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Abstract. The 2015–2016 El Niño event led to one of the
hottest and most intense droughts for many tropical forests,
profoundly impacting forest productivity. However, we know
little about how this event affected the Cerrado, the largest sa-
vanna in South America. Here, we report on 5 years of pro-
ductivity of the dominant vegetation types in the Cerrado,
namely savanna (cerrado) and transitional forest–savanna
(cerradão), continuously tracked before, during, and after
the El Niño. Between 2014 and 2019, we carried out inten-
sive monitoring of the productivity of key vegetation com-
ponents (stems, leaves, roots). Cerradão productivity de-
clined strongly by 29 % during the El Niño event. The most
impacted component was stem productivity, which was re-
duced by 58 %. By contrast, cerrado productivity varied lit-
tle over the years, and while the most affected component
was fine roots, declining by 38 % during the event, fine-root
productivity recovered soon after the El Niño. The two veg-
etation types also showed contrasting patterns in terms of
the allocation of productivity to canopy, wood, and fine-root
production. Our findings demonstrate that the cerradão can
show low resistance and resilience to climatic disturbances
due to the slow recovery of productivity. This suggests that
the transitional Amazon–Cerrado ecosystems between South
America’s largest biomes may be particularly vulnerable to
drought, enhanced by climate change.

1 Introduction

The 2015–2016 El Niño event led to some of the most in-
tense tropical droughts in 100 years, as well as record max-
imum temperatures, occurring on top of decades of long-
term warming (Jiménez-Muñoz et al., 2016; Liu et al., 2017).
While the 2015–2016 climate anomaly affected most of the
tropics, it was especially strong in South and Central Amer-
ica (Gloor et al., 2018; Powers et al., 2020). Intense droughts
can increase tree mortality and affect the carbon seques-
tration capacity of forests, as shown by long-term ground-
based monitoring (e.g., Phillips et al., 2009; Feldpausch et
al., 2016; Rifai et al., 2018; Bennett et al., 2023). Satellite-
based analyses also reveal the impacts of climate anomalies
on carbon dynamics (Palmer, 2018; Fan et al., 2019), provid-
ing a synoptic view of ecosystem productivity. However, we
still lack ground-based, tree-level measurements of net pri-
mary productivity (NPP) through extreme tropical-climate
events, hindering our understanding of key aspects of the
vegetation carbon cycle response, such as recovery following
drought events and NPP allocation. Measuring these ecosys-
tem responses directly is helped by tracking long-term forest
dynamics in permanent plots but, in particular, requires high-
fidelity process-based measurements that are sustained over
time. These are exceptionally challenging to conduct and re-
quire long-term dedication to measurements before, during,
and after major climate events like the 2015–2016 El Niño.
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We know especially little about how El Niño events af-
fect the productivity of savanna ecosystems in the extensive
Amazonia–Cerrado transition in South America. This con-
tains a mixture of Amazon and Cerrado species, making the
species composition of this region unique and diverse (Ratter
et al., 1973; Marimon et al., 2006; Morandi et al., 2016). De-
spite its ecological importance, the region has been greatly
impacted by deforestation (∼ 41 % between 1984 and 2014)
so that, today, only fragments of native vegetation remain
(e.g., Marques et al., 2020). In recent decades, the remain-
ing vegetation has been affected by increasing temperatures,
frequent wildfires, extreme drought events, and a long-term
trend toward longer dry seasons (e.g., Reis et al., 2018; Sil-
vério et al., 2019; Nogueira et al., 2019; Matricardi et al.,
2020; Araújo et al., 2021a). Deforestation, together with in-
creases in temperature and reductions in precipitation dur-
ing El Niño events, increases wildfire occurrence and car-
bon emissions, reducing the capacity of the vegetation to act
as a carbon sink (Covey et al., 2021; Gatti et al., 2021). As
the Amazonia–Cerrado transition is the driest, warmest, and
most fragmented region in the Amazon basin (e.g., Matri-
cardi et al., 2020; Marques et al., 2020; Covey et al., 2021;
Reis et al., 2022), it is especially vital to understand better
how climate change and extreme climate events impact pro-
ductivity dynamics here.

The transition is composed naturally of a mosaic of vege-
tation, with the typical cerrado (referred to as cerrado here-
after) and woodland savanna (i.e., cerradão) being the most
common in the regions (Ratter et al., 1973; Marimon et al.,
2006; Oliveras and Malhi, 2016). Despite co-existing in the
same space, the cerrado and cerradão vegetation formations
show contrasting characteristics (Marimon Junior and Hari-
dasan, 2005; Marimon et al., 2006). The cerradão is a tran-
sitional forest–savanna characterized by a closed canopy;
an understory formed by small shrubs and herbs, with few
grasses; and an average height of the tree stratum that varies
from 8 to 15 m, with tree cover of 50 % to 90 % (Ribeiro and
Walter, 2008; Oliveras and Malhi 2016), while the cerrado is
a savanna vegetation type with a discontinuous canopy; trees
and shrubs with a grass understory; and a low average height
of just 3 to 6 m, with tree cover of 20 % to 50 % (Marimon
Junior and Haridasan, 2005; Ribeiro and Walter, 2008).

In the cerrado, most species are deciduous, shedding their
leaves during the dry season, whereas, in the cerradão, brevi-
deciduous and/or evergreen species predominate (Ribeiro
and Walter, 2008). This phenological difference has direct
implications for the tolerance to water and thermal stress.
The cerrado species exhibit conservative water use strate-
gies, characterized by smaller stomata and higher trichome
density, which reduce water loss and protect the leaves from
overheating (Araújo et al., 2021b, 2023). In contrast, trees in
the cerradão group have larger stomata and a lower density
of trichomes, which may result in higher stomatal conduc-
tance and, consequently, greater water demand (Araújo et al.,
2021b).

Among species that co-occur in both vegetation types, in-
dividuals in the cerrado shed their leaves earlier in the dry
season than those in the cerradão, a strategy that prevents
damage to photosynthetic apparatus during the driest and
hottest period of the year (Araújo et al., 2021a). In the cer-
radão, later leaf senescence prolongs tree activity under wa-
ter deficits, making them more vulnerable to rising temper-
atures, both under current conditions and in future projec-
tions (Araújo et al., 2021a). Trees in the cerradão are also
taller than those in the cerrado, a trait that may increase their
sensitivity to drought. Taller trees tend to have wider xylem
vessels, making them more susceptible to embolism risk un-
der severe water stress (Olson et al., 2018; Araújo et al.,
2024). These contrasting strategies suggest that the responses
of these two vegetation types to climatic disturbances such as
El Niño events may differ substantially and, in particular, that
the physiological and anatomical characteristics of cerradão
vegetation may make it more susceptible to marked temper-
ature increases and prolonged water deficits.

Here, by setting up and sustaining intensive, long-term
monitoring plots that experience a similar climate for cer-
radão and cerrado, we aimed to quantify and compare the
effect of the 2015–2016 El Niño on the carbon cycle (produc-
tivity and allocation) of the two vegetation types. Our guiding
questions and hypotheses are outlined below.

1. Did the 2015–2016 El Niño affect total productivity and
the productivity and partitioning of different compart-
ments (canopy, stem, and fine root) in the cerradão and
cerrado?
We hypothesize the following:

– H1. Cerrado and cerradão NPPs respond differ-
ently to El Niño events due to their distinct struc-
tural, anatomical, and eco-physiological strategies.
We predict that the 2015–2016 El Niño reduced to-
tal productivity in both environments but that this
was more severe in the cerradão, where traits such
as taller trees, larger stomata, greater maximum
stomatal pore opening, and reduced water loss con-
trol increase vulnerability to drought (e.g., Araújo
et al., 2021a, b, 2023, 2024; Jancoski et al., 2022).

– H2. The productivity decline should be more pro-
nounced in the canopy and stem of the cerradão,
whereas, in the cerrado, the reduction may have
been less significant due to its higher water use
resilience (Ball, 2010). During drought, cerrado
plants are expected to reallocate resources from the
aboveground compartments (canopy and stem) to
fine roots, enhancing deep-water access, whereas
cerradão trees, with greater investment in verti-
cal growth, experience increased water stress and
reduced productivity (Comas et al., 2013; Pérez-
Ramos et al., 2013; Scalon et al., 2022).
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2. Did the cerradão and cerrado regain productivity after
the El Niño?

– H3. The cerrado is expected to recover its produc-
tivity more quickly than the cerradão. In the cer-
radão, recovery may be slower due to greater struc-
tural damage and impairment of the trees’ hydraulic
systems, such as xylem vessel embolism (Jancoski,
2019). The cerrado is expected to exhibit greater
resilience due to its conservative water use strategy
and capacity for re-sprouting after extreme drought
periods (Jancoski et al., 2022). In the cerradão, pro-
longed stress may have reduced the recovery rate,
especially in trees that suffered embolism or partial
canopy mortality (Reis et al., 2022; Araújo et al.,
2024).

2 Materials and methods

2.1 Study sites

We conducted this study in two long-term plots: one in the
cerradão (a transitional forest–savanna) and another in the
cerrado (typical cerrado; savanna), both located in Bacaba
Municipal Park, Nova Xavantina, Mato Grosso State, central
Brazil. The park covers approximately 500 ha in the tran-
sition zone between the Cerrado (Brazilian savanna) and
the Amazonia. Since the two plots are only ∼ 300 m apart,
they experience similar climatic conditions, classified as Aw
(tropical with dry winters) in Köppen’s system (Alvares et
al., 2013). The region has two well-defined seasons: a cooler
dry season (April to September) and a hot rainy season (Oc-
tober to March). According to the Brazilian National Insti-
tute of Meteorology (INMET) (station no. 83319), the mean
monthly temperature is 24.8 °C, and the total annual precipi-
tation is 1440 mm (Peixoto et al., 2017). The park’s average
altitude is ∼ 250 m. There is no evidence of a shallow water
table which might buffer the impact of climate extremes on
vegetation (Marimon Junior and Haridasan, 2005).

Each plot covers 1 ha and was established in 2002 (Mari-
mon Junior and Haridasan, 2005), with multiple re-censuses
having been conducted since then. Since 2010, these plots
have been part of the PELD project (Cerrado-Amazonia
Forest Transition: ecological and socio-environmental bases
for conservation), the RAINFOR network (Amazonia For-
est Inventory Network; ForestPlots.net et al., 2021), and the
ForestPlots.net database. Since 2014, they have also been in-
tegrated into the GEM network (Global Ecosystems Monitor-
ing network; Malhi et al., 2021). These plots have supported
numerous studies on topics including soil properties, species
composition and diversity, biomass, nutrient allocation, and
tree dynamics (e.g., Marimon Junior and Haridasan, 2005;
Marimon et al., 2014; Scalon et al., 2022). Partial carbon cy-
cles for the cerradão plot, including litterfall, soil CO2 efflux
and carbon stocks in fine roots, litter layer, and stems, have

been published previously (Peixoto et al., 2017; Peixoto et
al., 2018). Here, we provide the first comprehensive descrip-
tion of net primary productivity in both plots, along with an
extended time series that sheds light on the aftermath of the
2015–2016 El Niño event.

The plots have remained fire-free since 2008. The cer-
radão plot is a transitional forest–savanna ecosystem with
overlapping savanna and forest species, a closed canopy,
and dominant species such as Hirtella glandulosa Spreng.
and Tachigali vulgaris L.G. Silva and H.C. Lima. Ratter et
al. (1973) classified this vegetation type as Hirtella glandu-
losa cerradão. In contrast, the cerrado plot is characterized
by an open canopy with trees and shrubs, a grass understory,
and two dominant tree species: Qualea parviflora Mart. and
Davilla elliptica A.St.-Hil. (Marimon Junior and Haridasan,
2005; Marimon et al., 2014). However, the cerrado vegeta-
tion has been densifying, with reduced grass cover, possibly
due to fire exclusion (Morandi et al., 2015).

Soil properties are similar across the plots,
consisting of sandy loams classified as yellow
latosol, which are acidic (pH < 5.0) and dystrophic
(Ca2+

∼ 0.4 cmolc kg−1), with high levels of exchangeable
aluminum (Al3+> 1.3 cmolc kg−1). However, the cerradão
soil has a higher clay content and greater water-holding
capacity than the cerrado soil, potentially explaining the
contrasting vegetation types at these adjacent sites (Marimon
Junior and Haridasan, 2005). In the cerrado plot, the average
tree height is 3.7 m, with a basal area of ∼ 14.9 m2 ha−1,
while, in the cerradão, trees are taller on average (6.4 m),
with a higher basal area (∼ 21.4 m2 ha−1) (Marimon Junior
and Haridasan, 2005). Both plots contain 77 tree species
and similar tree densities (1890 trees in the cerrado and
1884 trees in the cerradão) (Marimon Junior and Haridasan,
2005).

2.2 Site climate and the El Niño 2015–2016 event

We used climate variables – air temperature, relative air hu-
midity, and precipitation – from a time series recorded at
a meteorological station (World Weather Station 83319) lo-
cated approximately 800 m from the plots. We calculated the
maximum climatological water deficit (MCWD), a key mea-
sure of tropical-forest water stress (see Aragão et al., 2007).
For this calculation, we assumed a standardized evapotran-
spiration (ET) rate of 100 mm per month for wet-season trop-
ical forests (Aragão et al., 2007).

We used the hydrological year to define the period from
May 2015 to April 2016 as representative of the climate con-
ditions during the 2015–2016 El Niño–Southern Oscillation
event based on Aragão et al. (2007) and Liu et al. (2017).
During the event, the site experienced record-high mean an-
nual and mean monthly maximum temperatures (26.0 and
35.4 °C, respectively) and record-low total annual precipita-
tion (790.2 mm). Additionally, in September 2016, the an-
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Figure 1. Climate variables between 2000 and 2020 for the cerrado and cerradão. We show (a) temperature (°C), (b) precipitation
(mm yr−1), and (c) maximum climatological water deficit (MCWD, mm in a rolling year), with the first month of the dry season (May)
representing the beginning of each year’s climatic calendar. The temperature indicates the average maximum monthly temperatures. The
dashed red line indicates the El Niño periods. Climatic data are from meteorological station no. 83319 of the Brazilian National Institute of
Meteorology (INMET). See Table S1 in the Supplement for data.

nual MCWD reached a record low of −883.7 mm (Fig. 1;
Table S1 in the Supplement).

2.3 Field methods and measurement uncertainties

We followed the GEM protocol manual (Marthews et al.,
2014; Malhi et al., 2021) to collect data for this study. We
measured the main components of NPP, including canopy
(leaves, twigs, reproductive parts, and others), wood (stems
and branches), and fine roots. Additionally, we estimated
other NPP components, such as canopy (leaf herbivory) and
wood (coarse root). The field method measurements and un-
certainties are described below.

– Litterfall net primary productivity (NPPlitterfall). We
collected litterfall – dead organic material production
(< 2 cm diameter) – every 14 d from January 2014 to
December 2019. We used 0.2827 m2 circular collec-
tors placed 1 m above the ground at the center of each
of the 25 subplots in each plot (cerradão and cer-
rado). We separated litter into leaves, twigs, repro-
ductive parts (flowers, fruits, and seeds), and uniden-
tifiable material. We calculated NPPlitterfall as follows:
NPPlitterfall=NPPcanopy− loss to leaf herbivory. We
oven-dried at 65 °C to a constant mass; weighed it; and
then separated it into leaves, twigs, reproductive parts,
and others. We estimated litter to contain 49.2 % car-
bon based on mean values from Amazonia (Patiño et al.,
2012). We calculated errors as the standard error asso-
ciated with variation among the litter traps (collectors).

– Loss to leaf herbivory (NPPherbivory). We estimated leaf
herbivory loss based on Neyret et al. (2016), who ob-
served that herbivory loss was 3.11 % in NXV-01 and
4.43 % in NXV-02. Data collection was conducted be-
tween March and May 2014. Each leaf’s fractional her-
bivory (H ) was calculated as H = (Anh−Ah) / Anh,
where Ah is the area of each leaf, including the dam-

age caused by herbivory, and Anh is the leaf area prior
to herbivory (Neyret et al., 2016). We derived the av-
erage H value for all leaves collected per litterfall trap
and then calculated plot-level means. A systematic un-
certainty of +50 % was assigned to the values for error
propagation.

– Aboveground coarse-wood net primary productivity
(NPPstem). To estimate stem NPP, we used the data
measured every 2–3 years, collected between 2013 and
2020, in the cerradão and cerrado plots. All trees
≥ 5 cm in diameter were surveyed to determine the
growth rate of surviving trees and the rate of recruit-
ment of new trees. The default measurement point was
set at 30 cm (DAS30cm) above the soil surface instead
of a typical forest diameter at breast height of 1.3 m.
The biomass of each stem was calculated using the spe-
cific allometric equation of Rezende et al. (2006) for the
Cerrado: C = 0.24564+0.01456×(D/10)2×H , where
C is the aboveground carbon stocks (kg), D is the di-
ameter (30 cm above the soil), and H is the height (m).
We measured the total height using a Leica DISTO laser
measurement device. The authors assumed that dry stem
biomass consists of 50 % carbon. A systematic uncer-
tainty of +25 % was assigned to recognize systematic
error in the use of allometry.

– Branch turnover net primary productivity
(NPPbranch turnover). Every 3 months, between 2014
and 2019, we collected branchfall > 2 cm diameter
(excluding that associated with dead trees) within
four 1 m× 100 m transects in each plot (cerrado and
cerradão). Small branches were cut to include only the
transect-crossing component and then were removed
and weighed. Larger branches had their dimensions
taken (diameter at three points) and were assigned a
wood density value according to decomposition class

Biogeosciences, 22, 3949–3964, 2025 https://doi.org/10.5194/bg-22-3949-2025



S. Matias Reis et al.: Sensitivity of tropical woodland savannas to El Niño droughts 3953

(Harmon et al., 1995). See the RAINFOR-GEM manual
(Marthews et al., 2014, p. 74) for a description of the
decomposition status and surface area formulas. Errors
were calculated as the standard error associated with
the variation among transects.

– Coarse-root net primary productivity (NPPcoarse root).
Root biomass was estimated based on Miranda et
al. (2014), specific to the vegetation types of the Cer-
rado. Based on this study, the ratio of the root (below-
ground) to shoot (aboveground) biomass is 1.37 for the
cerrado and 0.22 for the cerradão. A recent study using
144 plots found a similar relationship, with a ratio of the
root (belowground) to shoot (aboveground) biomass of
1.58 in Brazilian savannas (Terra et al., 2023). A sys-
tematic uncertainty of +20 % was assigned to values
for error propagation. Although we did not measure this
component, we find it useful to include this information
given the scarcity of such estimates for savannas.

– Fine-root net primary productivity (NPPfine root). Every
3 months, from September 2014 to February 2020, we
collected fine roots in each plot (cerradão and cerrado)
using 16 ingrowth cores (mesh cages: 12 cm diame-
ter, 30 cm depth). Fine roots were manually removed
from soil samples in four 10 min time steps, follow-
ing a method that corrects for the underestimation of
hard-to-extract root biomass (Metcalfe et al., 2007).
This method was used to predict root extraction be-
yond 40 min (up to 120 min); typically, an additional
33 % correction factor was applied for fine roots not
collected within 40 min. A correction for fine-root pro-
ductivity below 30 cm depth (Galbraith et al., 2013) in-
creased the value by 39 %. Errors were calculated as the
standard error associated with the variation among sam-
pling points. Root-free soil was then reinserted into the
ingrowth core. Collected roots were thoroughly rinsed,
oven-dried at 65 °C to a constant mass, and weighed.
This process was repeated for each subsequent measure-
ment.

For total NPP (calculated as the sum of several compo-
nents; see Eq. (1) below), the uncertainty value is calculated
by combining the uncertainty of each component by error
propagation (Hughes and Hase, 2010; Malhi et al., 2015).
The uncertainty of each component is explained above.

2.4 NPP calculation

We measured the NPP in the two plots between 2014 and
2020, as described above. We calculated all major compo-
nents of NPP using the following equations:

NPPtotal =NPPcoarse root+NPPfine root+NPPstem

+NPPbranch+NPPlitter fall+NPPherbivory, (1)

NPPcanopy = NPPlitter fall+NPPherbivory, (2)
NPPwoody = NPPcoarse root+NPPstem+NPPbranch turnover, (3)
NPPACW = NPPstem, (4)
NPPfineroot = NPPfine root. (5)

The calculations above neglect several small NPP com-
ponents, such as NPP lost through volatile organic com-
pound emissions (NPPVOC), unmeasured litter trapped in the
canopy, or litter dropped from understory flora below the
litter traps (1 m). However, in central Amazonia, Malhi et
al. (2009) found that NPPVOC represents a relatively minor
fraction of total NPP (0.13+ 0.06 Mg C ha−1 yr−1). For be-
lowground NPP, we do not include root exudates and mycor-
rhizae, which contribute less than 2 Mg C ha−1 yr−1 and rep-
resent a modest portion of carbon fluxes (Malhi et al., 2017).
Therefore, we focus on canopy, wood, and fine-root produc-
tivity, which, together, account for over 85 % of NPP (see
Riutta et al., 2018, and their references).

We calculated the relative allocation to the main NPP com-
ponents (woody, canopy, and fine-root NPP) for leaves, fine
roots, and stems using the following equation:

Allocationx = (NPPx × 100)/NPPtotal. (6)

2.5 Data analyses

Our analyses focused on comparing NPP across years (2014
to 2019), comprising the periods before, during, and after
the El Niño 2015–2016 event, in both cerrado and cerradão.
To compare total canopy NPP across years in each vegeta-
tion type (cerradão and cerrado), we performed a repeated-
measure ANOVA. The statistical model considered the year
to be a fixed factor, while litter traps were included as a ran-
dom effect to account for the hierarchical structure of the data
over time. When significant differences were detected, we
used Tukey’s post hoc test to compare total canopy NPP be-
tween years. We applied the same analysis to compare stem
and fine-root NPP across different years in each plot. For
stem NPP, we used subplots as random effects, and for fine-
root NPP, we used ingrowth cores as random effects. In cases
where residuals violated ANOVA assumptions, we applied
Friedman’s non-parametric test. We performed all analyses
in the R environment, with a significance level of 0.05.

3 Results

3.1 Total NPP and its allocation

During the El Niño event, total NPP in the cer-
radão decreased by 29 % (6.6± 0.6 Mg C ha−1 yr−1)
and reached a level similar to that of the cerrado
(6.6± 1.3 Mg C ha−1 yr−1; Fig. 2, Table S2). By 2018,
it remained 13 % lower than pre-El Niño conditions (Fig. 2).
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In contrast, total NPP in the cerrado showed little variation
before, during, and after the El Niño.

Throughout the study period, NPP allocation in the cer-
rado exhibited little interannual variation and showed no
clear drought signal. The primary axis of interannual vari-
ation was between canopy investment and root allocation,
while woody allocation remained constant (Figs. 2 and 3).
However, in the cerradão, a clear drought signal was ob-
served, with increased investment in fine roots during the
drought and reduced investment in woody growth. Canopy
allocation remained relatively constant.

3.2 Canopy NPP

Canopy productivity was affected after the El Niño event in
both the cerradão (F = 2.8, p= 0.01, −16.7 %) and the cer-
rado (F = 6.7, p < 0.001, −16.2 %) (Fig. 4). However, the
NPP of this component had fully recovered within 2 years
after the event. When analyzing leaf NPP, the primary com-
ponent of NPP litterfall, the cerrado exhibited a pattern sim-
ilar to total NPP litterfall, with a 13.2 % decline in 2016, fol-
lowed by recovery. In contrast, the cerradão showed a 12 %
increase in the year the El Niño began, followed by a 28 %
decline in 2016 and subsequent fluctuations in the following
years. Notably, in the cerradão, branch (twig) production in-
creased following the event, and, by 2018, its production had
doubled compared to previous years.

3.3 Stem NPP

In the cerradão, the most affected component was stem net
primary productivity (NPP), which declined by 58 % during
and after the El Niño (F = 15.6, p < 0.001; Fig. 5). By 2019,
it remained 21 % lower than pre-El Niño conditions. This de-
cline was primarily driven by two key species in this transi-
tional forest, Hirtella glandulosa Spreng. and Tachigali vul-
garis L.G. Silva and H.C. Lima, which contributed 22 % and
17 % to NPP after the El Niño, respectively. Before the event,
T. vulgaris was the dominant contributor to NPP (26 %). In
the cerrado, stem productivity was unaffected by the El Niño
event (Fig. 5).

3.4 Fine-root NPP

In the cerradão, fine-root net primary productivity (NPPfr)
increased significantly (+42 %) during the El Niño event
(F = 17.3, p < 0.001) but declined in the following years
(Fig. 6). In contrast, the cerrado exhibited the opposite pat-
tern. NPPfr decreased by 38 % during the event (F = 5.6,
p= 0.001; Figs. 2 and 6). However, this component re-
established itself shortly after the El Niño but experienced
another decline of approximately 38 % in 2018.

4 Discussion

The cerradão and cerrado showed contrasting responses to
the 2015–2016 El Niño-associated drought event. The cer-
rado appears to be more resistant as total NPP and stem NPP
were not impacted by the El Niño event, and the compo-
nents that experienced a reduction (e.g., production of fine
roots and canopy productivity) soon re-established them-
selves. In contrast, the cerradão exhibited lower resistance as
all NPP components were affected during the El Niño event,
including total NPP and stem NPP. Furthermore, although
most components recovered, fine-root production remained
significantly lower than pre-event levels (−51 %), and stem
production, while not statistically significant, was still 20 %
lower. Our findings demonstrate the high sensitivity of the
cerradão to extreme drought events.

4.1 Total NPP and its allocation

The decline in total NPP during the El Niño in the cerradão
was primarily driven by reduced stem growth (−58 %), fol-
lowed by a decrease in fine-litter production (−16 %). Each
of these parameters will be discussed in detail later. The to-
tal productivity of the cerradão was more affected (−29 %)
than that of the Amazonian rainforest (−7.6 % to −8.5 %)
during the El Niño drought of 2015–2016 (Machado-Silva et
al., 2021). Moreover, the reduction in stem productivity was
much larger (−58 %; −1.62 Mg C ha−1) than that estimated
for tropical forests as a whole (−8.3 % in 1997–1998 and
−9 % in 2015–2016, Rifai et al., 2018; −0.40 Mg C ha−1,
Bennett et al., 2023). This demonstrates the high sensitivity
of this vegetation to climate anomalies.

NPP partitioning between canopy, wood, and fine roots
varies substantially within tropical ecosystems (Zhang-
Zheng et al., 2024). Reports on NPP partitioning changes
under drought were very scarce. Doughty et al. (2014) found
that NPP portioning to roots decreases while partitioning to
leaves increases during drought. On the other hand, we see
such a pattern only very slightly in the cerrado in 2015. Our
cerradão site, however, shows a marked decrease in NPP
partitioning to wood, which was not observed in Amazonia
forests. One possibility is that these shifting strategies reflect
points on an aridity continuum from sub-humid Amazonian
forest through transitional or seasonally dry forests through
to savanna. Alternatively, the differences in soil fertility may
play a role, changing the costs and advantages of investment
in fine-root production.

4.2 Canopy NPP

The cerradão adopted the strategy of shedding more leaves at
the onset of the El Niño. However, both the cerradão and cer-
rado showed a significant reduction in leaf litter production
toward the end of the event (Fig. 4). The observed patterns
in leaf litter production suggest that both cerradão and cer-
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Figure 2. Mean total annual net primary productivity (NPP) between 2014 and 2018, split into its components (above) and annual NPP
allocation into the canopy, wood, and root components (below) for the cerradão and cerrado. The branch data from the cerradão were
collected in 2014 and repeated in other years. The error bars represent the standard error for total NPP. The dashed red line indicates the El
Niño periods.

Figure 3. Relative allocation (% of total) of net primary produc-
tivity (NPP) to canopy, woody, and fine-root NPP in the cerrado
and cerradão. Woody components include stems, coarse roots, and
branch turnover. Fine root includes fine-root NPP only (no root ex-
udates). Canopy includes litterfall and herbivory.

rado responded to the extreme drought conditions induced
by the 2015–2016 El Niño but with distinct temporal dynam-
ics. The early onset of leaf shedding in the cerradão indi-
cates a shift in its typical phenological strategy, likely as an
adaptive response to water stress since full or partial decid-

uousness, along with strong stomatal regulation, appears to
be a common water regulation strategy during the dry season
for cerrado species but not for cerradão species (Araújo et
al., 2021a; Jancoski et al., 2022). The accelerated leaf abscis-
sion at the beginning of the El Niño may have functioned as
a short-term mechanism to reduce transpiration and prevent
excessive hydraulic stress.

Despite these initial adjustments, both vegetation types ex-
hibited a marked decline in leaf litter production toward the
end of the event, suggesting that prolonged drought imposed
significant physiological constraints on canopy maintenance.
This reduced litterfall could be attributed to a combination
of factors, including lower overall canopy productivity, leaf
damage resulting from extended drought stress, or a decrease
in new-leaf formation. During periods of soil water stress, it
is well known that plants often shed their leaves as a strategy
to minimize water loss and avoid potential mortality (e.g.,
Brando et al., 2008). This leaf loss likely contributed to the
observed decline in litterfall as the plants prioritize conserv-
ing water over maintaining canopy coverage. Interestingly,
this leaf loss strategy can also have benefits for nutrient cy-
cling; when leaves drop, the nutrients they contain are re-
leased into the litter layer and soil, where they can be reab-
sorbed by the plants as they re-establish leaf growth after the
high-stress period (e.g., Oliveira et al., 2017). Thus, while
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Figure 4. Mean monthly productivity in canopy litterfall and its components for the cerrado (a) and cerradão (b) between 2014 and 2019:
fruits – flower, fruit, and seed fall; leaves – leaf fall; other – not identified; total – total canopy fine litterfall (as measured in litter traps); and
twigs – twig fall (< 2 cm). The error bars represent the standard error. The dashed red line indicates the El Niño periods. Different letters
denote significant differences between years in total canopy fine litterfall (Tukey’s post hoc test).

Figure 5. Stem net primary productivity (NPPstem, Mg C ha−1 yr−1) for stems larger than 5 cm diameter in the cerradão and cerrado. The
dashed red line indicates the El Niño periods. Different letters denote significant differences between years in each plot (Tukey’s post hoc
test).

Biogeosciences, 22, 3949–3964, 2025 https://doi.org/10.5194/bg-22-3949-2025



S. Matias Reis et al.: Sensitivity of tropical woodland savannas to El Niño droughts 3957

Figure 6. Fine-root net primary productivity (NPPfr) for the cer-
rado (light green) and cerradão (orange) between September 2014
and August 2019. The error bars represent the standard error. The
dashed red line indicates the El Niño periods. Different letters de-
note significant differences between years in each plot (Tukey’s post
hoc test).

the reduction in litterfall may initially appear to be detri-
mental, it can also facilitate nutrient availability for future
growth, highlighting the complex interactions between wa-
ter stress, leaf dynamics, and ecosystem productivity. This
response aligns with findings from other tropical and sub-
tropical ecosystems, where extreme drought events disrupt
typical phenological cycles and lead to declines in above-
ground productivity (Sippel et al., 2018; Duan et al., 2018).
The convergence in response at the end of the El Niño high-
lights the widespread impact of severe climatic anomalies
on carbon allocation strategies in the Cerrado biome. While
cerradão species initially adjusted by shedding more leaves,
the prolonged water deficit ultimately constrained their abil-
ity to maintain productivity, leading to reductions in leaf
turnover similar to those observed in the cerrado. This sug-
gests that, despite differences in initial strategies, extreme
drought events may override ecosystem-specific adaptations,
emphasizing the vulnerability of both vegetation types to fu-
ture increases in climate variability.

4.3 Stem NPP

The results indicating a significant decline in stem net pri-
mary productivity (NPP) in the cerradão during and after
the El Niño event highlight the vulnerability of this ecosys-
tem to extreme climatic conditions. The 58 % reduction in
NPP, along with the continued 21 % decrease by 2019, com-
pared to pre-El Niño conditions suggests that the structural
integrity and growth potential of the dominant species in
this transitional forest were notably compromised. This de-
cline can be attributed primarily to two dominant species,
Hirtella glandulosa and Tachigali vulgaris, which play cru-
cial roles in the ecological dynamics of the cerradão (Reis

et al., 2015, 2017). The significant contribution of H. glan-
dulosa to NPP after the El Niño event (22 %) indicates that,
while this species was able to maintain some level of pro-
ductivity, it still suffered under the adverse conditions im-
posed by the drought. Meanwhile, T. vulgaris, which was
the dominant contributor to NPP prior to the event (26 %),
experienced a decline in its growth or survivorship, reflect-
ing its sensitivity to prolonged drought stress (Prestes et al.,
2024). This shift in species dominance and productivity high-
lights the intricate interdependencies among species within
the cerradão, emphasizing the importance of specific species
in maintaining overall forest productivity.

In contrast, the cerrado exhibited a resilience in stem pro-
ductivity during the same climatic event, with no significant
changes noted (F = 1.3, p= 0.28). This resilience may be
attributed to the inherent differences in water use strategies
between the two ecosystems. The cerrado, characterized by
its conservative water use strategies, may have been better
adapted to cope with the drought conditions brought about by
the El Niño, allowing for sustained stem productivity (Jan-
coski et al., 2022; Araújo et al., 2023). The contrasting re-
sponses of stem NPP between these ecosystems underscore
the potential for differential impacts of climate extremes,
driven by the distinct ecological strategies employed by their
resident species. The decline in stem NPP in the cerradão has
implications for carbon storage and overall ecosystem health.
As stem productivity is closely linked to biomass accumu-
lation, the reduced NPP could lead to long-term alterations
in carbon dynamics within this forest type. Additionally, de-
creased stem growth may affect the structural complexity of
the forest, with potential consequences for habitat provision
and biodiversity. The persistent reduction in stem productiv-
ity even after the El Niño event suggests a lagged response
in the ecosystem’s recovery, possibly due to lingering effects
of drought stress or nutrient limitations. This highlights the
need for further monitoring of these ecosystems to under-
stand recovery trajectories and to inform conservation strate-
gies.

4.4 Fine-root NPP

The observed changes in fine-root net primary productiv-
ity (NPPfr) during the El Niño event reveal significant dif-
ferences in how the cerradão and cerrado ecosystems re-
spond to extreme climatic conditions. In the cerradão, there
was a notable increase in fine-root NPPfr of 42 % during the
El Niño event (F = 17.3, p < 0.001). This increase suggests
that the cerradão, characterized by taller trees and greater
leaf area (Araújo et al., 2023), may have adapted to drought
conditions by investing more resources into fine-root growth.
This response could be a strategy to enhance water absorp-
tion capabilities during a period of soil elevated atmospheric
demand and potential soil moisture deficits (Metcalfe et al.,
2008). However, this strategy does not ameliorate drought
risk as tree mortality was high (Prestes et al., 2024) despite
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a high investment in fine roots. Yet, following the El Niño
event, NPPfr in the cerradão declined in subsequent years.
This decline may indicate that the initial increase in root pro-
duction could not be sustained in the long term due to pro-
longed drought stress or nutrient limitations, leading to a re-
duction in overall root biomass and productivity.

The cerrado, on the other hand, exhibited an opposite pat-
tern, with a marked reduction in NPPfr during the El Niño.
This reduction in fine-root productivity suggests that the cer-
rado, which typically employs a more conservative water use
strategy (Araújo et al., 2021b, 2023), experienced greater
stress during the drought. The decrease in fine-root NPPfr
may reflect the challenges these species faced in maintain-
ing root function under extreme conditions, resulting in a
lower investment in root growth. The strategy observed in
the cerrado was similar to that of tropical dry forests, re-
flecting root phenological patterns linked to water availabil-
ity (Kummerow et al., 1990; Kavanagh and Kellman, 1992).
Interestingly, after the El Niño event, fine-root productivity
in the cerrado re-established itself, indicating some level of
resilience and recovery. However, this recovery was short-
lived as NPPfr experienced another decline of approximately
38 % in 2018. This subsequent decline may be attributed to
the residual effects of the El Niño event, including persistent
water deficits or nutrient availability issues, which may have
hindered the full recovery of fine-root productivity.

5 Conclusions

Cerradão is an important transitional vegetation type within
the Amazon–Cerrado ecotone, connecting two of Brazil’s
major biomes: the Cerrado and the Amazon. However, this
vegetation type is highly vulnerable to climatic events (as
shown in the present study), wildfires (Reis et al., 2015;
2017), and windstorms (Reis et al., 2022). One of its most
dominant trees, T. vulgaris, which plays a key role in carbon
uptake, showed strong sensitivity to El Niño events. Thus,
if these extreme drought events continue to become more
frequent and intense, the cerradão may release more car-
bon than it absorbs, consistently with a regional-scale atmo-
spheric result for southeastern Amazonia (Gatti et al., 2021).
Moreover, as a transitional zone between the Cerrado and the
Amazon, the cerradão plays an important role in maintaining
the ecological balance along this interface. Our results sug-
gest that the increasing frequency of El Niño events could
disrupt this transition, creating conditions for the progressive
degradation of forests along the edges of the Amazon. This
highlights the urgent need for actions to mitigate the impacts
of climate change in this sensitive region.

Data availability. The data used to produce the fig-
ures are available as a data package on ForestPlots.net:
https://doi.org/10.5521/2025_4 (Reis et al., 2025) and

in the Supplement. The data used to do the analy-
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