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Abstract. The impact of climate on the annual cycle and in-
terannual variability of CO2 fluxes is assessed in European
evergreen needleleaf forests (ENFs) and deciduous broadleaf
forests (DBFs) using observations from 19 sites, along-
side outputs from process-based and data-driven models. All
models capture the temporal phasing of CO2 fluxes, includ-
ing a shorter sequestration period in northern rather than
southern Europe, a more pronounced annual cycle for DBFs
than for ENFs in central Europe and strong interannual vari-
ability across sites. However, they generally underestimate
both the magnitude of CO2 sequestration and its interannual
variability compared to observations. Regarding the annual
cycle, all datasets indicate enhanced CO2 uptake from late
spring to early fall, with a stronger climate–CO2 flux cou-
pling in northern and central Europe than in southern Europe,
where seasonality is less pronounced. At the interannual
timescale, the climate does not show a significant influence
on observed and modelled net ecosystem exchange (NEE)
when correlations are computed using monthly anomalies
across all months combined. This apparent lack of relation-
ship conceals meaningful seasonal patterns. In winter and
fall, NEE tends to be positively correlated with temperature,
soil moisture and vapour pressure deficit (VPD). In spring,

NEE shows negative correlations with temperature and VPD
but a positive correlation with soil moisture. The summer pat-
tern is reversed compared to the spring pattern. In the obser-
vations, these relationships are noisy in both time and space,
suggesting strong site-specific effects. In contrast, the mod-
els exhibit more structured and spatially coherent patterns
with strong correlations, which may reflect an exaggerated
response to climate forcing despite underestimated magni-
tude in CO2 flux interannual variability.

1 Introduction

Forest ecosystems are the largest part of the land CO2 sink
(Lindeskog et al., 2021), with up to 20 %–50 % of anthro-
pogenic CO2 emissions (land-use changes excluded) se-
questered for the 2000–2010 period (Le Quéré et al., 2018;
Pugh et al., 2019; Pan et al., 2024). In Europe, recent estima-
tions suggest a slight increase in CO2 sequestration by forest
ecosystems over the 2000–2021 period mainly due to the fer-
tilization effect of increased atmospheric CO2 concentration
(Prentice et al., 2001; Piao et al., 2009; Schimel et al., 2015;
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Walker et al., 2021; Sitch et al., 2024). However, this trend
remains weak, as the fertilization effect has almost been com-
pensated for by a decrease in CO2 sequestration induced by
climate change (Sitch et al., 2024). The extent to which cli-
mate controls CO2 flux exchanges between the atmosphere
and European forest ecosystems is thus a burning question in
the context of climate change.

Numerous studies have demonstrated the strong influence
of climate on CO2 exchanges between the atmosphere and
forest ecosystems. The annual cycle and, to a lesser ex-
tent, interannual variability of these fluxes are driven by fac-
tors such as incident shortwave radiation, temperature, atmo-
spheric evaporative demand and the water cycle, including
soil moisture dynamics (Haszpra et al., 2005; Tang et al.,
2014; von Buttlar et al., 2018; Kong et al., 2022; Sharma
et al., 2022; Li et al., 2023; Xu et al., 2023). The dominant
climate factor influencing CO2 fluxes depends on the specific
component considered. The variability in net ecosystem ex-
changes (NEEs) is a mixed response of its two components:
gross primary production (GPP), which sequesters CO2 into
the ecosystem through photosynthesis, and ecosystem res-
piration (RECO), which releases CO2 into the atmosphere
from forest metabolism (autotroph respiration) and the de-
composition of organic matter by fungi and bacteria (het-
erotrophic respiration). GPP is primarily driven by vapour
pressure deficit (VPD), shortwave radiation, temperature and
soil moisture, while RECO is mainly influenced by precipi-
tation, soil moisture and temperature (Messori et al., 2019).

The influence of climate on CO2 fluxes also depends on
several additional factors, with seasonality playing a crucial
role. Severe heat waves and droughts acted to reduce CO2
sequestration in summer at the Europe-wide scale in 2003
(Ciais et al., 2005), in northern Europe in 2018 (Smith et al.,
2020; Thompson et al., 2020), and in central and southeast-
ern Europe in 2022 (van der Woude et al., 2023). On the other
hand, anomalously high temperature under normal soil mois-
ture conditions in spring set favourable growth conditions
and hence increased CO2 sequestration, such as in northern
Europe in 2018 (Smith et al., 2020). The climatic zone un-
der consideration is also a key factor. For instance, GPP is
mostly influenced by soil moisture in the Mediterranean re-
gion, VPD over parts of central Europe, and temperature over
Scandinavia, parts of eastern and southeastern Europe, and
higher elevations (Seddon et al., 2016; Madani et al., 2017).
The influence of climate on CO2 flux exchanges is further
shaped by various factors, including soil properties (Kurba-
tova et al., 2008; Besnard et al., 2018; Curtis and Gough,
2018; Martinez del Castillo et al., 2022), forest management
practices (Carrara et al., 2003; Saunders et al., 2012), tree
age (Kurbatova et al., 2008; Besnard et al., 2018) and tree
species (Carrara et al., 2003, 2004; Welp et al., 2007; Kong
et al., 2022).

Assessing the impact of climate on CO2 flux exchanges re-
mains challenging. The main reason involves the scarcity of
multi-year CO2 fluxes measured by eddy covariance above

the canopy (Burba, 2021). At the European scale, the In-
tegrated Carbon Observation System (ICOS) network pro-
vides standardized and open data from 98 ecosystem sta-
tions across 16 countries. The flux tower measurements re-
main limited in number and temporal depth and unevenly dis-
tributed spatially, making it difficult to assess the impact of
climate on the interannual variability (and trends) in CO2 flux
exchanges and to map them. Process-based and data-driven
models allow us to tackle the above limitations. Process-
based models, such as dynamical vegetation models, are rou-
tinely used to assess CO2 flux exchanges between the atmo-
sphere and the biosphere (Friedlingstein et al., 2023). These
are mechanistic models (Friedlingstein et al., 2006; Sitch et
al., 2008) allowing for testing the response of CO2 fluxes to
individual and combined forcing (Sitch et al., 2024). Data-
driven models rely on the identification of statistical rela-
tionships between flux tower measures by eddy covariance
and corresponding land use, vegetation properties and cli-
mate characteristics. Based on these statistical relationships,
empirical models are built and used for upscaling, i.e. for as-
sessing CO2 fluxes in regions where they are not measured
(Tramontana et al., 2016; Jung et al., 2019, 2020; Zhuravlev
et al., 2022). Both approaches have limitations. Estimations
of CO2 flux exchanges are highly sensitive to physical pa-
rameterizations (Cai and Prentice, 2020) and atmospheric
forcing (Wu et al., 2017; Hardouin et al., 2022) in process-
based models. The reliability of data-driven models is limited
by the sparse and uneven distribution of flux tower measure-
ments and by the underlying statistical methods used to build
them (Jung et al., 2020). While not perfect, process-based
and data-driven models provide satisfactory results for cap-
turing large-scale patterns compared to, for example, satellite
estimations (Wang et al., 2023). This makes them valuable
complementary tools to observational data.

Most recent studies examining the influence of climate on
the temporal dynamics of European forest CO2 fluxes rely
on case studies and primarily focus on spring and summer
conditions (Smith et al., 2020; Thompson et al., 2020; van
der Woude et al., 2023). However, a more comprehensive as-
sessment is needed across the entire annual cycle, as CO2
release during fall and winter is expected to increase under
climate change. Additionally, climate conditions vary signifi-
cantly between northern and southern Europe, necessitating a
broader spatial perspective. These objectives are addressed at
the monthly timescale, which is considered sufficiently fine
to capture both the CO2 flux annual cycle and its interannual
variability.

This study addresses these gaps by investigating the im-
pact of climate on both the annual cycle and interannual
variability of CO2 fluxes in European evergreen needleleaf
forests (ENFs) and deciduous broadleaf forests (DBFs). Us-
ing ICOS network observations alongside state-of-the-art
data-driven and process-based model estimates, we first char-
acterize the observed annual cycle and interannual variability
of CO2 fluxes across Europe. We then evaluate model perfor-
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mance in capturing the temporal phasing and magnitude of
these fluxes at the site scale. Finally, we assess the influence
of climate on both seasonal and interannual CO2 flux vari-
ations, leveraging the extended temporal coverage provided
by models.

2 Materials and methods

2.1 Site description

Out of the 24 ENF and DBF sites from the ICOS network,
we selected 19 sites (Fig. 1), 13 classified as ENF and 6 as
DBF, for which observed CO2 fluxes are available for at least
5 years (Table 1). These sites allow us to sample the different
climatic zones of Europe. Three ENF sites (FR-Bil, FR-FBn
and IT-SR2) are located in the northern region of southern
Europe, close to 45° N, and ranging from sea level to 400 m
in elevation. They are characterized by mild, wet winters and
hot, dry summers, with annual mean temperature and pre-
cipitation of 12.9–13.90 °C and 700–960 mm, respectively.
Four ENF sites (FI-Hyy, FI-Let, SE-Nor and SE-Svb) are lo-
cated in northern Europe (60–65° N) at an elevation below
270 m. They are characterized by subarctic climate, with an-
nual mean temperature and precipitation of 1.8–6.5 °C and
586–711 mm, respectively. The remaining 12 sites (six DBFs
and six ENFs) are situated in central Europe within the 45–
60° N, 2.5–20° E domain, encompassing a wide range of el-
evations (40–1730 m) and spanning temperate to continen-
tal climates. As a result, they exhibit substantial variability
in annual mean temperature (4.3–11.4 °C) and precipitation
(563–1338 mm).

2.2 Carbon flux data

2.2.1 Observations

Measured CO2 fluxes come from Warm Winter 2020 (Warm
Winter 2020 Team and ICOS Ecosystem Thematic Cen-
tre, 2022), an update of the FLUXNET2015 dataset (Pa-
storello et al., 2020) available on the ICOS platform
(https://www.icos-cp.eu/data-products, last access: 6 Jan-
uary 2024). For each site, we selected daily time series of
NEE (NEE_VUT_REF), GPP (GPP_DT_VUT_REF) and
RECO (RECO_DT_VUT_REF), the latter two fluxes being
derived from the daytime flux partitioning method (Lasslop
et al., 2010). Preliminary analyses show the weak impact of
the partitioning method (not shown).

The temporal coverage of the data varies by site (Table 1):
less than 10 years for eight sites (SE-Svb, SE-Nor, SE-Htm,
DE-HoH, DE-RuW, FR-Hes, FR-Bil and IT-SR2), between
10 and 20 years for five sites (FI-Let, DE-Hzd, CZ-BK1, FR-
Fon and FR-FBn), and more than 20 years for six sites (FI-
Hyy, DK-Sor, DE-Hai, DE-Tha, CH-Dav and IT-Ren). Given
these limitations, the observational dataset likely lacks suffi-
cient temporal depth to robustly assess the impact of climate

on tower CO2 flux interannual variability, highlighting the
usefulness of models as complementary tools.

2.2.2 Data-driven models

Four data-driven models are used in this study (Table 2). The
first data-driven model was developed by the CarbonSpace
company to quantify carbon exchange at the site scale by in-
tegrating remote sensing data, meteorological variables and
eddy covariance flux measurements. A Lagrangian particle
dispersion model is used for footprint gas attribution. A ma-
chine learning model is used to solve the nonlinear regres-
sion problem of estimating fluxes from remote sensing and
meteorological variables (Zhuravlev et al., 2022). For this
study, the learning method is updated from the kernel method
used in Zhuravlev et al. (2022) to an ensemble tree method
(Chen and Guestrin, 2016). The key advantages of the Car-
bonSpace model include its scalability, high spatial resolu-
tion, and improved prediction accuracy through robust data
quality control and advanced machine learning techniques.
CarbonSpace provides monthly NEE only but at a very high
spatial resolution (few hectares) from January 2000 to Au-
gust 2023. This allows getting as close as possible to the 19
sites (around 1.8 ha centred on each tower) and their associ-
ated CO2 flux measurement footprints.

The three other data-driven models come from the FLUX-
COM initiative (Tramontana et al., 2016; Jung et al., 2019,
2020; Nelson et al., 2024). The first two are a three-member
ensemble forced by both ERA5 reanalysis (Hersbach et al.,
2020) and satellite data from the Moderate Resolution Imag-
ing Spectroradiometer (MODIS) and a nine-member ensem-
ble forced by MODIS only. The members differ by the ma-
chine learning method used to build each of the two mod-
els detailed in Jung et al. (2019). These models, named
FLUXCOM-ERA5 and FLUXCOM-MODIS hereafter, pro-
vide global maps of monthly NEE, GPP and RECO derived
with a daytime partitioning. The FLUXCOM-ERA5 model
has a coarser resolution (0.5°× 0.5°) than FLUXCOM-
MODIS (0.08°× 0.08°) but covers a longer period (1979–
2018 versus 2001–2015). The last model, FLUXCOM-X, is
a one-member model improving the coverage and quality of
the training, as well as satellite data processing, and provid-
ing CO2 fluxes at higher spatial resolution (0.05°× 0.05°)
and for a longer period (2001–2020).

The four data-driven models include most, if not all, ICOS
sites mobilized in this study. They accurately capture the
mean annual and seasonal cycles of CO2 fluxes (Tramontana
et al., 2016; Jung et al., 2020; He et al., 2022; Zhuravlev
et al., 2022) and are expected to outperform process-based
models because the latter do not directly assimilate observed
CO2 fluxes. The methodological framework (e.g. machine
learning model, forcing data and horizontal resolution) re-
mains different between the data-driven models.
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Figure 1. Locations of the CO2 flux measurement sites from the FLUXNET network across Europe selected for this study. The circles
correspond to the six sites located in deciduous broadleaf forests (DBFs), while the triangles indicate the 13 sites located in the evergreen
needleleaf forests (ENFs). The vertical colour scale represents the terrain height (above sea level, ASL) in metres. The horizontal colour scale
indicates the length of the CO2 flux record for each site. The elevation layer comes from the National Geophysical Data Center/NESDIS-
/NOAA/U.S. Department of Commerce (1995): TerrainBase, Global 5 Arc-minute Ocean Depth and Land Elevation from the U.S. National
Geophysical Data Center (NGDC), https://doi.org/10.5065/E08M-448. Distributed under CC by 4.0. Publisher’s remark: please note that the
above figure contains disputed territories.

2.2.3 Process-based models

Two process-based models are considered (Table 2): the
SMAP (Soil Moisture Active Passive) Level 4 Carbon model
(SMAP-L4C hereafter) and an ensemble of dynamic global
vegetation models (DGVMs) from the TRENDY project
(https://sites.exeter.ac.uk/trendy, last access: 12 September
2024). The SMAP-L4C product is produced operationally
by the NASA SMAP mission. It can be considered as a
reanalysis product because it uses the Goddard Earth Ob-
serving System version 5 (GEOS-5) land model to assim-
ilate SMAP L-band microwave observations and is forced
with observed land cover and vegetation from the Moderate
Resolution Imaging Spectroradiometer (MODIS) and Visi-
ble Infrared Imaging Radiometer Suite (VIIRS). The global
processing is conducted on 1 km sub-grids using spatially
aggregated MODIS plant functional types (PFTs) and VI-
IRS fraction of photosynthetically active radiation (fPAR) in-
puts, making it possible to distinguish up to eight individual
PFTs within each 9 km× 9 km product grid cell. However,

the model processing uses coarser-spatial-resolution (9 km
and 0.25°) daily inputs from the SMAP L4 soil moisture
(L4_SM) and GMAO Forward Processor (FP) surface me-
teorology. Among other variables, the SMAP-L4C outputs
provide daily NEE and GPP (RECO deduced from the dif-
ference between NEE and GPP) in a consistent global grid
from March 2015 to September 2023 for each PFT, includ-
ing DBFs and ENFs (Jones et al., 2017; Kimball et al., 2022).
The 1 km PFT subclass distinction allows the differentia-
tion of ENFs and DBFs. The L4C product is derived using
coupled photosynthetic light-use efficiency and soil organic
matter decomposition models to estimate daily NEE and its
component carbon fluxes, where GPP is reduced from PFT-
specific optimal rates for unfavourable daily climate condi-
tions, including cold temperatures, low light levels, excessive
atmospheric vapour pressure deficits and low root zone (0–
1 m depth) soil moisture levels defined from SMAP L4_SM
and GMAO FP meteorology. The associated product quality
assessment report gives details of the model algorithms and

Biogeosciences, 22, 4135–4162, 2025 https://doi.org/10.5194/bg-22-4135-2025
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Table 1. European FLUXNET sites examined in this study.

Length of
Site Latitude Longitude Elevation Land Period of record MAT MAP
name Site ID (° North) (° East) (Metres) cover record (Years) (°C) (mm)

Northern Europe (Above 60° N)

Svartberget SE-Svb 64.25611 19.7745 267 ENF Jan 2014–Dec 2020 7 1.8 614.0
Hyytiala FI-Hyy 61.8474 24.2948 181 ENF Jan 1996–Dec 2020 25 3.5 711.0
Lettosuo FI-Let 60.6418 23.9595 111 ENF Jan 2009–Dec 2020 12 4.6 627.0
Norunda SE-Nor 60.0865 17.4795 45 ENF Jan 2014–Dec 2020 7 6.5 586.0

Central Europe (45–60° N)

Hyltemossa SE-Htm 56.09763 13.41897 115 ENF Jan 2015–Dec 2020 6 7.4 707.0
Soroe DK-Sor 55.4859 11.6446 40 DBF Jan 1996–Dec 2020 25 9.0 640.0
Hohes Holz DE-HoH 52.08656 11.22235 193 DBF Jan 2015–Dec 2020 6 9.1 563.0
Hainich DE-Hai 51.0792 10.4522 430 DBF Jan 2000–Dec 2020 21 8.3 744.0
Hetzdorf DE-Hzd 50.96381 13.48978 395 DBF Jan 2010–Dec 2020 11 7.6 877.0
Tharandt DE-Tha 50.9626 13.5651 385 ENF Jan 1996–Dec 2020 25 8.1 829.0
Wustebach DE-RuW 50.50493 6.330962 610 ENF Jan 2012–Dec 2020 9 7.5 1250.0
Bily Kriz CZ-BK1 49.5021 18.5369 875 ENF Jan 2004–Dec 2020 17 6.2 1338.1
Hesse FR-Hes 48.6741 7.06465 310 DBF Jan 2014–Dec 2020 7 10.0 889.0
Fontainebleau-Barbeau FR-Fon 48.4764 2.7801 103 DBF Jan 2005–Dec 2020 16 11.4 678.9
Davos CH-Dav 46.8153 9.8559 1639 ENF Jan 1997–Dec 2020 24 4.3 876.0
Renon IT-Ren 46.5869 11.4337 1730 ENF Jan 1991–Dec 2020 22 4.9 970.8

Southern Europe (Below 45° N)

Bilos FR-Bil 44.49365 −0.95609 39 ENF Jan 2014–Dec 2020 7 12.9 960.1
San Rossore 2 IT-SR2 43.732 10.2909 4 ENF Jan 2013–Dec 2020 8 15.3 950.0
Font-Blanche FR-FBn 43.24079 5.67865 436 ENF Jan 2008–Dec 2020 13 13.9 700.0

Columns 1–5 provide information on the site, including its name, ID, latitude, longitude and elevation. Columns 6–8 describe the land cover classification, the period of available
records and the record length for each FLUXNET site. Columns 9–10 present the site’s mean annual climatic characteristics, including temperature (MAT) and precipitation (MAP).

the calibration, validation and performance of the L4C ver-
sion 7 product used in this study (Endsley et al., 2023).

In addition to SMAP-L4C, this study also uses outputs
from 15 Dynamic Global Vegetation Models (DGVMs) of
the Trends and Drivers of Regional-Scale Terrestrial Sources
and Sinks of Carbon Dioxide (TRENDY version 12) project.
These models are routinely mobilized to assess global carbon
budget trends and for attributing changes to CO2, climate and
land use (Friedlingstein et al., 2023; Sitch et al., 2024). Ap-
pendix Table A1 provides a list of the 15 DGVMs used in
this study. Here, we used outputs from the S3 scenario, with
simulations starting in 1700 and forced by time-varying ob-
served CO2, climate and land-use change. All simulations
have a horizontal resolution of 0.5°× 0.5° and monthly out-
puts.

2.2.4 Climate data

To investigate the impact of climate on CO2 fluxes, we use
the ERA5-Land dataset (Muñoz-Sabater et al., 2021) pro-
duced by the European Centre for Medium-Range Weather
Forecasts (ECMWF). This dataset results from the ECMWF
land surface model (HTESSEL) operating at 0.1° spatial res-
olution and forced by the ERA5 reanalysis (Hersbach et al.,

2020). This product provides hourly outputs for land sur-
face, hydrological and meteorological variables from 1950
onwards. In this study, we use incident shortwave radia-
tion, temperature at 2 m (T2m) and averaged soil moisture
(SMAVG). We use the volumetric soil water content averaged
across the four available soil layers (0–7, 7–28, 28–100 and
100–289 cm). Because it accounts for both liquid water and
ice, this parameter remains above zero even when temper-
atures drop below freezing. Results obtained with incident
shortwave radiation show no clear seasonality in correlation
patterns with NEE, suggesting that greater light availability
generally enhances CO2 sequestration. For this reason, we
do not include results for this variable in the main analysis.
We also use relative humidity together with T2m to compute
the air vapour pressure deficit (VPD), an integrative metric
accounting for both heat and water stress effects (Carrara et
al., 2004; von Buttlar et al., 2018; Kong et al., 2022; van der
Woude et al., 2023). The VPD is defined as the difference
between the amount of moisture that is actually in the air and
the amount of moisture that air could hold at saturation. The
VPD is computed using the Tetens formula (Monteith and
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In the end, three ERA5-Land climate variables (T2m, SMAVG
and VPD) are used to assess the impact of climate on the an-
nual cycle and interannual variability of CO2 fluxes. These
variables capture the influence of thermal, hydrological and
atmospheric moisture demand conditions on CO2 flux dy-
namics.

2.3 Methodology

For the gridded datasets (ERA5-Land, FLUXCOM,
TRENDY and SMAP-L4C), we extracted the nearest grid
point to each flux tower site. Note that SMAP-L4C simulates
spurious CO2 fluxes at the DE-Hzd site. Therefore, this
site is not included in the analysis for this model. Because
these datasets have varying temporal resolutions (Tables 1
and 2), all were aggregated to a monthly timescale. From
these monthly values, we computed the mean annual cycle
by averaging all available years in each dataset, along with
interannual variability, defined by the standard deviation and
coefficient of variation.

Model skill in capturing observed CO2 flux variability is
evaluated over overlapping periods between each model and
observation. The number of overlapping years varies signif-
icantly across model–observation pairs (Fig. 2a). Two com-
plementary metrics are used for model evaluation: the bias
(model minus observation), which assesses errors in mag-
nitude, and the Bravais–Pearson correlation coefficient (R),
which evaluates temporal co-variability. These metrics cap-
ture distinct aspects of model performance and are not neces-
sarily correlated. For the annual cycle, we computed monthly
biases for each overlapping year and present the mean bias
averaged across all months and years. Model skill in repro-
ducing the seasonal timing of CO2 fluxes is assessed by
correlating the 12 monthly modelled and observed values
within each overlapping year, with the multi-year mean R

reported. Correlations are considered significant at the 95 %
confidence level if the mean p value is below 0.05. For in-
terannual variability, biases are calculated as the difference
between modelled and observed standard deviations for each
month. Co-variability between observed and modelled CO2
fluxes is assessed only for model–observation pairs with at
least 10 overlapping years, ensuring robust signal detection.
Correlations were deemed significant when p < 0.05.

The impact of climate on CO2 fluxes is assessed for over-
lapping years between each CO2 flux dataset and ERA5-
Land. The number of overlapping years varies widely across
datasets (Fig. 2b), ranging from low coverage in observations
and SMAP-L4C to over 70 years in TRENDY. The correla-
tion coefficient (R) was used to assess climate impacts, with
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Figure 2. Number of overlapping years between (a) observed and
modelled CO2 fluxes and (b) ERA5-Land climate and observed and
modelled CO2 fluxes. The overlapping periods in panel (a) are used
to assess the model’s ability to capture the annual cycle and inter-
annual variability of CO2 fluxes. In panel (b), the overlapping peri-
ods are used to evaluate the co-variability between CO2 fluxes and
the annual cycle and interannual variability of ERA5-Land climate.
ENF sites are displayed in red text, while DBF sites are highlighted
in green. Sites are ordered from north to south based on their lat-
itude, with black vertical lines indicating the boundaries between
northern (NE), central (CE) and southern (SE) Europe.

the mean R reported for the annual cycle and individual R

values for interannual variability.
To ensure results were not driven by long-term trends,

analyses have been conducted using both raw and detrended
climate time series (not shown), yielding similar outcomes.
Additionally, for observed CO2 fluxes, we verified ERA5-
Land climate data reliability by comparing results with ob-
served climate measurements from the FLUXNET database
(not shown).

For conciseness, we primarily present results using the en-
semble mean of the FLUXCOM (ERA5 and MODIS) and
TRENDY models. However, uncertainties arising from ma-
chine learning methods and DGVM physical parameteriza-
tions are discussed in the model evaluation section.

3 Results

3.1 Observed climate and CO2 fluxes mean annual
cycle and interannual variability

Figure 3 shows the mean annual cycle and interannual vari-
ability of T2m, SMAVG and VPD associated with each site.

Overall, all sites depict higher T2m and VPD and lower SM in
summer than in winter (Fig. 3a–c). A south-to-north gradient
is evident, with more marked annual amplitude and shorter
summer in northern than in southern Europe. Few sites devi-
ate from this pattern, including, for example, the Alpine site
(CH-Dav), which depicts relatively cold and wet conditions,
as well as low VPD, all year long. While the interannual vari-
ability of T2m is the largest in winter regardless of the site,
it increases markedly from south to north (Fig. 3d). The re-
verse is found for VPD, with higher interannual variability
in summer than in winter, especially south of 60° N (Fig. 3f).
The interannual variability in SMAVG (Fig. 3e) is low all year
long in the Alpine site, relatively low in northern Europe, and
high from spring to summer in the mid-latitudes and in fall
and winter in the Mediterranean region (FR-FBn).

Figure 4a displays the mean annual cycle of monthly NEE,
GPP and RECO as provided by FLUXNET observations.
The mean annual cycle in NEE is not necessarily phased on
that of GPP and RECO, the two latter reaching their highest
values from May to August in most sites. Significant differ-
ences are found between northern (SE-Nor, FI-Let, FI-Hyy
and SE-Svb) and southern (FR-FBn, IT-SR2 and FR-Bil) Eu-
rope, where only ENF sites are available. The annual cycle is
more marked, and the sequestration period (i.e. month asso-
ciated with negative NEE values) is shorter in the former than
in the latter region. Temperature conditions (and light avail-
ability) are the main drivers explaining these differences. In
central Europe, where both ENF and DBF sites are available,
there is a clear impact of land cover class. The DBF sites
show a pronounced annual cycle with strong CO2 uptake (be-
low −3 tCO2 ha−1) from May to August, and up to some ex-
tent in September, and strong CO2 release in the remaining
months (above 2 tCO2 ha−1). Conversely, the ENF sites show
a smoothed annual cycle: the summer peak of CO2 seques-
tration barely exceeds −3 tCO2 ha−1, and the winter peak of
CO2 release rarely exceeds 1 tCO2 ha−1. Two sites deviate
from the general pattern: the DE-Hzd DBF site, which acts
as a CO2 source nearly year-round, and the DE-RuW ENF
site, which remains a consistent CO2 sink on average.

The interannual variability of NEE, GPP and RECO, as
defined by the standard deviation metric, tends to be stronger
during the growing season (spring to fall) than in winter at
almost all sites (Fig. 4b). The exact pattern depends on the
CO2 flux, site and land cover class considered. GPP is al-
ways close to zero during winter at DBF sites because trees
are not photosynthetically active. This is not the case for
ENF sites, particularly those located in central Europe (DE-
RuW and CZ-BK1). The interannual variability of RECO is
substantial in summer only in northern Europe. However, it
can be non-negligible in other seasons in central and south-
ern Europe. There, significant differences between geograph-
ically close sites (e.g. FR-Bil and IT-SR2) suggest additional
drivers such as soil properties. The interannual variability of
NEE is (i) weaker than that of GPP and RECO, likely due to
the strong coupling between GPP and RECO, (ii) primarily
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Figure 3. (a–c) Mean annual cycle and (d–f) interannual variability (i.e. IV) in monthly 2 m air temperature (T2m), soil moisture (SMAVG)
and vapour pressure deficit (VPD), respectively, for each study site for the 1979–2023 period. Climate conditions at each site are extracted
from the nearest grid point of the 9 km× 9 km ERA5-Land product. ENF sites are displayed in red text, while DBF sites are highlighted
in green. Sites are ordered from north to south based on their latitude, with black vertical lines indicating the boundaries between northern
(NE), central (CE) and southern (SE) Europe.

driven by RECO in winter, and (iii) a complex response of
GPP and RECO in the remaining seasons. Note that the pat-
tern of CO2 flux interannual variability depends on the metric
used to assess it. When defined using the coefficient of vari-
ation, interannual variability is low in summer and high in
winter for GPP and RECO, with increasing variability toward
the north. For NEE, variability remains significant through-
out the year, particularly from fall to winter (Fig. A1).

Overall, the mean annual cycle of observed CO2 fluxes
in European forests follows a clear spatial pattern driven by
climate conditions and land cover class. In contrast, the in-
terannual variability of observed CO2 fluxes exhibits greater
spatial noise across Europe and depends on the metric used.
Nevertheless, it remains significant, highlighting the impor-
tance of assessing the impact of climate on it throughout the
annual cycle.
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Figure 4. (a) Mean annual cycle and (b) interannual variability in monthly NEE, GPP and RECO (from left to right, respectively) as measured
by eddy covariance over the most extended available period for each site (see Table 1 for details). ENF sites are displayed in red text, while
DBF sites are highlighted in green. Sites are ordered from north to south based on their latitude, with black vertical lines indicating the
boundaries between northern (NE), central (CE) and southern (SE) Europe.

3.2 Model evaluation in capturing the mean annual
cycle and interannual variability of CO2 fluxes

3.2.1 Mean annual cycle

The model skill in capturing the temporal phasing of the an-
nual cycle and the magnitude in observed CO2 fluxes is as-
sessed in terms of correlation and mean bias, respectively
(see Sect. 2.3 for details). All models accurately capture the
observed temporal phasing of GPP and RECO, with corre-
lation values often above 0.8 (Fig. 5a). The model skill is
poorer but still correct for NEE, with correlation values re-
maining above 0.6 for most sites and models. The weaker
correlation found for NEE compared to GPP and RECO is
not surprising, as accurately estimating the NEE annual cy-
cle requires precise estimation of both the temporal phasing
and magnitude of GPP and RECO.

Despite reasonable annual cycles, the models struggle
in capturing the observed magnitude of RECO and GPP
(Fig. 5b). Three groups emerge. The first group includes the
FLUXCOM (ERA5, MODIS and X) and TRENDY models,
which underestimate both GPP and RECO by about simi-
lar amounts, resulting in relatively “weak” positive biases
in NEE. The second group corresponds to the SMAP-L4C
model, which overestimates RECO by 1 tCO2 ha−1 month−1

while underestimating GPP by the same amount, leading to
a systematic underestimation of CO2 sequestration by ap-
proximately 2 tCO2 ha−1 month−1. The last group is the Car-

bonSpace data-driven model, which is the only model that
systematically overestimates CO2 sequestration, by up to
2.5 tCO2 ha−1 month−1. However, the cause of this overes-
timation is unclear, as this model does not provide separate
GPP and RECO estimates.

Figure 5 highlights key insights into model behaviour.
First, the data-driven and SMAP-L4C models generally out-
perform the TRENDY models in capturing the annual cy-
cle of CO2 fluxes but do not necessarily provide better es-
timates of flux magnitude. Second, models that accurately
represent the annual cycle can still struggle with magni-
tude. This is exemplified by the CarbonSpace data-driven
model, which ranks among the best for annual cycle rep-
resentation but severely overestimates CO2 sequestration at
many sites. Third, the machine learning methods used in the
FLUXCOM-ERA and FLUXCOM-MODIS ensembles have
little impact on both the annual cycle and magnitude of CO2
fluxes. The input data appear to be more important, with the
FLUXCOM models accounting for both vegetation and cli-
mate (i.e. ERA5 and X) yielding more reliable results than
those accounting for vegetation alone (MODIS). Addition-
ally, FLUXCOM-X improves upon the previous model gen-
eration for most sites. Finally, the inter-model spread within
the TRENDY ensemble is much smaller for CO2 flux magni-
tude than for temporal variability, suggesting that the primary
source of uncertainty in DGVMs lies in the temporal phasing
of the fluxes rather than their magnitude.
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Figure 5. Model skill in capturing (a) the annual cycle and (b) magnitude of observed NEE, GPP and RECO. The model skill in capturing the
annual cycle is assessed through the Bravais–Pearson correlation coefficient (R) calculated between the simulated and observed annual cycle
of monthly CO2 fluxes (12 values) for each year of the overlapping period. The multi-year mean R values are shown. The magnitude error is
computed as the difference between simulated and observed CO2 fluxes (model minus observation) for each month of the overlapping period.
The mean magnitude error is shown. Results are displayed using coloured dots for single-member models (CarbonSpace, FLUXCOM-X and
SMAP-L4C) and boxplots for multi-member FLUXCOM models and the multi-model TRENDY ensemble. The boxes have lines at the lower
quartile, median and upper quartile values. The whiskers are lines extending from each end of the boxes to show the extent of the full range
of the data, including outliers. The colour attributed to each model is detailed in the legend. ENF sites are displayed in red text, while DBF
sites are highlighted in green. Sites are ordered from north to south based on their latitude, with black vertical lines indicating the boundaries
between northern (NE), central (CE) and southern (SE) Europe.

3.2.2 Interannual variability

We qualitatively evaluate how well the models capture the
observed interannual variability of CO2 fluxes in terms of
magnitude (monthly bias analysis) and temporal phasing
(correlation analysis) over the overlapping period of each
model–observation pair.

All models strongly underestimate the magnitude in
NEE interannual variability all year long (Fig. 6), par-
ticularly during summer, where biases often exceed
2.5 tCO2 ha−1 month−1. This is a well-known bias of current
data-driven and process-based models (e.g. Lin et al., 2023;
Nelson et al., 2024). The only exception is the CarbonSpace
model, which produces weak positive or negative biases at
most sites. Importantly, a biased magnitude of CO2 flux in-
terannual variability (as measured by the standard deviation)
does not preclude the models to capture their temporal co-
variability (as measured by correlation) with observed CO2
fluxes and climate.

Figure 7 shows the correlations between the modelled and
observed interannual variability in monthly NEE. Correla-
tion values are predominantly positive across Europe, though
they are often low and not statistically significant (p > 0.05).
The correlation values tend to be higher in fall for northern
Europe sites and all year long in central Europe regardless
of the model. The frequent lack of statistical significance in

correlations can largely be attributed to the limited number
of overlapping years. This is further supported by the fact
that, except for Davos, correlation values tend to be higher
and more likely to reach the 95 % confidence level in model–
observation pairs with a greater number of overlapping years
(e.g. DK-Sor, DE-Hai and DE-Tha). Another challenge in
capturing the observed temporal phasing of NEE interannual
variability is that it requires accurately simulating the inter-
annual variability of both GPP and RECO. The latter is gen-
erally better represented by models than the NEE variability
itself (compare Fig. 7 with A2–A3). Scale inconsistencies
may also contribute to the discrepancies. While flux tower
observations reflect local variability, most models represent
regional-scale fluxes (and drivers). This is supported by the
CarbonSpace model, the only site-scale model used in this
study, which produces more satisfactory results, with posi-
tive correlation values for almost all sites and all months.

The spread among members of the FLUXCOM ensembles
is low (not shown), regardless of whether they account for
climate alone or both climate and vegetation. However, Fig. 7
reveals significant differences between the FLUXCOM prod-
ucts (ERA5, MODIS and X; Fig. 7b–d). These differences
are not necessarily due to the type of data used in these data-
driven models, as the analysis periods differ between them.
In contrast, the correlations between observations and the
TRENDY ensemble mean (Fig. 7e) mask substantial vari-
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Figure 6. Model skill in capturing the observed magnitude in monthly NEE interannual variability. Model skill is assessed by computing
biases between modelled and observed NEE interannual variability, as defined by the standard deviation of monthly fluxes. The number of
years included varies depending on the model–observation pair, as shown in Fig. 2a. Cells labelled “NA” indicate cases where the overlap
criterion is not met. For conciseness, biases are computed using the ensemble mean for the FLUXCOM-ERA5, FLUXCOM-MODIS and
TRENDY models. ENF sites are displayed in red text, while DBF sites are highlighted in green. Sites are ordered from north to south based
on their latitude, with black vertical lines indicating the boundaries between northern (NE), central (CE) and southern (SE) Europe.

ability among individual TRENDY models, with no single
model consistently outperforming the others (Fig. A4).

These qualitative results suggest that the interannual vari-
ability of simulated NEE is at least partially aligned with that
of observed CO2 fluxes, supporting the use of models to as-
sess the impact of climate on CO2 flux interannual variabil-
ity.

3.3 Climate–CO2 flux relationship

3.3.1 Annual cycle

Figure 8 assesses the co-variability between the annual cy-
cle of CO2 fluxes and climate variables (T2m, SMAVG and
VPD) through correlation analysis. For conciseness, correla-
tions are computed using the ensemble mean of CO2 fluxes
for the FLUXCOM (ERA5 and MODIS) and TRENDY mod-
els. The inter-member dispersion in FLUXCOM and inter-

model dispersion in TRENDY, shown in Fig. A5, are similar
to those in Fig. 5 and are therefore not discussed here.

The annual cycle of CO2 fluxes is closely linked to cli-
mate in both observations and models, as evidenced by sta-
tistically significant correlations at the 95 % confidence level.
The influence of climate on the annual cycle of CO2 fluxes is
generally stronger for GPP and RECO than for NEE, partic-
ularly for T2m (Fig. 8a). Over Europe, GPP, RECO and CO2
sequestration (i.e. negative NEE) tend to be higher when T2m
and VPD are high and SMAVG is low. In turn, CO2 fluxes are
amplified in summer and dampened in winter. Among the
climate variables, T2m and VPD exhibit stronger correlations
with the CO2 flux annual cycle than SMAVG, reflecting their
more pronounced seasonality (Fig. 3).

This climate–CO2 flux relationship is particularly evident
in northern and central Europe, where there is strong agree-
ment between observations and models, as well as across dif-
ferent models. The only exception in central Europe is the
Alpine site (CH-Dav), where SMAVG is positively correlated
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Figure 7. Model skill in capturing the observed temporal phasing in monthly NEE interannual variability. Model skill is assessed using
the Bravais–Pearson correlation coefficient (R), calculated for each month where at least 10 years of overlap exist between each model–
observation pair. The number of years included varies depending on the model–observation pair, as shown in Fig. 2a. Correlation values
marked with “×” are significant at the 95 % confidence level according to the Bravais–Pearson test. Cells labelled “NA” indicate cases where
the overlap criterion is not met. For conciseness, the correlation analysis is performed using the ensemble mean for the FLUXCOM-ERA5,
FLUXCOM-MODIS and TRENDY models. ENF sites are displayed in red text, while DBF sites are highlighted in green. Sites are ordered
from north to south based on their latitude, with black vertical lines indicating the boundaries between northern (NE), central (CE) and
southern (SE) Europe.

with GPP and RECO and negatively correlated with NEE.
This discrepancy arises because CH-Dav is the only site in
the study where SMAVG is higher in summer than in winter
(Fig. 3b). In contrast, in southern Europe, the relationship be-
tween climate and NEE does not reach the 95 % confidence
level in observations. However, the models show a similar re-
lationship to that found in northern and central Europe, albeit
with weaker correlations. Whether this disagreement stems
from the limited number of observational years available for
these sites (7 to 13 years, see Table 1) or from an overestima-
tion of climate impact on the CO2 flux annual cycle remains
an open question.

Figure 8 also reveals differences in model behaviour. First,
the climate–CO2 flux relationship appears sensitive to the
land cover class only in data-driven models. In the FLUX-
COM models (ERA5, MODIS and X), this relationship is

weaker for DBFs than for ENFs in central Europe, whereas
the CarbonSpace model shows the opposite pattern. This
sensitivity to land cover class may reflect model discrepan-
cies, as the observed climate–CO2 flux relationship does not
depict such an ENF–DBF distinction. The reason for this
discrepancy may involve differences in climate forcing or
model spatial resolution. Second, process-based models tend
to overestimate the impact of climate on the annual cycle
of CO2 fluxes across all sites. For example, the SMAP-L4C
model amplifies the influence of T2m and SMAVG on NEE,
particularly in northern Europe (Fig. 8a–b). Meanwhile, in
the TRENDY models, VPD emerges as the dominant driver
of the NEE annual cycle (Fig. 8c). These results suggest that
process-based models may underestimate the role of addi-
tional factors, such as soil properties, in shaping the CO2 flux
annual cycle.
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Figure 8. Co-variability in the annual cycle of CO2 fluxes and (a) 2 m temperature, (b) soil moisture and (c) vapour pressure deficit across
all sites and datasets. Co-variability is assessed through the Bravais–Pearson correlation, computed annually between CO2 fluxes and ERA5-
Land climate data, then averaged across years. The number of years included varies depending on the data, as shown in Fig. 2d. Correlation
values marked with “×” are significant at the 95 % confidence level according to the Bravais–Pearson test. Cells labelled “NA” indicate cases
where GPP and RECO are unavailable (CarbonSpace) or where CO2 flux data are corrupted (SMAP-L4C). For conciseness, correlations are
computed using the ensemble mean of CO2 fluxes for the FLUXCOM (ERA5 and MODIS) and TRENDY models. ENF sites are displayed
in red text, while DBF sites are highlighted in green. Sites are ordered from north to south based on their latitude, with black vertical lines
indicating the boundaries between northern (NE), central (CE) and southern (SE) Europe.

3.3.2 Interannual variability

We now investigate the interannual co-variability between
CO2 fluxes and climate using correlation analysis. This is
done by analysing the full monthly time series of each dataset
in two ways: (i) all months combined after removing the
mean annual cycle and (ii) separately for each calendar
month. The first approach reveals no robust relationship in
the observations and weak correlations in the models (Fig. 9).
In contrast, the second approach shows some consistencies
in the correlation patterns across datasets, with distinct dif-
ferences between northern/central Europe and southern Eu-
rope (Fig. 10). In the former region, the NEE tends to be

positively correlated with T2m, SMAVG and VPD in winter
and fall. This means that anomalously high T2m, VPD and
SMAVG favour CO2 release during the cold seasons. These
patterns are similar for GPP and RECO (Figs. A6–A7), but
correlations are stronger for RECO, highlighting its signif-
icant contribution to NEE interannual variability during the
cold seasons. In spring (March–May), the relationship be-
tween NEE and T2m/VPD reverses compared to the cold sea-
son pattern, while that between NEE and SMAVG tends to re-
main positive in central Europe. In turn, anomalously high
T2m and VPD, along with anomalously low SMAVG (at least
in central Europe), tend to be favourable spring conditions for
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CO2 sequestration. The increase in spring CO2 sequestration
under anomalously dry soil conditions is likely driven by ele-
vated T2m and VPD, leading to enhanced evapotranspiration
and drier soils. The summer pattern generally shows an op-
posite sign compared to spring, suggesting stronger CO2 se-
questration under anomalously low T2M and VPD, and high
SMAVG. In southern Europe, correlation patterns are consis-
tent across datasets in spring and summer only, showing a
similar response to that observed in summer in northern/cen-
tral Europe but extended over a longer period.

4 Discussion

This study aims at assessing the impact of climate on the an-
nual cycle and interannual variability of monthly CO2 fluxes
in European DBFs and ENFs through conjointly analysing
observations from the FLUXNET network and state-of-the-
art data-driven and process-based models.

As a first step, we assess the model abilities to repro-
duce the observed mean annual cycle and interannual vari-
ability of CO2 fluxes. This evaluation presents two key chal-
lenges. First, the temporal coverage of observations in the
FLUXNET database is often limited, making it difficult to
extract robust signals, particularly for interannual variability.
Site-specific characteristics may also cause a disconnect be-
tween CO2 flux variability and regional climate variability
(Chu et al., 2017). Second, there is a spatial scale mismatch
between site-level observations, representing fluxes from the
tower footprint to several square kilometres (Göckede et al.,
2008), and most models used in this study, which simulate
fluxes at regional to large scales, except for the hectometric-
scale CarbonSpace model. Given these constraints, our eval-
uation should be considered qualitative rather than strictly
quantitative.

The models reasonably capture both the annual cycle and
interannual variability of observed CO2 fluxes, though with
some magnitude discrepancies. In particular, the models ac-
curately capture the north-to-south gradient, with increased
length in the CO2 sequestration period from northern to
southern Europe, as well as the more pronounced annual cy-
cle in DBFs than ENFs. With the exception of the Carbon-
Space model, which overestimates CO2 sequestration across
all European sites, most models tend to underestimate GPP
and overestimate RECO, resulting in a near systematic un-
derestimation of CO2 sequestration.

The interannual variability in the models is weaker than
in the observations, consistent with previous studies (e.g.
Nelson et al., 2024). However, the CarbonSpace data-driven
model proved to be the only model tested that does not un-
derestimate the NEE interannual variability. The reasons may
involve its high spatial resolution (few hectares) and the use
of a Lagrangian particle dispersion model, which allows it
to closely align with the flux tower footprints. This results
in more precise flux localization, which may improve its re-

sponse to fine-scale variability. Another reason may also in-
volve the use of an ensemble tree method for regression.
This method offers greater flexibility in capturing nonlin-
ear interactions between environmental variables and NEE.
Further studies are needed to evaluate these hypotheses.
The temporal co-variability between observed and simulated
CO2 fluxes remains correct despite the underestimated mag-
nitude in CO2 flux interannual variability. This agreement
was expected for the data-driven models, as they incorporate
FLUXNET observations in their development. However, it
was less anticipated for the process-based models, which do
not assimilate direct CO2 flux measurements. Their ability
to capture observed interannual variability likely stems from
the fact that TRENDY models are driven by observed CO2
concentrations, land-use changes and climate data, while the
SMAP-L4C model benefits from the assimilation of satellite-
derived soil moisture observations.

Despite uncertainties, our results highlight that state-of-
the-art models are valuable tools for complementing obser-
vations, particularly in assessing the impact of climate on the
interannual variability of CO2 fluxes at the European scale.
The relationship between CO2 fluxes and climate is anal-
ysed for both the annual cycle and interannual variability
using synchronous correlation analyses between each CO2
flux and individual climate variables, including 2 m temper-
ature (T2m), vapour pressure deficit (VPD) and soil moisture
(SMAVG).

Regarding the annual cycle, the influence of climate
on CO2 fluxes is stronger in northern and central Europe
than in southern Europe, where seasonal climate variations
are less pronounced. In southern Europe, both the agree-
ment between observations and models and the consistency
among different data-driven and process-based models are
weaker. The spread within members (FLUXCOM-ERA5
and FLUXCOM-MODIS) and DGVMs (TRENDY) is also
larger. We hypothesize that part of this model uncertainty
stems from the limited number of ENF sites in southern Eu-
rope, leading to weak constraints for data-driven models and
fewer reference points for calibrating DGVMs. However, it
is worth noting that the uncertainty associated with the ma-
chine learning methods used to develop data-driven models
remains low, whereas inter-DGVM spread can be substantial.

Regarding interannual variability, the climate impact on
CO2 fluxes can be summarized in three points. First, climate
impacts GPP and RECO more strongly than NEE, regardless
of the site and dataset. Because NEE is the difference be-
tween GPP and RECO, its interannual variability arises from
various combinations of these two components. For instance,
reduced CO2 sequestration can result from a greater increase
in RECO compared to GPP, a larger decrease in GPP than in
RECO, a decrease in GPP with no change in RECO or an in-
crease in RECO without any change in GPP. Such complex-
ity implies that the influence of climate on NEE is less direct
and likely more intricate than its effects on GPP and RECO.
Second, the impact of climate on the interannual variabil-
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Figure 9. Same as Fig. 8 but using monthly anomalies calculated after removing the mean annual cycle.

ity of CO2 fluxes depends strongly on how it is assessed. It
appears weak when monthly anomalies from all months are
analysed together but becomes more pronounced when each
month is examined separately, revealing seasonal shifts in the
sign of the climate–NEE relationship. The timing and direc-
tion of these seasonal shifts vary across datasets and regions.
In particular, CO2 sequestration is enhanced by anomalously
low T2m and VPD and anomalously high SMAVG in sum-
mer, whereas the opposite pattern prevails in spring. This
finding aligns with previous case studies showing that heat-
waves and droughts reduce summer CO2 sequestration (Ciais
et al., 2005; Smith et al., 2020; Thompson et al., 2020; van
der Woude et al., 2023). It also highlights that anomalously
warm and dry springs may, in some cases, enhance CO2 se-
questration, likely because soil moisture levels remain suffi-
cient during this period, in line with, for example, Delpierre
et al. (2009) and Smith et al. (2020). Such a transition from
spring to summer is less evident in southern Europe, which
instead exhibits consistent patterns from spring to summer.

The climate–NEE relationship is much noisier in both space
and time in the observations than in the models, and it can
vary substantially across different models. This indicates that
local flux measurements may not reliably represent regional-
scale dynamics, while models may exaggerate the influence
of climate on CO2 flux variability (despite underestimating
its magnitude). Further work is needed to disentangle site-
specific effects from broader-scale signals, a critical step to-
ward improving the calibration of regional and global models
that cannot resolve local heterogeneity.

5 Conclusions

This study makes use of state-of-the-art data-driven and
process-based models to complement observations for as-
sessing the impact of climate on the annual cycle and in-
terannual variability of monthly CO2 fluxes in European
DBFs and ENFs. Outputs from different data-driven mod-
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Figure 10. Interannual co-variability between NEE and (a) 2 m temperature, (b) soil moisture and (c) vapour pressure deficit for each month,
all sites and all datasets. The co-variability is assessed through the Bravais–Pearson correlation computed for each month between CO2
fluxes and ERA5-Land climate data. The number of years included varies depending on the data, as shown in Fig. 2d. Correlation values
marked with “×” are significant at the 95 % confidence level according to the Bravais–Pearson test. Cells labelled “NA” indicate cases where
the CO2 flux data are corrupted (SMAP-L4C). For conciseness, correlations are computed using the ensemble mean of CO2 fluxes for the
FLUXCOM (ERA5 and MODIS) and TRENDY models. ENF sites are displayed in red text, while DBF sites are highlighted in green. Sites
are ordered from north to south based on their latitude, with black vertical lines indicating the boundaries between northern (NE), central
(CE) and southern (SE) Europe.

els (CarbonSpace, FLUXCOM-ERA5, FLUXCOM-MODIS
and FLUXCOM-X) and process-based models forced by re-
alistic conditions (assimilation of satellite-derived soil mois-
ture in SMAP-L4C and time-varying CO2 concentration,
land use and climate in TRENDY DGVMs) are analysed
conjointly with CO2 measurements from 19 sites (6 DBFs
and 13 ENFs) of the FLUXNET network. Across Europe, a
clear north-to-south gradient emerges in the annual cycle of
CO2 fluxes. The length of the CO2 sequestration season in-
creases southwards in conjunction with more favourable cli-
mate conditions for photosynthesis in southern than in north-
ern Europe. This large-scale pattern is perturbed locally by
site elevation and other site factors not included in the study
(e.g. soil properties and forest age). It is also perturbed by
the land cover class, with a more pronounced annual cycle
of DBFs than ENFs in central Europe. The interannual vari-
ability of CO2 fluxes does not exhibit such a north-to-south
gradient, regardless of the metric used (standard deviation or
coefficient of variation). However, it remains strong across
all seasons, with spring and summer showing high variability

based on standard deviation and autumn and winter showing
high variability based on the coefficient of variation.

The models accurately capture the observed features de-
spite magnitude differences. Compared to observations, the
CO2 sequestration is weaker in regional-scale models and
stronger in the hectometric-scale CarbonSpace data-driven
model. Except for the CarbonSpace model, all models sys-
tematically underestimate the interannual variability of CO2
fluxes, as already reported (Lin et al., 2023; Nelson et al.,
2024). Despite biased magnitude, the interannual variabil-
ity of modelled fluxes correlates well with the observations.
This supports the use of models to complement observations,
whose limited temporal coverage and site specificities hinder
the assessment of climate impacts on CO2 interannual vari-
ability. We show that the influence of climate on CO2 flux
interannual variability is obscured when monthly anoma-
lies are analysed together. This apparent lack of relationship
masks distinct seasonal patterns, which are concealed when
considering all months together. Winter and fall CO2 release
increases under elevated temperature and VPD in northern
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and central Europe, while no clear signal emerges in south-
ern Europe. The CO2 sequestration increases under anoma-
lously hot and dry conditions in spring and cold and wet con-
ditions in summer in northern/central Europe. Anomalously
cold and wet conditions also favour CO2 sequestration in
southern Europe from spring to summer. While these sea-
sonal signals appear noisy in the observations, due to limited
sample sizes and site-specific variability, they emerge more
clearly in the models, albeit with some model-dependent dif-
ferences.

These results highlight the significant space-time variabil-
ity in the impact of climate on forest CO2 fluxes across Eu-
rope. This variability underscores the importance of consid-
ering regional and seasonal differences when assessing the
effects of climate change on CO2 fluxes. Neglecting these
variations could lead to oversimplified conclusions and hin-
der the development of accurate predictions and effective
mitigation strategies.
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Appendix A

Table A1. List of TRENDY DGVMs used in this study.

DGVM Reference

CABLE-POP Haverd et al. (2018)
CLM5.0 Lawrence et al. (2019)
DLEM Tian et al. (2016)
JULES Best et al. (2011), Clark et al. (2011)
LPX-Bern Lienert and Joos (2018)
OCN Zaehle et al. (2010)
ORCHIDEE Krinner et al. (2005)
SDGVM Woodward and Lomas (2004)
ISBA-CTRIP Delire et al. (2020)
IBIS Xia et al. (2015), Jinxun et al. (2022)
CLASSIC Seiler et al. (2021)
EDv3 Longo et al. (2019)
E3SM Golaz et al. (2019)
LPJmL Bondeau et al. (2007)
LPJwsl Gerten et al. (2004)

Columns 1 and 2 provide the name of the DGVM and its corresponding
reference, respectively.

Figure A1. Same as Fig. 4b but using the coefficient of variation as a metric for interannual variability.
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Figure A2. Same as Fig. 7 but for GPP.

Figure A3. Same as Fig. 7 but for RECO.
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Figure A4. Same as Fig. 7e but for each TRENDY model considered in this study.
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Figure A5. Same as Fig. 5 but for the relationship between the annual cycle of CO2 fluxes and (a) 2 m temperature, (b) soil moisture and
(c) vapour pressure deficit. This relationship is evaluated using the Bravais–Pearson correlation. For details, refer to the legend caption of
Fig. 8.
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Figure A6. Same as Fig. 10 but for GPP.

Figure A7. Same as Fig. 10 but for RECO.

Biogeosciences, 22, 4135–4162, 2025 https://doi.org/10.5194/bg-22-4135-2025



A. Ullah et al.: CO2 fluxes in European DBFs and ENFs 4157

Data availability. Climate parameters from the ERA5-Land
are available at https://doi.org/10.24381/cds.e2161bac (Muñoz-
Sabater, 2019). CO2 fluxes from the FLUXCOM data-driven
model are available at https://doi.org/10.18160/5NZG-JMJE
(Nelson et al., 2023) and https://meta.icos-cp.eu/collections/
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the TRENDY and SMAP-L4C process-based models are available
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