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Abstract. Estimating ecosystem–atmosphere fluxes such as
evapotranspiration (ET) in a robust manner and at a global
scale remains a challenge. Methods based on machine learn-
ing (ML) have shown promising results in achieving such
upscaling, providing a complementary methodology that
is independent from process-based and semi-empirical ap-
proaches. However, a systematic evaluation of the skill and
robustness of different ML approaches is an active field of
research that requires more investigation. Concretely, deep
learning approaches in the time domain have not been ex-
plored systematically for this task.

In this study, we compared instantaneous (i.e., non-
sequential) models (extreme gradient boosting (XGBoost)
and a fully connected neural network (FCN)) with sequen-
tial models (a long short-term memory (LSTM) model and
a temporal convolutional network (TCN)) for the modeling
and upscaling of ET. We compared different types of covari-
ates (meteorological without precipitation, precipitation, re-
mote sensing, and plant functional types) and their impact
on model performance at the site level in a cross-validation
setup.

When using only meteorological covariates, we found that
the sequential models (LSTM and TCN) performed better
(each with a Nash–Sutcliffe efficiency (NSE) of 0.73) than
the instantaneous models (FCN and XGBoost), both with an
NSE of 0.70, in site-level cross-validation at the hourly scale.
The advantage of the sequential models diminished with the
inclusion of remote-sensing-based predictors (NSE of 0.75

to 0.76 versus 0.74). On the anomaly scale, the sequential
models consistently outperformed the non-sequential models
across covariate setups, with an NSE of 0.36 (LSTM) and
0.38 (TCN) versus 0.33 (FCN) and 0.32 (XGBoost) when
using all covariates.

For the upscaling from site to global coverage, we input
the two best-performing combinations of covariates – (a) me-
teorological and remote sensing observations and (b) precip-
itation and plant functional types in addition – with glob-
ally available gridded data. To evaluate and compare the ro-
bustness of the modeling approaches, we generated a cross-
validation-based ensemble of upscaled ET, compared the en-
semble mean and variance among models, and contrasted it
with independent global ET data. In particular, we investigate
three questions regarding the performance of the sequential
models compared to the non-sequential models in the context
of spatial upscaling: (a) whether they lead to more realistic
and robust global and regional ET, (b) whether they are able
to capture the temporal dynamics of ET better, and (c) how
robust they are to the covariate setup and training data sub-
sets.

The generated patterns of global ET variability were rel-
atively consistent across the ML models overall, but in re-
gions with low data support via eddy covariance (EC) sta-
tions, we observed substantial biases across models and co-
variate setups and large ensemble uncertainties. The sequen-
tial models better capture the temporal dynamics of ET when
upscaled to global coverage, especially when using precipi-
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tation as additional input, and they seem to be more robust
to covariate setups, particularly the LSTM model. However,
together with the non-temporal FCN model, they exhibited
a larger ensemble spread than XGBoost, and they yielded
lower global ET estimates than what is currently understood.
XGBoost showed a smaller ensemble spread compared to
neural networks, in particular when conditions were poorly
represented in the training data, but it was more sensitive to
the covariate setup. Plant functional types were useful at the
site level for the improved representation of spatial patterns
but had a significant leverage on upscaling results – i.e., hav-
ing a disproportionate impact on the spatial patterns, espe-
cially for XGBoost, but less for the LSTM model.

Our findings highlight non-linear model responses to bi-
ases in the training data and underscore the need for im-
proved upscaling methodologies, which could be achieved by
increasing the amount and quality of training data or by the
extraction of more-targeted features representing spatial vari-
ability. The neural networks seem to yield more-realistic en-
semble uncertainty compared to XGBoost. Approaches such
as transfer learning, knowledge-guided ML, or hybrid mod-
eling, which encourage physically consistent results while
harnessing the efficiency of ML, should be further investi-
gated. Deep learning for flux upscaling holds great promise,
while remedies for its vulnerability to training data distribu-
tion changes still need consideration by the community.

1 Introduction

Measurements of land–atmosphere fluxes of gases, such as
water vapor or carbon dioxide, are crucial for understand-
ing the interactions between climate and ecosystems. Instru-
ments at eddy covariance (EC) stations measure such fluxes
integrated over a time span of 30 or 60 min and a small spatial
footprint, spanning a couple of hundred meters to over a kilo-
meter depending on the instrument height, terrain roughness,
and wind conditions. The measurement is performed at the
ecosystem level, as it represents the integral biotic and abi-
otic processes across scales (Baldocchi et al., 2001). While
EC stations provide a crucial source of data to measure these
fluxes, they come with challenges. For instance, their repre-
sentativeness and applicability for regional to global analysis
may be restricted due to the sparsity of EC sites in the geo-
graphic and climate space (Fig. 1a and b).

Evapotranspiration (ET) is the combined flux of water va-
por via evaporation from bare surfaces and plant transpi-
ration. The ET flux is of high relevance for modeling and
understanding the earth system because it links the water,
carbon, and energy cycles (Jung et al., 2010; Nelson et al.,
2018). However, the modeling of ET is challenging due to the
highly dynamic nature and modulation of ecosystems. Their
behavior depends on past system exposure via so-called dy-
namic memory effects (Ogle et al., 2015; Besnard et al.,

2019; Kraft et al., 2019, 2021). Among other factors, ET
depends on soil moisture, which is primarily driven by the
recent past rather than by instantaneous weather conditions.
Other processes impacting ET that depend on past meteo-
rology are related to vegetation states, such as leaf area and
phenology (Migliavacca et al., 2012).

To consider such complex memory effects, a model must
incorporate past system exposure, such as temperature or
precipitation. Alternatively, the model can be fed with states
that represent past exposure, such as leaf area index (LAI)
and soil moisture observations, or aggregations of past mete-
orology, like temperature or precipitation sums. However, the
observation of ecosystem states is challenging and often not
possible. In situ measurements, e.g., of soil moisture, are not
consistently available at all EC stations and may not always
precisely coincide with the eddy covariance measurements in
space or time, limiting the applicability for across-site mod-
eling. As an alternative, remotely sensed observations can
serve as proxies of ecosystem states, like vegetation indices
for foliage or phenology. These observations alone can only
partially explain EC measurements, as they represent struc-
tural or optical properties of the canopy rather than plant
physiology or subsurface water states; in particular, optical
observations tend to saturate with dense vegetation (Huete
et al., 2002). Therefore, it may be beneficial to learn the non-
observable states for the modeling of land–atmosphere fluxes
as non-linear functions of available covariates. Here, sequen-
tial machine learning (ML) models may offer a unique oppor-
tunity, as they are able to extract dynamic proxies from tem-
poral data (Rußwurm and Körner, 2017; Kraft et al., 2019).

ET can be quantified at large scales by employing process-
based paradigms, i.e., land surface models, or semi-empirical
approaches based on inputs from remote sensing observa-
tions and predefined empirical relationships (e.g., the Global
Land Evaporation Amsterdam Model (GLEAM); Martens
et al., 2017). As a complementary approach, the data-driven
upscaling, i.e., the generalization from the irregularly dis-
tributed EC stations to a regular spatio-temporal field, can
provide independent insights into ecosystem processes (Jung
et al., 2017). The upscaling is achieved by training an ML
model at the EC sites with covariates that are also available
as spatio-temporal fields (Jung et al., 2009). The optimized
model is then fed with the contiguous covariates to generate
regional- to global-scale products.

Due to the availability of long-term records of both eddy
covariance data and remote sensing products, increased com-
putational capacities, and a higher acceptance of ML ap-
proaches in the geosciences (Camps-Valls et al., 2021), data-
driven approaches to model ecosystem–atmosphere fluxes
have gained momentum in the past decade (Tramontana
et al., 2016; Jung et al., 2011; Nelson et al., 2024; Zhu et al.,
2024). Today, ML is widely used to model and upscale EC
data, but the field is still dominated by non-sequential model-
ing (i.e., an instantaneous model that does not learn memory
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Figure 1. Overview of eddy covariance (EC) sites used in this work. (a) Distribution of EC sites (white points) and map grid cells (background
color) within the global climate in terms of mean temperature and annual precipitation. (b) Geographic EC site locations in different gray
shading according to the number of hourly observations of evapotranspiration. The map color corresponds to the representativeness of a
geographic location by the EC station sites. It is the average Euclidean distance in climate space (mean and standard deviation of normalized
15-daily temperature, precipitation, and radiation) to the 10 closest stations. A lower representativeness (red) means a given location is further
away from EC sites in climate space.

effects), such as decision trees or fully connected neural net-
works.

An ensemble of global harmonized products of upscaled
EC fluxes from different ML algorithms (tree, kernel, re-
gression splines, and neural-network-based methods) was
released by the FLUXCOM initiative (FLUXCOM, 2017),
founded on previous work by Beer et al. (2010), Jung et al.
(2010, 2011), and Tramontana et al. (2016). These products
are built upon non-sequential models, and they account for
memory via manually designed features, such as seasonal
amplitudes or water availability indices, and remote-sensing-
based ecosystem state proxies, like vegetation indices (Huete
et al., 2002). The FLUXCOM products of energy (Jung et al.,
2019) and carbon (Jung et al., 2020) are utilized in contem-
porary land–atmosphere interaction studies and function as
benchmarks for earth system models. To improve the tem-
poral resolution and resolve the diurnal cycle, Bodesheim
et al. (2018) upscaled 30 min fluxes of carbon and energy
using randomized decision forests (Breiman, 2001) with a
non-sequential modeling approach. Xiao et al. (2014) up-
scaled daily carbon and water fluxes in North America us-
ing moderate imaging spectroradiometer (MODIS) data with
non-sequential ML approaches. Xu et al. (2018) evaluated
different non-sequential ML methods to upscale ET with
high-resolution features available regionally in China. Both
Zhao et al. (2019) and ElGhawi et al. (2023) used a non-
sequential physics-constrained neural network approach to
model ET, which has the potential to yield physically con-
sistent and partially interpretable models. Recently, Nelson
et al. (2024) published an hourly upscaling product of car-
bon and energy fluxes (X-BASE), built upon a novel frame-
work (FLUXCOM-X) that enables the testing and applica-
tion of different data streams and ML methods for upscaling
in a flexible manner. They use a non-sequential model based
on boosted regression trees (XGBoost; Chen and Guestrin,

2016) and account for memory effects via remote sensing
state proxies.

Non-sequential ML approaches, however, cannot repre-
sent temporal variable interactions beyond the observable
state proxies in contrast to, for instance, recurrent neural net-
works (RNNs; Lipton et al., 2015). For time series regres-
sion, the long short-term memory (LSTM) network (Hochre-
iter and Schmidhuber, 1997) is a widely used architecture
based on the RNN paradigm (Van Houdt et al., 2020). Such
sequential approaches have been evaluated for EC flux mod-
eling at the site level. Reichstein et al. (2018) applied RNNs
to model the weekly net ecosystem exchange (NEE) of car-
bon from nine European flux stations with meteorological
forcing and showed the relevance of temporal information
via a permutation test. Besnard et al. (2019) employed an
LSTM architecture to model monthly NEE at EC sites and
achieved better performance than with a non-sequential ran-
dom forest. But still, they reported a poor representation of
temporal dynamics in terms of both interannual variability
and anomalies, the deviations from the mean seasonal cycle.

In the domain of deep learning, different model architec-
tures are capable of processing sequential data. In the earth
sciences, the LSTM has become the de facto standard, even
though other architectures have been developed, such as the
temporal convolutional network (TCN; Oord et al., 2016;
Bai et al., 2018). The TCNs use sparse convolution along
the temporal dimension to consider long-term effects more
efficiently. More recently, models employing self-attention
(Vaswani et al., 2017) have shown noteworthy performance
in many domains. These sequential models could also hold
potential for EC flux modeling, as has been shown by Arm-
strong et al. (2022) and Nakagawa et al. (2023). While
conceptually apparent, there is little systematic evidence of
whether such sequential deep learning methods provide an
advantage over non-sequential approaches for the upscaling
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of EC fluxes and of how these models respond to other issues
inherent in upscaling, such as limited and unevenly sampled
training data and distribution shift from the local point data
to gridded fields.

In this study, we provide a systematic comparison of dif-
ferent ML approaches to the modeling of site-level ET fluxes
and subsequently their upscaling to the global scale using the
FLUXCOM-X modeling framework (Nelson et al., 2024). A
simple linear model, XGBoost, and a feed-forward fully con-
nected neural network serve as baselines for non-sequential
models. Two sequential models, one based on the LSTM ar-
chitecture and another based on a TCN, account for tempo-
ral effects. We chose these models as they are conceptually
different but both commonly used for time series simulation
and forecasting tasks, and we acknowledge that other archi-
tectures could be used as well. We compare the model perfor-
mances at the site level in a cross-validation setup and assess
the relevance of dynamical memory effects for ET model-
ing. For each model, we conduct a feature ablation experi-
ment, where we drop feature groups. The groups considered
in addition to meteorology are precipitation, which we ob-
tained from reanalysis data and not from site-level observa-
tions due to large gaps; dynamic state representations, based
on remotely sensed observations; and plant functional types
(PFTs), which are static descriptors of site characteristics.
We provide and investigate cross-validation-based upscaling
ensembles from the independent cross-validation models to
test for robustness. To assess the impact of the model archi-
tecture on upscaling, we contrast our products globally to a
set of land surface model simulations and to a semi-empirical
approach (GLEAM). We investigate, in the context of upscal-
ing, (a) whether the sequential models lead to more realistic
and robust global and regional ET compared to independent
estimates, (b) whether they are able to capture the tempo-
ral dynamics of ET better, and (c) how robust they are to
the covariate setup and training data subsets compared to the
non-sequential models.

The key contributions of this study are the following:

– a systematic comparison of the effectiveness of differ-
ent ML methods for site-level land–atmosphere ET flux
modeling,

– an assessment and discussion of the relevance of dif-
ferent covariates in the context of ecological memory
effects for ET,

– a characterization and comparison of an ensemble of up-
scaled ET estimates generated with different ML mod-
els.

2 Data sources and processing

We used hourly EC data from 2001 to 2020, processed by
the ONEFLUX pipeline (Pastorello et al., 2020). Only sites

available under the CC BY 4.0 license were included in this
analysis, i.e., FLUXNET 2015 (Pastorello et al., 2020), ICOS
Drought 2018 (Drought 2018 Team and ICOS Ecosystem
Thematic Centre, 2020), ICOS Warm Winter 2020 (Warm
Winter 2020 Team and ICOS Ecosystem Thematic Cen-
tre, 2022), or the more-recent ICOS or Ameriflux releases
when present. In total, we used 287 sites with approximately
19 million hourly observations of ET and meteorological
conditions. The approach by Jung et al. (2024) was used
for quality flagging. We used latent heat energy as the tar-
get flux and converted it to ET, assuming a constant latent
heat of vaporization of 2.45 MJmm−1. The following mete-
orological covariates were considered: near-surface air tem-
perature (Tair), vapor pressure deficit (1e), shortwave irradi-
ation (Rin), potential shortwave irradiation (Rin,pot), and the
time derivative of potential shortwave irradiation (1Rin,pot).
Note that the time derivative, which is the difference be-
tween potential shortwave irradiation values for 2 consecu-
tive hours, is intended to help the non-sequential models to
discern the diurnal cycle. As precipitation (P ) observation at
the site level is often missing, we used the hourly ERA5 re-
analysis instead (Hersbach et al., 2020), extracted from the
nearest pixel to the site. In addition, we used remote sensing
observations from the moderate imaging spectroradiometer
(MODIS) sensor on board both the Terra and Aqua satellite
platforms (collection 006). These include the enhanced veg-
etation index (EVI; Huete et al., 2002) and the normalized
difference water index (NDWI; Gao, 1996), both retrieved at
the site level from the MCD43A4 product and quality filtered
based on the MCD43A2 product (spatial resolution of 500 m;
Schaaf and Wang, 2015a, b) and from the MCD43C4 product
for the global data runs (Wan et al., 2015a; spatial resolution
of 0.05°). Additionally, the land surface temperature (LST)
was obtained from MOD11A1 at the site level (Wan et al.,
2015a; spatial resolution of 1 km) and from MOD11C1 glob-
ally (Wan et al., 2015b; spatial resolution of 0.05°). Although
the MCD43A4 product for the reflectances uses observations
from a period of 16 d to characterize and invert the bidirec-
tional reflectance distribution function of a given pixel for
the day at the center of the period, this operation is done over
a temporally moving window at daily time steps, resulting
in output data with daily frequency. The processing of the
datasets, cutouts at the sites, and quality control correspond
to the setup used in the FLUXCOM-X-BASE dataset (Nel-
son et al., 2024; Walther et al., 2022; Jung et al., 2024). As
an optional covariate, we use the plant functional type (PFT),
available for all EC station sites. The nine PFTs were one-
hot-encoded and repeated in time to match the hourly time
series. One-hot encoding represents categorical variables as
binary values, assigning a unique binary digit to each cate-
gory. The sample time series of the covariates and ET are
shown in Fig. 2.

For upscaling, we used global meteorological data from
the ERA5 reanalysis (Hersbach et al., 2020), corresponding
to the site-level variables. The hourly data were spatially re-
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Figure 2. A 1-year time series from the Hainich site (DE-Hai) in Germany. Meteorological covariates (hourly): near-surface air temperature
(Tair), vapor pressure deficit (1e), shortwave irradiation (Rin), potential shortwave irradiation (Rin,pot), time derivative of potential shortwave
irradiation (1Rin,pot), and precipitation (P ). Remote sensing (daily): enhanced vegetation index (VEVI), normalized difference water index
(VNDWI), and land surface temperature (Tsurf). Land–atmosphere target flux (hourly): evapotranspiration (yET).

sampled to a resolution of 0.05° using bilinear interpolation.
These data were also used to fill gaps in site-level meteoro-
logical observations.

For the evaluation of the upscaling results, due to the
lack of direct and spatially contiguous observations of ET,
we used the Global Land Evaporation Amsterdam Model
(GLEAM) v3 (Martens et al., 2017) and global sums of
yearly ET from 14 land surface modes (TRENDY v6; val-
ues extracted from Pan et al., 2020) as reference. Note that
these reference data sources do not represent the ground truth
but are estimates derived using different approaches, inde-
pendent from the data-driven upscaling performed here.

3 Methods

3.1 Experimental setup

We evaluate a set of sequential and non-sequential ML mod-
els at the site level in a leave-sites-out cross-validation setup.
The models are trained with different types of covariates:
meteorological site-level observations without precipitation
(met), precipitation from ERA5 (prec), remote sensing
(rs), and PFTs (pft). These experiments with different sets
of variables as model inputs are summarized in Table 1. In to-
tal, six covariate setups were tested and combined with five
ML models; i.e., 30 models were trained and evaluated at
the site level. For the evaluation, we use the Nash–Sutcliffe
modeling efficiency (Nash and Sutcliffe, 1970).

NSE= 1−

∑T
t=1
(
yt − ŷt

)2∑T
t=1(yt − y)

2
, (1)

where yt is the observed ET, ŷt is the predicted ET at time
t , and y represents the mean of the observations. The NSE
is calculated per site and can take values from −∞ to 1, re-
flecting the model performance relative to the mean of the
observations. Values above 0 indicate better prediction than
using the mean observations, and 1 is a perfect prediction.
Note that for the evaluation of spatial patterns, the NSE was
not computed per site but across sites, which corresponds to
the R2.

3.2 Modeling approach

With the goal of evaluating model performance at EC sta-
tion locations and afterwards upscaling to the global scale,
we tested a number of ML algorithms in a site-level cross-
validation setup. We denote the modeling problem as

ŷs,t = fθ (Xs,t−K:t ,cs). (2)

Here, Xs,t−K:t ∈ R(K+1)×D is the D dynamic input covari-
ates with up to K antecedent time steps, and cs ∈ RM is the
M static (constant) input features. The target flux of ET is
represented as ŷs,t ∈ R at site s and time step t . Note that
K = 0 with only instantaneous covariates Xs,t is a special
case where no antecedent time steps are considered (i.e., a
non-sequential model). We aim to find the parameters

θ∗ = arg min
θ

L
(
fθ (Xs,t−K:t ,cs),yt

)
(3)

of function fθ , which minimize the loss function L, given by
the mean squared error (MSE).
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Table 1. The ablation experiment with different covariate groups: meteorological without precipitation (met, hourly), precipitation (prec,
hourly), remote-sensing-based (rs, daily), and plant functional type (pft, constant). Each item corresponds to a unique covariate setup.

Setup Covariates

met Tair, 1e, Rin, Rin,pot, 1Rin,pot
met+prec met+P
met+pft met+ SPFT
met+rs met+VEVI, VNDWI, Tsurf
met+pft+rs met+VEVI, VNDWI, Tsurf+ SPFT
met+prec+pft+rs (=full) met+P + VEVI, VNDWI, Tsurf+ SPFT

met: near-surface air temperature Tair, vapor pressure deficit 1e, shortwave irradiation Rin, potential
shortwave irradiation Rin,pot, time derivative of the potential shortwave irradiation 1Rin,pot; prec:
precipitation P ; rs: enhanced vegetation index VEVI, normalized difference water index VNDWI,
land surface temperature Tsurf; pft: plant functional type SPFT.

As baselines, we used a linear regression (linearreg)
as well as two non-sequential models, a fully connected feed-
forward neural network (fcn), and extreme gradient boost-
ing (xgboost). The latter was also used in the recent state-
of-the-art global upscaling product xbase (Nelson et al.,
2024). The setup for these models was largely consistent with
xbase; i.e., the same covariates were used here plus precipi-
tation. The remote sensing and PFT covariates were repeated
in time for every hour to obtain uniform inputs; i.e., the for-
mer were constant over a day and the latter were constant
over the entire time series. Although the remote sensing co-
variates do, in theory, vary on a sub-daily basis, these vari-
ables are not available at the hourly resolution, and the di-
urnal variations are driven primarily by hourly-varying me-
teorological variables, although they interact with satellite-
based features that change only on a daily to weekly basis.
In addition to these non-sequential models, we used two se-
quential models: a simple LSTM architecture (a model able
to learn temporal dynamics via its built-in memory process-
ing mechanism) and a TCN model (which applies 1-D convo-
lutions in time). Those sequential layers were stacked so as to
achieve the extraction of complex temporal features. While
the LSTM has, conceptually, an unlimited receptive field,
the temporal context considered by the TCN depends on its
hyperparameters. The neural-network-based models use the
building blocks illustrated in Fig. 3 and were implemented in
PyTorch (Paszke et al., 2019) v1.13.

3.3 Model training

To identify models with the capacity to generalize well to
unseen sites, we trained them following an eight-fold cross-
validation scheme, for which the data splitting between sites
was kept identical across different models and covariate se-
tups. To decrease the dependency between the sets, we ensure
that sites in close spatial proximity (below 0.05° distance)
are part of the same set using the clustering of coordinates.
The site groups are provided in the Appendix (Table B1). For
each of the eight folds, six of the cross-validation sets were
used for training (75 %), one for validation (12.5 %), and one

Figure 3. The three neural network layers used in this study: (a) a
feed-forward neural network; (b) a temporal convolutional network
(TCN), which applies causal (i.e., does not consider future time
steps) 1-D convolutions in the time dimension; and (c) a long short-
term memory (LSTM) model, which uses recursion for information
flow in the time dimension. The model inputs (xs,t ) at site s and
time t are mapped to the output ŷs,t .

for testing (12.5 %), such that each site appeared in the test-
ing set once. The training and validation sets were used for
model tuning with the early stopping algorithm: the model
parameters were optimized on the training set, while the val-
idation set was used to evaluate the generalizability regularly
(10 times in each training epoch). Once the validation loss
converged over a given number of validation steps (the “pa-
tience”), model training was halted, and the best parameters
were restored. With these parameters, the model was applied
to the independent test set. This approach yielded indepen-
dent predictions for each site, which we then used to evaluate
the model’s performance on a site-level basis. For a speedup
of the training, the model was iteratively fed with randomly
selected sequences of 2 years. The first year was used for
providing a temporal context similar to the “spinup” in dy-
namic process models, while the second was used for tuning.
Note that the 2-year sequence was randomly sampled in ev-
ery epoch, ensuring that all observations were, potentially,
used for training with high likelihood.

We used a random search over a predefined set of hyper-
parameters. For each model, 20 parameter sets were sam-
pled uniformly with replacement. The sets are reported in
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Table A1 in the Appendix. Note that we selected hyperpa-
rameter ranges based on prior experiments; i.e., we excluded
values that performed consistently badly in order to obtain a
denser sampling of the sensitive ranges. With this protocol,
we tuned hyperparameters independently for each model ex-
cept for linearreg, which has no hyperparameters. The
same hyperparameter set was used throughout the cross-
validation for each model setup. Thus, the cross-validation
ensemble is composed of models with the same hyperparam-
eters but trained on different subsets of the data.

To quantify model uncertainty on the site level, we per-
formed the cross-validation for the six best-performing mod-
els (in terms of validation MSE) from hyperparameter tuning
for each model and setup individually. For later analysis and
upscaling, only the best-performing model was used.

3.4 Upscaling

To achieve global coverage, we fed the models with harmo-
nized and gridded data from 2001 to 2021 with 0.05° spatial
and hourly temporal resolution. Due to the high computa-
tional demands of the upscaling, we decided to use only two
well-performing covariate setups across all models. We se-
lected the met+rs and the met+prec+rs+pft (full)
setups as they were among the best-performing setups. The
linearreg model was excluded, as it performed signifi-
cantly worse than the non-linear algorithms in the site-level
cross-validation. For each of the four remaining ML models,
we compute an ensemble of eight upscaling products. The
members, hereafter referred to as the “cross-validation en-
semble”, correspond to the models obtained from the cross-
validation folds, i.e., each fold yielded one model which was
trained and evaluated on an independent set of sites. Note
that this differs from the X-BASE setup (Nelson et al., 2024),
where the cross-validation was used exclusively for model
evaluation, and the upscaling was done with a single model
trained again on additional sites without holding out a test
set. This method does not yield an ensemble and is, there-
fore, not suited for the evaluation of within-model upscaling
robustness. The upscaled products are then evaluated by an
ML model intercomparison and by contrasting global yearly
sums and regional cross-validation ensemble mean and vari-
ability to independent products.

4 Results and discussion

4.1 Site-level modeling of evapotranspiration (ET)

In this section, the EC site-level prediction of ET is evaluated
based on the cross-validation setup. We aim to understand
the impact of different covariate types and ML approaches
on performance at different temporal scales and to assess the
relevance of sequential model architectures on reproducing
the ET observed at EC sites.

4.1.1 Model performances across scales

Figure 4 presents site-level ET accuracy in terms of NSE
for different ML models and covariate groups across scales.
We now focus on the best-performing models (solid lines in
Fig. 4). Overall, model outcomes were more influenced by
the choice of covariates than by the ML algorithm used. No-
tably, a significant interaction between ML models and co-
variates was observed.

In general, the ML models outperformed linear regression
by a substantial margin. On the raw and daily timescales,
sequential models exhibited the best performance, maintain-
ing stable NSE values of 0.70–0.75 (raw) and 0.60–0.65
(daily) across data setups. Non-sequential models per-
formed worse when using only meteorological covariates but
showed a significant improvement when remote sensing co-
variates were included, achieving a similar performance to
the sequential models.

On a seasonal scale, the sequential models outperformed
the others in the absence of remote sensing covariates. How-
ever, when remote sensing covariates were included, the
performance differences between models became less pro-
nounced. For anomalies, adding remote sensing covariates
enhanced the model performance across all setups, with se-
quential models consistently outperforming non-sequential
models. Notably, this was the only scale where precipitation
had a clear positive impact across all models compared to the
met+rs+pft setup.

For interannual variability, model performance was gen-
erally poor across all setups, with no clear patterns, and
the small y-axis range underscores this. Adding PFTs and
precipitation did not improve and, on the contrary, in some
cases, reduced performance. On the spatial scale, the model
performance was similar across models, although the sequen-
tial models exhibited a slight advantage with the met and
met+prec setups. Including PFT covariates notably im-
proved the performance of all models on this scale.

Regarding model uncertainty (shaded areas in Fig. 4), the
sequential models generally showed lower robustness than
non-sequential models, likely due to their added complex-
ity. The sequential models consistently outperformed the
non-sequential ones on the raw scale. On the daily and
seasonal scales, the differences between the sequential
models were primarily driven by model uncertainty; i.e., the
uncertainty ranges displayed in Fig. 4 overlapped strongly on
the spatial scale. On the anomaly scale, the sequential mod-
els reliably outperformed the non-sequential models across
the top six setups. Given the small performance range and
large model uncertainties on the iav scale, caution is needed
when interpreting these differences. Similarly, the differ-
ences on the spatial scale were minimal, and the relative un-
certainties were substantial.

Next, we discuss the broader implications of these find-
ings. The linear models (linearreg) consistently under-
performed because evapotranspiration is governed by com-
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Figure 4. Site-level evaluation for modeled evapotranspiration: median Nash–Sutcliffe efficiency (NSE) across sites for different models
(lines) and covariates (x axis) for various scales (panels). The shaded area represents the range of the top six models from hyperparameter
tuning per model setup, with the solid line indicating the best-performing model (top one). This can be interpreted as model uncertainty. Note
that the model selection during hyperparameter tuning was based on the validation set and the mean squared error. Consequently, the best
model is not necessarily the top performer in terms of NSE. The scales shown are raw for hourly, daily for daily aggregates, seasonal
for daily seasonal, anom for daily anomalies (daily minus seasonal), and iav for interannual variability. The spatial scale reflects
the NSE across site mean values, indicating the ability of the models to capture spatial variability.

plex interactions and non-linear functions, making the ad-
vantages of ML methods particularly evident. While the se-
quential models showed only marginal improvement when
adding covariates related to the ecosystem state, the non-
sequential models exhibited more substantial improvements.
This serves as a sanity check for the sequential models: they
were able to extract additional information from the temporal
meteorological covariates, as expected. However, incorporat-
ing remote sensing covariates improved and stabilized their
performance. Conversely, this suggests that remote sensing
covariates serve as useful proxies for ecological memory:
while the sequential models could extract additional infor-
mation from antecedent covariates, most of this information
appeared to be contained in the remote sensing covariates,
allowing the non-sequential models to achieve a similar per-
formance.

On the anomaly scale, we observed a more noticeable per-
formance increase when considering remote sensing, even
for the sequential models. This is important, as anomalies
are crucial for studying and quantifying ecosystem responses
to uncommon or extreme conditions. This performance in-
crease could be linked to processes observable by remote
sensing but not directly derivable from meteorology, such as
the effect of management on crops and forests and natural

disturbances. Here, adding precipitation improved the perfor-
mance of all models. This is not surprising, as precipitation
is a key driver of ET through its influence on soil moisture
(Nelson et al., 2020). However, the improvement was com-
paratively small, which may be due to the use of precipitation
reanalysis data that may not fully represent local conditions.
The low performance on the iav scale was also reported by
Jung et al. (2019) and Nelson et al. (2024).

It is worth noting that adding PFTs as covariates did not
improve, and in some cases even reduced, model perfor-
mance on the temporal scales. On the spatial scale, how-
ever, their inclusion was beneficial, highlighting the poten-
tial importance of spatial covariates for modeling EC fluxes
and upscaling. PFTs have long been criticized for not accu-
rately representing the continuous characteristics of ecosys-
tems (Reichstein et al., 2014; Kattge et al., 2011). Our exper-
iments suggest that while adding PFTs provides additional
information for representing spatial patterns, they may also
harm extrapolation on other scales, arguably due to the in-
flated covariate space; indeed, each of the nine PFTs intro-
duces another input dimension due to one-hot encoding. We
therefore recommend exploring alternative spatially continu-
ous variables, such as soil properties or plant traits, that could
summarize ecosystem functional properties.
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These findings advocate for comprehensive feature selec-
tion to identify more relevant static features, thereby avoiding
unnecessary inflation of the input dimensionality. Alterna-
tively, or in addition, location embeddings, such as SatCLIP
(Klemmer et al., 2025), could improve model generalizabil-
ity by providing a condensed representation of land surface
characteristics.

4.1.2 Memory effects matter

As previously mentioned, the performance gap between
the non-sequential and sequential models decreased when
remote sensing observations were incorporated as covari-
ates. We explore these differences in Fig. 5. As shown in
panel (a) (Fig. 5a), which displays the absolute error dif-
ference between the lstm and xgboost models, the non-
sequential models performed worse when high incoming ra-
diation (> 200 Wm−2) was paired with either low or high
observed ET. To represent these conditions, the models must
implicitly learn about water availability. It appears that the
sequential model was able to learn proxies of wetness from
the meteorological time series, whereas the non-sequential
model was unable to do so. Instead, the non-sequential model
seems to have learned an average behavior, which performed
well in most situations.

When remote sensing covariates were added as well as
PFTs and precipitation, the differences in performance were
reduced but not entirely eliminated (Fig. 5b). This interpreta-
tion is further supported by panels (c) and (d) in Fig. 5, which
show the difference in mean predicted ET between the se-
quential and non-sequential models. With access to only me-
teorological covariates (Fig. 5c), the non-sequential model
overestimated ET, with high incoming radiation but low ob-
served ET – representing dry conditions that the model failed
to recognize. In contrast, high observed ET was underesti-
mated by the non-sequential model, which likely corresponds
to wet conditions. After incorporating remote sensing, PFTs,
and precipitation covariates (Fig. 5d), the performance dif-
ferences were substantially reduced. This comparison under-
scores the importance of memory effects in ET modeling and
illustrates how remote sensing covariates, while useful, are
not perfect proxies for ecological memory.

Furthermore, including precipitation may be beneficial for
the sequential models in principle, as these models could
learn soil moisture dynamics. However, as noted earlier, the
performance increase was not as pronounced as expected
(Fig. 4), possibly due to the use of reanalysis data that may
not fully capture local conditions.

4.2 Scaling evapotranspiration to global coverage

With the models optimized at the site level, we create
global ensembles of ET estimates for the met+rs and the
full (met+prec+rs+pft) covariate setups. The ensem-
ble members were trained with different subsets of the train-

Figure 5. Comparison of a sequential (lstm) and a non-sequential
(xgboost) model in terms of absolute error and mean predicted
ET in the space of observed evapotranspiration × shortwave irra-
diation: panels (a) and (b) show the difference in absolute error
between the lstm and xgboost models, with panel (a) showing
the difference when only meteorological covariates are used and
panel (b) showing the difference when precipitation, remote sens-
ing, and PFT covariates (full setup) are included. Here, magenta
indicates cases where the sequential model outperforms the non-
sequential model, and green is vice versa. Panels (c) and d) show the
difference in mean predicted ET between the lstm and xgboost
models for the respective covariate setups. In these panels, red col-
ors indicate an underestimation of ET by xgboost compared to
lstm, and blue indicates the opposite. The histograms represent
the marginal data distribution.

ing data within the cross-validation scheme. At the site level,
the differences between ML models were small when con-
sidering remotely sensed observations or PFTs as covari-
ates. However, when scaling globally, data distribution shifts
can (and will) affect different model types in different ways.
These shifts arise from the different scales of the measure-
ments (point at EC site versus grid globally), the differ-
ent data products used (direct observation of meteorologi-
cal variables at EC site versus reanalysis globally), and the
spatial extrapolation into different ecoclimatological condi-
tions from irregularly and sparsely sampled locations. In this
section, we consider the performance of the different ML ap-
proaches and covariate setups while scaling out of the EC
station locations.

4.2.1 Global patterns of evapotranspiration

Figure 6 shows global annual ET estimates for all ML mod-
els and the two selected covariate setups. With the met+rs
setup, the non-sequential models (xgboost, fcn) esti-
mated about 65× 103 km3 yr−1 global annual ET, which
is close to the land surface model (lsm) ensemble mean
(64.7± 6.9× 103 km3 yr−1), while the sequential models
(tcn, lstm) predicted roughly 8 % lower values (59.8 and
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Figure 6. Global annual evapotranspiration (ET) per model. The violin plots represent the density of independent cross-validation runs (black
dots), with their mean values across runs displayed as white dots. For the machine learning models, the met+rs setup (meteorological and
remote sensing covariates) is shown in light gray, while the full setup (meteorological, precipitation, remote sensing, and PFT covariates)
is shown in dark gray. The data from a number of land surface models (lsm), the GLEAM product (gleam), and FLUXCOM X-Base
(xbase) are added as a reference.

61.8× 103 km3 yr−1, respectively). With the full setup,
xgboost showed the strongest increase in global ET
(+10 %), while fcn, lstm, and tcn increased modestly
(1 %, 0.5 %, and 5 %, respectively). xgboost was closest to
gleam and xbase, whereas neural networks aligned more
with lsm estimates.

Figure 7 displays spatial patterns of ensemble mean ET
per model and covariate setup. The models aligned well spa-
tially in the met+rs setup (Fig. 7a), with lower ET by
the sequential models, especially in regions in the Southern
Hemisphere, which have sparse coverage by EC stations. The
full setup (Fig. 7b) revealed stronger divergences across
models, particularly in arid zones such as the Sahara and
Arabian Peninsula and generally in the subtropical zones.
Figure 7c shows that changes in ET estimates due to covari-
ate setup differences were low in temperate zones but more
pronounced in arid and tropical regions. lstm appeared rel-
atively robust across setups.

A temporal anomaly correlation analysis (Fig. 8) re-
veals high agreement (r > 0.8) between covariate setups in
most areas, except for arid zones, and only the tcn main-
tained high consistency globally. A comparison with gleam
(Fig. 8b) showed moderate correlations (mean r ≈ 0.5), with
discrepancies mainly in tropical and arid regions. Figure 8c
highlights where models improved alignment with GLEAM
when using additional covariates: tcn improved slightly,
while lstm improved most consistently across dry regions.

Figure 9 shows uncertainty via median absolute deviation
(MAD) across ensemble members based on monthly values.
xgboost had the lowest spread overall, with modest in-
creases in tropical zones and more pronounced increases in
arid zones in the full setup. The neural networks showed
a higher ensemble spread: in the tropics and subtropics for
met+rs and in arid regions for the full setup. In the lat-
ter, uncertainty patterns aligned with ecosystem boundaries,
likely reflecting PFT transitions.

We saw that models showed biases in terms of global ET
sums, but apart from xgboost, the values were relatively
robust to changes in covariate sets. From the spatial and tem-
poral patterns (Figs. 7, 8, and 9), it becomes evident that
the uncertainty originates mainly from tropical and arid to
semi-arid regions. Finally, we want to investigate if the dif-
ferences are related to the technical setup (architecture and
covariates) or to the variability in the training data used in
the cross-validation. Therefore, we investigate the alignment
of members shown in Fig. 6: we compute the linear (r) and
rank (ρ) correlation between global sums of ET between all
models and covariate setups. In other words, we quantify if
using the same data subset in cross-validation leads to consis-
tent upscaling behavior in terms of global ET. The results are
shown in Table 2. Global ET estimates from xgboost were
highly correlated between setups (r = 0.90, ρ = 0.76), sug-
gesting consistent behavior across training data subsets. Neu-
ral networks exhibited a lower correlation (r = 0.32–0.75),
indicating greater variability. Overall, consistency in upscal-
ing behavior was not strongly tied to model type or covariate
setup.

4.2.2 Model biases across architectures and covariate
setups

Most models, particularly the sequential ones, estimated
global ET – averaged across members – at the lower end
of current estimates from independent methods of about
70± 5× 103 km3 yr−1 (Jung et al., 2019) and compared to
gleam and xbase. Energy balance non-closure at EC sites
could depress ET by up to 20 % (Jung et al., 2019), yet re-
cent findings suggest that the closure gap may contribute only
moderately to the global ET bias, as the closure gap very
likely stems primarily from sensible rather than latent heat
fluxes, i.e., ET (Zhang et al., 2024; Mauder et al., 2024). Be-
cause both xgboost-full and the xbase product would
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Figure 7. Spatial model evaluation and comparison for the met+rs and full (meteorological, precipitation, remote sensing, and PFT
covariates) setup. Grid-level cross-validation ensemble mean ET for each model is shown in panel (a) for met+rs and panel (b) for full.
The first column represents xgboost, and the remaining columns show the difference in xgboost. Panel (c) shows the difference met+rs
minus full. The color scale is consistent across panels and reflects mean ET in mmd−1. Inset histograms show the distribution of values
weighted by grid cell area; the median is indicated by a dashed black line.

Table 2. Global evapotranspiration (ET) correlation across model ensemble members. The correlation is based on global ET sums across
cross-validation members trained on the same sites. The upper triangle (bold) shows the Pearson correlation, and the lower triangle shows
the Spearman rank correlation.

xgboost fcn tcn lstm

rs full rs full rs full rs full

xgboost
rs 1.00 0.90 0.25 0.23 0.63 0.45 0.67 0.20
full 0.76 1.00 0.57 0.36 0.58 0.65 0.80 0.39

fcn
rs 0.12 0.71 1.00 0.58 0.16 0.43 0.44 0.78
full 0.26 0.62 0.52 1.00 0.20 0.25 −0.08 0.45

tcn
rs 0.33 0.38 0.29 −0.05 1.00 0.75 0.39 0.08
full 0.40 0.81 0.81 0.38 0.62 1.00 0.64 0.09

lstm
rs 0.43 0.55 0.52 −0.12 0.38 0.62 1.00 0.32
full −0.10 0.36 0.76 0.31 0.10 0.33 0.48 1.00

share the same closure issue but still reach the benchmark
range, the deficit of the other models must originate else-
where; options are training data subsets, the ML approaches,
covariate setup, or data distribution shift due to extrapolation
into underconstrained regions and product types (site level
versus gridded).

Disentangling these possible causes is difficult, but we can
draw some conclusions from the results. We have shown that
different training subsets did not lead to consistent upscaling
behavior (Table 2). In other words, taking the same training
data subset for model training did not lead to similar behav-
ior across ML models in terms of global ET. This suggests
that the ensemble variance at the global scale is not driven
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Figure 8. Temporal correlation of monthly ET anomalies among models and covariate setups. (a) Correlation between monthly ET anomaly
time series from the met+rs and full setups. (b) Correlation between monthly ET anomalies of met+rs and the GLEAM product.
(c) Difference in temporal correlation with GLEAM between the full and met+rs setups. Inset histograms show area-weighted value
distributions, with dashed black lines indicating the median.

Figure 9. Median absolute deviation (MAD) of the cross-validation ensemble for each model setup, representing spatial uncertainty in
mmd−1. (a) MAD for the met+rs setup. (b) MAD for the full setup. Inset histograms show the distribution of values weighted by grid
cell area; the dashed black line marks the median.

by training data but rather by how the ML models extrap-
olate out of the training data distribution. It indicates that,
when evaluating the global sums alone, neither neural net-
works versus xgboost nor sequential versus non-sequential

models can be regarded as inherently more consistent – or
therefore more reliable – for global upscaling.

A further complication is the change from EC site-
observed meteorology to reanalysis grids. At EC sites, me-
teorological variables are locally observed, whereas global
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inputs are derived from reanalysis grids (with a spatial res-
olution of 0.25°) with assimilation and spatial smoothing
(Hersbach et al., 2020; Parker, 2016; Grusson and Barron,
2022; Valmassoi et al., 2023). Sequential networks, which
exploit fine-scale temporal structure, are theoretically more
sensitive to such a distribution shift than tree-based or feed-
forward models. Nevertheless, our results show that spatial
patterns are robust in data-rich regions, both across archi-
tectures (ensemble means, Fig. 7) and within architectures
(ensemble spread, Fig. 9). Because every model and covari-
ate set converges where observational support is strong, the
station-to-grid shift cannot be the dominant source of the spa-
tial or global sum discrepancies. Instead, the residual differ-
ences arise from the extrapolation into data-sparse regions,
with different behavior across models and covariate setups.

The model runs without PFTs (Figs. 7a and 9a) showed a
better agreement with each other (Fig. 7a versus Fig. 7b) and
within ensemble members (Fig. 9a versus Fig. 9b). This sug-
gests that excluding the PFTs from the covariates improves
the model robustness. However, we saw at the site level that
the PFTs improved the model performance, particularly at
the spatial scale (Fig. 4). At the same time, we observed un-
realistic spatial patterns with the full setup: in particular,
xgboost and fcn with the full setup estimated large ET
in arid regions like the Sahara and Arabian Peninsula. These
large ET estimates align poorly with our understanding of
ET processes, and xbase estimates in these areas have also
been shown to be too high (Nelson et al., 2024). Thus, while
fcn, and particularly xgboost with the full covariate
setup, appears close to the global mean ET benchmark, this
is likely for the wrong reasons, i.e., overestimation in arid
regions. The sequential models also yielded higher global
ET when including PFTs, likewise originating from arid re-
gions, but the increase was less pronounced. lstm showed
the greatest robustness across setups. For all models, we ob-
served an increase in the ensemble spread in arid and also
tropical regions when adding PFTs (Fig. 9). It is possible
that in the site-level cross-validation, these effects were not
visible because of a lack of EC stations in arid and tropical
regions.

While we cannot answer which model in combination with
which covariate setup yields the “best” upscaling results,
we can conclude that non-temporal models yielded more re-
alistic global ET estimates, even if this is largely due to
covariate-driven artifacts in data-scarse regions rather than
genuinely improved process representation. The sequential
models were also sensitive to covariate setup, but lstm was
more robust compared to the other models.

4.2.3 Consistent temporal dynamics

Despite variability in absolute ET magnitudes, the models
showed strong internal consistency in their temporal dynam-
ics (Fig. 8). The high correlation between covariate setups

(Fig. 8a) indicates that models captured similar temporal
variations and responded consistently to climatic forcing.

The temporal correlation with gleam was moderate over-
all, as discussed previously. The GLEAM ET product is
based on conceptual models driven by remote sensing in-
puts and meteorological forcing. We do not treat it as ground
truth, but we assume it provides spatially consistent tempo-
ral patterns due to its incorporation of prior knowledge. In
contrast, our ML models rely solely on data-driven represen-
tations and may be sensitive to data shifts due to general-
ization beyond data support and data types. Given this, the
overall moderate agreement with GLEAM is not surprising
and does not imply poor model performance. Rather, we in-
terpret divergences – especially in tropical and arid regions
– as a consequence of low data availability and known chal-
lenges in these environments.

The temporal correlation with gleam improved notably
for the lstm model in arid and some tropical regions when
additional covariates were included (Fig. 8c). This improve-
ment was not observed for xgboost, which showed a slight
degradation, particularly in arid climates, or for fcn, which
remained largely unchanged. We attribute the improved per-
formance of sequential models primarily to the inclusion of
precipitation, consistent with their enhanced performance on
the anomaly scale at the site level when this covariate was
added (Fig. 4).

It is unclear why tcn did not show a similar improvement
in arid regions. At the site level (Fig. 5), tcn actually outper-
formed lstm on the anomaly scale, albeit with higher model
uncertainty. This could suggest that lstm learns a more ro-
bust representation of temporal dynamics in these regions,
which is not evident from the site-level cross-validation as
those regions are largely absent from the training data. In
contrast, tcn may be more sensitive to distribution shifts.
There is evidence that lstm architectures are better suited
to capturing hydrologically relevant temporal patterns com-
pared to convolutional models (Kraft et al., 2025). While
lstm can theoretically access the full temporal context, tcn
is constrained to a fixed temporal window of approximately
8 d in both the met+rs and full setups (Table A1). Note
that this temporal context is, for the tcn architecture, related
to the hyperparameters that yielded the best model perfor-
mance. This limited context may explain its reduced ability
to generalize temporal patterns in data-sparse regions.

In summary, temporal dynamics remained relatively con-
sistent across methods. Sequential models, especially lstm,
benefited from richer covariate input, particularly precipita-
tion, improving alignment with an independent product in
arid regions. This highlights the added value of using sequen-
tial models for representing temporal dynamics in ET mod-
eling and upscaling, yet the interaction between model archi-
tectures and covariates, particularly in data-sparse regions,
also suggests that a profound covariate selection is necessary
to identify best-working setups.
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4.3 Lessons learned and outlook

4.3.1 Site-level performance: small but consistent
advantages for sequential models

At the site level, sequential models consistently outper-
formed non-sequential models for ET flux prediction, es-
pecially when evaluated on the anomaly scale (Fig. 4).
This is in line with previous findings for NEE modeling
(Besnard et al., 2019), suggesting that temporal dependen-
cies, such as ecosystem memory effects, are captured more
effectively by models with recurrent or convolutional mem-
ory. The inclusion of remote sensing variables (e.g., veg-
etation indices) reduced the performance gap between se-
quential and non-sequential models by providing state prox-
ies, although the advantage for sequential models persisted.
Adding precipitation from reanalysis further improved per-
formance at the anomaly scale, particularly for the sequential
models, confirming the value of dynamic hydrological infor-
mation. However, these improvements were relatively mod-
est, indicating that data availability and quality, rather than
model architecture, remain the primary bottlenecks. More-
advanced architectures, such as temporal transformers, may
offer further gains, but recent work in gross primary produc-
tion (GPP) modeling has shown only marginal improvements
(Nakagawa et al., 2023), providing further evidence that EC
flux modeling is still a data-limited problem.

4.3.2 Global upscaling: both model architecture and
covariates drive uncertainty

Small changes in the covariate setup led to moderate dif-
ferences in the global ET means (Fig. 6), especially for
xgboost with the full setup, which showed an increase
of 10 % in global ET, supposedly due to the strong leverage
effects of PFTs in sparsely sampled regions. The moderate
differences were partially due to error compensation. While
we found no clear evidence that any architecture yields more
realistic absolute ET estimates, our results point to system-
atic biases that depend on both model design and the covari-
ates used. This highlights the importance of methodologi-
cal choices, including architecture, covariate selection, and
cross-validation design, in driving upscaling uncertainty.

4.3.3 Spatio-temporal patterns: robust dynamics,
variable magnitudes

Despite differences in magnitude, all models showed consis-
tent temporal ET patterns and strong alignment in anomaly
correlations, both among themselves and, to a lesser extent,
also with the GLEAM product (Fig. 8), yet the robustness
drastically decreased outside of the training domain. With the
inclusion of precipitation and PFTs in the full setup, the
sequential models – particularly lstm – showed improved
temporal agreement with GLEAM in arid regions, support-
ing their value for representing memory effects related to

soil moisture. However, these benefits were largely limited to
the temporal dimension; biases in global means and ensem-
ble spread remained pronounced, especially for data-sparse
regions where additional covariates such as PFTs introduce
high leverage. Given their lower computational complexity
and more stable behavior, we find that non-sequential models
like xgboost currently offer a pragmatic and robust solu-
tion for global-scale ET upscaling, especially when paired
with carefully selected meteorological and remote sensing
inputs.

4.3.4 Outlook: addressing biases and uncertainties in
data-scarce regions

Moving forward, reducing model biases and uncertainty in
upscaling requires both methodological advances and im-
proved data. Rather than prioritizing complex model archi-
tectures, future efforts should focus on four complementary
pathways.

i. Feature selection and additional data constraints: Deep
learning presents promise for enhancing flux modeling
and upscaling and offers advanced computational tech-
niques capable of managing complex non-linear inter-
actions within ecosystems. However, to maximize the
effectiveness of deep learning in such a data-limited set-
ting, it is essential to implement additional constraints
and to integrate richer data sources (Reichstein et al.,
2019). The accuracy of deep learning models relies
heavily on the quality and diversity of the input data
(Karpatne et al., 2019). Enhancing these models with
additional covariates that accurately reflect ecological
and atmospheric conditions can significantly improve
their predictive power. Additionally, expanding the net-
work of flux stations and sharing the data for scientific
applications would enhance the data pool to cover more
diverse ecological conditions and climate zones, thereby
enriching the training data used for model calibration
and validation. Furthermore, applying constraints at a
regional level, akin to the approach by Upton et al.
(2024), who used an ensemble of atmospheric inver-
sions of NEE as large-scale guidance for flux upscal-
ing, could be used to reduce biases. For ET modeling,
large-scale water balance could be used as a regional
constraint, for example.

ii. Additional data sources. To further refine the perfor-
mance of deep learning approaches in EC measurement
upscaling, it could be beneficial to tap into additional
data sources. Approaches such as transfer learning can
be particularly effective (Caruana, 1997; Pan and Yang,
2010). By applying knowledge gained from one region
to another region, or from related and richer datasets,
models can achieve better generalization, especially in
data-sparse areas. To deal with shifts in covariates due to
the various reasons discussed previously, domain adap-
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tation (He et al., 2023) could provide a useful toolbox
to reduce upscaling biases.

iii. Physical constraints. As a complementary pathway, in-
corporating prior scientific knowledge into deep learn-
ing models could help to address challenges associated
with the data extrapolation and distribution shifts en-
countered in upscaling (Reichstein et al., 2019; Kraft
et al., 2022). Such integration aids in aligning model
outputs with established physical laws and ecological
principles, thereby improving the reliability of the pre-
dictions (Reichstein et al., 2022). Physics-informed and
hybrid physics/ML approaches represent a cutting-edge
direction in the field of flux modeling, as they merge
the empirical strengths of deep learning with the deter-
ministic nature of physical models. For upscaling into
undersampled regions, such constraints can nudge the
model outputs towards physically more plausible solu-
tions. As an example, encoding simple relationships be-
tween precipitation and evaporation, or vegetation and
transpiration, could help in reducing ET estimates in
arid regions where EC stations are lacking. Although
challenging, more comprehensive physical process pa-
rameterizations, such as the Penman–Monteith equa-
tions, can be combined with ML to estimate ET (Zhao
et al., 2019; ElGhawi et al., 2023). This could, in prin-
ciple, reduce the widely reported regional biases in up-
scaling EC fluxes with ML, which we identified as cur-
rently the main challenge in flux upscaling.

iv. Systematic benchmarking. Finally, systematic bench-
marking frameworks, such as FLUXCOM-X (Nelson
et al., 2024), are essential for disentangling the com-
plex interactions between models, covariates, and eval-
uation setups. Such frameworks enable controlled abla-
tion studies and targeted diagnostics, helping to build a
more-transparent understanding of uncertainty sources
in ML-based flux upscaling.

In conclusion, while deep learning provides valuable tools
for modeling land–atmosphere interactions, the key to bet-
ter global ET estimates lies in more comprehensive observa-
tional data, thoughtful covariate selection, targeted physical
constraints, and methods to reduce extrapolation bias – rather
than in model complexity alone.

5 Conclusions

In this study, we assessed different covariate setups and ma-
chine learning approaches for modeling ET fluxes at eddy
covariance sites through cross-validation and evaluated the
robustness and quality of globally upscaled ET estimates.
From our site-level analysis, we conclude that sequential
deep learning models can outperform non-sequential models
for ET flux modeling, particularly on the anomaly scale. The

sequential models captured memory effects related to wa-
ter availability, which improved their ability to represent the
temporal dynamics of ET. However, this advantage dimin-
ished when remote sensing covariates were included, as these
effectively act as proxies for ecosystem memory. Adding pre-
cipitation as a covariate led to small performance improve-
ments, especially for sequential models and on the anomaly
scale, confirming its value in representing hydrological con-
straints. The inclusion of PFTs increased the ability of the
models to capture spatial variability across sites, yet their dis-
crete nature raises concerns about their broader utility. We
therefore recommend the further exploration of alternative
static variables or targeted feature selection to maintain a par-
simonious covariate set.

Globally, sequential and non-sequential models produced
small but systematic differences in mean ET, suggesting that
different model types learn distinct representations and re-
spond differently and randomly when extrapolating out of
the training distribution. When using PFTs as an additional
covariate, both divergence of spatial means of ET among
models and ensemble spread within models increased, par-
ticularly in arid regions where data support is limited. This
highlights the large leverage of the PFTs on upscaling re-
sults when extrapolating out of the covariate space and un-
derscores the need for a better understanding of the role of
covariates in upscaling. While the sequential models suffered
from biases similar to those of their non-sequential counter-
parts, the sequential models achieved better temporal align-
ment with the GLEAM product, particularly when precipita-
tion was included.

In the context of our experiments, we can answer the re-
search questions posed in the introduction as follows.

a. Do the sequential models lead to more realistic and ro-
bust global and regional ET estimates?
No, the sequential models yielded lower global ET esti-
mates than expected from independent estimates. How-
ever, the larger estimates of the non-sequential mod-
els were likely due to an overestimation of ET in arid
regions. Nonetheless, the sequential models, especially
the LSTM, were more robust to covariate shifts, suppos-
edly due to their lower dependency on PFT due to their
ability to link spatial variability to temporal features in
the covariates.

b. Do the sequential models capture the temporal dynam-
ics of ET better?
Yes, the sequential models captured temporal dynamics
better than the non-sequential models, at both the site
and upscaling level, particularly when using precipita-
tion as an additional input and with the LSTM architec-
ture.

c. How stable are the sequential models in relation to the
covariate setup and training data subsets compared to
the non-sequential models?
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The sequential models showed a similar ensemble
spread to the non-sequential neural network, indicat-
ing that robustness towards training data subsets is more
linked to the model type (decision tree versus neural net-
work) than to the sequential nature of the models.

Considering the added complexity and computational cost
of sequential neural networks, the relatively modest perfor-
mance gain at the site level, and their underestimation of
global ET alongside larger ensemble spreads, we conclude
that these models are not strictly required for global ET up-
scaling. Non-sequential ML approaches, such as XGBoost,
can deliver similarly robust estimates across scales when sup-
ported by high-quality meteorological and remote sensing
covariates. Yet, XGBoost overestimated ET in arid regions,
which raises some concerns, but these are also not exclusive
to this model type. In particular, the LSTM architecture was
robust towards covariate setups and able to learn subtle tem-
poral dynamics, which could be beneficial in specific appli-
cations. These findings highlight the importance of structural
model diversity in ensemble setups in assessing the robust-
ness and uncertainty of upscaling results.

The potential for upscaling ET to the global scale using
modern ML methods is constrained by the information con-
tent and representativeness of the EC training data. As a re-
sult, seemingly small changes in covariate setups can ex-
ert a great influence over upscaling results, particularly in
data-sparse regions. To enhance the robustness and physical
consistency of global ET products, we recommend pursu-
ing complementary strategies: integrating richer covariates,
increasing EC site coverage, applying regional constraints,
leveraging transfer learning, and embedding prior scientific
knowledge into ML architectures. By following these path-
ways, deep learning has the potential to produce more ac-
curate, robust, and physically grounded predictions of ter-
restrial evapotranspiration across diverse environmental set-
tings.
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Appendix A

Table A1 provides an overview of the hyperparameter search
space and the best-performing combination of settings for
each model and covariate setup. We sampled 20 random hy-
perparameter configurations for each model, evaluating them
via early stopping on a validation set to determine the final
selections. For the tcn model, the temporal context length
considered (temp. contex) depends on the hyperparam-
eters of the model, leading to a range of context lengths from
about 4 d (91 h) to about 19 d (451 h). The number of param-
eters in each model (# parameters) was derived from the
chosen architecture, highlighting the fact that the complexity
increases substantially with deeper layers or larger hidden
sizes.

Table A1. Hyperparameter search space and the best-performing hyperparameter per model and setup. The best combination was found by
evaluating 20 random samples based on early stopping validation loss. The xgboost and fcn models are non-sequential, the lstm model
has a minimum of 1 year (9000 hourly time steps) and a maximum of 2 years of theoretical context (18 000 hourly time steps), and the tcn
model’s temporal context depends on the hyperparameters (reported in the row temp. context), ranging from 90 to 450 h, i.e., about 4
to 19 d. The number of parameters per model is reported in the row # parameters.

Model Hyperparameter Search space Selected hyperparameter per setup

met met+
prec

met+
pft

met+
rs

met+
pft rs

met+
prec
pft rs

xgboost max_depth {6, 8, 10, 12} 10 10 12 8 12 12
learning_rate {10−2, 10−1, 2× 10−1} 10−1 10−1 10−1 10−1 10−1 10−1

min_child_weight {1, 5, 10} 1 1 5 5 5 5
max_delta_step {1, 5, 10} 10 10 10 5 5 5
# parameters derived 209 000 212 000 640 000 128 000 1 264 000 1 273 000

fcn num_hidden {128, 256} 128 128 128 256 256 128
num_layers {3, 4} 1 1 1 2 1 1
dropout {0.0, 0.2} 0.2 0.2 0.2 0.2 0.2 0.2
learning_rate {10−6, 10−5, 10−4} 10−6 10−4 10−6 10−5 10−4 10−4

weight_decay {10−3, 10−2, 10−1, 100} 10−3 10−1 10−3 10−3 10−1 10−1

# parameters derived 17 000 17 000 19 000 134 000 70 000 19 000

tcn num_hidden {64, 128, 256} 64 256 256 256 256 256
num_layers {2, 3, 4} 4 4 3 4 4 3
kernel_size {4, 8, 16} 16 4 16 4 4 16
dropout {0.0, 0.2} 0.2 0.2 0.2 0.2 0.2 0.2
learning_rate {10−6, 10−5, 10−4} 10−6 10−5 10−6 10−5 10−5 10−6

weight_decay {10−3, 10−2, 10−1} 10−3 10−2 10−2 10−2 10−2 10−1

temp. context derived 451 91 211 91 91 211
# parameters derived 473 000 2 000 000 5 600 000 2 000 000 2 200 000 5 600 000

lstm num_hidden {64, 128, 256} 128 256 256 128 64 256
num_layers {1, 2} 2 1 1 2 1 1
dropout {0.0, 0.2} 0.0 0.2 0.2 0.2 0.0 2.0
learning_rate {10−6, 10−5, 10−4} 10−4 10−4 10−6 10−6 10−6 10−4

weight_decay {10−3, 10−2, 10−1} 10−1 10−1 10−3 103 10−1 10−1

# parameters derived 217 000 336 000 344 000 219 000 25 000 348 000
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Appendix B

Table B1 displays the eight cross-validation groups, each col-
umn representing one group, with its corresponding eddy co-
variance site IDs. We used this grouping to ensure that the
training and validation sets differ systematically across folds,
minimizing spatial autocorrelation effects at the site level.
The sites within each group span a range of climatic and eco-
physiological conditions, allowing for a more robust evalua-
tion of model generalization.

Table B1. The eddy covariance site groups used for cross-validation. The eight groups correspond to columns, and the items correspond to
site IDs.

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8

AR-Vir AR-TF1 AU-Fog AU-DaP AU-ASM AU-Cum AR-SLu AU-Ade
AT-Neu AU-Wac BE-Lcr AU-Whr AU-Dry AU-RDF AU-Cpr AU-DaS
AU-Tum BR-Sa3 CA-ER1 CH-Cha AU-Emr AU-TTE AU-Gin BE-Maa
BE-Dor CA-NS2 CA-SF1 CH-Fru BE-Bra AU-Wom AU-Rob CA-Qfo
CA-NS3 CA-NS5 CA-SF3 CN-Dan BE-Lon BE-Vie AU-Ync CH-Dav
CA-NS4 CA-TP1 CN-Qia CN-Du2 BR-Sa1 CA-Cbo BR-Npw CZ-KrP
CN-HaM CA-TPD DK-Sor CN-Du3 CA-Obs CA-LP1 CA-DB2 CZ-Lnz
CZ-BK1 DE-RuR FR-Aur CN-Sw2 CA-SF2 CA-NS6 CA-DBB DE-Hte
CZ-BK2 DE-RuS FR-Bil CZ-Stn CA-TP3 CH-Lae CA-Gro DK-Gds
CZ-RAJ DE-RuW FR-Fon DE-Kli CA-TP4 CN-Cha CA-NS7 ES-Agu
DE-Akm DE-Seh FR-Tou DE-Lnf DE-Hai CN-Cng CA-Oas ES-LJu
DE-HoH DE-Spw GF-Guy ES-Abr DE-Tha CN-Din CA-TP2 ES-LM1
DE-Lkb DE-Zrk GL-Dsk ES-LgS FI-Ken DE-Geb CH-Aws ES-LM2
DE-Obe ES-Amo IE-Cra FI-Hyy FI-Lom FI-Sii CH-Oe1 ES-Ln2
DE-SfN FI-Var IT-BFt FI-Let FR-Lam GH-Ank CH-Oe2 FI-Qvd
DK-Eng FR-Hes IT-Cp2 FR-EM2 GL-NuF PA-SPn CZ-wet FR-FBn
ES-Cnd IL-Yat IT-Cpz IT-Tor IT-Col PA-SPs DE-Gri FR-LBr
FI-Jok IT-BCi JP-SMF MX-Tes IT-PT1 SE-Lnn DE-Hzd FR-Pue
GL-ZaF IT-Ro1 US-Atq NL-Hor IT-SR2 SE-Ros DK-Fou IT-Isp
GL-ZaH IT-Ro2 US-CS1 PE-QFR IT-SRo US-A32 FI-Sod IT-La2
IT-Lsn NL-Loo US-CS2 RU-Fy2 JP-MBF US-Cop FR-Gri IT-Lav
IT-MBo RU-Ha1 US-CS3 RU-Fyo MY-PSO US-EDN FR-LGt IT-Noe
IT-Ren SD-Dem US-CS4 SE-Htm RU-Cok US-Ho2 IT-CA1 RU-Che
SE-Nor US-IB2 US-GBT US-ARb SJ-Blv US-Me1 IT-CA2 SE-Svb
SJ-Adv US-KS1 US-GLE US-ARc US-CRT US-Me3 IT-CA3 US-Blo
US-AR2 US-Los US-Ha1 US-CF1 US-ORv US-Me6 SE-Deg US-Ivo
US-ARM US-MOz US-KS2 US-CF2 US-Prr US-Myb SN-Dhr US-KFS
US-BZB US-NR1 US-KS3 US-CF3 US-Tw1 US-Ne1 US-AR1 US-UMB
US-BZF US-ONA US-Lin US-CF4 US-Tw2 US-Ne2 US-Bi1 US-UMd
US-BZS US-Ro1 US-Me2 US-Jo2 US-Tw3 US-Ne3 US-Bi2 US-Wi0
US-BZo US-Ro4 US-Me5 US-NGB US-Tw4 US-Sne US-Goo US-Wi1
US-ICs US-Ro5 US-SRG US-OWC US-Tw5 US-Ton US-Hn3 US-Wi3
US-ICt US-Ro6 US-SRM US-Oho US-Twt US-Var US-MMS US-Wi5
US-KLS US-Rwf US-Wjs US-Rms US-WPT US-WCr US-PFa US-Wi7
US-Mpj US-Rws US-Wkg US-Rwe US-Wi6 US-Wi2 US-Sta US-Wi8
US-Syv US-SRC ZM-Mon US-Whs US-xBR US-Wi4 US-Wi9
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