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Abstract. Peatlands worldwide have been transformed from
carbon sinks to carbon sources due to years of intensive agri-
culture requiring low water tables. In the Netherlands, carbon
dioxide (CO2) emissions from drained peatlands mount up to
5.6 Mton annually and, according to the Dutch climate agree-
ment, should be reduced by 1 Mton by 2030. It is generally
accepted that mitigation measures should include raising the
water level, and the exact influence of water table depth has
been increasingly studied in recent years. Most studies do
this by comparing annual eddy covariance (EC) site-specific
CO2 budgets to mean annual effective water table depths.
However, here we apply a different approach: we integrate
measurements from 16 EC towers with EC measurements
from 141 flights by a low-flying research aircraft in an in-
terpretable machine learning (ML) framework. We make use
of the different strengths of tower and airborne data, tempo-
ral continuity, and spatial heterogeneity. We apply time fre-
quency wavelet analysis and a footprint model to relate the
measured fluxes to the underlying surface. Using spatiotem-
poral data, we train and optimize a boosted regression tree
(BRT) machine learning algorithm to predict immediate CO2
fluxes and use Shapley values and various simulations to in-
terpret the model’s outputs. We find that emissions increase
by 4.6 t CO2 ha−1 yr−1 (90 % confidence interval: 4.0–5.4)
for every 10 cm lowering of the water table, down to a wa-
ter table depth of 0.8 m below the surface. For more drained
conditions, emissions decrease again. Furthermore, we find

that the sensitivity of CO2 emissions to drainage is stronger
in winter than in summer and that it varies between sites.
This study shows the added value of using ML with differ-
ent types of instantaneous data and holds potential for future
applications.

1 Introduction

Despite covering only 3 % of the earth’s land surface, peat-
lands store around 25 % of all terrestrial carbon and play a
crucial role in the global carbon cycle (Yu et al., 2010). They
are the most carbon-dense ecosystems of the terrestrial bio-
sphere and have a true potential for climate change mitigation
(Leifeld and Menichetti, 2018; Loisel et al., 2021). In natural,
waterlogged fens and bogs, uptake of carbon dioxide (CO2)
through vegetation and subsequent sequestration in peat soils
abundantly exceeds the emission of methane (CH4) (Frolking
and Roulet, 2007). However, peat soils have been exploited
and drained worldwide for fuel extraction and agricultural
practices. They widely transformed from carbon sinks to car-
bon sources due to increased peat decomposition following
higher oxygen availability and are currently responsible for
large CO2 emissions.

The Netherlands has a long history of peat extraction and
intensively draining peatlands for agriculture and livestock
farming (van den Akker et al., 2008; Erkens et al., 2016).
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This has led to increased carbon dioxide emissions, currently
accounting for∼ 3 % of all Dutch emissions (5.6 Mton annu-
ally), and land subsidence, which in turn increases the need
for further drainage (Kwakernaak et al., 2010; Ruyssenaars
et al., 2022). To counter this spiral, the Dutch government set
a specific mitigation target for peat meadows: annual emis-
sions must be reduced by 1 Mton by 2030 (Government of
the Netherlands, 2019). It is generally accepted that coun-
termeasures to reduce such emissions should include rais-
ing the water table, as the water table seems to be the pre-
dominant control on greenhouse gas emissions from man-
aged peatlands (Evans et al., 2021). However, the exact im-
pact of higher groundwater levels on CO2 fluxes is not yet
entirely established and has been increasingly studied in the
past years (Aben et al., 2024; Boonman et al., 2022; Evans
et al., 2021; Fritz et al., 2017; Kruijt et al., 2022; Tiemeyer
et al., 2020).

Studies investigating agricultural systems generally re-
quire correcting the annual net ecosystem exchange (NEE)
for lateral movement of carbon associated with manure ap-
plications and harvests and relate the resulting net ecosys-
tem carbon balance (NECB) to the mean annual groundwa-
ter level (Aben et al., 2024; Boonman et al., 2022; Evans
et al., 2021; Kruijt et al., 2022). In unmanaged systems, an-
nual NEE is equivalent to NECB. Averaging out daily and
seasonal variation, the goal is to isolate the underlying ef-
fect of groundwater level. This way, multiple studies found
linear relationships with similar slopes: between 2.1 and
4.5 t CO2 ha−1 yr−1 extra emissions per 10 cm increase in
WTDe (Boonman et al., 2022; Evans et al., 2021; Fritz et al.,
2017; Jurasinski et al., 2016; Kruijt et al., 2022). Tiemeyer
et al. (2020) fitted the Gompertz function to a set of an-
nual balances, which shows a sharper increase in emissions
at shallow water levels but then saturates at around 0.4 m. Re-
cently, multiple studies have applied this function (Friedrich
et al., 2024; Koch et al., 2023; Nijman et al., 2024).

While studies on annual budgets provide valuable insights
into the underlying groundwater–CO2 relationship and dif-
ferences between sites, some limitations emerge. First, to
obtain an NECB estimate for any location, year-round data
at that specific location are required, which is not always
achievable and generally requires some trustworthy gap fill-
ing. Second, whilst carbon import and export can add up
to significant amounts, these numbers are often hard to ob-
tain and generally unavailable at landscape level. Third, the
site comparisons are robust only when comparing sites with
markedly different average water table depths. The datasets
used have been based on site-specific observations, with
well-defined, fairly homogeneous soil and vegetation char-
acteristics and well-known water table management. How-
ever, these factors generally vary widely on the regional
scale. Last, the annual estimates discard possibly important
information from intra-annual variability and relationships
with factors other than groundwater. In the current study, we
aim to bypass these limitations by alternatively exploring the

short timescale at the regional level to further unravel the in-
fluence of water table depth and other key drivers on CO2
emissions from agricultural peatlands in the Netherlands.

We do this by incorporating flux measurements from a
low-flying aircraft. Airborne measurements bear high spatial
heterogeneity, since every measured flux originates from an
area called the footprint spanning several kilometers, and an
entire region can be covered by an appropriate flight pattern.
However, a limitation of the airborne measurements is that
they are generally limited to daytime conditions. This limi-
tation is particularly critical for CO2 studies, given the dif-
ferent contributions of gross primary productivity (GPP) and
ecosystem respiration (Reco) to NEE. Here, we are specifi-
cally interested in the peat decomposition component of het-
erotrophic respiration, unrelated to GPP. Measurements by
eddy covariance towers, however, are continuous and include
nighttime fluxes, enabling NEE partitioning, but are limited
by their fixed location. Therefore, we consider the comple-
mentary use of tower and airborne flux estimates to be essen-
tial to assess CO2 fluxes at a regional scale.

Airborne measurements (integrated flux signals from their
respective footprints) can be related to the underlying sur-
face by environmental response functions using either more
classical statistical methods (Hutjes et al., 2010) or artificial
intelligence approaches (Metzger et al., 2013, 2021; Serafi-
movich et al., 2018). Both depend on laying the footprint of
all flux measurements over maps of vegetation, land use, and
soils and/or direct satellite-derived products. Here, we inte-
grate tower and airborne data using the “LTFM” approach
initially developed by Metzger et al. (2013). The acronym
stands for low-level flights (L), time frequency wavelet anal-
ysis (T), footprint modeling (F), and machine learning (M).
We aim to apply this machine learning (ML) approach to
identify key predictors of NEE and understand their influ-
ence on CO2 dynamics in Dutch peatlands.

Today, peat soils in the Netherlands can be found in the
“Groene Hart” and in the provinces of Friesland and Over-
ijssel. These areas share similarities, such as being mostly
dominated by pastures with ditches, but also differ in certain
respects, such as average drainage depth, Friesland being the
most intensively drained with the lowest water tables. In the
current study, we have three distinct flight tracks: above the
Groene Hart area, in southern Friesland, and in the western
part of Overijssel. These three regions are also equipped with
flux towers, and thus we measure both airborne and tower
CO2 fluxes from all three.

In our aim to understand the influence of key predic-
tors, we inspect potential differences and similarities be-
tween these areas. We do this by building several models:
one model based on all data together and models per area
separately trained only on the data of the respective area. We
expect the model with all data will perform best, since in
machine learning data quantity is often a determining fac-
tor for performance. Furthermore, we expect that although
characteristics of the areas vary, the underlying processes do
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not; hence, “one model fits all”, and area-specific models can
be used to predict for other areas. To achieve physical inter-
pretability of our ML approach, we use the SHAP frame-
work and model simulations, fully exploring the identified
relationships. We hypothesize that, alongside drivers of the
diurnal cycle, water table depth plays an important role at
the regional scale in all areas and that the machine learn-
ing approach can help us to better understand drivers of CO2
fluxes. We aim to finally create a robust, interpretable ML
model that can be used in the Netherlands to predict CO2
emissions from drained fen meadows at a regional scale.

2 Methods

In this study, we merge airborne flux measurements with
ground-based eddy covariance (EC) measurements to make
use of their spatial and temporal strengths, respectively. Both
are part of the intensive monitoring network implemented by
the Netherlands Research Programme on Greenhouse Gas
Dynamics in Peatlands and Organic Soils (NOBV, https:
//www.nobveenweiden.nl/en/ last access: 20 May 2025), that
was established following the Dutch mitigation target of
2019. The goal of the NOBV is to further understand green-
house gas emissions from drained fen meadows, their drivers,
and the efficiency of proposed mitigation measures. Here, we
test a machine learning approach on the combination of air-
borne and tower data to assess the most important drivers of
CO2 emissions on a regional level and to quantify the influ-
ence of water table depth.

In Fig. 1, a visual overview of the methodology is shown,
which can be roughly split up into three parts: data collec-
tion and data processing, building and optimizing several ma-
chine learning models, and interpreting the results with Shap-
ley values and simulations. In this section, we describe these
three parts of our approach.

2.1 Data collection and processing

2.1.1 Study area

The study area comprises the three main peat soil areas in the
Netherlands: the Groene Hart in the southwest of the coun-
try, southwest Friesland, and the “Kop van Overijssel” south
of that (see Fig. 2). These peat areas were entirely formed
during the Holocene, reaching their maximum extent (about
50 % of present Netherlands) around 4000 years ago. Be-
tween 2000 and 1000 years ago, large tracts eroded away by
a rising and repeatedly intruding sea. Since medieval times,
peat has been extracted by humans, and the land has been
drained for agricultural purposes. Peat mining continued at a
large scale until the late 19th century, while drainage contin-
ues to this day (Erkens et al., 2016; van Asselen et al., 2020).
Most remaining peatlands are fens, and the very few that can
be characterized as bogs are not the subject of this study. The
fen meadows are primarily used as pastures for dairy farm-

ing and currently cover around 7 % (ca. 290 000 ha) of the
Dutch land surface (Arets et al., 2018). Water table depth in
the study area ranges from the surface level to 150 cm below
the surface level, with most deeply drained soils in Friesland.
The climate is temperate and humid, and the Dutch Meteoro-
logical Institution states mean annual temperatures between
9.5 and 11.5 °C and annual precipitation between 670 and
1100 mm (KNMI, 2024).

2.1.2 Airborne flux measurements

The aircraft used is a SkyArrow 650 TCNS, a lightweight en-
vironmental research aircraft with a push propeller. Weather
permitting, i.e., with good visibility and no rain, surveys were
done twice a week between March 2020 and December 2023,
alternating between the three areas described above. How-
ever, between July 2020 and February 2021 and between
November 2022 and June 2023, the aircraft did not fly due
to technical issues. In total, we used data from 141 flights.
Parallel flight tracks 2–3 km apart were designed perpendic-
ular to the prevailing wind direction and landscape gradients
to get complete spatial coverage of the area of interest. Fig-
ure 3 shows a typical flight trajectory. Mean flying altitude
was 60 m, so built-up areas had to be avoided. The flight tran-
sects covered all major soil and land use classes, although the
footprints were mostly dominated by pastures on peat soils –
as are the areas.

The aircraft was equipped with an open-path gas analyzer
for CO2 and latent heat fluxes and a thermocouple for sensi-
ble heat, both depending on a BAT probe for 3D wind speed
and momentum flux. In addition, net radiation, incoming and
reflected photosynthetic active radiation (PAR), and air and
surface temperature were measured. Most instruments sam-
pled at either 50 or 20 Hz. More detail on the aircraft and its
equipment can be found in Vellinga et al. (2013). Post-flight
processing started with de-spiking raw data. Next, 50 Hz air
pressure and temperature measured by the BAT probe were
converted to 3D wind fields and corrected for all aircraft mo-
tions. Then, covariances between wind and CO2 concentra-
tions were calculated. Conventionally, covariances are cal-
culated over time and then spatially integrated over a fixed
window, for example 2 km long. However, varying condi-
tions can require different window lengths (Sun et al., 2018).
Furthermore, this block averaging method potentially suf-
fers from spectral losses and reduced statistical precision at
lower frequencies, as is the case with tower-based measure-
ments using typical averaging times (Paleri et al., 2022). As
in Metzger et al. (2013), we used wavelet cross-scalograms
calculated over the entire flight to find covariances in the fre-
quency domain: smaller-scale, local turbulent fluxes at high
frequencies and larger-scale mesoscale contributions at low
frequencies with large wavelengths. Wavelengths larger than
the boundary layer height were discarded. The fluxes at these
two scales are then summed in non-overlapping 2 km win-
dows to get the flux over all scales. Further processing in-
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Figure 1. Methodological steps for the current study. We divide the methods into three main parts: (1) data collection and processing,
(2) building and optimizing the machine learning (ML) model, and (3) interpretation of model results. We carried out all steps for the three
study areas separately, i.e., for the Groene Hart, southern Friesland, and the western part of Overijssel (see Fig. 2), as well as for all areas
combined. Sources for external data can be found in Table 2; more details on data processing can be found in Sect. 2.1.3 and Appendix A.
All steps are described in the text.

cluding quality checks and u∗ filtering was done following
the framework of Foken et al. (2004). In Appendix A we pro-
vide an overview of the applied steps. In addition, the most
important meteorological scalar variables were also averaged
over a 2 km spatial window.

To determine the spatial origin of the airborne measure-
ments, the flux footprint model by Kljun et al. (2015) was
used. This two-dimensional source weight function is a pa-
rameterization of the backward Lagrangian model and de-
scribes the spatial extent, position, and distribution of the
contributing surface area. The function can be applied to
wide-ranging boundary layer conditions and has been widely
used by studies dealing with airborne flux observations (Han-
nun et al., 2020; Sun et al., 2023). The input parameters in-
clude Obukhov length (L), standard deviation of lateral wind
velocity (σv), measurement height (zm), and friction velocity
(u∗), which were measured directly by sensors on the air-
craft, and planetary boundary layer height (h), which was
extracted from the ERA5 product. Roughness length (z0)

is implicitly included in the footprint model by the fraction
u(zm)/u∗ (Kljun et al., 2015).

For every 2 km window, five overlapping sub-footprints
were calculated and overlaid with various maps, described
below. A typical flight with all sub-footprints is shown in
Fig. 3. For maps with continuous values, weighted averages
were computed, whereas for categorical maps, the fraction
of each category in the footprint was calculated. To obtain
the final contributions to the flux measurements, the sub-
footprints were combined and normalized. Footprints with
more than 15 % of built-up area were excluded (discarding
17 % of airborne data), as well as footprints where the domi-
nant land use class is anything other than “grasslands”, “fens
and bogs”, or “summer crops” (discarding 3 %). Finally, we
had around 10 400 airborne data entries.
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Figure 2. The EC tower network used in this study, with three
flight tracks over the study areas: (a) Friesland, (b) Overijssel, and
(c) Groene Hart. Peat distribution is shown in orange. Airborne
fluxes are calculated over the entire flight tracks, including the turn,
since the banking angle was kept less than 15°. General informa-
tion on the EC sites and processing can be found in Sect. 2.1.3 and
Appendix A. For more detailed, site-specific information, see Kruijt
et al. (2022). The map was made in QGIS using an ESRI base map;
peat distribution was obtained from the soil map (Wageningen En-
vironmental Research, 2024).

2.1.3 Eddy covariance towers

The NOBV implemented an intensive monitoring network
of EC towers (see Fig. 2). They are distributed over the three
main fen meadow areas mentioned previously and cover a
representative range of soil types and water levels. For site
descriptions and specifics, as well as the processing of the
raw tower data, see the report by Kruijt et al. (2022); below,
we use the same site abbreviations.

We used four measurement sites in the Groene Hart
(LAW_MS_MOB, LAW_MS_ICOS, DEM, ZEG_PT), 10 in
Friesland (ALB_RF, ALB_MS, AMM, AMR, BUW, BUO,
HOC, HOH, LDC, LDH), and two in Overijssel (WRW_SR,
WRW_OW). Although most of these sites are on agricul-
turally used land, the two sites in Overijssel are in a rela-
tively wet nature area. We used data covering the period from

Figure 3. Airborne sub-footprints of a typical flight over the Groene
Hart, with flight altitude of 60 m. In this study, we used static cir-
cular footprints for towers, which are shown in blue for LAW and
ZEG_PT. In (a), five sub-footprints are visible for every 2 km win-
dow, where the contour lines represent the area from which 80 % of
the measured flux originates. All sub-footprints were overlaid with
spatial data and subsequently combined and normalized to get the
final footprint values. The wind rose shows the average wind direc-
tion. In (b), we show the contribution distribution within the first
five sub-footprints: blue indicates the highest contribution, and red
indicates the lowest. The black “x” denotes the ZEG_PT tower lo-
cation. In both (a) and (b), the differences in tower and airborne
footprints are visualized.

16 May 2020 to 31 October 2022, although it should be noted
that sites vary in data availability.

At these towers, fluxes of CO2 (and CH4, evaporation, and
sensible heat, but not considered here) are measured with the
EC method, alongside weather station measurements of pho-
tosynthetically active radiation (PAR), four-component radi-
ation (shortwave and longwave, incoming and reflected), air
temperature, relative humidity (RH), rainfall, soil moisture,
and soil temperature. All sites were equipped with open-
path gas analyzers, except LAW_MS_ICOS, which used a
closed-path CO2 sensor. Otherwise, sensor setups were iden-
tical. The equipment was mounted on top of telescopic masts
and arranged perpendicular to prevailing southwest winds.
Measuring height ranged between 1.5 and 6 m based on the
desired footprint size. Half-hourly fluxes were calculated us-
ing EddyPro (LI-COR Biosciences, 2023) and subsequently
post-processed using a series of filters (see Appendix A). All
processing was streamlined across towers, and no attempts at
gap filling were made. Outliers defined as the 0.5 % highest
and lowest values after filtering for CO2 flux were removed,
resulting in 66 400 half-hourly data records in total. In Fig. 4,
part of the measurement period in Friesland is shown, com-
paring monthly airborne data to monthly daytime tower data
across multiple sites. Although the airborne and tower data
can never be compared directly due to intrinsic differences in
footprint sizes, the seasonal trend and magnitude of the NEE
fluxes are similar. Moreover, for most months the aircraft
data are within the range observed by the towers, with both
towers exhibiting monthly fluxes lower than aircraft and tow-
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Table 1. Number of data points per data type and area, rounded to
the nearest hundred. The “merged” datasets consist of the airborne
and tower datasets.

Data type Groene Hart Friesland Overijssel All

Tower 21 100 30 300 15 000 66 400
Airborne 4100 3700 2600 10 400
Merged 25 200 34 000 17 600 86 800

ers showing monthly fluxes larger than observed by the air-
craft. This suggests that the aircraft measured a truly mixed
signal.

Similarly to the airborne data, the tower data were overlaid
with various maps, but without using the footprint model by
Kljun et al. (2015). We expected the differences between in-
dividual 30 min tower footprints to be negligible compared
to the airborne footprints, so we set a fixed circular footprint
for every tower (see Fig. 3). The radius was based on the
average 80 % of the footprint distance, which was given in
the dataset. This footprint was used to extract correspond-
ing spatial data with high spatial resolution (< 200 m). Be-
cause of relatively consistent study sites (i.e., flat pastures)
and relatively low towers (up to 6 m), the areas within these
footprints were largely homogeneous, with the exception of
ditches, which were not accounted for. For maps with spa-
tial resolution as low as 250 m, the average value within a
radius of 500 m from the measurement point was taken (in-
cluding > 12 grid cells) because the value from a single grid
cell could erroneously deviate from surrounding grid cells.
Table 1 shows the final amount of data.

2.1.4 Supplementary surface data

Additional surface data potentially explaining CO2 flux vari-
ations were gathered from various sources, including both
static and dynamic maps (see Table 2). Static maps gener-
ally had a high spatial resolution (5–25 m) and included land
use, soil, peat depth, and elevation. Water-related information
was retrieved from the operational product OWASIS by Hy-
drologic (2019), which consisted of three daily maps: ground
water level with respect to sea level (m BSL), soil moisture
in the root zone (mm), and air-filled pore space in the un-
saturated zone (mm). This product is at national scale with a
spatial resolution of 250 m and is based on the national hy-
drological model (LHM, Ligtenberg et al., 2021). It is made
operational by including evaporation and precipitation data,
and it is the only water information product covering the en-
tire study area. It performs well in showing trends, but the ab-
solute pixel-based accuracy is up for discussion, and thus we
consider a wider area than a single pixel. Lastly, two vegeta-
tion indices were retrieved by remote sensing from MODIS:
the normalized difference vegetation index (NDVI) and the
enhanced vegetation index (EVI). Satellites Aqua and Terra,

each with 16 d revisit time, were combined and linearly in-
terpolated to obtain daily values.

The categories of the land use and soil maps were reclassi-
fied to obtain a smaller but representative number of vari-
ables (see Appendix B). Using the collected information,
some additional covariates were calculated, such as effec-
tive water table depth (WTDe) based on groundwater level
and elevation (Eq. 1), the percentage of all peat classes to-
gether present in the footprint (AllPeat), and all peat on sand
and peat on peat classes (Eq. 2). Combining peat depth with
WTDe, the peat exposed to air (“exposed peat depth”) in cen-
timeters was calculated (Eq. 3).

WTDe = elev.−OWASIS_GW (1)

AllPeat =
n∑
i=1

peat classi (2)

ExpPeatDepth = min(PeatDepth,WTDe) (3)

WTDe is effective water table depth below surface level, elev.
is elevation, OWASIS_GW is groundwater level below sea
level, peat class represents the fraction of the footprint in peat
soil class i, and ExpPeatDepth is exposed peat depth or peat
exposed to air. Equation (2) was also used to sum only peat
on peat classes and peat on sand classes (see Appendix B2
for soil classes).

2.2 Building and optimizing the machine learning
model

For every area, as well as for all areas combined, we built a
machine learning model based on the combination of tower
and airborne data. We used boosted regression trees (BRTs),
as they are increasingly used in environmental studies and
are furthermore recommended by studies analyzing airborne
flux measurements (Metzger et al., 2013; Serafimovich et al.,
2018; Vaughan et al., 2021). The package XGBoost (eX-
treme Gradient Boosting) was used due to the high predictive
performance and computing speed (Nielsen, 2016).

For all sets of input data, we made a train–test division.
Commonly, this is done in a random manner, but in our case,
because of time dependency of the data and the potential for
data leakage, this is not recommended. For the airborne data,
we created the test set by randomly selecting individual flight
legs. For the tower data, we divided the data in blocks of 4
weeks using the first 3 for training and the fourth for test-
ing. We ensured that the final data distribution was around
80 % training and 20 % testing. We expected this to be a good
trade-off between avoiding data leakage and keeping enough
data for training. Furthermore, all features in the training set
were normalized. The features in the test set were scaled ac-
cordingly based on the statistical properties of the training
set.

For each model, the model was tuned in two steps: (a)
reducing the number of explanatory variables: “feature se-
lection” and (b) optimizing the model’s settings: “hyper-
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Figure 4. (a) Airborne and “daytime” tower measurements between 10:00 and 16:00 CET (UTC+ 1) of CO2 fluxes in Friesland, binned per
month. Boxes represent interquartile ranges, and whiskers show minimum and maximum values, excluding outliers. Only a sub-period of
the entire dataset is shown. (b) Probability distributions of airborne and tower data for all areas combined. Here, we use the same time frame
for “daytime” as in (a). The airborne and tower fluxes show similar resemblance in the Groene Hart and Overijssel (not shown here).

Table 2. Overview of supplementary data sources. For comparison, tower heights ranged between 1.5 and 6 m, with footprints spanning
several hundred meters; airborne flying altitude is 60 m, with footprints spanning several kilometers (see also Fig. 3).

Variable Spatial res. Temporal res. Source

Land use∗ 5 m – Landelijk Grondgebruik Nederland, LGN2020 (Hazeu
et al., 2023)

Soil∗ 5 m – Bodem Data, BOFEK2020 (Wageningen Environmental
Research, 2024)

Elevation (±5 cm, Actueel
Hoogtebestand Nederland, 2025)

25 m – Algemeen Hoogtebestand Nederland, AHN3
(Rijkswaterstaat, 2019)

Peat depth (± 10–30 cm, Wageningen
Environmental Research, 2015)

100 m – Bodem Data (Brouwer et al., 2023)

Groundwater level
250 m Daily

OWASIS product from Hydrologic,
Air-filled pore space personal communication
Soil moisture (retrieved 9 January 2024)

NDVI (± 0.025, Didan, 2025)
250 m 8 d MODIS: MOD13Q1 Terra and Aqua (Didan, 2021)

EVI (± 0.025, Didan, 2025)

∗ Variables with an asterisk are categorical.

parameter tuning”. Feature selection was done in a hybrid
manner, as is frequently done by studies that use XGBoost
(Ogunleye and Wang, 2019; Prabha et al., 2021; Sang et al.,
2020; Wang and Ni, 2019). First, we analyzed Pearson cor-
relations to roughly select features correlated with CO2 and
to reject inter-correlated features. Second, feature impor-
tances embedded in XGBoost were computed. These first
two steps served as a pre-selection of features for the third,
more extensive method: sequential backward floating selec-
tion (SBFS). SBFS includes an extra “floating” element com-
pared to the more standard and widely used sequential back-
ward selection (SBS) and is known to give good results
(Chandrashekar and Sahin, 2014; Rodríguez-Pérez and Bajo-
rath, 2020). SBFS is more time costly than SBS but simulta-
neously reduces the risk of missing important feature combi-
nations due to early dropping of a specific feature. SBFS was
run with 5-fold cross-validation. The model used was an XG-

Boost tree with n_estimators= 1000, learning_rate= 0.05,
max_depth= 6, and subsample= 1, and the scoring metric
for the algorithm was RMSE. As there are multiple features
describing water dynamics, several options were run sepa-
rately, excluding inter-correlated features in the same run. To
avoid unequal representation in different folds of the cross-
validation, all datasets were shuffled beforehand. To evaluate
which subset of features is optimal, the R2, MSE, bias, and
variance of each model proposed by SBFS were computed,
and model parsimony was taken into account. The finally se-
lected features are photosynthetically active radiation (PAR),
surface temperature (Tsfc), relative humidity (RH), enhanced
vegetation index (EVI), effective water table depth (WTDe),
and peat depth.

After optimization of the feature subset, the following hy-
perparameters were tuned: number of trees (n_estimators),
maximum depth (tree complexity, max_depth), learning rate
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(learning_rate), minimum sum of instance weights in a leaf
node (min_child_weight), the ratio of columns when con-
structing each tree (colsample_bytree), and the ratio of in-
stances in every boosting iteration (subsample). We per-
formed a grid search with 5-fold cross-validation (Grid-
SearchCV from scikit-learn) on the training set, and the pa-
rameter grid is shown in Appendix C. The R2 was used as
a scoring metric. In addition, we set a monotone constraint
on the model to find a negative relationship between PAR
and CO2 flux such that increasing PAR leads to more nega-
tive fluxes. Finally, the model with optimized parameters was
evaluated using the test set. Here, based on performance met-
rics, model parsimony, and usability, the final models were
selected for each area. To compare the models’ power and
found relationships from different areas with each other, we
also tested models between areas using the same set of fea-
tures.

2.3 Interpretation of model results

As we assume the underlying physical processes steering
NEE fluxes are the same, we expect that a model trained
on one area can be extrapolated to another. However, we ex-
pect the Overijssel model to be different, as all tower mea-
surements in this region are from natural areas, unlike in the
Groene Hart and Friesland, where sites are located on agri-
cultural land. Although the Overijssel aircraft flux data cover
agricultural land, the number of airborne data points is lim-
ited compared to the tower data (see Table 1).

Beyond optimizing the model for the best CO2 predictions,
we wanted to understand the model’s functionalities and de-
cisions to infer knowledge on the underlying processes. Here,
we used two approaches: the explainable AI tool SHapley
Additive exPlanations (SHAP) and annual simulations at our
site locations. For uncertainty quantification of these inter-
pretations, we applied bootstrapping: we repeated the parti-
tioning in training and testing sets 100 times through a ran-
domized parameter in the splitting algorithm. We created 100
models based on these training sets and used the outputs from
those models to assess the uncertainty.

The unified SHAP framework was developed to address
the difficult interpretation of “black box” machine learning
models (Rodríguez-Pérez and Bajorath, 2020). The method
relies on Shapley values, which determine the individual con-
tribution of each feature to the final model outcome consider-
ing the collective contribution of all other features. Sequen-
tially, each feature undergoes a process wherein its contribu-
tion to the model is negated by assigning a random value to
it, thereby resulting in no added predictive power. By com-
paring model outputs with and without the contribution of a
specific feature, the influence of this feature on the model is
isolated (Lundberg and Lee, 2017). To consolidate how the
model understands the effect of groundwater level, we try to
fit regression lines on its SHAP values.

We assembled half-hourly input data (values for PAR,
Tsfc, RH, EVI, WTDe, and PeatDepth) for each site over the
years 2020, 2021, and 2022 from the various data sources
(see Table 2). As our sites contained gaps in meteorologi-
cal data (PAR, Tsfc, RH), we used publicly available hourly
data from the Dutch Meteorological Institution (KNMI) and
linearly interpolated in time to obtain half-hourly values. By
using the available data directly, we prevented inconsisten-
cies in the time series that could arise with gap filling. We
used KNMI stations “Cabauw” for the Groene Hart area and
“Hoogeveen” for the Overijssel and Friesland areas, assum-
ing that this limited spatial variability of meteorological vari-
ables is adequate for our sites. For the dynamic maps, we
extracted the values at site locations for each day across the
3 years. Subsequently, using this continuous dataset of fea-
tures, we let the model predict the CO2 flux every half-hour
at every site, as well as under hypothetical scenarios where
the WTDe was altered by ± 10 cm. These predictions were
then aggregated to construct annual NEE balances.

3 Results

3.1 Optimized model settings: features and
hyperparameters

In this study, we trained several machine learning models on
airborne and ground-based eddy covariance data to predict
NEE fluxes from peatlands in the Netherlands, aiming to im-
prove our understanding of groundwater–CO2 dynamics. As
a first step, we optimized model features and hyperparame-
ters to achieve models that were both high-performing and
parsimonious. Here, we present these model optimization
results. As expected, we found strong inter-correlations be-
tween meteorological variables (PAR, temperature, relative
humidity), as well as between water-related variables (corre-
lation matrices not shown here). Appendix D shows that CO2
flux is most strongly related to PAR, which is also identified
by XGBoost feature importance. Furthermore, temperature
and EVI score high in all areas, whereas relative humidity
scores high in all areas but Overijssel. The importance of
the water-related features varies throughout areas. PeatDepth
scores high in Friesland and Groene Hart but lower in Over-
ijssel and when all areas are combined.

For some soil classes such as “pV” (clayey earthy peat
soils) and “hV” (thin peaty earthy peat soils > 120 cm deep)
we find a surprisingly high correlation with CO2 or high XG-
Boost feature importance. The data distribution of these fea-
tures is different in the airborne and tower dataset: there are
multiple towers where 100 % of the footprint is (always) hV,
whereas the airborne footprints contain a varying range of
values for hV, mostly close to 0. Therefore, these features
with strongly skewed distributions in the merged dataset
were not taken into further consideration for construction of
the models.
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Based on the correlation matrices and two ranking plots,
a pre-selection of features was made to use in the sequential
backward floating selection. All models have known impor-
tant drivers: PAR, RH, Tsfc, and EVI. EVI was selected over
NDVI because of better scores and because of its correction
for aerosol influence (Huete et al., 2002). Additionally, we
included information on water and peat, but since we have
various (correlated) features representing this information,
we ran SBFS separately for each set of non-correlated fea-
tures. The sets of features that we added to the drivers named
above are peat depth combined with one water-related feature
(water table depth, soil moisture, and air-filled pore space)
and exposed peat depth, resulting in four separate SBFS runs.

SBFS showed that as long as the feature set contains infor-
mation on the daily and seasonal cycles, information about
peat, and some water-related feature, the scores are very
similar. The models for all areas, GrHart, and Friesland all
performed well, with little difference in scores. Overijssel’s
model performed less well. For every model, we selected two
to three best-performing feature subsets, and these continued
to the next step in model optimization: hyperparameter tun-
ing. However, also with optimized model settings, there was
a minimal difference in performance with slightly different
feature subsets. Hence, we selected six robust features and
tuned hyperparameters for every model with these features
to better enable comparisons between areas. This way, dif-
ferent results cannot be a consequence of different features
used. The final features are PAR, Tsfc, RH, EVI, PeatDepth,
and WTDe, and the optimized hyperparameters with corre-
sponding scores are shown in Table 3.

Figure 5 shows how the models trained on different areas
perform when tested on another area. Although the Friesland
model is the “best model” in terms of R2 and bias, we see
that the model based on all data performs better overall when
applied on the test sets of individual areas. Generally, models
trained on specific areas have worse scores when predicting
for other regions. Simulating the Overijssel data by models
from other areas (and vice versa: simulating the other areas
with the Overijssel model) results in the lowestR2 scores and
the highest biases. For further analyses, we use the model
based on all regions.

3.2 Environmental response functions for CO2 flux
identified by Shapley analysis

To check the physical consistency of the trained model
against prior knowledge and to understand how the model
operates we analyze Shapley values for each of the selected
features. Figure 6 shows an overview of all Shapley values
for the model of all areas. A positive SHAP value indicates
that the feature value has a positive contribution to the flux,
i.e., increasing emissions or decreasing uptake, and a neg-
ative Shapley value indicates the opposite. Increasing PAR
and EVI drive more uptake and/or less emissions, whereas
increasing temperature and deeper water table depth have the

opposite effect. The influence of RH and PeatDepth is not
immediately clear from this bee-swarm plot.

We delve further into the Shapley values for the features
through scatterplots shown in Fig. 7. Figure 7a shows the
SHAP values of PAR and reflects the well-known light re-
sponse curve, as learned by the model. As PAR increases,
the contribution to the predicted flux becomes more neg-
ative, especially at higher temperatures. Conversely, with
low PAR, SHAP values are positive and higher temperatures
cause the flux to increase in the positive direction. Surface
temperature drives nocturnal emissions (when PAR is 0) and
drives daytime emissions once above about 15 °C. Optimal
conditions for uptake are at RH between 40 % and 80 %,
whereas drier conditions, correlating with the highest PAR
values, drive emissions, as well as wetter conditions that cor-
relate with nighttimes. As WTDe increases (i.e., becomes
deeper) so does its SHAP value, but at deeper water levels
this seems to level off or even reverse. Below, we exam-
ine this in more detail. EVI values above about 0.55 have
a clear stimulating effect on CO2 uptake and more so with
higher PAR. EVI< 0.55 does not influence CO2 exchange,
especially with PAR= 0, indicating no clear effect of veg-
etation on nighttime emissions. This hints at emissions be-
ing driven mostly by heterotrophic respiration. Finally, peat
depth shows no apparent relation with CO2 exchange, even
though its importance is high enough to be selected for the
final model.

As we are specifically interested in WTDe, Fig. 8 shows
fitted linear, parabolic, and Gompertz lines on the boot-
strapped Shapley values for WTDe. We tried fitting several
other functions: bell-shaped functions, including and exclud-
ing a plateau in the middle; piecewise functions; sigmoid; lo-
gistic; Shepherd; and more, but the three depicted performed
best on our data, where WTDe ranges from −0.2 to 1.5 m.
The linear regression stops at the peak of the parabola at
WTDe of 0.8 m. Similarly, the Gompertz function seems to
truly flatten at this depth. However, the characteristic hori-
zontal part at the beginning of the Gompertz curve is not vis-
ible in our data. Despite having different shapes, all three re-
gression lines have approximately the same coefficient of de-
termination (see Table 4). Up to 50 cm, the increase in emis-
sions is coherent.

3.3 Simulated response of CO2 fluxes to water table
dynamics

For all our sites, we assembled half-hourly input data for
2020–2022. Inspecting the annual course of WTDe at the
Overijssel sites, we found there is a systematic underesti-
mation of the water table depth; i.e., OWASIS gives values
associated with much drier conditions than the WTDe mea-
surements. As a result, the average annual WTDe for Over-
ijssel was the deepest of all our sites, while these sites are
in wet nature areas. Hence, we discarded the simulations for
the Overijssel sites. The WTDe at other sites was acceptable,
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Table 3. Hyperparameter results and corresponding scores, before (bef.) and after (aft.) hyperparameter tuning. Here, for each model, the
same features are used: PAR, Tsfc, RH, EVI, PeatDepth, and WTDe.

Area Colsample Learning Max Min child Number of Sub- R2 RMSE
by tree rate depth weight estimators sample

bef. aft. bef. aft.

All 0.9 0.005 11 4 3000 0.9 0.63 0.66 5.48 5.28
Friesland 0.8 0.005 11 4 3000 0.9 0.63 0.67 5.62 5.32
GrHart 0.8 0.005 11 1 2000 0.8 0.61 0.66 5.29 5.10
Overijssel 0.9 0.001 11 6 4000 0.8 0.17 0.58 6.90 5.30

Figure 5. Machine learning models trained on data from different areas and corresponding performance scores when tested on the other
areas. The same color is used for predictions from the same model. Here, the same features are used: PAR, Tsfc, RH, EVI, PeatDepth, and
WTDe. The optimized hyperparameters are shown in Table 3.

Figure 6. SHAP values for all features in the final model, repre-
senting the individual contribution of each feature to the final model
outcome, depending on the value of that feature. The thickness in-
dicates the number of data points. For example, there are many data
points with low PAR and positive SHAP values, indicating that the
model assigns a positive contribution to predicted CO2 flux under
low-light (i.e., nighttime) conditions. Abbreviations: PAR (photo-
synthetically active radiation), Tsfc (surface temperature), EVI (en-
hanced vegetation index), RH (relative humidity), and WTDe (ef-
fective water table depth).

although extremely deep summer water tables were often un-
derestimated.

Letting the model predict the fluxes and calculating the
annual balances for the sites in Friesland and the Groene
Hart resulted in Fig. 9. For every site-year, there are three
dots: one based on the actual WTDe values, one where we
subtracted 10 cm, and one where we added 10 cm to every
value of WTDe. Therefore, the triplets represent the sensi-
tivity of the site’s annual NEE balance to a 10 cm change
in WTDe. The sensitivity varies from site to site, but for all
sites combined, there is a curvilinear increase. Fitting a lin-
ear regression line yields a slope of 5.3 t CO2 per ha−1 yr−1

per 10 cm WTDe below the surface. However, closer exam-
ination shows that the effect varies per site and per year and
levels off at deeper water levels. We did not extend the simu-
lated effects for deeper water table depths as those scenarios
would become unrealistic without altering the other features.

We grouped the sensitivity of predicted NEE fluxes to
10 cm WTDe increase by month, shown in Fig. 10. In gray,
the range of sensitivity to 10 cm is depicted that is found in
the literature. Although the mean of almost every month falls
within the range and does not change sign, there is substantial
scatter above and below. Furthermore, there is monthly vari-
ation in those means, being the lowest in summer and highest
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Figure 7. SHAP values of (a) PAR, (b) Tsfc, (c) RH, (d) WTDe, (e) EVI, and (f) PeatDepth (for abbreviations, see text or Fig. 6). The plots
are colored by the values of another feature (Tsfc) in (a) and PAR in (b)–(f), which in some cases correlates with the depicted one due to
diurnal or seasonal covariance. Nonetheless, the SHAP values represent the effect of only the selected feature on the x axis. The color gives
insight on the conditions in which this effect is happening. The vertical lines in panel (f) originate from the towers, as a static peat depth map
was used. The amount of scatter indicates the robustness of the found relationships.

Table 4. Fitted parameters for the linear, parabolic, and Gompertz curves. The values represent the medians of the 100 fits based on boot-
strapped models. The parameters in black correspond to CO2 fluxes in µmol CO2 m−2 s−1, whereas the parameters in gray correspond to
fluxes in t CO2 ha−1 yr−1. x is WTDe in centimeters. As the slope in t CO2 ha−1 yr−1 is one of our primary results, we present its confidence
interval here, 4.64 (3.95, 5.39)× 10−1 per cm WTDe, while confidence intervals for all fitted parameters can be found in Appendix E.

Reg. type R2 Function Parameters

lin. reg.
0.42 y =ax+ b

a: 3.34× 10−2, b: −1.15
up to ± 80 cm a: 4.64 × 10−1, b: −16.0

parabola 0.41 y =A · (x− x0)
2
+B · (x− x0)+C

A: −3.65× 10−4, B: 5.62× 10−2, C: −1.14, x0: 5.18
A: −5.07 × 10−3, B: 7.81 × 10−1, C: −15.9

Gompertz 0.39 y =Smax+ Sdiff · e(−a · e
(−b·x))

Smax: 0.79, Sdiff: −10.2, a: 1.48, b: −1.65× 10−2

Smax: 11.0, Sdiff : −142

Italic: converted to t CO2 ha−1 yr−1.

in winter months. We tested whether this variation is statis-
tically significant with a Welch’s t test, which accounts for
the unequal variances across groups. Most month-to-month
comparisons show significantly different means, but there is
no distinct pattern (see Appendix F1). Grouping per season
instead of per month shows that March–April–May (MAM)
and June–July–August (JJA) do not differ significantly, but
all other season comparisons do, suggesting different effects
of 10 cm WTDe increase in autumn, winter, and spring/sum-
mer (see Appendices F2 and F3). If we compare sensitivities
to raising WTDe by 10 cm (rewetting), all seasons are signif-

icantly different (Appendix F3). Additionally, there is a large
variation between sites (see Appendix F4).

4 Discussion

4.1 Constructed models and their performance

Our final model explains 66 % of the observed variance and
is able to provide further insights into key drivers of NEE.
The found relationships with PAR, temperature, relative hu-
midity, and EVI are in line with physically known processes.
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Figure 8. SHAP values with fitted linear, parabolic, and Gompertz
functions, respectively colored green, light blue, and purple. The
linear regression line stops at the peak of the parabola. The lines
are drawn using the medians of 100 fitted parameters on the boot-
strapped Shapley values. The shaded areas represent the 90 % confi-
dence interval based on 5 % and 95 % of predictions at every WTDe
value. The R2 scores are the means of 100 regression lines. See Ta-
ble 4 for the fitted parameters.

Figure 9. Simulated annual CO2 balances for the sites in Fries-
land and the Groene Hart (see Fig. 2). The annual balances are
sums of year-round predicted fluxes at 30 min temporal resolu-
tion using continuous input data from meteorological stations as
well as static and dynamic maps. The triplets represent simula-
tions for WTDe− 10 cm, actual WTDe, and WTDe+ 10 cm. The
uncertainty intervals represent standard deviations, where the verti-
cal intervals are based on 100 annual balances based on the boot-
strapped data and corresponding models. Fitting a linear regression
line yields a slope of 5.3 t CO2 per ha−1 yr−1 per 10 cm lowering of
WTDe below the surface.

Figure 10. Monthly binned differences in NEE predictions when
WTDe increased by 10 cm. The color represents the average tem-
perature in our data for that specific month. The “range in literature”
is based on the lowest and highest estimates of the groundwater–
CO2 slopes in the literature: 2.1 t CO2 ha−1 yr−1 per 10 cm as
found by Kruijt et al. (2022) and 4.5 t CO2 ha−1 yr−1 per 10 cm as
found by Fritz et al. (2017). See Fig. 11 and Appendix G for other
estimates.

The effects of water table depth will be discussed in detail in
Sect. 4.3,

The obtained R2 seems acceptable given the complex in-
teractions analyzed and random noise levels typical for eddy
covariance observations. Compared to studies also modeling
CO2 fluxes but by traditional methods, this R2 is in the same
range (Jung et al., 2011; Zulueta et al., 2011; Dou et al.,
2018). Similarly, Zhou et al. (2023), who combined satel-
lite data and EC measurements with a random forest model,
found an R2 of 0.6. Still, the R2 is not substantially higher
than that of global models (e.g., Jung et al., 2020), despite the
higher information density in our study. We attribute this to
the relatively subtle variability within our study area, which
encompasses seemingly similar systems in terms of land use,
climate, and flux characteristics – making it more difficult
to distinguish patterns than at the global scale. Other stud-
ies combining airborne and ground-based data using machine
learning approaches tend to have higher R2 (Metzger et al.,
2013; Serafimovich et al., 2018; Vaughan et al., 2021), but
these all focused on simulating heat fluxes, arguably a sim-
pler process to analyze. Moreover, it appears that none of
these studies used separate data subsets for learning and eval-
uation, as we did in the current study. Evaluating the model
on the same dataset it was trained on would increase the R2

for our best model from 0.66 to 0.89.
Although the Overijssel model performed acceptably, ex-

trapolating to another area gives worse results than taking the
mean of fluxes in the respective area (negative R2 scores).
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This does not indicate that the Overijssel area itself is funda-
mentally distinct. Instead, it is a consequence of the WTDe
data not reflecting the wet site conditions well. This might
also explain why the All model performs better on GrHart
and Friesland than when tested on its “own” test set, which
includes Overijssel data, exhibiting the importance of accu-
rate water table data. We trained a model on the combination
of only the Friesland and GrHart data, and it obtained an R2

of 0.67 and bias of −0.26: slightly better results than when
the Overijssel data were included. We find that extrapolating
between Friesland and GrHart gives reasonable results. Still,
we find the best results when using the model trained on all
data. Overall, we think that these machine learning models,
especially the model including GrHart and Friesland data,
perform adequately.

The models were able to find relationships with spatiotem-
poral variables, especially for key drivers like radiation,
shown by little scatter in Fig. 7a. Additionally, other well-
established processes such as the influence of temperature
and relative humidity are well represented. Furthermore, the
SHAP framework enables identification of processes affect-
ing components of NEE that could otherwise not be distin-
guished. For example, at low PAR, emissions do not increase
despite increasing EVI (up to EVI= 0.55), indicating emis-
sions are mostly steered by heterotrophic respiration as op-
posed to autotrophic respiration. The increase in nighttime
emissions for higher EVI values may indicate increased au-
totrophic respiration. Although additional research partition-
ing ecosystem respiration is required, these findings demon-
strate the potential of SHAP and ML for process understand-
ing.

While peat depth was important enough to be included in
the final model, its SHAP values do not show a distinct effect.
This is partly related to the static nature of peat depth and the
large amount of data originating from towers, but it also sug-
gests that peat depth, particularly when exceeding the typical
range of water table fluctuations, has a minimal impact. Cor-
respondingly, it has been suggested that peat depth exposed
to air is a more direct indicator for peat decomposition and
thus for CO2 emissions than water table depth (Aben et al.,
2024). In our study, we do not find this. The same holds for
air-filled pore space, although this property is arguably more
complex to model because of peat swelling and shrinking and
varying porosity. However, it should be noted that the dif-
ferences in performance when water table depth is replaced
with another water-related feature are minimal, indicating a
robust underlying process or relationship that the model is
able to find.

We assumed our method of partitioning the data – select-
ing flight legs and weeks of measurements for the testing
set and using the rest for training – avoided data leakage.
To further examine this, we also applied two other partition-
ing strategies: one more stringent, selecting entire flights and
sites for the test set, and one less stringent, selecting a ran-
dom 20 % as the test set. The former resulted in worse mod-

els, but this depended on which sites were left out, as some
provide more data and insights than others. Nonetheless, this
partitioning strategy should be further examined in future re-
search because it may better reduce data leakage. The mod-
els based on randomly selected training data all performed
slightly better than the models we use in this study, indicat-
ing that our current strategy avoids some data leakage.

In the final optimized hyperparameters, we see that mod-
els differ mostly in minimum child weight. Models with a
high value for this parameter are more conservative and end
up with fewer splits. We believe the final model based on all
areas achieves a good balance between capturing complex
patterns and avoiding overfitting. Notably, only the Overijs-
sel model was strongly improved by hyperparameter tuning.
We hypothesize that the low initial performance scores are a
result of the smaller dataset size and lower data quality. By
increasing the model complexity (by lowering the learning
rate and increasing the number of estimators), the model was
able to identify relationships nonetheless. However, when at-
tempting to generalize to other areas, it became clear the
model was overfitting.

4.2 Combining airborne and tower data: pros and cons

Airborne and tower flux data are subject to different errors
and uncertainties, intrinsic to their configuration and process-
ing. One of these is flux divergence. Tower data observed
only a few meters above a (grassy) surface represent true sur-
face fluxes and any marginal divergence effects are largely
corrected through a storage flux correction (Finnigan, 2006).
For aircraft fluxes this is less trivial. We aim to minimize di-
vergence errors by flying nominally at 200 ft (60 m) above
the surface. This may be considered to be in the “constant
flux layer” given that over all flights the average boundary
layer height according to ERA5 reanalysis was 870 m at the
time of the flights. Few studies have explicitly addressed CO2
flux divergence: de Arellano et al. (2004) (Cabauw, in the
Groene Hart area studied here), Casso-Torralba et al. (2008)
(Cabauw again), and Vellinga et al. (2010) (Supplement, SW
France). Apart from observational constraints to quantify it,
CO2 flux divergence is not unidirectional like sensible heat
divergence. The entrainment flux for CO2 can be signifi-
cant in early morning and may change sign in the course of
the day due to CO2 release at night and uptake during the
day. Such complications prohibit assessments of CO2 flux di-
vergence without dedicated observation strategies, let alone
allow simple corrections. Neglecting advection, flux diver-
gence equals the scalar storage term, i.e., temporal change in
CO2 concentration. From our tower observations we know
these to be small around midday. For all these reasons, with
Vellinga et al. (2010) and, e.g., Meesters et al. (2012), we as-
sume CO2 flux divergence errors are arguably smaller than
other errors and not of constant sign (so they partially cancel
out), and therefore they are neglected here.
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As discussed, airborne and tower data have different qual-
ities: airborne data are spatially exhaustive but temporally
limited, and tower data are temporally continuous but with
a limited spatial extent. On a given day, the airborne data
provide a gradient of seasonally varying landscape features
(e.g., WTDe and EVI), as opposed to point values at tow-
ers, and represent the entire area, making the input data more
diverse. Because of their complementarity, we were able to
develop an ML model that includes information on the daily
cycle and extends beyond the tower locations. Nevertheless,
practicalities when combining tower and airborne data may
lead to some spurious correlations between features and tar-
gets due to two specific aspects. Firstly, tower data include
nighttime measurements, while airborne data are only col-
lected during the day, resulting in differences for weather-
related features (PAR, RH, Tsfc) and almost all positive CO2
fluxes stemming from tower data. Secondly, land use and soil
classes are fixed for the tower data and variable for the air-
craft data. Together, this led us to omit features from merged
models that had distributions that were too distinct in air-
borne and tower data, such as the soil class “hV” (thin peaty
earthy peat soils of > 120 cm deep). Although we prevented
artifacts by excluding these features, we also omitted possi-
bly valuable information. We created a categorical variable
with the most prevalent land use or soil class in the footprint,
but this did not improve model performance. Hence, our re-
sults underpin what has been previously found: the relation-
ship with WTDe holds regardless of the land use or soil class
(Evans et al., 2021; Tiemeyer et al., 2020).

Another significant difference between the airborne and
tower datasets in our study is their size: the former has
10 400 records, the latter 66 400. Consequently, the merged
dataset consists mainly of tower measurements, and if we
construct a model only based on tower data, we see very
similar performance of the two models. In a preliminary, un-
published study we conducted using only the Groene Hart
data, the addition of airborne data significantly improved the
ML model (R2 increased from 0.47 to 0.61). However, in
that case we had restricted datasets available: 7900 records
for the tower data, originating from only two towers and
spanning 6 months, and 2600 records for the airborne data
(spanning 18 months). Under similar circumstances, when
the tower dataset lacks spatial and temporal coverage, we be-
lieve the inclusion of airborne data can improve the model
substantially. This was also demonstrated by Metzger et al.
(2021), who showed that airborne measurements in combina-
tion with pre-field simulation experiments doubled the poten-
tial of a surface–atmosphere study. However, in the current
study, as the tower network had been seriously extended, re-
sulting in much higher spatial coverage, this was not directly
visible in an improved R2. We examined the airborne data’s
added value in three ways.

First, we tested excluding several towers from the training
process to determine if we could replicate the added value of
airborne data as in the previous study, and we compared re-

sulting tower and merged models. The outcomes were highly
variable because each tower has different qualities, lengths
of measurements, presence of gaps, etc., but removal of cer-
tain towers showed similar results as in our previous study.
Second, we trained one model with an equal number of air-
borne and tower instances, which resulted in an R2 of 0.62.
Training the model only on airborne data, on the other hand,
resulted in an R2 of 0.37. This suggests that it is not only
the high amount of data that is beneficial for the model but
that there is also intrinsic value in adding tower measure-
ments to airborne data. Third, we let all models predict for
airborne, tower, and merged datasets. The difference between
the merged and tower model is shown when they are tested
on the airborne data: the variance in airborne data was ex-
plained 34 % and 10 % by the merged and tower models, re-
spectively. The airborne data represent regional fluxes orig-
inating from across the entire area. Hence, to model these
regional fluxes, extending beyond the locations of the mea-
surement sites, it is necessary to include airborne measure-
ments in the model. Future research could investigate where
the trade-off is: when do airborne measurements provide sig-
nificant complementary benefits to tower data? With x num-
ber of towers of time y, how many flights should be done to
obtain enough information? The costs of tower and airborne
maintenance should be included. This research could shed
light on the most efficient measurement strategies in areas
with limited access to resources or with inaccessible terrains.

4.3 Influence of water table depth

4.3.1 Found relationship compared to previous
estimates

Here, we compare our findings to groundwater–CO2 emis-
sion relations found by previous studies, shown in Fig. 11
(parameters can be found in Appendix G). Note that although
the literature relations, SHAP results, and site simulations
share the same units (t CO2 ha−1 yr−1), they represent dif-
ferent types of results. Regression lines of Boonman et al.
(2022), Aben et al. (2024), Kruijt et al. (2022), and Evans
et al. (2021) are based on NECB estimates and thus include
corrections for annual carbon import and export through ma-
nure and harvest. In addition, they investigate different lo-
cations, partly use different measurement methods (chamber
or tower), and are based on multi-site comparisons, thus indi-
cating mostly spatial dependencies. The regressions based on
SHAP values do not distinguish between temporal or spatial
influence and depict the effect of changing WTDe on NEE
flux as understood by the model, rather than actual CO2 bud-
gets. The annual NEE estimates, on the other hand, repre-
sent the sum of year-round simulated CO2 fluxes with vary-
ing WTDe, neglecting carbon import and export as they are
not part of the ML model.

Both our NEE estimates and SHAP regression lines show
more negative values than those reported by other studies.
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Figure 11. Comparison between current findings and literature studies on CO2 flux vs. water table depth. Three types of results are shown.
Regression lines from the literature based on annual NEE or NECB estimates. The dashed lines represent the linear and parabolic fits on
the SHAP values. The simulated annual NEE totals are visualized in black for three situations per site (WTDe− 10 cm, actual WTDe, and
WTDe+ 10 cm). The shaded areas represent the 90 % confidence intervals of the SHAP regressions based on 5 % and 95 % of predictions at
every WTDe value using the bootstrapped models. SHAP regressions are based on direct WTDe values, whereas literature studies and site
simulations use annual averages. All fitted regressions can be found in Appendix G.

Firstly, for the annual NEE estimates, this can be partially
explained by the difference between NEE and NECB bud-
gets. On highly productive grasslands the export of harvest
can be significant, as for example shown by Kruijt et al.
(2022) where both NEE and NECB are reported for the
same pastures as in the current study. Generally, the car-
bon in harvested biomass is released back to the atmosphere
within a year, mostly in nearby areas. However, these emis-
sions are not measured by the EC towers, though the aircraft
might measure them when flying over, e.g., barns. Further-
more, simulated fluxes are underestimated due to the nega-
tive model bias, which mounts up to 4.2 t CO2 ha−1 annually.
This bias may partly result from the lack of data on mow-
ing events: the model continues to predict uptake as usual
after mowing, whereas in reality, uptake stops immediately
after grass removal (see Appendix H). Secondly, for SHAP
values, the reference population mostly determines where
SHAP= 0, and hence the change in impact on the model (i.e.,
the slope) is more meaningful than the exact level of impact
(i.e., the intercept).

Apart from the negative offset, we find very similar re-
lations to current estimates: per 10 cm WTDe, emissions
increase annually with 4.6 t CO2 ha−1 based on SHAP and
5.3 t CO2 ha−1 based on annual NEE estimates. Since the an-
nual NEE estimates are primarily based on farms with dis-
tinctive water table management – likely not representative
of the entire area – we argue that the SHAP slope, which is
based on the full dataset, is a better estimate. Considering
the different approaches used, clarifying the negative offset,
the correspondence with the literature is remarkable. It sug-

gests that the underlying WTD–CO2 relation persists, also
when harvest and manure are disregarded. This may be be-
cause we investigate the regional scale, where local fluctua-
tions balance each other out. Another explanation might be
that harvesting biomass has mostly short-term impacts on the
system (see, e.g., Appendix H). With the combination of air-
craft measurements, instantaneous data rather than annual to-
tals, and machine learning, we were able to extract this fun-
damental groundwater–CO2 emissions relationship.

4.3.2 Nonlinearity of the found relationship

We did not find a linear relationship over the entire range of
WTDe in our data (see Figs. 8, 9, and 11). Emissions un-
doubtedly rise with deeper WTDe, but deeper than 0.8 m,
they cease to increase. Based on the SHAP explanations, the
optimum-based curve explains the data slightly better than
the Gompertz curve, indicating a decrease rather than a sta-
bilization of the effect at deeper water levels. We lack suffi-
cient data at these deeper water levels to make a concluding
statement, but given that our data points represent instanta-
neous NEE fluxes instead of annual estimates, it is entirely
plausible that a curve with an optimum indeed better repre-
sents the underlying process. For example, in conditions with
WTDe> 0.8 m, moisture conditions can be sub-optimal for
peat decomposition. Nijman et al. (2024) and Campbell et al.
(2021) found similar response curves comparing nighttime
ecosystem respiration to water-filled pore space and volu-
metric soil moisture content, respectively. In these studies, as
well as in the current study, instantaneous measurements are
compared, as opposed to the studies discussed above. Fur-
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thermore, the relationship between WTDe and CO2 flux with
deeper water levels is less direct, since the actual soil mois-
ture in the unsaturated zone can vary substantially, which po-
tentially explains the larger scatter in Fig. 8 – in addition to
fewer available training data.

As opposed to Tiemeyer et al. (2020), who find saturation
around a WTDe of 0.4 m, we find the increase to persist un-
til 0.8 m, as was also found by Boonman et al. (2022) and
Aben et al. (2024) for average summer WTDe. In the study
by Tiemeyer et al. (2020), the amount of data for water levels
deeper than 0.4 m is limited. Because we include fluxes on a
short timescale and we cover a wider range of WTDe values
by using the aircraft, we have a larger dataset to support the
observation of increasing emissions up to 0.8 m. Addition-
ally, we do not find an initial plateau at shallow water levels,
contrary to what is currently assumed. Although we included
wet sites, such as those in Overijssel, the water information
product we used was not able to capture these wet conditions
and gave incorrect values. Hence, our model was not trained
properly on wet sites, and we cannot substantiate the lack of
a plateau.

4.3.3 Intra-annual and spatial variability

Based on the above discussion, our results are mostly in
line with previous studies, with two notable exceptions: the
optimum-based shape instead of the linear or Gompertz func-
tions and the increase in emissions until 0.8 m instead of
0.4 m, also found by Boonman et al. (2022) and Aben et al.
(2024). A third insight is the intra-annual variation of sen-
sitivity to WTDe change, as shown in Fig. 10 and in Ap-
pendix F. Further drainage in summer might not impact
emissions as much, whereas drainage in winter has a big-
ger impact. This might be a reflection of the monthly varying
WTDe: in summer, with very deep groundwater levels, the
available oxygen for decomposition does not linearly depend
on the groundwater and is also determined by the soil struc-
ture and its capillary action. As a result, at very deep wa-
ter levels, the soil in the unsaturated zone can be relatively
wet and decrease the effect of further drainage. On the other
hand, with more shallow water levels in winter, the pres-
ence of roots in the unsaturated zone leads to soil desicca-
tion, promoting oxygen availability down to the water table.
Hence, when the water table is lowered, this has a more di-
rect effect on CO2 emissions. Furthermore, we find that rais-
ing the WTDe by 10 cm has a significantly different effect
across all seasons. Our methodology enables future research
on intra-annual occurrences such as season-based mitigation
measures and extreme weather events.

In the current study, we applied the simulations to the site
locations, which show high variability in responses. These
site simulations were partially motivated by the goal of com-
paring predictions to measurements, as in Appendix H. How-
ever, since our model is trained on data covering the entire
region – enabled by the use of aircraft data – the simula-

tions can be applied to any location in the area, which can
be of interest to policy-makers. Although our input data are
too coarse to predict the emissions at farm level, the model
can provide insights at the municipal or provincial scale in
carbon flux dynamics over the years.

4.4 Implications for mitigation strategies

Our findings suggest that to reduce CO2 emissions, the op-
timal water management would be to set the water level as
high as possible. To reduce greenhouse gas emissions in gen-
eral and mitigate climate change, the trade-off with methane
should be taken into account (Buzacott et al., 2024). The
slope we found lies at the upper limit of current estimates,
and our results show that emissions continue to increase
down to a WTDe of 0.8 m below the surface, as opposed to
0.4 m in Tiemeyer et al. (2020). Together, these results sug-
gest higher emissions than those that would otherwise be cal-
culated based on previous studies. This would entail effective
mitigation strategies being even more crucial, as the potential
for carbon emissions from drained soils may have been un-
derestimated. As such, mitigation measures should take into
account not only average annual water table depth, but also
the different system behavior throughout the year. Measures
should focus on rewetting during the summer and specific at-
tention should go to not lowering the water table during win-
ter. However, the evaluation of potential mitigation measures
did not fall within the scope of our study. As we did not incor-
porate data on mitigation efforts into the model, we cannot
draw conclusions in that regard. Nevertheless, this study is
part of the Netherlands Research Programme on Greenhouse
Gas Dynamics in Peatlands and Organic Soils (NOBV) and
contributes to the corresponding measuring, monitoring and
modeling framework. Within this framework, the efficiency
of mitigation measures is widely studied using both data-
driven methods and process-based models such as SOMERS
(Erkens et al., 2022), and findings will be reported to policy-
makers.

4.5 Recommendations

4.5.1 Incorporation of additional data

A general remark on the findings in this study is that the wa-
ter level data are from a company that develops and main-
tains the OWASIS information products together with wa-
ter boards and knowledge institutes. Comparing OWASIS
WTDe to measured WTDe at tower locations, we found
that values in summer were often underestimated. Potential
sources of errors in the OWASIS data are heterogeneous in-
filtration capacity within pixel cells or limitations of remote
sensing in capturing deeper soil layers. Despite these un-
certainties and underestimations, we consider the OWASIS
product suitable for the purposes of this study, as it covers
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the entire study area, and we have a satisfactory amount of
data to balance out pixel errors.

Still, future research should prioritize including a high-
quality soil water product of high(er) spatial resolution. Due
to the use of aircraft data, the information on water should
be spatially distributed, and measurements at tower sites do
not suffice. The Netherlands has manifold regional hydro-
logical products that can be used for future regional studies
(NHI, 2025). In addition, there are numerous remote sensing
products that could be used or combined for water-related in-
formation, possibly including ground-truth data, as was done
by Koch et al. (2023) for Denmark, who developed a WTD
map for Danish peatlands with a spatial resolution of 10 m.
Considering the likelihood that farmers might apply mitiga-
tion measures such as changing the water level management
or adding a clay layer on the peat, corresponding data would
be valuable for subsequent studies. Furthermore, a vegeta-
tion index with higher spatial and temporal resolution could
be incorporated, such as from Sentinel satellites or from the
Dutch groenmonitor.nl website, ideally enabling identifica-
tion of mowing events. In the current study, we did not di-
rectly incorporate mowing or harvest events.

4.5.2 Methodological advancements

As mentioned previously, future research should investigate
the optimal combination of tower and aircraft data. This way,
strategies for the modeling of remote or data-sparse loca-
tions can be developed. Herein, a stricter train–test algo-
rithm can be applied. For the tower footprints, we suggest
taking a wind-direction-based average footprint in the future
as opposed to a circular footprint. The SHAP framework has
proven highly effective in revealing the processes understood
by the ML model. By making the reference population more
representative, the base value might become more meaning-
ful. However, the SHAP values do not per definition reflect
causal relationships. As an extension to the interpretation by
SHAP, therefore, we recommend including more causality-
based and/or physics-based components. Here, we discuss
some promising approaches and our first attempts in apply-
ing them. However, they are subject to future plans.

To start, information theory (IT) has already been used in
studies to examine causalities of CO2 fluxes (Arora et al.,
2019; Farahani and Goodwell, 2024; Yuan et al., 2022). It is
a mathematical approach to study the amount of information
in a dataset or process based on Shannon entropy: a measure
of uncertainty in a system, quantifying its unpredictability. In
the current study, Shannon entropy can shed light on the in-
formation in tower vs. airborne data. We computed the Shan-
non entropy of CO2 fluxes in our tower, airborne, and merged
datasets (tower+ airborne), as well as an entropy-based met-
ric based on Farahani and Goodwell (2024) (see Appendix I
for the formula and results). The airborne data have the high-
est Shannon entropy, indicating the highest level of infor-
mation in the dataset, followed by the merged data. The re-

sults on the metric suggest that the merged model captures
the variability in the data better compared to the airborne or
tower models. However, the differences are relatively small.
Additionally, the results show that the tower model is overly
complex or noisy, whereas the airborne and merged models
slightly underrepresent the variability in the data, meaning
they smooth over some of the finer details or variability in the
CO2 fluxes (Farahani and Goodwell, 2024). At the regional
scale, we believe the latter is preferable.

A second option is to alter the loss function in a deep learn-
ing model, which is more modifiable than in XGBoost. For
example, transfer entropy can be minimized through the loss
as is done by Yuan et al. (2022), or directly physically in-
spired functions or models can be implemented, as success-
fully done by Liu et al. (2024). New, innovative approaches
such as double ML based on causality offer great opportu-
nities for further exploring the greenhouse gas dynamics in
drained peatlands (Cohrs et al., 2024).

5 Conclusions

In this study, we applied boosted regression trees to learn
the relationship between CO2 flux and landscape character-
istics from drained peatlands in the Netherlands. We inves-
tigated data from the three main fen meadow areas in the
country (Groene Hart, Friesland, and Overijssel) and finally
constructed a model based on all areas combined. We merged
CO2 flux data from both airborne and tower measurements,
and, to our knowledge, this study is the first to use this com-
bination of CO2 data as input for a machine learning model.
The models were optimized with feature selection and hy-
perparameter tuning, and we accounted for data leakage by
splitting the training and testing set based on flight legs and
week numbers. Subsequently, we used the SHAP framework
and simulations to assess the influence of the most important
and relevant environmental drivers.

The method works and the models perform reasonably
well with R2 scores between 0.58 and 0.67. We found that
extrapolating the model from one region to another performs
adequately as long as water table training data are accurate,
but the model including all regions is best for this purpose.
As long as the feature subset contained information on the
daily and seasonal cycles, information about peat, and some
water-related feature, the scores of the models were very sim-
ilar. Hence, the final, robust features that explained most of
the variance in CO2 fluxes are PAR, temperature, relative
humidity, EVI, peat depth, and effective water table depth
(WTDe).

Based on the SHAP values, we find an increase in CO2
emissions until a water table depth of around 0.8 m below
the surface. These emissions increase by 4.6 t CO2 ha−1 yr−1

per 10 cm WTDe on average (90 % confidence interval: 4.0–
5.4 t CO2 ha−1 yr−1), which is in agreement with other es-
timates, albeit at the higher end of the range found in the
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literature. Together, these results suggest higher emissions
related to WTDe than previous studies. Furthermore, we
find that an optimum-based function describes the influ-
ence of WTDe best within our WTDe range. However, fur-
ther research using instantaneous measurements on a short
timescale (thus including data at deeper water levels) should
point out whether the emissions decrease or stabilize after
0.8 m. We find intra-annual and spatial variation in the re-
sponse of CO2 flux to 10 cm drying and rewetting. These
aspects should be taken into account when developing mit-
igation measures.

Future research should prioritize including data on water
table depth with higher spatial resolution that better capture
wet and extremely drained conditions. Causality-based ap-
proaches and physics-guided ML models form a promising
direction for future studies. A comprehensive comparative
study on the synergies between airborne and tower data could
contribute to establishing efficient, cost-effective measure-
ment strategies. In conclusion, we have quantified the impact
of groundwater changes on CO2 fluxes across drained peat-
lands in the Netherlands, providing crucial understanding in
support of the 1 Mton reduction target by the Dutch govern-
ment.

Appendix A: Processing steps for airborne and tower
flux calculation and filtering

Table A1. Processing steps for tower and airborne flux calculation and filtering. EddyPro was used for tower fluxes.

Processing step Tower Airborne

Flux calculation

Block averaging X (30 min) X (2 km)
Wavelet decomposition – X
Reynolds decomposition X –
WPL1 correction X X
Frequency loss correction X High freq. not needed because at operating

altitude fluxes are carried by eddies < 10 Hz or
4 m. Low freq. not needed because of wavelet
decomposition.

Tilt correction radiation
sensors2

– X

Flux divergence/storage flux
correction

X Based on a 1-point profile –

Filters

Signal strength filtering X Remove received signal strength indicator
(RSSI) < 70 (McDermitt et al., 2011)

–

Precipitation X Remove time steps with precipitation
(sensor performance affected)

(no flights with precipitation)

Wind direction X Exclude fluxes from undesired wind sectors
(site-specific)

–

u∗ filtering X Remove stable night data below u∗
threshold (site-specific, moving point test by
Papale et al., 2006)

–

Stationarity and ITC3 test X X
Meteorological measurements:
physical range filter

X X

Flux magnitude −100<CO2 (µmol m−2 s−1) < 100 −50<CO2 (µmol m−2 s−1) < 50
Quality flags X All hard flags by Vickers and Mahrt (1997).

X Keep only quality flag= 2 (Foken et al.,
2004).

X Keep quality flags for CO2 and u∗< 6
(Vellinga et al., 2013).

1 Webb, Pearman, and Leuning (Webb et al., 1980). 2 Based on aircraft attitude and solar position. 3 Integral turbulence characteristics.
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Appendix B: Reclassification tables

B1 Reclassification of land use classes

Table B1. Reclassification of land use classes.

New aggregate class New code Codes from Dutch national land use map LGN2020

Bare soil bSl beach (31); drift sands (35)

Build up areas Bld urban build areas (18); rural build areas (19); forest in build areas (20); forest in rural build areas (22);
grass in build areas (23); bare soil in build area (24); main (rail)roads (25); build area (26); grass in
rural build area (28)

Coniferous forest cFr con. forest (12); forest in bogs (40)

Deciduous forest dFr orchard (9); dec. forest (11); forest in fens (43); tree nursery (61); fruit nursery (62)

Fens and bogs FnB bogs (20); other marshland (41); reed lands (42); fen meadow area (45)

Grasslands Grs nature grasslands (45); grass (1); other land use in rural area (27); salt marsh (30); coastal grass (46);
other grass (47)

Greenhouses Ghs greenhouse horticulture (8)

Heath Hth open dune vegetation (32); closed dune vegetation (33); dune heath (34); heath (36); sparse grassy
heath (37); dense grassy heath (38)

Open water Wat freshwater bodies (16); saltwater bodies (17)

Shrubs Shr low shrubs in bogs (321); low shrubs in fens (322); low shrubs (323); high shrubs in bogs (331); high
shrubs in fens (332); high shrubs (332)

Spring crops SpC cereals (5); flower bulbs (10)

Summer crops SuC maize (2); potatoes (3); sugar beets (4); other crops (6)
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B2 Reclassification of soil classes

Table B2. Reclassification of BOFEK2020 soil classes into new aggregate classes for mineral soils.

New aggregate
class

New code Codes from Dutch national soil map BOFEK2020

Mineral soils

Sandy soils zandG Zandgronden: 2: Hd30, 16: Zn21, 21: Zn10A, 22: Zn23, 23: Zn40A, 24: Zn50A, 32: Y30, 33: Hd21,
34: Zn50Ab, 35: Zn30, 36: Zn30A, 37: Hn21, 43: pZn23, 45: Hn23, 46: Zn30Ab, 73: cHn21, 84:
cHd21, 91: cZd21, 94: cHn23, 96: cY21, 99: cHd23, 107: cHd30, 116: MOb75, 121: MO005, 122:
cY23, 134: pZg23, 135: pZg21, 137: Hn30, 140: cHn30, 147: MOb72, 151: cZd30, 157: pZn30, 159:
cY30, 171: cZd23, 193: pZg30, 201: pZn21, 204: Zd23, 209: Zb21, 213: Hd23, 218: Sn13A, 224:
tZd21, 225: Zb23, 227: Y21, 229: Zd21, 230: Sn14A, 240: Y23, 256: Zb20A, 259: Zd20A, 260: Zb30,
261: Zd30, 262: Zd30A, 263: Y23b, 264: Zd20Ab, 265: Zb30A, 268: tZd23, 272: tZd30, 282:
pZg20A, 296: MO002, 300: MOb12, 301: MOb15

Marine clay
soils

zeeK Zeeklei: 3: Mn25A, 27: Mn35A, 30: Mn45A, 39: Mn12A, 48: Mn56C, 54: Mn15A, 55: Mo10A, 56:
Mv41C, 57: Mv61C, 59: gMn15C, 60: gMn88C, 61: Mn82A, 79: Mn25C, 80: Mn85C, 85: Mn86C,
87: Mn15C, 89: Mo20A, 106: Mo80A, 110: gMn25C, 113: gMn53C, 125: Mn22A, 139: Mo80C, 148:
Mn52C, 154: Mn56A, 156: gMn83C, 160: Mv81A, 161: Mv51A, 166: Mn82C, 167: Mn86A, 170:
pMn85A, 172: gMn58C, 173: pMn55A, 176: pMo50, 177: pMo80, 180: pMv81, 194: MK, 210: MA,
222: pMn86C, 228: gMn85C, 236: kMn48C, 241: kMn63C, 251: kMn43C, 271: gMn52C, 274:
gMn82C, 275: pMn55C, 276: pMn56C, 277: pMn82A, 278: pMn82C, 279: PMn85C, 280: pMv51,
286: pMn52C, 294: KT, 295: kMn68C, 297: MZz, 298: pMn52A, 299: Mo50C, 302: MZK

Alluvial clay
soils

rivK Rivierklei: 4: Rn46A, 5: Rn47C, 6: Rn15A, 8: Rn15C, 9: Rn44C, 10: Rn67C, 11: Rn52A, 12: Rd90C,
13: Rn42C, 15: Rn14C, 17: Rn62C, 18: Rn66A, 19: Rn45A, 20: Rn45C, 49: KRn1, 50: pRn59, 51:
Rd10A, 52: KRn2, 81: FG, 83: bRN46C, 128: Rn82A, 129: Rn94C, 130: Rn95A, 136: R040A, 141:
Rv01A, 142: Rv01C, 145: KRd7, 162: Rn95C, 165: Ro60C, 178: KRn8, 181: pRn56, 182: pRn86,
192: FK, 195: KX, 208: Rd10C, 220: Rd90A, 266: Ro40C, 267: Ro60A, 270: KRd1, 285: pKRn1,
287: PKRn2, 289: pRn89

Loamy soils leem Leem en brikgronden: 68: BZd24, 69: BLb6, 70: BKh25, 71: BKh26, 74: BLd6, 90: BZd23, 92: BLh5,
93: BLh6, 97: BLn5, 98: BLn6, 114: BKd25, 119: BLd5, 120: BKd26, 150: Ld6, 168: pLn5, 186: Lh6,
196: Ldd6, 197: Ld5, 198: Ldh6, 205: Ldh5, 206: Lnd6, 207: Lnh6, 211: Lh5, 212: Ln5, 214: KK,
215: KM, 216: KS, 219: Ln6, 221: Lnd5, 223: Ldd5

Complex
associations

gedA Gedefiniëerde Associaties: 58: AP, 66: AZW7A, 67: AZW6A, 75: AO, 76: AS, 78: AZW8A, 95: AQ,
100: AR, 101: AZWOA, 102: AVO, 103: AZW1A, 105: AZ1, 108: AHa, 109: AHc, 111: AHI, 112:
AM, 115: AZW5A, 117: AHK, 118: AK, 127: AFK, 155: AFz, 183: ABz, 188: ABK, 231: ABv, 232:
ABI, 233: AEm9A, 234: AEm8, 235: AEP7A, 237: AEm9, 238: AGM9C, 242: AAK, 243: AAP, 244:
AHs, 245: AHv, 246: AHt, 248: AVK, 249: ALU, 250: AHz, 252: AD, 254: AEk9, 255: AMm, 257:
AEm5, 258: AEp6A
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Table B3. Reclassification of BOFEK2020 soil classes into new aggregate classes for organic soils.

New aggregate class New code Codes from Dutch national soil map BOFEK2020

Organic soils

Sphagnum peat (> 120 cm deep) V Vlierveengronden: 14: Vp, 153: Vc, 158: Vd, 163: Vk, 169: Vr, 202: Vs, 203:
Vo, 269: Vb

Sphagnum peat on sand (< 120 cm
deep)

Vz Vlierveengronden, op zand zonder humuspodzol: 253: Vz

Sandy earthy peat soils on sand
(< 120 cm deep)

aVz Madeveengronden, op zand zonder humuspodzol: 62: aVz

Clayey earthy peat soils pV Weideveengronden: 42: pVc, 189: pVs, 190: pVz, 281: pVb, 283: pVk, 284:
pVr, 288: pVd

Thin peaty earthy peat soils (> 120 cm
deep)

hV Koopveengronden: 47: hVk, 132: hVc, 138: hVd, 146: hVr, 175: hVb, 247:
hVs

Thin peaty earthy peat soils on sand
(< 120 cm deep)

hVz Koopveengronden, op zand: 133: hVz

Clayey peat soils (> 120 cm deep) kV Waardveengronden: 164: kVc, 184: kVs, 199: kVk, 200: kVr, 217: kVd, 293:
kVb

Clayey peat soils on sand (< 120 cm
deep)

kVz Waardveengronden, op zand: 185: kVz

Other peat soils overigV Overige veengronden: 25: zVc, 26: zVz, 28: zVp, 38: zVs, 64: aVp, 77: aVc,
86: aVs, 144: iVz, 273: hEV, 290: iVp, 291: iVc, 292: iVs

Peaty soils W Moerige gronden: 1: vWz, 7: ZEZ23, 29: zWp, 31: zEZ21, 40: ZEZ30, 41:
zWz, 44: Wg, 53: kWp, 63: bEZ21, 65: bEz23, 72: bEz30, 82: AWg, 88:
EK19, 104: AWv, 123: EK79, 124: Wo, 126: EZg23, 131: EZg21, 143: iWz,
149: EZ50A, 152: iWp, 174: EK76, 179: EL5, 187: kWz, 191: EZg30, 226:
vWp, 239: uWz
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Appendix C: Hyperparameter tuning grid

Table C1. Parameter grid for hyperparameter tuning.

Hyperparameter Values

n_estimators 1000, 2000, 3000, 4000, 6000, 7000
max_depth 5, 6, 8, 9, 11
learning_rate 0.1, 0.005, 0.001
subsample 0.8, 0.9, 1
colsample_bytree 0.8, 0.9, 1
min_child_weight 1, 2, 4, 6

Appendix D: Model optimization results

Figure D1. Pearson correlation between a selection of features and CO2 flux for airborne, tower, and merged datasets per area. The selected
features are the most correlated throughout all datasets. The other features (for example, other soil classes and land use classes) are not shown
here for simplicity of the figure. Abbreviations of features are as follows. PAR_f: photosynthetic active radiation, RH: relative humidity, Tsfc:
surface temperature, EVI: enhanced vegetation index, NDVI: normalized difference vegetation index, AllPeat: percentage of footprint in peat
classes, hV: percentage of footprint in soil class thin peaty earthy peat soils (> 120 cm deep), pV: percentage of footprint in soil class clayey
earthy peat soils, kV: soil class clayey peat soils (> 120 cm deep), Wat: percentage of footprint in land use class open water, Grs: percentage
of footprint in land use class grasslands, OWASIS_BB: available open pore space from OWASIS, OWASIS_BV: soil moisture from OWASIS,
OWASIS_GW: groundwater level from OWASIS (mbs), WTDe: effective water table depth, ExposedPeat: peat depth exposed to air.
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Appendix E: Confidence intervals of SHAP regression
lines

Table E1. Fitted parameters on the SHAP regression lines: LR indicates linear regression, P indicates parabola, and G indicates Gompertz.
The formulas are shown in Table 4. Values in parentheses indicate 90 % confidence intervals, based on the 5th and 95th percentile of all
bootstrapped regression lines.

Reg. Fitted parameters

a b

LR
3.34e− 02 (2.84e− 02, 3.88e− 02) −1.15e+ 00 (−1.45e+ 00, −8.72e− 01)
4.64e− 01 (3.95e− 01, 5.39e− 01) −1.60e+ 01 (−2.02e+ 01, −1.21e+ 01)

A B C ×0

P
−3.65e− 04 (−4.41e− 04, −2.81e− 04) 5.63e− 02 (1.12e− 02, 9.77e− 02) −1.14e+ 00 (−5.44e+ 00, 6.88e− 01) 5.18e+ 00
−5.07e− 03 (−6.12e− 03, −3.91e− 03) 7.81e− 01 (1.55e− 01, 1.36e+ 00) −1.59e+ 01 (−7.56e+ 01, 9.56e+ 00) (−4.95e+ 01, 6.49e+ 01)

Smax Sdiff a b

G
7.90e− 01 (−2.77e+ 00, 1.29e+ 00) −1.02e+ 01 (−5.62e+ 01, 4.10e+ 00)

1.48e+ 00 (2.09e− 02, 3.21e+ 00)
−1.65e− 02

1.10e+ 01 (−3.85e+ 01, 1.80e+ 01) −1.42e+ 02 (−7.80e+ 02, 5.70e+ 01) (−3.62e− 01, 3.08e− 02)

Italic: converted to t CO2 ha−1 yr−1.

Appendix F: Sensitivity of NEE when WTDe ± 10 cm

F1 Welch’s t test on monthly values

Figure F1. Results of p values for month-to-month comparison of responses to 10 cm drying in WTDe using Welch’s t test.
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Figure F2. Monthly binned differences in NEE predictions when WTDe was raised by 10 cm. The color represents the average temperature
in our data for that specific month.

Figure F3. Results of p values for month-to-month comparison of responses to 10 cm rewetting in WTDe using Welch’s t test.
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F2 Seasonal difference in fluxes after change in WTDe

Figure F4. Responses of lowering of WTDe by 10 cm for all sites combined, binned per season. Panel (a) shows the results for 10 cm drier
and panel (b) shows 10 cm wetter. Note the different y axes.

F3 Welch’s t test on seasonal values

Figure F5. Results of p values for season-to-season comparison of responses to 10 cm change in WTDe using Welch’s t test. Panel (a) shows
the results for 10 cm drier and panel (b) shows 10 cm wetter.
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F4 Sensitivity per site

Figure F6. Responses of sites to lowering of WTDe by 10 cm, binned per season.

Figure F7. Responses of sites to raising of WTDe by 10 cm, binned per season.

Biogeosciences, 22, 3867–3898, 2025 https://doi.org/10.5194/bg-22-3867-2025



L. M. van der Poel et al.: Groundwater–CO2 emissions relationship 3893

Appendix G: Relationships found in the literature

Table G1. Literature studies and corresponding found relationships between emissions in tons of CO2 ha−1 yr−1 and water table depth
below the surface level in meters.

Study Found relationship

Boonman et al. (2022) NECB= 33.5 WTDe
Fritz et al. (2017) NECB= 45.0 WTDe− 0.07
Tiemeyer et al. (2020) NECB=−3.4+ 40.4 e−7.5e−13 WTDe

Evans et al. (2021) NECB= 34.0 WTDe− 6.2
Jurasinski et al. (2016) NECB= 40.8 WTDe
Aben et al. (2024) NECB= 32.9 WTDe− 0.8
Kruijt et al. (2023) NECB= 21.4 WTDe− 4.2
SHAP results (current) NEE= 46.6 WTDe− 16.0
SHAP results (current) NEE=−51.4 (WTDe− 0.05)2

+ 77.8 (WTDe− 0.05)− 15.8
Simulated WTD sensitivity (current) NEE= 52.8 WTDe− 25.1

Appendix H: Model predictions and mowing events

Figure H1. Predictions and measurements of CO2 flux at LAW (a–c) and BUO (d, e). In (c) and (e), mowing events are highlighted with a
red line. In (e), uptake immediately stops after mowing, whereas in (c), there is still uptake after mowing, which decreases the day after. We
hypothesize this is due to the mowing of different parcels at LAW on different days, possibly by the neighboring farmer.
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Appendix I: Shannon entropy

Table I1. Results of Shannon entropy in our datasets for all regions combined.

H (CO2flx) in training data H (CO2flx) in test data (obs) H (CO2flx) in modeled data AH

Airborne 4.657 5.165 5.506 0.127
Tower 4.055 4.115 5.198 −0.024
Merged 4.199 4.270 5.282 0.019

AH = 1−
H (CO2mod)

H (CO2obs)
, (I1)

whereH is Shannon entropy, and CO2 mod and obs are mod-
eled and observed CO2 fluxes. The best model perfectly re-
flects the entropy in the observed data such that AH =0.

Code and data availability. The simulated annual NEE totals and
corresponding groundwater levels are available upon request. The
input data for the ML models are not yet publicly available due to
ongoing research by the research group. The spatial analysis in R
was done using the terra library and the Flux Footprint Prediction
(FFP) model (available on https://footprint.kljun.net/, last access:
20 January 2025, Kljun et al., 2025). In Python, machine learning
modeling was done with the packages scikit-learn, XGBoost, and
SHAP. Codes are available upon reasonable request.
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