5 atmospheric reanalysis (Hersbach
et al., 2020), which has a horizontal resolution of 0.25°. The
input feature dataset includes variables such as downwelling
shortwave radiation at the ocean surface, specific humidity,
temperature at 2 m above the ocean surface, sea level pres-
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Figure 1. The areas with river input on the NWES domain. We mark the locations of the stations providing the test data for this study: L4
and the five Scottish coastal stations.

sure, total precipitation, and zonal and meridional wind com-
ponents at 10 m above the ocean surface. These near-surface
atmospheric drivers play a crucial role in governing and re-
distributing surface nitrate through air–sea interactions and
atmospheric deposition of nitrogen, which accounts for one-
third of the non-recycled nitrogen supply in the ocean and up
to around 3 % of annual new biological production (Arrigo
et al., 2008). The atmospheric data, however, did not include
any direct products for atmospheric nitrogen deposition. Fi-
nally, we used structural temporal and geographic data, i.e.
the time of the year (month, day), latitude, longitude, depth,
and bathymetry, as input features. This type of information
enables the model to learn the geographic patterns in nitrate,
including its seasonal climatology, substantially enhancing
its predictive accuracy.

All the input features were considered at the same time
as the predicted nitrate. The input features’ importance was
ranked in the SHapley Additive exPlanations (SHAP) analy-
sis, presented in Fig. S2 in the Supplement. The SHAP anal-
ysis indicates that the structural input features are among the
most important, followed by some atmospheric and oceanic
physics features (incoming shortwave radiation, SST), which
can partly account for seasonal climatology as well. Specific
riverine discharge input features (e.g. of nitrate itself) are
highly important too (Fig. S2), with a range of biogeochem-
ical variables (total surface chlorophyll, total surface net pri-
mary production, and total surface carbon) being around the
middle of the importance ranking. As already mentioned, we
also tested versions of the NN model with a reduced number

of input features (e.g. removing the less important features
from the SHAP analysis), but the model’s performance be-
came slightly worse compared to that of the previous model.

2.2.2 The predicted nitrate data and the training and
validation process

The 1998–2018 nitrate observations were obtained from the
International Council for the Exploration of the Sea (ICES)
data portal (https://www.ices.dk, last access: 20 June 2025).
The extracted dataset spans a geographical range from 19° W
to 10° E in longitude and 47 to 62°N in latitude, ensuring a
broad representation of the dynamics and variability of the
NWES region. The ICES data were obtained from a wide
range of in situ measurements, e.g. by cruises, floats, moor-
ings, and buoys. In the training and validation process, the
ML model inputs were linearly interpolated onto the ICES
data locations, and then the ICES data from the 1998–2015
period, containing 43 572 relevant data points, were used for
training and validation of the NN model (with 80 % of data
used for training and 20 % for validation). Finally, the 2016–
2018 ICES data, containing 2984 data points, were used as
test data. The spatial coverage of all the ICES training, vali-
dation, and test data is shown in Fig. 2.

Several other observations were used as test data to
demonstrate the ML model’s skill: (i) nitrate data from the
L4 station, which is operated by the Western Channel Obser-
vatory (https://www.westernchannelobservatory.org.uk/data.
php, last access: 20 June 2025) and is located in the western
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Figure 2. The locations of the ICES data used in this study, split into training, validation, and test data. The data points are coloured with
respect to the season in which the measurement was taken (a–c) and the depth range (in m) at which the measurement was taken (d–f).

English Channel approximately 13 km from the Plymouth
Sound, providing one of the longest continuous ecologi-
cal time series in the world (Harris, 2010). The L4 nitrate
dataset covered the whole 1998–2020 period, and despite
several data gaps, during most of this period it was sampled
with a frequency of approximately 5–7 d. (ii) Another inde-
pendent nitrate test dataset was obtained from the Scottish
Coastal Observatory Dataset (https://data.marine.gov.scot/
dataset/scottish-coastal-observatory-dataset-1997-2020, last
access: 20 June 2025; see also Bresnan et al., 2016; Hind-
son et al., 2018), covering five locations near the coastline
of Scotland (Loch Ewe, Scalloway, Scapa, St Abbs, Stone-
haven) and providing time series of differing lengths: from
the longest, covering the 2008–2020 period (Scapa, Scal-
loway), to the shortest, covering the 2017–2020 period (St
Abbs). The measurements at these stations typically had a
frequency of 5–7 d. The locations of the L4 station and the
five Scottish stations are all marked in Fig. 1. It should be
noted that neither the L4 data nor the data from the Scottish
stations were included in the ICES dataset.

Finally, after validating the NN model, we ran it for the
full 1998–2020 period across the whole Copernicus NWES
reanalysis domain (see Fig. 3), using Copernicus reanalysis,
river input, and ERA5 atmospheric forcing input (with both
inputs interpolated onto the Copernicus reanalysis domain)

to produce a gap-free, bi-decadal, daily 7 km resolution re-
construction of nitrate. This final dataset underpins the re-
sults from this study.

2.3 Skill metrics

We used the relative performance (RP) skill metric to com-
pare the performance of the NN model from this study with
the reanalysis:

RP(NN,Rean)= 100 ·
(|NN−Obs| − |Rean−Obs|)

Obs
. (1)

In Eq. (1), “Obs” stands for observations, “NN” for predicted
values by the NN model, and “Rean” for reanalysis. Negative
values of the RP metrics from Eq. (1) indicate that the NN
model outperforms reanalysis and vice versa.

The bias between any model, “Mod” (“Mod” could be ei-
ther NN or reanalysis), and observations is defined as

Bias(Mod,Obs)= 〈Mod−Obs〉, (2)

where the averaging 〈. . .〉 is taken through all the available
matching model and observational data.

The bias-corrected RMSE (BC-RMSE) is defined as the
RMSE after the bias h has been subtracted from the model:

BC-RMSE=
√〈

(Mod−Obs−Bias)2
〉
. (3)
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Figure 3. The left-hand panels show the NN-reconstructed 1998–2020 average surface nitrate concentrations for different seasons (corre-
sponding to the dominant mode of temporal variability in nitrate). The right-hand panels show the same averages for the relative bias of the
Copernicus surface nitrate reanalysis (Kay et al., 2016) with respect to the NN-reconstructed dataset (reanalysis minus NN-reconstructed
dataset). The contours mark the NWES (bathymetry < 200 m).
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Figure 4. The left-hand panels show the ICES nitrate test data locations for different seasons, with the colour bar accounting for the NN
model’s skill (difference between predicted and observed nitrate: predicted−observed). The right-hand panels show the relative performance
metrics comparing the NN model to the Copernicus reanalysis skill, as defined in Eq. (1). It marks the NN model’s improvement (blue) or
degradation (red) relative to the reanalysis when compared (in %) to the observed nitrate concentrations.
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Table 1. The skill of the NN model in predicting nitrate compared with the Copernicus reanalysis (Kay et al., 2016). Skill is measured by
bias (Eq. 2, in mmol m−3), the bias-corrected root mean squared error (BC-RMSE; Eq. 3, in mmol m−3), and Pearson’s correlation (R). The
rows represent different test data from ICES and the coastal stations. The last two rows show the skill of the NN model and the reanalysis in
predicting interannual, low-pass-filtered time series (for details, see Fig. S3). For the five Scottish stations, we show only the averaged result
of all the stations.

NN predicted Reanalysis

Test data Bias BC-RMSE R Bias BC-RMSE R

ICES 0.62 2.37 0.72 3.18 6.15 0.27
L4 −1.03 1.85 0.79 0.20 2.22 0.72
Scalloway 0.98 2.1 0.8 1.08 2.76 0.64
St Abbs −0.25 1.25 0.9 0.73 1.87 0.85
Scapa 1.52 1.52 0.86 0.33 2.13 0.69
Stonehaven −0.53 0.97 0.95 0.09 2.04 0.78
Loch Ewe 1.57 0.92 0.93 0.57 1.1 0.89
L4 interannual – 0.72 0.52 – 0.99 0.08
Scottish interannual – 0.512 −0.144 – 0.756 0.204

Apart from the metrics from Eqs. (1)–(3), we also used
Pearson correlation. Our tests show that the effective tempo-
ral resolution of the NN model (timescale on which it per-
formed best relative to the test data) is around 15 d (the tests
are not shown here, but some insight is provided by Fig. S3 in
the Supplement). We therefore low-pass filtered all the com-
pared data on a 15 d scale before any of the metrics from this
section were applied.

3 Results and discussion

3.1 Model validation

Figure 4, Table 1, and Figs. S4–S5 in the Supplement demon-
strate that the NN model shows very good skill relative to
the test data from ICES, L4, and the Scottish stations and
substantially outperforms the existing Copernicus reanalysis
product for NWES nitrate. For example, the bias measured
by the ICES test data has been reduced by more than 80 %
relative to the reanalysis, the BC-RMSE has been reduced by
more than 60 %, and the Pearson correlation has increased
from 0.27 to 0.72. Comparison to the data from coastal sta-
tions shows less consistent improvement in terms of bias rel-
ative to the reanalysis, but the NN model still outperforms
the reanalysis in BC-RMSE and R at each of the locations.

Because the nitrate time series are dominated by the sea-
sonal signal, it is important to explore whether the model
skill extends beyond predicting the local nitrate seasonal (e.g.
monthly) climatology. This is much harder to validate, as one
needs long-term time series at specific locations, which are
rare. We have looked at the data from the L4 station and five
Scottish locations to analyse the ML model’s skill in cap-
turing interannual variability of nitrate. The results (shown
in Table 1 and Fig. S3) are more mixed: at the L4 station,
which has the longest time record and richest dataset out of

all locations, the ML model performs very well in predicting
the interannual nitrate time series. It is interesting that at the
same location the reanalysis does a very poor job in doing
the same (Table 1). At the Scottish stations, the ML model
correctly captures the size of the interannual variability in
nitrate, but it struggles to capture the variability itself (the R

metrics in Table 1). It is however noteworthy that some of the
time series at the Scottish locations are relatively short (see
Sect.2.1) and therefore not the most suitable for this type of
analysis.

Finally, the test data selected from the ICES dataset are
time separated from the training and validation data but are
spatially located in largely overlapping regions (see Fig. 2).
It is therefore important to explore the possibility that, due
to geographic proximity, some ML skill has been transferred
from the training and validation data to the test data. This
is done in Fig. S6 in the Supplement, showing how the skill
evolves as a function of spatial separation between the test
data and the training and validation data. Although there is
large variability in the skill, Fig. S6 shows no significant
trend with spatial distance, indicating that the ML model’s
skill does not decrease (it even improves slightly) with the
increase in spatial separation.

3.2 The bi-decadal nitrate product, trends, variability,
and implications

Figure 3 shows the 1998–2020 seasonally averaged NWES
nitrate concentrations. It is clear from the spatial nitrate
distributions that the NN model does not capture the ∼
7 km scale variability sufficiently, including the exact NWES
boundaries, but it does capture coarse-resolution nitrate dis-
tributions reasonably well (see Fig. 5 for comparison with the
World Ocean Atlas (WOA) product of Garcia et al., 2019).
Similarly, our analyses (including Figs. S3–S5) suggest that
the effective temporal resolution of the NN product is∼15 d,
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rather than daily. Figure 3 also provides seasonal comparison
with the Copernicus reanalysis product, evaluating the sig-
nificant reanalysis biases throughout the 1998–2020 period.
The Copernicus reanalysis validation gives similar results to
the validation from Kay et al. (2016), who compared the re-
analysis with the North Sea Biogeochemical Climatology for
1960–2014 (Hinrichs et al., 2017).

Winter nitrate concentrations play an important role in the
pre-conditioning of the spring bloom, which largely drives
the NWES’s biogeochemical seasonal cycles (Huisman et al.,
1999; He et al., 2011). Winter dissolved inorganic nitrogen
is used by OSPAR (in combination with other parameters) in
its common procedure (OSPAR, 2005) as an important indi-
cator of NWES eutrophication and the next season’s growth
(Axe et al., 2017; Topcu and Brockmann, 2021). The hypoth-
esis that the intensity of the spring phytoplankton bloom is
directly related to the abundance of nutrients in the winter
before the bloom has been investigated here through nitrate.

In Fig. 6a, we find only limited evidence of the relation-
ship between the winter (December–February) nitrate and
spring bloom intensity; i.e. a statistically significant posi-
tive Pearson correlation has been found only in the western
English Channel region, near the shelf break in the Celtic
Sea, around the Bay of Biscay, and in the south-west of the
model domain (accounting for at most 30 %–35 % of ex-
plained variance). Figure 6a also shows that these are regions
where the interannual nitrate variability appears to be rela-
tively large (> 5 % of the winter average in the majority of
the region, with 10 %–20 % in specific sections, Fig. 6b) and
therefore capable of revealing a stronger relationship with
spring chlorophyll. For most of the domain, there is a lack
of clear correlation between interannual winter nitrate and
spring chlorophyll, which could be explained by the fact that
both are driven by the interannual variability in the atmo-
sphere (Dutkiewicz et al., 2001; Follows and Dutkiewicz,
2001; Ueyama and Monger, 2005; Henson et al., 2006; Zhai
et al., 2013). Increased winds can lead to more mixing and el-
evated surface nutrients, whilst dampening blooms by trans-
porting phytoplankton below the Sverdrup critical depth, as
proposed by popular hypotheses explaining the North At-
lantic spring blooms (Sverdrup, 1953; Huisman et al., 1999).
Furthermore, there is a lack of complete agreement on what
the dominant drivers of the spring bloom in the North At-
lantic are, and arguments have been raised that support the
view that blooms result much more from internal ecosys-
tem dynamics (e.g. zooplankton control over phytoplankton,
Behrenfeld and Boss, 2014) compared to what was assumed
by traditional hypotheses focusing on physics. It is notewor-
thy that the weak link between winter nitrate and phytoplank-
ton growth reported here is also consistent with recent results
by Van Leeuwen et al. (2023).

In Fig. 6c we look at correlations between interannual time
series of summer nitrate and chlorophyll concentrations. The
high positive correlation in Fig. 6c indicates regions where
growth is either strongly nitrate limited or limited by other

drivers that are positively correlated with nitrate. Realisti-
cally, only other nutrients are likely to act as such drivers,
i.e. phosphate (there is substantial phosphate limitation on
the NWES, Skogen et al., 2004; Philippart et al., 2007; Loebl
et al., 2009; Lenhart and Große, 2018; Burson et al., 2016;
Grosse et al., 2017), so we can conclude that those regions
are strongly nutrient limited in the summer (with the nu-
trient likely being nitrate). The coastal part of the regions
with strong positive correlation delimits areas which could be
more sensitive than others to high river nutrient loads. This
does not automatically imply high risk of eutrophication, as
this would also depend on other factors, such as the over-
all river outflow in each area and the socio-economic activ-
ity, but it indicates certain increased vulnerability. Figure 6c
shows high summer nitrate and positive chlorophyll correla-
tions, mostly in the southern North Sea region, the western
English Channel, the Bay of Biscay, and the south-west of the
domain. These are again the regions where the interannual
fluctuations in summer nitrate are relatively large (Fig. 6d).
Interestingly, the eutrophication problem areas, as identified
by the OSPAR NWES eutrophication status reports (such as
the south-eastern North Sea, coastal areas around Brittany,
Axe et al., 2017; Devlin et al., 2023), fall under these vulnera-
ble zones delimited in Fig. 6c. However, Fig. 6c also includes
other regions, such as the eastern coastline of Scotland, the
southern coast of Ireland, and zones in the Irish Sea.

Finally Fig. 7 shows 1998–2020 trends in win-
ter nitrate concentration over the NWES domain.
In most of the domain, no statistically significant
nitrate trends have been detected, but some small
negative trends (∼ 0.02 mmol m−3 yr−1) were found
in the southern North Sea and the north-east re-
gion near the Norwegian trench. Somewhat larger
(∼ 0.08 mmol m−3 yr−1) statistically significant nega-
tive trends have been found in specific locations of the
Bay of Biscay. These results (e.g. from the southern North
Sea) are broadly consistent with what has been reported
for this period in the recent OSPAR report (e.g. Axe et al.,
2017, 2022). These small trends may follow the smaller rates
of reduction in the nitrate riverine inputs during the data
period (1998–2020) compared to their large reduction in the
1980s and earlier 1990s (Duarte, 2009; Brockmann et al.,
2018; Greenwood et al., 2019). However, it should be noted
that significant reduction in atmospheric nitrogen input has
been reported in the last few decades (Devlin et al., 2023).

4 Conclusions

In this work we have demonstrated that, using sparse obser-
vations across the North-West European Shelf (NWES), ma-
chine learning (ML) can be a powerful tool to reconstruct a
spatially complete sea surface nitrate dataset over a period of
23 years. We have shown that the dataset has substantially
better match-ups with independent test data than the existing
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Figure 5. Seasonal comparison of the NN-predicted 1998–2020 surface nitrate averages (left-hand panels) with those of the World Ocean
Atlas (WOA) 2018 product (middle panels, Garcia et al., 2019). Right-hand panels show the difference (NN-predicted averages minus WOA
product averages) for corresponding seasons. The NN-predicted data are coarse grained on the WOA 0.25° spatial resolution scale. The focus
is on spatial nitrate features, rather than nitrate concentration values, as the WOA averages data for the whole 1900–2018 period, including
highly eutrophic decades in the 1970s and 1980s.
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Figure 6. The upper left-hand panel (a) shows the Pearson correlation between the NN-predicted mean winter surface nitrate concentrations
and the mean (following) spring surface chlorophyll concentration from the Copernicus reanalysis. The upper right-hand panel (b) shows the
interannual variability for NN-predicted winter surface nitrate concentration (for 1998–2020, measured by the standard deviation) relative
to the 1998–2020 winter mean (in %). The bottom-left panel (c) is similar to panel (a) but showing the Pearson correlation between the
NN-predicted summer surface nitrate concentration and the summer surface total chlorophyll concentration from the Copernicus reanalysis.
Panel (d) is the same as panel (b) but showing interannual variability of NN-predicted surface nitrate concentration in the summer rather than
in the winter. The dashed contours in panels (a) and (c) show regions where the correlation is statistically significant (p value < 0.05).

NWES nitrate reanalysis. Using the newly developed prod-
uct, we have identified nutrient-limited coastal areas with po-
tentially strong ecosystem responses to an event of river nu-
trient pollution, addressed nitrate decadal trends, and tested
how successfully winter nitrate can be used as a predictor of
the phytoplankton spring bloom. The areas of strong ecosys-
tem response to nutrient loads were identified as the south-
east of the North Sea, the coastline of Brittany, and the Bay
of Biscay (areas previously marked by OSPAR as eutrophi-
cation problem areas, Axe et al., 2017; Devlin et al., 2023),
but additional coastal areas were also identified in the south
of Ireland, the eastern Scottish coastline, and the Irish Sea.
We have found that nitrate trends in the last 2 decades were
mostly minor, with the exception of the coastline in the Bay
of Biscay. This confirms recent observations by Axe et al.
(2017, 2022) and Devlin et al. (2023). We have also demon-
strated that winter nitrate is only a limited predictor of the

next season’s growth, which again supports recent findings
of Van Leeuwen et al. (2023).

There are many other potential scientific uses for the ni-
trate dataset; e.g. we propose assimilating the nitrate data into
the NWES operational model to correct the model’s signifi-
cant nitrate biases, potentially improving its dynamics and its
short-range forecasts. The model’s skill in simulating phyto-
plankton is known to quickly degrade with the forecast lead
time (e.g. Kay et al., 2016; Skákala et al., 2018), and biases in
nitrate might be one of the leading factors in driving this. As-
similation of nitrate products derived here will be addressed
in the near future.

Several extensions of this work would also be desirable,
such as utilising ICES data for other biogeochemical indi-
cators to produce ML-informed multi-variate datasets across
the whole NWES domain (these should include other nutri-
ents and oxygen). ML could also identify valuable patterns
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Figure 7. Linear trends at each spatial location in the annual nitrate concentration 1998–2020 time series obtained from the NN model
prediction. Dashed contours mark areas with statistically significant trends (p value < 0.05).

of relationships across the multiple variables. Furthermore,
the model developed here did not show very good skill in
capturing high-frequency (daily) temporal variability, includ-
ing extreme events. This might be due to processes provid-
ing the ocean with a memory that is significantly longer than
the daily timescale of the product. Representing ocean mem-
ory by the NN model might require using time-lagged in-
put features, which could substantially inflate the size and
the complexity of the model. Despite this, including such
features into the NN model should be considered in the fu-
ture, i.e. also with respect to developing a more realistic
river discharge advection scheme than the one used here,
which is a major challenge. Interestingly, the finer spatio-
temporal representation of nitrate could be automatically im-
proved if we assimilated the NN-predicted nitrate into the
dynamical model, as such a scheme would benefit from both
the dynamical model advection scheme and the improved
representation of the (coarser-resolution) nitrate by the NN
model. Other future activities should include re-training the
NN model whenever newer and potentially better observa-
tional products appear for its inputs (such as new riverine
discharge data appearing in the last few years, van Leeuwen
and Lenhart, 2021). Finally, ML tools designed to specifi-
cally capture extreme phenomena can be deployed in the fu-
ture and extend the applicability of this work.

Code and data availability. The ML software is available at https:
//github.com/dsbanerjee90/neccton_algo_bgcnn (Banerjee, 2025).
In this study we used the atmospheric ERA5 product of the Eu-
ropean Centre for Medium-Range Weather Forecasts (ECMWF;

https://doi.org/10.24381/cds.143582cf, Hersbach et al., 2017) and
river data that are stored on the MonSOON HPC, which
can be obtained upon request. We also used EU Coper-
nicus reanalyses, the NWSHELF_MULTIYEAR_BGC_004_011
(https://doi.org/10.48670/moi-00058, Ciavatta et al., 2018) product
for biogeochemistry, and the NWSHELF_MULTIYEAR-_PHY-
_004_009 (https://doi.org/10.48670/moi-00059, Renshaw et al.,
2016) product for physics. We used nitrate datasets from the
ICES portal (https://doi.org/10.17895/ices.pub.8883), the Western
Channel Observatory (https://www.westernchannelobservatory.org.
uk/l4_nutrients.php, Western Channel Observatory, 2025), and
the Scottish Coastal Observatory (Scottish Coastal Observatory,
2018a, https://doi.org/10.7489/12138-1; Scottish Coastal Observa-
tory, 2018b https://doi.org/10.7489/610-1; Scottish Coastal Obser-
vatory, 2018c, https://doi.org/10.7489/948-1; Scottish Coastal Ob-
servatory, 2018d, https://doi.org/10.7489/952-1; Scottish Coastal
Observatory, 2018e, https://doi.org/10.7489/953-1).

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/bg-22-3769-2025-supplement.
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