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Abstract. Considerable uncertainties and unknowns remain
in the regional mapping of methane sources, especially in the
extensive agricultural areas of Africa. To address this issue,
we developed an observing system that estimates methane
emission rates by assimilating drone and flux tower obser-
vations into an atmospheric dispersion model. We used our
novel Bayesian inference approach to estimate emissions
from various ruminant livestock species in Kenya, includ-
ing diverse herds of cattle, goats, and sheep, as well as
camels, for which methane emission estimates are partic-
ularly sparse. Our Bayesian estimates aligned with Tier 2
emission values of the Intergovernmental Panel on Climate
Change. In addition, we observed the hypothesized increase
in methane emissions after feeding. Our findings suggest that
the Bayesian inference method is more robust under non-
stationary wind conditions compared to a conventional mass
balance approach using drone observations. Furthermore, the
Bayesian inference method performed better in quantifying
emissions from weaker sources, estimating methane emis-
sion rates as low as 100 gh−1. We found a ± 50 % uncer-
tainty in emission rate estimates for these weaker sources,
such as sheep and goat herds, which reduced to ± 12 % for
stronger sources, like cattle herds emitting 1000–1500 gh−1.
Finally, we showed that radiance anomalies identified in hy-
perspectral satellite data can inform the planning of flight
paths for targeted drone missions in areas where source lo-
cations are unknown, as these anomalies may serve as in-

dicators of potential methane sources. These promising re-
sults demonstrate the efficacy of the Bayesian inference
method for source term estimation. Future applications of
drone-based Bayesian inference could extend to estimating
methane emissions in Africa and other regions from vari-
ous sources with complex spatiotemporal emission patterns,
such as wetlands, landfills, and wastewater disposal sites.
The Bayesian observing system could thereby contribute to
the improvement of emission inventories and verification of
other emission estimation methods.

1 Introduction

Global mean atmospheric methane (CH4) mixing ratios
reached 1.93 ppm in 2024, marking a 16 % increase since
1985 (Lan et al., 2024). Livestock production is a major con-
tributor to global anthropogenic CH4 emissions, accounting
for approximately one-third of the total emissions (Saunois
et al., 2020). Within this sector, enteric fermentation in ru-
minants – such as cattle, sheep, goats, and camels – is
the predominant source, generating approximately 80 % of
these emissions, while the remainder originates from ma-
nure (Amon et al., 2001). During the digestive process,
CH4 is produced by rumen fermentation, with about 90 %–
95 % released through burping and 5 %–10 % as intestinal
gas (Broucek, 2014). Due to its high global warming po-
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tential and relatively short atmospheric lifetime, reducing
CH4 emissions can have quick benefits in mitigating climate
change (Szopa et al., 2021). Therefore, accurate measure-
ments and understanding of CH4 emissions from ruminants
are important for developing effective mitigation strategies
and evaluating their efficacy.

The Intergovernmental Panel on Climate Change (IPCC)
provides standardized methodologies for estimating
CH4 emissions from ruminants (Gavrilova et al., 2019).
Tier 1 methods use generalized default values for emission
factors that are often region-specific, while Tier 2 values
incorporate more detailed herd-specific data, accounting for
local variations in livestock management and environmental
conditions. Recent studies from sub-Saharan Africa demon-
strate substantial differences between estimates from these
two tiers (Goopy et al., 2018; Ndung’u et al., 2019; Gurmu
et al., 2024), highlighting the need for precise and locally
relevant data. However, there is a scarcity of studies focusing
on CH4 emission rates from ruminants in this region, with
many relying on metabolic energy balance estimates based
on factors such as animal weight, feed, and activity level,
and only a few studies using direct CH4 measurements
(e.g., Korir et al., 2022a; Goopy et al., 2020; Mwangi
et al., 2023; Wolz et al., 2022). Specifically, research on
CH4 emissions from camels is sparse. Although a few
studies have estimated emissions using direct CH4 measure-
ments from smaller camelids such as alpacas and llamas
(e.g., Pinares-Patiño et al., 2003; Nielsen et al., 2014),
research on larger camelids, like dromedaries and Bactrian
camels, remains limited. This lack of data is likely due to
size limitations of respiration chambers for measuring gas
exchange. Nonetheless, Dittmann et al. (2014) conducted
respiration chamber measurements with Bactrian camels.

Gas exchange methods such as respiration chambers and
headboxes are typically used to quantify CH4 emissions from
individual animals. For estimating emissions from ruminant
herds or entire farm facilities, several indirect techniques
have been applied. Tracer-ratio experiments (Vechi et al.,
2022; Daube et al., 2019; Arndt et al., 2018) involve re-
leasing a tracer gas and comparing its dispersion to that of
CH4. The mass balance approach (Vinković et al., 2022;
Arndt et al., 2018; Wratt et al., 2001) calculates emissions
based on the difference between incoming and outgoing CH4
flux estimates within a defined volume. Some studies (Wolz
et al., 2022; Bai et al., 2021; Arndt et al., 2018) use open-
path Fourier transform infrared or laser spectrometry to ob-
tain horizontal path-integrated CH4 concentrations upwind
and downwind from the source, which are combined with
a Lagrangian particle dispersion model to estimate emission
rates. Inverse modeling techniques (Andersen et al., 2021) in-
fer emission rates by fitting an atmospheric dispersion model
to measured atmospheric data. On larger spatial scales, typ-
ically spanning multiple kilometers, satellite observations
are used to detect and quantify CH4 emissions from super-
emitters, such as oil and gas leaks and landfills (e.g., Pandey

et al., 2019; Dogniaux et al., 2024). However, the smaller
emission rates of livestock herds are more challenging to de-
tect using satellite data, necessitating measurement platforms
with a higher spatial resolution. Drone technology provides
a solution, enabling high-resolution spatiotemporal obser-
vations of atmospheric gases and thermodynamic variables
(Villa et al., 2016; Burgués and Marco, 2020). Our study uses
drones to sample CH4 emission plumes from nine different
ruminant herds in Kenya, leveraging these data for emission
estimation.

Our study employs an innovative Bayesian inference ap-
proach, using a sequential Monte Carlo method to invert an
atmospheric dispersion model. This method combines ob-
served data with prior information to enhance emission es-
timation. A key advantage of Bayesian inference is its abil-
ity to integrate noisy observations from multiple platforms,
including drones and flux towers. The framework’s prob-
abilistic approach systematically accounts for observation
uncertainties, potentially improving the precision and reli-
ability of our emission estimates. We assess the efficacy
and robustness of this novel method by comparing our re-
sults with those obtained from a conventional mass balance
method and IPCC emission values. To complement this anal-
ysis, we assess the capability of hyperspectral satellite data
to pinpoint the location of CH4 sources, specifically rumi-
nant herds, by identifying spectral anomalies at the landscape
level. Our objectives are as follows: (1) to evaluate the effi-
cacy of the Bayesian inference method utilizing drone-based
observations for estimating CH4 emission rates; (2) to deter-
mine emission rates for free-grazing cattle, sheep, goats, and
camels in a sub-Saharan African country using drone-based
observations; (3) to compare the results obtained from the
novel Bayesian inference method with estimates from a more
traditional mass balance method and IPCC emission val-
ues, evaluating different methods for estimating CH4 emis-
sions from ruminants and contributing to improving national
greenhouse gas inventories; and (4) to investigate whether
spectral indices related to CH4 emissions from hyperspectral
satellite data can assist in detecting locations of CH4 sources,
specifically ruminant herds.

2 Materials and methods

This study was conducted at the Kapiti Research Station in
Kenya, approximately 60 km southeast of Nairobi. The sta-
tion is managed by the International Livestock Research In-
stitute (ILRI). Covering over 13 000 ha, the station houses
various ruminants, including cattle, sheep, goats, and camels,
with a primary focus on studying livestock productivity and
a secondary focus on the conservation of migratory wildlife
species. Kapiti is located in Kenya’s semi-arid savanna, char-
acterized by a diversity of savanna grasses, shrubs, and scat-
tered Acacia trees. Livestock management at Kapiti follows
typical pastoral systems, where herders allow the animals
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Figure 1. (a) A drone flight capturing methane concentration observations of a heifer herd coinciding with the satellite overpass on
6 March 2024. (b) Camels inside a boma during a drone flight on 4 March 2024. Of all the animals, the camels were the most curious
about the drone.

to graze freely during the day and keep them in enclo-
sures, known in Kenya as bomas, during the night. Apart
from livestock, there were no other known CH4 sources of
considerable magnitude close to the study site. The net sa-
vanna soil background flux was estimated to be nearly zero.
Measurements recorded by the eddy-covariance tower at the
study site indicated values of 0.4± 2.6 mgm−2 h−1 during
the drone flights and 0.7± 3.7 mgm−2 h−1 throughout the
period of the measurement campaign. This finding is further
supported by chamber measurements conducted at the study
site over the entire year of 2017, which reported a net flux of
0.1± 0.7 µgm−2 h−1 (Leitner et al., 2024). Consequently, we
considered the savanna soil background flux to be negligible.

This section outlines four methods that were used to de-
tect and estimate CH4 sources: (1) source term estimation
through drone observations using an innovative particle-
based Bayesian inference method, (2) source term estimation
through drone observations using a traditional mass balance
approach, (3) calculation of IPCC Tier 2 emission values,
and (4) detection of potential CH4 source locations through
hyperspectral satellite observations at the landscape level.
Although the latter is not a direct source term estimation
method, we evaluated whether radiance anomalies in satellite
data could effectively detect potential CH4 sources to guide
targeted drone missions for further investigation and quan-
tification.

2.1 Drone-based source term estimation

This section provides details of the drone field campaign,
conducted between 29 February and 7 March 2024 at Kapiti.
It outlines both the Bayesian inference method and the mass
balance approach used to estimate CH4 emission rates from
drone observations.

We used a drone equipped with a gas sensor to obtain
CH4 concentration observations of the emission plumes of
nine different ruminant herds: cattle (cows, heifers, steers,
and slick herd), sheep (lactating ewes), goats (dry does, preg-

nant does, and weaner kids), and camels. The cows, heifers,
and steers were Boran cattle, while the slick herd consisted of
a crossbreed between Holstein–Friesian and Boran heifers.
The sheep flock included Red Masaai and Dorper, and the
goat herds comprised Small East African and Galla varieties.
The camels were dromedaries. The lactating ewes had lambs,
and the pregnant does had kids with them. However, because
the rumen fermentation systems of milk-fed lambs and kids
are not yet fully developed (Baldwin et al., 2004), we as-
sumed their CH4 emissions to be negligible and treated these
herds as if the lambs and kids were not present. The herd
sizes are included in Table B1. During the drone flights, the
respective herds were confined within a boma at coordinates
−1.6136° N, 37.13234° E. The animals exhibited no signs of
distress and appeared at ease throughout the drone opera-
tions. Figure 1 shows the heifers inside the boma, as well
as a herd of camels observing a passing drone.

Typically, four flights were conducted for each ruminant
herd. In the morning, before grazing, two flights were per-
formed: one flight for each emission estimation method. The
Bayesian inference flight focused on monitoring the down-
wind emission plume at various distances and altitudes from
the source. In contrast, the mass balance flight, following
Gålfalk et al. (2021), involved flying a virtual box around the
source, capturing the differences in CH4 concentrations up-
wind and downwind from the source. The same set of flights
was repeated in the afternoon after the animals had grazed.
Feed intake is known to increase enteric CH4 emissions in
ruminants, with peak emissions occurring shortly after feed-
ing (Amon et al., 2001; Hegarty, 2013). Because the animals
had no access to feed during the night, lower emissions are
expected in the morning compared to the afternoon, follow-
ing grazing. We investigated whether there was a noticeable
increase in CH4 emissions between the morning and after-
noon flights, using consistent observations of such increases
as indicators of the method’s reliability and accuracy. During
control drone flights, conducted without animals present in
the boma or the immediate surroundings, no increase in CH4
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Figure 2. Top-down view of the drone flight paths capturing methane observations in the afternoon of 6 March 2024. Shown are methane
mixing ratio measurements obtained at a height of 2.7 m during the mass balance flight around the boma and at heights of 3.5, 3.0, and 2.5 m
during the half-octagon flight for the Bayesian inference method. The blue markers indicate the source location in the atmospheric dispersion
model, representing the heifer herd. The wind direction arrow shows the mean wind direction observed at the flux tower.

levels was observed throughout the field campaign. Conse-
quently, we assumed that CH4 production from manure was
negligible, attributing the elevated CH4 concentration obser-
vations solely to enteric fermentation. This is supported by
Leitner et al. (2024), which found that boma manure con-
tributes only 2.2 % to total CH4 emissions at Kapiti.

2.1.1 Observing system

Our observing system consisted of a drone (DJI Matrice 300
RTK, DJI, China) equipped with a CH4 gas sensor (MIRA
Strato LDS, Aeries Technologies, USA), as well as a sta-
tionary flux tower with an eddy-covariance system (Burba,
2013). The tower was located at coordinates −1.61419° N,
37.13313° E, approximately 100 m south-southeast from the
center of the boma, as shown in Fig. 2. The drone’s position
was recorded using real-time kinematic (RTK) positioning. A
digital elevation model (DEM) of the area was obtained us-
ing lidar (Zenmuse L1, DJI, China), processed in DJI Terra.
The altitude data from the RTK system were corrected us-
ing the DEM at the drone’s home location. Additionally, the
DEM was used to determine the drone’s flight height above
the ground surface.

The gas analyzer detects CH4 using mid-infrared laser
spectroscopy, which measures the absorption of infrared ra-
diation by CH4 molecules. The reported mixing ratio X

[ppm; parts per million per volume] at the point of measure-

ment is the fraction of CH4 molecules per million molecules
of air. The sensor has a sensitivity of 0.001 ppm and a sam-
pling rate of 1 Hz. The sensor was factory calibrated and
has an expected drift of 0.01 to 0.05 ppm since calibration
(from communication with the manufacturer). The mixing
ratio X was converted to mass concentration c [gm−3] us-
ing the ideal gas law, with the ambient air temperature and
pressure obtained from the flux tower.

Wind data were collected using two sensor platforms: a
fixed flux tower and the drone. Wind data were captured
by a 3D sonic anemometer (WindMaster, Gill Instruments,
UK) mounted on the tower at a height of 5 m above the
ground. The wind speed and wind direction data were re-
sampled from 10 to 1 Hz to match the timestamps of the CH4
sensor. The data from the eddy-covariance system were pro-
cessed at half-hour intervals using EddyPro software (Li-Cor,
USA) to determine the Obukhov length L [m] and friction
velocity u∗ [ms−1]. Using Monin–Obukhov similarity the-
ory (MOST; see Stull, 1989), we estimated the vertical pro-
file of the mean wind speed V (z) [ms−1] and mean eddy
diffusivity K(z) [m2 s−1], where z is the distance above the
ground. Appendix A includes details on the application of
MOST.

The drone quantifies wind speed using its onboard sensors
to measure resistance during stable hover or flight. These
data, combined with the drone’s GPS and inertial measure-
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ment unit (IMU), allow for estimations of wind speed and
direction by analyzing the accelerations and attitude adjust-
ments needed to counteract the wind’s force (Abichandani
et al., 2020). Wind data from the drone were obtained from
the flight logs using the Flight Reader software.

Given concerns that the additional bulk and weight of the
CH4 sensor might affect readings, we performed a correction
for wind speed. During the field campaign, the drone hov-
ered for a total of 90 min a couple of meters downwind from
the sonic anemometer under various wind speeds and orien-
tations relative to the wind direction. Wind speed data from
the drone were corrected through linear regression against
the sonic anemometer data (Fig. S1 in the Supplement). The
wind direction is reported by the drone in eight compass di-
rections. The wind direction data did not qualitatively match
well with the sonic anemometer data and were therefore not
used in our study (Fig. S2).

2.1.2 Bayesian inference method

The first drone-based method for quantifying CH4 emission
rates utilizes an inverse modeling approach. Model inversion
involves estimating unknown input parameters of a theoret-
ical model by utilizing observed data related to the output
variables. We assimilated atmospheric measurements into an
atmospheric transport model to infer emission rates. Two
principal approaches are commonly employed in model in-
version: (1) several studies (Andersen et al., 2021; Shah et al.,
2019, 2020) minimize a cost function to find the best fit be-
tween a Gaussian plume model (Sutton, 1947) and observed
CH4 concentrations using a frequentist framework. (2) In
the field of robotics, various studies employ Bayesian infer-
ence for model inversion to estimate source emission rates
and source locations, among other unknown variables, at lo-
cal scales (Hutchinson et al., 2017; Francis et al., 2022).
The Bayesian approach is particularly well suited to solv-
ing ill-posed inverse problems involving the assimilation of
noisy observations that are ubiquitous in geophysics (Sanz-
Alonso, 2023). Beyond robotics, Bayesian frameworks are
also utilized in estimating carbon emissions on regional or
global scales from satellite observations (Cusworth et al.,
2021; Western et al., 2021) and international ground-based
atmospheric observation networks (Evangeliou et al., 2018;
Thompson et al., 2022).

We adopted a Bayesian approach, providing a probabilis-
tic interpretation of the model parameters, including uncer-
tainty quantification. Previous research has demonstrated the
efficacy of Bayesian inference with synthetic drone observa-
tions for source localization and estimation (Loisy and Eloy,
2022; van Hove et al., 2023, 2024b). However, its applica-
tions in real-world environments at a local scale remain rela-
tively limited. Hutchinson et al. (2019) and Park et al. (2021)
successfully deployed Bayesian inference methods in out-
door experiments with flat, homogeneous terrain and time-
invariant controlled-release sources, while Hutchinson et al.

(2020) explored emissions from a car crash and oil rig at a
test site. In real-world conditions, Pirk et al. (2022) assimi-
lated drone observations within a Bayesian framework to in-
fer turbulent fluxes of sensible and latent heat of a wetland
and a palsa mire in Norway.

We used the advection–diffusion model formulated by
Vergassola et al. (2007) to simulate CH4 transport under tur-
bulent atmospheric conditions. This model has been shown
by Hutchinson et al. (2019) to more accurately represent
small-scale plume behavior compared to the Gaussian plume
model. With a single point source, the mean stationary con-
centration c [gm−3] at measurement location x = [x,y,z] is
given by

c(x,xs)=
Qs/α

4πD|x− xs|
exp

(
−(x− xs)V sin(φ)

2D

)
× exp

(
−(y− ys)V cos(φ)

2D

)
× exp

(
−|x− xs|

λ

)
+ c0, (1)

where xs = [xs,ys,zs] represents the source location, Qs
[gh−1] denotes the CH4 point source emission rate,
α= 3600 sh−1 is the time conversion factor from hours to
seconds, V [ms−1] represents the mean wind speed, φ [°]
is the mean wind direction, D [m2 s−1] denotes the effec-
tive diffusivity, λ [m] is a characteristic length scale, and c0
[gm−3] is the mean stationary background concentration. We
make a distinction between the total emission rate of the en-
tire herd, denoted by Q [gh−1], and the emission rate per
individual animal, denoted by q [g per head per hour].

Each of the meteorological parameters in Eq. (1) influ-
ences different aspects of the emission plume. Specifically,
the wind direction determines the plume’s orientation, while
wind speed and diffusivity influence the plume’s shape, and
the emission rate determines how elevated the plume’s con-
centration level is above the background. The instantaneous
wind fluctuates in amplitude and direction due to turbulent
forces, which are influenced by the effective diffusivity D.
The effective diffusivity is the sum of the turbulent diffusivity
and the typically much smaller molecular diffusivity. Unlike
the Gaussian plume model, which uses dispersion parame-
ters σy and σz, typically determined by the stability classifi-
cation schemes of Pasquill (1961), effective diffusivity D is
directly incorporated in the model. Consequently, by making
the assumption D ≈K , observational estimates of D can be
obtained via MOST, as detailed in Appendix A.

The length scale λ in Eq. (1) is defined as

λ=

√
Dτ

1+ V 2τ
4D

, (2)

whereD denotes the effective diffusivity, V is the mean wind
speed, and τ is the finite lifetime of CH4 in the atmosphere,
approximately 9.1 years (Prather et al., 2012).
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To conserve CH4 mass in Eq. (1), the ground was mod-
eled as a perfect reflector of the plume, as is typically done
in Gaussian plume modeling (Hanna et al., 1982). This was
achieved by including a mirror image source below the
ground surface: xs,mirror =−xs. Consequently, the total con-
centration field is expressed as the sum of the original and
mirrored sources: c(x,xs)← c(x,xs)+ c(x,xs,mirror)− c0.

In our study, emission rate Qs, mean wind speed V , mean
wind direction φ, and effective diffusivity D in Eq. (1) are
treated as unknown parameters to be inferred through model
inversion. The parameters that are assumed to be known in-
clude the source location xs, drone locations x, and back-
ground concentration c0, which have been determined as fol-
lows. On the small spatial scale of our study, approximat-
ing the herd of animals as a single point source would be an
oversimplification. Instead, we modeled the herd as a set of
m point sources, resulting in a total concentration field that is
the sum of the individual concentration anomalies from these
sources: c(x,xs)= c0+

∑m
i (c(x,xs,i)−c0). This source su-

perposition is commonly used in Gaussian plume modeling
(e.g., Calder, 1977). Using aerial photographs taken during
the drone flights, we randomly selected m= 100 source lo-
cations within the outline of the herd, which together are re-
sponsible for a total emission rate Q=mQs. For example,
the 100 blue markers within the boma shown in Fig. 2 repre-
sent the source location of a heifer herd. After inferring the
total emission rate Q, we normalized it by the actual num-
ber of animals na in the herd to obtain the emission rate per
individual animal q =Q/na. The source height zs was es-
timated by averaging the mouth height of 10 animals from
each herd, based on direct measurements. The majority of the
CH4 mixing ratio measurements for each drone flight were
below 1.8 ppm. The mean background concentration c0 was
determined as the median of the converted CH4 observations
that fell below this threshold. Although this value is lower
than the global average mixing ratio of 1.93 ppm, measure-
ments in Norway before and after the field campaign were
close to the global average, and data inspection by the man-
ufacturer revealed no sensor abnormalities, suggesting that
this low value was natural. Addressing any remaining con-
cerns, we note that both drone methods rely on concentration
elevations above the background level, ensuring that any po-
tential systematic bias does not affect the final estimates.

The drone flew nine legs in a half-octagon pattern down-
wind of the herd at three different distances: approxi-
mately 40, 30, and 20 m from the center of the boma. The cor-
responding heights for the outer legs were approximately 3.5,
5.5, and 9.0 m; for the middle legs, 3.0, 4.5, and 7.0 m; and
for the inner legs, 2.5, 3.5, and 5.0 m above ground level. To
minimize the effects of rotor downwash (visualized with col-
ored smoke in Crazzolara et al., 2019) and downwind dis-
turbances to the plume (visualized with colored smoke in
Hutchinson et al., 2019), the flights were performed from
the outer to the inner legs, starting at the lowermost altitude
and ascending to higher altitudes. Figure 2 offers a top-down

view of the boma and illustrates the measured CH4 mixing
ratios along the lowest three legs of the half-octagon flight
plan during the drone flight with a herd of heifers.

We explore the use of three different observing systems for
model inversion, i.e.,

a. CH4 concentration data: we assimilated only instan-
taneous drone-based CH4 mixing ratio data X, which
were converted to CH4 concentration c, for use as ob-
servations.

b. CH4 concentration data with drone-derived wind speed:
we assimilated the same concentration data (observa-
tion case (a)) along with mean wind speed observa-
tions Vobs derived from drone data. The average wind
speed was calculated over the estimated plume depth
of 8 m. Specifically, wind speed data from the drone
flight were averaged over 1 m vertical intervals up
to 8 m, and the overall average was obtained over these
interval-specific averages.

c. CH4 concentration data with flux tower data: we as-
similated CH4 concentration data (observation case (a))
in combination with observations for mean wind
speed Vobs, mean wind direction φobs, and effective dif-
fusivity Dobs derived from the flux tower data. In this
case, we approximated that D ≈K and assumed that
the vertical and horizontal diffusivity are equal, as is
done in Eq. (1). We obtained mean wind speed and dif-
fusivity values by averaging their respective profiles –
Eqs. (A1) and (A3) – over the estimated vertical plume
extent of 8 m.

We employ a probabilistic approach to model inversion,
applying Bayesian inference recursively to mini-batches of
observational data to make the problem more computation-
ally tractable (Chopin, 2002). At each new iteration step n+
1, the dynamic prior probability distributions of the unknown
parameters p(θ |d0:n) are updated to the posterior probability
distributions p(θ |d0:n+1) given a new mini-batch of observa-
tions dn+1 via Bayes’ rule:

p(θ |d0:n+1)=
p(dn+1|θ)p(θ |d0:n)

p(dn+1|d0:n)
, (3)

where the conditional model evidence (or marginal likeli-
hood) acts as a normalizing constant:

p(dn+1|d0:n)=

∫
p(dn+1|θ)p(θ |d0:n)dθ . (4)

At each new iteration n+ 1, the dynamic prior distribu-
tions p(θ |d0:n) are simply the corresponding dynamic poste-
riors from the previous iteration n. The use of such sequential
Bayesian updating makes the inference problem more com-
putationally tractable and is a key property of the sequential
Monte Carlo methods that we employ in practice (Chopin
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and Papaspiliopoulos, 2020). Note the slight abuse of nota-
tion where d0 is implicitly empty, and thus p(θ |d0) – rather
than the usual p(θ ) – denotes the initial prior at n= 0 for
notational convenience.

The likelihood term p(dn+1|θ) in Eq. (3) links the obser-
vations to the forward model, effectively serving as a mea-
sure of discrepancy between the observed data and the model
predictions. The observational model relating observations d
to the forward model prediction is given by

d = F(θ)+ ε, (5)

where ε represents the discrepancy (or residual) term, ex-
plicitly capturing the various sources of error in the mea-
sured data (and implicitly also errors in the model). For the
CH4 concentration observations cobs, the forward model F is
based on Eq. (1) for m sources. In the case of the wind and
diffusivity observations, F is a more direct noisy mapping;
for example, the observed mean wind speed Vobs is modeled
as Vobs = V + εV.

As Rao (2005) identifies, discrepancies in atmospheric
dispersion modeling can arise due to: (a) noise in the sen-
sor measurements, (b) errors in the model input data, (c) the
fact that atmospheric dispersion models are imperfect, and
(d) inherent randomness in unresolved turbulent dispersion
processes. Given the limited knowledge of these errors, the
Gaussian distribution is the most conservative choice for the
likelihood function according to the maximum entropy prin-
ciple (Jaynes, 2003). Thus, we define the likelihood function
as a Gaussian of the form p(dn+1|θ)=N (dn+1|F(θ),R),
where the mean vector F(θ) contains the model predic-
tions and R is a diagonal observation error covariance ma-
trix with observation error variances σ 2 along the diago-
nal. These observation error variances correspond to the re-
spective observation error standard deviations empirically
estimated as σc= 0.54 mgm−3 (corresponding to 1 ppm),
σV = 0.30 ms−1, σφ = 10°, and σD = 0.15 m2 s−1 for con-
centration c, mean wind speed V , wind direction φ, and ef-
fective diffusivity D, respectively.

We recognize a discrepancy between the timescales of our
concentration observations and the statistical assumptions of
our dispersion model presented by Eq. (1): while the obser-
vations are instantaneous samples of a turbulent boundary
layer, our model represents a time-averaged plume. This dis-
crepancy or representation error (van Leeuwen, 2015) is ex-
pected to be the largest source of uncertainty in our Bayesian
inference approach. Additional sources of uncertainty in-
clude the assumption of a fixed vertical plume extent, ignor-
ing uncertainties inherent in the (assumed) known variables
such as the background concentration, among other factors.
To account for these approximations and minimize the im-
pact of potential errors, we incorporate a high level of un-
certainty into the likelihood term by inflating the observation
error covariance R to match the aforementioned observation
error standard deviations.

The initial prior distributions p(θ |d0) are chosen to be
flat non-informative priors in the form of uniform distribu-
tions across defined ranges to match reasonable prior ex-
pectations (Banner et al., 2020): q ∼ U(0.36,36.00) g per
head per hour, V ∼ U(0,6)ms−1, φ ∼ U(−45,135)°, corre-
sponding to the wind compass half of the prevailing wind
direction, and D ∼ U(0.3,3.0)m2 s−1. We implement the
Bayesian inference framework in Python (available from van
Hove et al., 2024a) by a sequential Monte Carlo (SMC)
framework (Chopin and Papaspiliopoulos, 2020; Särkkä and
Svensson, 2023) that generalizes the classic bootstrap par-
ticle filter (Gordon et al., 1993). This method approximates
the probability distributions with a set of weighted ensem-
ble members, referred to as particles. In each iteration, the
weights of these particles are updated based explicitly on
their likelihood, representing their fit to the observed data,
and implicitly on the dynamic prior. To address the particle
degeneracy problem, where only a few particles retain signif-
icant weights, we apply the resample-move algorithm (Gilks
and Berzuini, 2001; Doucet and Johansen, 2009). This al-
gorithm enhances the particle diversity and exploration of
the parameter space by combining resampling with subse-
quent Markov chain Monte Carlo (MCMC) moves. Addi-
tionally, reflective boundaries are used to respect the prede-
fined ranges of the prior uniform distributions. In our algo-
rithm, we use 25 000 particles and a mini-batch size of 200
observations, and we perform five MCMC steps per iteration
step.

Due to the inherently stochastic nature of the SMC algo-
rithm, different realizations can yield varying results. This
variability arises from randomness in the prior sampling, the
generation of proposals in each MCMC step, the selection
of the mini-batches of observations, and the determination of
them source locations representing the herd. As a result, it is
common practice to run the SMC algorithm multiple times to
(a) assess the variability of its output and (b) obtain more re-
liable statistical estimates of the inferred parameters (Chopin
and Papaspiliopoulos, 2020; Vergé et al., 2015). Thereby,
we perform 22 independent realizations of the SMC algo-
rithm in an outer loop to derive more robust estimates of the
CH4 emission rates.

The methodological challenges encountered during the
implementation of the Bayesian inference method are dis-
cussed in Sect. 3.4.

2.1.3 Mass balance method

The second drone-based method for quantifying CH4 emis-
sion rates uses a mass balance approach. Based on the diver-
gence theorem, this technique determines the emission rate
from a CH4 source by assessing the net horizontal inflow
and outflow of CH4 within an imaginary box enclosing the
source. The mass balance approach, or box model, has been
widely utilized with drone observations in various studies.
For example, Allen et al. (2019) and Gålfalk et al. (2021) esti-
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mated emissions from landfills, while Andersen et al. (2021)
determined emissions from coal mining ventilation shafts,
and Vinković et al. (2022) investigated emissions from a
dairy farm. Additionally, Golston et al. (2018) and Yang
et al. (2018) applied the mass balance method with a laser-
based CH4 sensor capturing a column-integrated concentra-
tion along a vertical path between the drone and the ground to
investigate natural gas leaks. On larger scales, the method has
been applied using aircraft observations. For example, Cam-
baliza et al. (2014) assessed emissions of an urban region
including multiple sources such as power plants, landfills,
and wastewater treatments, while Arndt et al. (2018) quanti-
fied emissions of dairy farms encompassing animal housing
and liquid manure storage. On regional or global scales, mass
balance analysis is used to estimate emission rates from satel-
lite observations (e.g., Pandey et al., 2019; Borchardt et al.,
2021). However, Varon et al. (2018) notes that this method
is susceptible to large errors. This is due to the inability to
accurately parameterize turbulence on the small scale of in-
stantaneous plumes, as well as poor characterization of the
vertical wind speed profile between the ground surface and
satellite.

The drone collects CH4 point measurements along the ver-
tical planes of an imaginary box encapsulating the source.
Data are then interpolated onto a regular grid to calculate
the net emission rate Q [gh−1] by integrating the product
of CH4 concentration c [gm−3] and outward perpendicular
wind speed across the vertical sampling planes:

Q=
∑

planes

 ki∑
i

kj∑
j

ci,jv⊥ i,jai,jα

 , (6)

where v⊥ [ms−1] denotes the instantaneous wind speed out-
ward perpendicular to the plane, a [m2] is the area of a grid
cell, α= 3600 sh−1 is the time conversion factor from hours
to seconds, ki is the number of horizontal grid cells of a
plane, and kj is the number of vertical grid cells of a plane.

The vertical sampling planes must be sufficiently high to
capture the full extent of the emissions so that there are
only negligible fluxes through the top horizontal plane of the
imaginary box. Our imaginary box around the boma mea-
sures approximately 26 m by 26 m with a height of 10 m.
To mitigate downwash effects from the rotors, the drone’s
flight plan was designed from the ground up. The drone first
performed a manual flight at around 1.0 m above the ground
for the lowest leg, followed by a pre-planned flight mission
with ascending legs at approximately 2.0, 2.7, 3.7, 5.2, 7.2,
and 9.2 m. The drone flew at 1 ms−1, collecting observations
approximately every meter. Figure 2 displays the measured
CH4 mixing ratios at a height of 2.7 m during a flight with
the heifer herd.

To evaluate Eq. (6), we used the horizontal instantaneous
corrected wind speed data from the drone and wind direc-
tion observations from the sonic anemometer on the flux

tower, which we considered more reliable than the drone’s
wind direction estimates. Artificial wind speed data points
of 0 ms−1 were added at ground level to account for the
no-slip lower boundary condition. The CH4 concentration
and perpendicular wind speeds were interpolated onto north-
east (NE)-, southeast (SE)-, southwest (SW)-, and north-
west (NW)-facing vertical planes. Following the general ap-
proach of Gålfalk et al. (2021), we resampled the observa-
tions using the following sequence of steps: (a) linear inter-
polation of the data points onto a regular grid of circa 20 cm2,
(b) averaging onto a coarser grid of circa 1 m2, and (c) fill-
ing any remaining empty grid cells, if any, using nearest-
neighbor values.

The current sampling time of approximately 20 min is in-
sufficient to capture the mean state of the plume morphol-
ogy, introducing uncertainty into the emission rate estimate.
This primarily stems from temporal variability induced by
unresolved atmospheric turbulence affecting wind speed and
wind direction (σv,temp and σφ,temp). This is further compli-
cated by potential wake effects from the herd that disturb the
mean flow field, influencing wind speed observations in the
downwind sampling plane. Additionally, measurement un-
certainties in wind speed and wind direction (σv,meas and
σφ,meas) further contribute to the overall uncertainty in the
mass balance approach. Moreover, the wind direction’s as-
sessment at the flux tower, rather than at the vertical planes,
introduces additional uncertainty. The measurement uncer-
tainty of the CH4 observations is minimal and considered
negligible compared to wind-related uncertainties. Similarly,
the relative uncertainty of the interpolation process is consid-
ered minor and is excluded from the overall uncertainty es-
timate. Our approach to uncertainty estimation for the mass
balance method aligns with the practices outlined in Ander-
sen et al. (2021).

We estimated uncertainties due to temporal variation in
wind speed and direction (σv,temp and σφ,temp) based on
their standard deviation from the mean at the altitude of
each leg of the drone flight, following the methodology
presented in Cambaliza et al. (2014). Measurement un-
certainties for wind speed and wind direction were esti-
mated at σv,meas= 1.7 ms−1 and σφ,meas= 20°, respectively.
The wind speed uncertainty estimate was derived from the
root mean square error between the corrected wind speed
readings from the drone and wind speed records from the
sonic anemometer during hovering flights; see Sect. 2.1.
The temporal variation and measurement uncertainty were

summed in quadrature: σv =
√
σ 2

v,temp+ σ
2
v,meas and σφ =√

σ 2
φ,temp+ σ

2
φ,meas. Finally, the total uncertainty estimate for

the emission rate was determined through error propagation
(Gålfalk et al., 2021; Andersen et al., 2021; Vinković et al.,
2022). A Monte Carlo approach with 500 runs was used for
error propagation (Anderson, 1976) to incorporate the vari-
ous uncertainty sources.
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2.2 IPCC Tier 2 emission values

In addition to drone-based methods, we estimated CH4 emis-
sions from enteric fermentation of ruminant herds using the
IPCC Tier 1 and Tier 2 approaches (Paustian et al., 2006).
The Tier 1 method uses generalized default values for the
emission factor EF [kg per head per day], often specific to
regions or continents. In contrast, the Tier 2 method incor-
porates more detailed, herd-specific or animal-specific data,
making Tier 2 values generally more reliable than Tier 1 es-
timates. This method is based on the typical daily metabolic
energy balance of the animals, where the CH4 emission fac-
tor EF is calculated by

EF=
YmG

E
, (7)

where Ym denotes the fractional methane conversion factor,
G [MJ per head per day] is the gross energy intake, and
E= 55.65 MJkg−1 is the energy content of CH4. The daily
gross energy intake per animal G is determined from infor-
mation on feed quality and feed intake, live weight of the an-
imals, weight changes, and productivity parameters (as spec-
ified in Eq. 10.16 in Paustian et al., 2006). These data can
be obtained at the herd level, the individual animal level, or
a combination of both. Methane conversion factor Ym repre-
sents the fraction of gross energy intake converted to CH4.
The IPCC provides Ym values for different animal categories
based on a review and synthesis of available scientific liter-
ature and data (cattle values in Table 10.12 and sheep and
goat values in Table 10.13 of Paustian et al., 2006). Because
specific values are currently unavailable for camels and we
do not have the live weight of the camel herd from our drone
flights, we use the IPCC Tier 1 value for camels in our study.

At Kapiti, all livestock herds graze freely during the day,
and we assume that their feed intake is entirely from pasture.
The feed quality of the pasture was determined by averaging
the nutrient content of 19 samples collected from different lo-
cations across Kapiti on 1 March 2024. These samples were
analyzed for dry matter content, nitrogen (converted to crude
protein), carbon, ash, and fiber-fractions (NDF: neutral de-
tergent fiber; ADF: acid detergent fiber; ADL: acid detergent
lignin). These data were used to compute feed digestibility,
representing the portion of gross energy intake in the feed not
excreted in feces. Data on average feed intake are difficult to
obtain from grazing animals and were therefore estimated.

The live weight [kg] and time-average daily live weight
change [kgd−1] of individual animals were determined from
direct measurements taken during the first half of March
2024 and then again at the end of April or May 2024. The
average weight and daily weight change across all animals in
a herd were used to compute the EF for the respective ani-
mal category. Additional data used to estimate gross energy
intake for each animal herd include the following: propor-
tion of pregnant females (84 % of pregnant does herd, 30 %
of cow herd, and 30 % of slick herd); proportion of lactat-

ing females (87 % of lactating ewes flock) with average milk
production (1.5 L ewe−1 d−1); number of offspring; and an
estimate for the animal’s activity, specifically the daily walk-
ing distance on the pasture [kmd−1]. We convert the result-
ing emission factor EF [kg per head per day] into emission
rate q [g per head per hour] for each animal category to en-
able method comparison in our study. With the exception of
weight and weight changes, all parameters were estimated at
the herd level without accounting for associated uncertain-
ties. As we did not perform an explicit uncertainty assess-
ment for the IPCC values, we apply a ± 20 % uncertainty
range for Tier 2 values and a ± 30 % to ± 50 % uncertainty
range for the Tier 1 values, as reported by the IPCC (Paustian
et al., 2006).

2.3 Satellite observations for source detection

In an exploratory effort, we investigated the potential for
detecting livestock herds as CH4 sources using satellite
hyperspectral imagery. On 6 March 2024, the PRecursore
IperSpettrale della Missione Applicativa (PRISMA) satellite
(Loizzo et al., 2018) was commissioned to capture a hyper-
spectral image of Kapiti specifically for this research while
three cattle herds were present at different locations. The
PRISMA satellite has two hyperspectral sensors that mea-
sure solar radiation reflected by the Earth over 240 spectral
bands, ranging from 400 to 2500 nm. Its spatial coverage is
30 km× 30 km, with a resolution of 30 m. Methane exhibits
strong absorption features in the shortwave infrared (SWIR)
region between 2150 and 2500 nm, with particularly strong
absorption around 2300 nm (Moorhead, 1932; Brown et al.,
2003; Roger et al., 2024a). Consequently, the simple ra-
tio (SR) index of the wavelengths at 2300 and 2100 nm
(SR2300/2100) is commonly used to detect spatial varia-
tions in CH4 absorption (Xiao et al., 2020; Scafutto et al.,
2021; Roger et al., 2024b; Pei et al., 2023). A lower SR indi-
cates lower relative radiance at 2300 nm and thus greater ab-
sorption, suggesting higher atmospheric CH4 concentrations.
However, it is important to note that spatial variations in other
factors, such as vegetation water content, leaf structure, and
soil moisture, can also influence the SR index. Consequently,
while the SR index may capture landscape features associ-
ated with grazing or animal presence, it does not necessarily
correlate directly with CH4 emissions.

We processed the hyperspectral data of the PRISMA satel-
lite in the infrared region to detect spatial variations in
the CH4 absorption feature. Starting from Level-1 top-of-
atmosphere radiance narrowbands (Giardino et al., 2020), we
integrated the infrared information into single data cubes –
composite images representing the same pixel across adja-
cent spectral bands – using the prismaread package in the
R environment (Busetto, 2020). This produced hyperspec-
tral data cubes consisting of 173 spectral bands, spanning in-
frared wavelengths from 920 to 2505 nm. Finally, we calcu-
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lated the SR index for each data cube using the SWIR wave-
lengths at 2300 and 2100 nm.

3 Results and discussion

In this section, we compare the estimated emission rates de-
rived from the novel Bayesian inference method with those
obtained using a conventional mass balance method and
IPCC Tier 2 values. A comprehensive overview of the es-
timated emission rates by the different methods is given in
Table B1. Additionally, we evaluate the detection of poten-
tial CH4 source locations through hyperspectral satellite ob-
servations.

3.1 Source term estimation through drone observations

3.1.1 Bayesian inference method

Figure 3 presents the Bayesian inference results for the drone
flight conducted with the heifer herd on the afternoon of
6 March 2024. Results for all drone flights are included in
Figs. S25 to S45 and are reported in Table B1. In this sec-
tion, we analyze the inference results across three observa-
tion cases: (a) using only concentration data, (b) combin-
ing concentration data with drone-derived wind speed, and
(c) incorporating concentration data with mean wind direc-
tion, mean wind speed, and diffusivity obtained from MOST.
We frequently observe distinct trends when using drone-
based methods to estimate CH4 emission rates of sheep and
goat herds at Kapiti compared to cattle herds. Except for the
camel herd, which consisted of 42 animals, the other herds
comprised approximately 100 to 200 animals each (see Ta-
ble B1). Due to the markedly lower emission rate per in-
dividual animal q for sheep and goats, these herds have a
lower overall emission rate Q. Consequently, we refer to the
sheep and goat herds as “weak(er) sources” to denote their
relatively lower emission rates in our study. These observed
distinct trends will be discussed in greater detail in this sec-
tion.

In most of the drone flights, the inferred mean wind di-
rection aligns with the fixed source location and areas of el-
evated concentration. Overall, the inferred wind direction is
both precise and consistent across all three observation cases
for cattle drone flights, occasionally overriding the observed
wind direction. In Fig. 3, the mean wind direction estimates
across the three observation cases coincide, and the inferred
direction of 81° corresponds to the angle between the source
location and the observation locations with an elevated CH4
mixing ratio shown in Fig. 2. Specifically, the update in wind
direction in observation case (a) indicates that our framework
can often infer the wind direction solely from the shape of the
emission plume and the known source location. The posterior
mean wind direction becomes more uncertain when dealing
with highly variable wind directions without direct observa-
tion (observation case a), such as during the morning flight

with camels (Fig. S14) and the morning flight with pregnant
does (Fig. S21).

For weak sources, the Bayesian inference algorithm can
misinterpret concentration observations as being upwind of
a strong emission source rather than downwind from a weak
one if no direct wind direction observation is provided. To
address this equifinality issue, we used an informed prior
bounded by the half wind-rose: U(−45,135)°. During the
first 2 days of field work, we used a narrower V-shaped flight
path instead of the usual half-octagon. Consequently, for the
drone flights on these days, marked with a bullet (•) in Ta-
ble B1, we adjusted the prior to U(30,135)°. When dealing
with weak sources, an informed prior for wind direction was
needed in our study to refine the emission rate distribution
for observation cases without direct wind direction observa-
tions. Even with an informed prior, the posterior distribution
of the wind direction can remain relatively uninformed for
weak sources, such as weaner kids (Figs. S23 and S24). We
note that concentration observations obtained in all locations
around the source, such as those from the mass balance flight,
can help mitigate this ambiguity.

Wind speed and diffusivity influence the shape of the emis-
sion plume. Higher wind speeds elongate the plume, while
increased diffusivity broadens it. In observation cases (b)
and (c), where direct wind speed observations are avail-
able, the posteriors generally align with these observed val-
ues. Typically, the wind speed derived from MOST (obser-
vation case c) is higher than the wind speed recorded by
the drone (observation case b), as demonstrated in Fig. 3.
Without direct wind speed observations (observation case a),
the Bayesian inference algorithm tends to skew the poste-
rior distribution toward higher wind speeds for most drone
flights, as illustrated in Fig. 3. For all drone flights with weak
sources, the wind speed posteriors for observation case (a)
remain largely uninformed but are slightly skewed toward
higher values.

For diffusivity, the posterior distribution in observation
case (c) aligns with the direct observation, as shown in
Fig. 3. In the absence of observations (observation cases a
and b), the diffusivity posterior remains largely uninformed
but slightly skewed toward higher values in drone flights with
weaker sources as well as for the camel herd. For stronger
sources, namely, the cattle herds, the posterior distribution of
diffusivity does often shift toward low values, as shown in
Fig. 3.

A relationship was observed between the combination of
high posterior wind speeds and high posterior diffusivity,
resulting in higher estimated emission rates. Higher wind
speed and diffusivity indicate a larger plume, both in length
and width, suggesting a larger emission rate provided that
the concentration observations are the same. The typically
higher wind speeds derived from MOST, compared to drone
wind speeds, combined with higher posterior diffusivity in
observation case (c) compared to observation case (b), gen-
erally lead to higher emission rates in observation case (c)
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Figure 3. Bayesian inference results in the form of posterior distributions obtained using sequential Monte Carlo for the drone flight in the
afternoon of 6 March 2024 with 208 heifers. Estimates of (a) methane emission rate, (b) wind speed, (c) wind direction, and (d) diffusivity
for three different observation case. Observation case (a) using concentration observations is shown in orange; observation case (b) using
concentration observations and mean wind speed data from the drone is shown in green; and observation case (c) using concentration
observations and mean wind speed, mean wind direction, and diffusivity data derived from MOST is shown in purple.

compared to observation case (b). This is demonstrated in
Fig. 3. The observed relation highlights the importance of re-
liable wind measurements. We consider observation case (a)
the least reliable, as the wind speed estimates often skew to-
ward excessively high values. Observation cases (b) and (c)
present an interesting topic for future study: is it more valu-
able to equip the drone with an anemometer to capture spa-
tial wind variations, albeit potentially affected by the drone’s
downwash and motion, or to place a fixed anemometer near
the source, which may provide more accurate observations
and enable a more reliable application of MOST to derive
diffusivity data? We hypothesize that a fixed anemometer
may be the superior option within the current framework,
which employs an advection–diffusion model based on mean
wind conditions. In contrast, a mobile sensor may prove su-
perior in frameworks that account for spatial variations in the
wind field. Comparing different observing systems in con-
trolled release experiments with a constant and known emis-

sion rate can provide further insights into the optimal exper-
imental setup for Bayesian inference observing systems.

Across all drone flights, the emission rate estimates for ob-
servation case (c) have a smaller relative uncertainty range
compared to observation cases (a) and (b). Specifically,
the range is approximately ± 50 % for strong sources and
± 12 % for weak sources, in contrast to ± 65 % and ± 26 %
for observation case (a) and ± 55 % and ± 19 % for observa-
tion case (b), respectively.

We compare our estimates to IPCC Tier 1 values to as-
sess their plausibility. It is important to note that IPCC Tier 1
values are highly uncertain, and we do not use these values
as a definitive benchmark but rather as a sanity check. Over-
all, the Bayesian inference emission rate estimates for both
strong and weak sources are of the same order of magnitude
as the IPCC Tier 1 values: 5.3 g per head per hour for dairy
cattle in Africa, 5.3 g per head per hour for camels in devel-
oping countries, and 0.6 g per head per hour for sheep and
goats in developing countries, with a reported uncertainty
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Figure 4. Results of the mass balance approach for a drone flight in the afternoon of 6 March 2024 with a herd of 208 heifers. The panels
show (a) the interpolated methane mixing ratio measurements, (b) the interpolated perpendicular wind speeds, and (c) the methane fluxes
across the vertical sampling planes. Positive (negative) perpendicular wind speeds and fluxes correspond to flow out of (into) the box. The
black scatter points indicate the original observation locations.

range of ± 30 % to ± 50 % (Paustian et al., 2006). Despite
large variations in the posterior estimates for wind direc-
tion, wind speed, and diffusivity, the emission rate estimates
across all observation cases remain plausible when compared
to the IPCC Tier 1 values. For example, for the drone flight
presented in Fig. 3, the emission rate estimates of 7.2± 1.4,
5.4± 0.8, and 7.4± 0.7 g per head per hour for observation
cases (a) to (c), respectively, are considered feasible when
compared to the Tier 1 value for dairy cattle in Africa. This
underscores the importance of reliable concentration obser-
vations, as they alone (observation case a) can provide rea-
sonable emission rate estimates.

Further improvement of the Bayesian inference method
could involve extending the sampling duration to more accu-
rately capture the time-averaged plume. Prolonging the sam-
pling time at each observation location may require modifi-
cations to the likelihood function. For example, Hutchinson
et al. (2019) used a sample duration of 5 s and applied dif-
ferent likelihoods for concentration observations below and
above a plume detection threshold. It is important to consider
the trade-off between overall sampling duration and the num-
ber of sample locations. Investigating this trade-off, along
with the formulation of the likelihood function, would be a
valuable area for future study to improve the Bayesian in-
ference method for estimating CH4 emission rates. Such op-
timization could maximize the informational value derived
from observations collected with a single battery set.

A promising approach to the information maximization
strategy involves the use of autonomous drones that can make
in-flight decisions about the optimal sampling path based on
real-time observations and previously obtained knowledge.
Several studies explore this possibility using reinforcement
learning (Loisy and Eloy, 2022; van Hove et al., 2024b).
However, these studies often rely on synthetic data, while re-
search involving natural CH4 sources under real-world con-
ditions remains limited. Instead of addressing the informa-

tion maximization strategy solely on the data collection side,
exploring the capabilities of Bayesian hierarchical model-
ing (Berliner, 2003) to enhance the utilization of informa-
tion in future research is potentially valuable. The hierarchi-
cal Bayesian approach allows information to be shared across
drone flights, enabling data to be pooled across, for example,
the two heifer drone flights in this study or across all drone
flights involving cattle.

3.1.2 Mass balance method

Figure 4 presents the mass balance results of the after-
noon drone flight with a herd of heifers, on the same day
as the satellite overpass. The panels show the interpolated
CH4 mixing ratio measurements (top), perpendicular wind
speed (middle), and resulting fluxes (bottom) at the four ver-
tical sampling planes in the NE, SE, SW, and NW directions.
The sum of the fluxes in the bottom panel equals the final
estimated emission rate for the entire herd Q. The results of
the other drone flights are included in Figs. S25 to S45 and
Table B1.

Figures 2 and 4 demonstrate the intermittency of the ob-
served instantaneous plume. The CH4 mixing ratios within
the plume do not follow a smooth, continuous gradient but
instead exhibit an irregular distribution characterized by dis-
connected patches of elevated mixing ratios. This intermit-
tency complicates the mass balance approach, particularly
for drone flights where the signal-to-noise ratio is relatively
low. Such conditions include (a) highly variable wind di-
rection or low wind speeds leading to very non-stationary
wind conditions (the noise is particularly high) and (b) drone
flights with weaker emission sources resulting in low concen-
tration levels (the signal is particularly low), where the vari-
ability in the background concentrations and emission plume
can considerably affect the accuracy of the emission rate es-
timate.
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The mass balance approach relies on a nonzero horizontal
wind to generate a horizontal outflow of CH4 from the imagi-
nary box. Its accuracy improves when the plume morphology
remains relatively stable over time. Yang et al. (2018) de-
fines favorable wind conditions as a wind speed greater than
2.3 ms−1 and a steady wind direction with a standard devi-
ation below 33.1°. Measurements collected under wind con-
ditions that do not meet these criteria are marked with a dia-
mond (�) in Table B1. These sub-optimal conditions lead to
less reliable estimates, as, for example, observed by the neg-
ative emission rate of the morning drone flight with camels
(Fig. S35). Consequently, these results should be considered
unreliable due to unfavorable wind conditions.

Our observations indicate that the estimates for sheep and
goats, marked by a triangle (N) in Table B1, are very variable
and inconsistent with the IPCC Tier 1 value of 0.6 g per head
per hour (Paustian et al., 2006). Emissions from these smaller
animals produce lower CH4 concentration levels, resulting in
a lower signal-to-noise ratio when considering the size of the
herd. Moreover, for sheep and goats, the emission source and
consequently the plume are close to the ground in a region
characterized by generally lower wind speeds and complex
surface effects caused by, for example, variations in elevation
and vegetation. This may increase plume variability, leading
to less reliable estimates. Due to these factors, we consider
the mass balance estimates for drone flights with sheep and
goats unreliable. The mass balance estimates for cattle are
more plausible, as they are of the same order of magnitude
as the IPCC Tier 1 value of 5.3 g per head per hour for dairy
cattle in Africa (Paustian et al., 2006). While these Tier 1
values can provide a rough reference point, they should not
be interpreted as exact estimates of CH4 emissions. The neg-
ative emission rate for camels in the morning is unrealistic,
but the estimate in the afternoon is within a similar range as
the IPCC Tier 1 value of 5.3 g per head per hour (Paustian
et al., 2006).

To mitigate the effect of plume variability over time, sev-
eral studies have conducted repeated drone flights (Gålfalk
et al., 2021; Andersen et al., 2021). This approach can yield a
more robust approximation of the emission rate by averaging
the estimates from multiple drone flights, thereby reducing –
though not eliminating – uncertainty due to temporal vari-
ability. In a single drone flight, capturing the time-averaged
plume can potentially be improved by increasing the number
of plume observations relative to background observations.
Several studies, particularly larger-scale experiments using
airplanes, conduct flights along a single vertical sampling
plane downwind from the prevailing wind direction (Allen
et al., 2019; Cambaliza et al., 2014). The term ci,j in Eq. (6)
is then replaced by ci,j − c0, where c0 is the estimated back-
ground concentration. However, this sampling approach in-
troduces uncertainty due to the estimation of the background
concentration, the variability of which must be accounted for
in the overall uncertainty estimate.

Although onboard wind measurements with a sonic
anemometer are considered ideal (Allen et al., 2019), prac-
tical constraints have necessitated the use of nearby weather
stations for wind data in several studies (Allen et al., 2019;
Nathan et al., 2015). Morales et al. (2022) demonstrated,
through controlled release experiments, that using wind data
from an anemometer close to the source, which captures
changing wind conditions during the flight, is more accu-
rate than applying a wind profile through MOST (Eq. A1)
that only accounts for wind speed variation with altitude.
Given that we did not have an anemometer available on the
drone, using corrected wind speeds from the flight controller
was our best available option. An onboard anemometer could
reduce measurement uncertainty of the instantaneous wind
field, but it does not reduce uncertainty due to temporal un-
certainty.

3.2 Method comparison

In this section, we evaluate the CH4 emission rate results
obtained through Bayesian inference by comparing them
with results from other methods and literature values. Fig-
ure 5 presents the Bayesian inference results for observation
case (c) alongside estimates from the mass balance approach,
a laser spectrometry study previously conducted at Kapiti by
Wolz et al. (2022), and IPCC emission values.

In Sect. 3.1.1 and 3.1.2, we found that the Bayesian in-
ference results for all herds are of the same order of mag-
nitude as the IPCC Tier 1 values. In contrast, our mass bal-
ance results for strong sources (cattle herds) fall within the
same order of magnitude as the IPCC Tier 1 values, while
those for weak sources (sheep and goat herds) are substan-
tially higher than the IPCC Tier 1 values in several drone
flights. This finding was further supported by comparison to
the herd-specific IPCC Tier 2 values, which are generally
regarded as more reliable, though they should not be con-
sidered definitive. We compared the average (pre- and post-
grazing) emission rate estimates to the IPCC Tier 2 values.
We found a mean relative difference of 16 % for the Bayesian
inference results and a mean relative difference of 10 % for
the mass balance results across flights with strong sources of
Q≈ 700 gh−1 toQ≈ 1,500 gh−1 (Table B1). For the flights
with weaker sources of Q≈ 70 gh−1 to Q≈ 140 gh−1 (Ta-
ble B1), we observed a mean relative difference of 40 % for
the Bayesian inference results and a mean relative difference
of 683 % for the mass balance results. This disparity suggests
that the source term estimation threshold of the Bayesian in-
ference method is lower than that of the mass balance method
applied in our study. Consequently, Bayesian inference may
be more effective in estimating weaker sources, where the
mass balance method may provide unreliable estimates.

We compare the Bayesian inference estimates to results
from previous studies conducted at Kapiti. Our average
(pre- and post-grazing) emission rate estimate for steers was
7.1± 0.7 g per head per hour, which aligns with a respi-
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Figure 5. Methane emission rate estimates from the Bayesian inference method using concentration observations and mean wind speed,
mean wind direction, and diffusivity data derived from Monin–Obukhov similarity theory (observation case c), the mass balance approach, a
laser spectrometry study by Wolz et al. (2022), and IPCC emission factors converted from daily to hourly emission rates. Error bars represent
one standard deviation uncertainty. The uncertainty range of IPCC values, depicted by gray shading, is ± 20 % for Tier 2 values and ± 30 %
to ± 50 % for Tier 1 values (Paustian et al., 2006); this figure uses ± 50 % for the IPCC Tier 1 value. Unreliable mass balance estimates due
to a low signal-to-noise ratio are indicated by hatched lines.

ration chamber experiment showing emission rates ranging
from 6.7 to 7.7 g per head per hour depending on diet (Korir
et al., 2022b). Our average emission rate estimate for lactat-
ing ewes was 0.8± 0.2 g per head per hour, which overlaps
with the emission rate for sheep ranging from 0.6 to 0.8 g
per head per hour found in a respiration chamber experiment
(Mwangi et al., 2023). Our estimate is on the higher end,
which is expected as emissions from lactating animals are
generally larger than those from non-lactating animals due
to their increased feed intake to meet the energy demands
of milk production (Broucek, 2014). In another respiration
chamber experiment, the estimated emission rates from cows
ranged from 7.6 to 11.3 g per head per hour depending on
diet (Korir et al., 2022a). In contrast, our average estimate
was notably higher at 15.2± 1.0 g per head per hour.

Wolz et al. (2022) utilized open-path laser spectroscopy
with backward Lagrangian stochastic dispersion modeling to
estimate nighttime CH4 emissions from a mixed cattle herd
across 14 nights in September and October 2019. The result-
ing mean emission rates Q were normalized to the equiv-
alent weight of a cow to obtain q for a hypothetical cow
herd, rather than normalizing by the number of animals to
obtain q for the observed mixed cattle herd. Figure 5 shows
the results obtained at 09:00 East Africa Time (EAT), before
grazing, and at 00:30 EAT, after grazing. Note that the latter

nocturnal measurements were obtained later than our drone
flights, which were conducted in the afternoon. We observe
that our Bayesian inference results for cows are higher, both
before and after grazing, compared to estimates from Wolz
et al. (2022). This difference could be due to an overestima-
tion by the Bayesian inference method, or the emission rate
might have been this high at the times of the drone flights.
Wolz et al. (2022) reported a mean emission rate over 14 re-
peated experiments, whereas the Bayesian inference result
is an estimate based on a single drone flight. Additionally,
differences in methodology, differences in the timing of the
measurements, and the herd weight normalization used by
Wolz et al. (2022) could contribute to the discrepancies. Both
studies were conducted at the end of a dry season; however,
our field campaign was conducted during a normal dry sea-
son, whereas the dry season studied by Wolz et al. (2022) was
extreme. The severity of this dry season likely affected feed
intake and feed quality, potentially reducing CH4 emission
rates.

No camel studies have previously been conducted in
Kapiti, so we compared our Bayesian inference results for
camels to those of a respiration chamber experiment con-
ducted in Australia by Dittmann et al. (2014). This study es-
timated a CH4 emission rate of 4.0 g per head per hour for
Bactrian camels fed exclusively on alfalfa. Our average (pre-
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and post-grazing) estimate is higher at 6.7± 1.3 g per head
per hour. Note that the studies involve different camel species
and diets. We emphasize that the number of experiments con-
ducted with camels and the extent of current knowledge are
minimal and that further research is required to gain more
insight into the emissions of CH4 from camels. Based on
Bayesian inference, we observe a larger increase in estimated
CH4 production after grazing in camels compared to cat-
tle. Replication of this result through repeated experiments
would be a promising avenue for further research.

Feeding is known to increase CH4 production in rumi-
nants (Amon et al., 2001; Hegarty, 2013). Using a one-sided
Student’s t-test (Student, 1908) on the relative difference in
emissions pre- and post-grazing across all animal groups,
we found a statistically significant effect of grazing for the
Bayesian inference results (p-value= 0.009) but not for the
mass balance results (p-value= 0.194). We observe that 7
out of 10 Bayesian inference cases have markedly higher
mean emission rates in the afternoon compared to the morn-
ing. For pregnant does and weaner kids, while the emission
estimates increase after grazing, considerable overlap in the
uncertainty ranges makes the effect ambiguous. In the case
of lactating ewes, the difference in emissions before and af-
ter grazing is only slightly negative and also ambiguous. In
contrast, the mass balance results do not consistently demon-
strate an increase in CH4 emissions post-grazing, with sub-
stantial increases observed in only 2 out of 10 cases: the slick
herd and lactating ewes. We consider this to be a promis-
ing indicator for the greater reliability and accuracy of our
Bayesian inference results compared to our mass balance re-
sults.

One advantage of using the Bayesian inference method
over the IPCC Tier 2 approach is the ability to estimate di-
urnal variations, which allows us to observe the effects of
feeding. Additionally, the uncertainty in the Bayesian infer-
ence results can typically be reduced by assimilating a larger
dataset, suggesting that repeated drone flights can yield more
reliable results (Pirk et al., 2022). Deriving IPCC Tier 2 val-
ues is time-consuming due to the measurement of live weight
and live weight changes of individual animals, and consider-
able unquantified uncertainty remains in our ability to esti-
mate the feed intake of animals in pastoral systems like at
Kapiti. Furthermore, the accuracy of the method relies partly
on the accuracy of the methane conversion factor Ym, which
is determined based on previous research and may not be rep-
resentative of the specific animals being studied.

In comparison to the Bayesian inference method, the mass
balance approach is more straightforward to use due to its
smaller model complexity, which requires less coding and
reduces the need for parameter tuning. However, based on
this study, Bayesian inference results can be more reliable,
as demonstrated by the consistent observation of increased
emissions post-grazing, as shown in Fig. 5. In both the mass
balance method and the Bayesian inference method, we use
a sensor – a drone – to capture snapshots of a non-stationary

emission plume. However, the physical models of both meth-
ods – Eq. (1) for our Bayesian inference approach and Eq. (6)
for the mass balance method – are based on the assumption
of a statistically stationary plume. A conceptual difference
between the two methods lies in how they handle the dis-
crepancy between the turbulent (instantaneous) observations
acquired by the drone and the mean concentration and mean
wind field represented in the model. The Bayesian inference
method explicitly accounts for this discrepancy through ob-
servation error R, while the mass balance approach does not
explicitly address this inconsistency. Instead, we account for
this violation only implicitly by including a temporal varia-
tion term within the uncertainty range of the mass balance
estimates. We observed that the mass balance approach esti-
mates are sensitive to low signal-to-noise levels, making the
resulting estimates of weaker sources and under highly vari-
able wind conditions unreliable. In contrast, the Bayesian
inference method proved to be more robust in estimating
weaker sources and under variable wind conditions. This ro-
bustness may be attributed to explicitly accounting for dis-
crepancies between instantaneous observations and the as-
sumed stationarity of the concentration and wind fields in the
physical model.

3.3 Source detection through satellite observations

Figure 6 shows a true color image of a part of Kapiti, cap-
tured by the PRISMA satellite on 6 March 2024. Despite
the partly cloudy conditions, the irregular cloud cover did
not occlude the satellite observations of all three cattle herds
within our study area. The maps in Fig. 6b to Fig. 6d show the
SR index for a region of 5 pixels by 5 pixels with a spatial
resolution of 30 m across three different sites: five adjacent
bomas housing 583 cows (Fig. 6e), the boma at the drone
field site with 206 heifers (Fig. 6f), and a free-grazing herd
of 148 heifers (Fig. 6g).

We observed a lower SR index at the herd locations com-
pared to the surrounding background. Specifically, we de-
tected anomalies with the two herds inside a boma against a
bare soil background, as well as the free-grazing herd against
a green vegetation background. These SR anomalies, which
indicate relatively low radiance levels in the CH4 absorp-
tion feature, may suggest higher atmospheric CH4 concen-
trations, pointing to the presence of a CH4 source. How-
ever, because the estimated emission rates of the herds are
well below the expected detection limits for point sources
from PRISMA of approximately 500 kgh−1 (Guanter et al.,
2021), caution should be taken in interpreting this result.
Importantly, this lower SR level may also arise from fea-
tures associated with grazing or the herd’s presence, such as
changes in vegetation cover or soil disturbance. Although our
limited dataset prevents us from evaluating whether the ob-
served anomalies are related to emissions or landscape fea-
tures, these preliminary results call for more in-depth investi-
gation of the proposed approach for detecting the location of
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Figure 6. (a) PRISMA true color image of Kapiti from 6 March 2024 08:00 Coordinated Universal Time (UTC)+ 3 h, corresponding to East
Africa Time. (b) to (d) The simple ratio (SR) radiance index of 2300/2100 nm with 30 m resolution for three distinct sites: (e) five adjacent
bomas (shaded red) housing 583 cows at the time of the satellite overpass but empty in this picture, (f) a single boma at the drone field
site with 206 heifers, and (g) a free-grazing herd of 148 heifers. (e) includes ©Google Satellite Imagery (2021). PRISMA product derived
from L1 6 March 2024©Italian Space Agency (ASI) (2024). All rights reserved.

potential CH4 sources using last-generation high-resolution
hyperspectral satellite missions. Further dedicated studies are
necessary to evaluate the generalizability of these findings.

The use of hyperspectral satellite data for detecting poten-
tial CH4 source locations marks an initial step toward map-
ping regional CH4 emissions. By identifying areas of inter-
est, we can strategically target drone campaigns to investi-
gate these potential source locations. In our study focused
on ruminant herds, the source locations were already known.
However, detecting potential source locations from satellite
imagery can be particularly useful in regions such as thaw-
ing permafrost landscapes, where CH4 source locations are
typically unknown.

3.4 Bayesian lessons learned

Here, we share our experiences in quantifying CH4 emissions
using Bayesian inference with drone and flux tower observa-
tions, with the aim of advancing local source term estimation
through Bayesian inference.

1. Rather than treating the herd as a single point source,
we modeled it as a set of sources with equal strengths,
which we found to be more accurate. Modeling the herd

as a single point source led to higher inferred mean dif-
fusivity in most drone flights due to the large horizon-
tal spread of instantaneous observed elevated concentra-
tions above the background level.

2. We assumed the set of source locations to be fixed
known parameters. When treated as an unknown param-
eter, the posterior distribution for source location broad-
ened along the prevailing wind direction and increased
the uncertainty in the emission rate estimates. This can
be attributed to equifinality: a stronger source further
away can produce a similar concentration observation to
that of a weaker source nearby. Incorporating concen-
tration data collected around the source enhanced the
accuracy of source location posteriors. We tested this
by incorporating the observations of the mass balance
flights.

3. We observed equifinality across multiple parameter
combinations, implying that incorporating observations
related to unknown parameters is beneficial and may
even be necessary to adequately constrain their prob-
ability distributions. While wind direction can be ef-
fectively constrained using concentration observations
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alone, wind speed measurements – such as those from
the drone or flux tower – considerably enhance the in-
ference process. Further research is recommended to
identify the most reliable observational platform for this
purpose. Diffusivity proved difficult to constrain based
on instantaneous concentration observations alone, but
we observed that diffusivity observations derived from
eddy-covariance data helped to constrain the diffusivity
probability distribution.

4. We restricted the uniform prior for wind direction to
a half wind-rose aligned with the prevailing wind di-
rection. Using the entire wind-rose introduced ambigu-
ity between upwind observations of strong sources and
downwind observations of weak sources, specifically in
drone flights with herds of sheep and goats. Incorpo-
rating concentration observations around the source can
help mitigate this ambiguity.

5. Treating the background concentration as a known
parameter was necessary in this study because the
Bayesian inference algorithm struggled to infer reliable
estimates in several drone flights when this parameter
was considered unknown, leading to unreliable emis-
sion rate inferences. The algorithm struggled to distin-
guish between background and elevated concentrations
without relying on this assumption. We anticipate that
using concentration observations obtained over longer
sampling times, with an adjusted likelihood function,
could potentially address this issue.

6. The biggest challenge in setting up the Bayesian frame-
work was the mismatch between instantaneous concen-
tration observations and the time-averaged dispersion
model, which complicated the design of the likelihood
function. A broad Gaussian likelihood proved effec-
tive. Still, we recommend further investigation into the
likelihood design, in combination with extended sam-
pling times to better capture the time-averaged emis-
sion plume. However, longer sampling times reduce
the number of locations that can be observed on a sin-
gle drone battery charge. This limitation makes intelli-
gent sampling path design a promising topic for further
study.

4 Conclusions

In our study conducted in Kenya, we leveraged drone
and flux tower observations alongside a Bayesian infer-
ence approach to estimate CH4 emissions from ruminants –
an important, yet poorly understood, contributor to the
global CH4 emission inventory. Furthermore, we showed that
anomalies detected in the SWIR spectrum of hyperspectral
satellite data may indicate the presence of CH4 sources.

4.1 Insights into CH4 emission detection and
estimation from ruminants

Using drone observations, we estimated the CH4 emission
rates of various ruminant herds – including cattle (cows,
heifers, steers, and slick herd), sheep (lactating ewes), goats
(dry does, pregnant does, and weaner kids), and camels –
applying both Bayesian inference and mass balance meth-
ods. Due to low signal-to-noise levels, the mass balance
method did not consistently provide reliable estimates for
weaker sources, such as the sheep and goat herds. However,
under favorable wind conditions, we estimated cattle herd
emissions ranging between 700 and 1500 gh−1. In contrast,
the Bayesian inference method performed better for weaker
sources, estimating sheep and goat herd emissions in the
range of 70–140 gh−1, while it was effective for the different
cattle and camel herds as well. We observed the hypothesized
increase in CH4 production following feeding in the major-
ity of Bayesian inference drone flights, whereas this effect
was much less discernible in the mass balance flights. Addi-
tionally, the Bayesian inference method results appeared less
affected by variable wind conditions, further suggesting its
superior performance over the mass balance method in this
study.

Overall, the Bayesian inference results aligned with the
IPCC Tier 2 emission values, indicating compatibility with-
out implying mutual validation. The method’s benefits lie in
its ability to estimate temporal variations in CH4 production,
as well as its capacity to assimilate observations from vari-
ous measurement platforms while incorporating their uncer-
tainties. The robust performance of the Bayesian inference
approach in this case study, estimating diverse CH4 source
strengths under various atmospheric conditions, underscores
its potential as a valuable tool for estimating CH4 emissions
in agricultural systems and other landscapes.

In an exploratory analysis, we detected anomalies in the
SWIR spectrum from hyperspectral satellite data associated
with two cattle herds on bare soil and one herd on grass-
land, which were emitting approximately 1000 gh−1. While
this detection is promising for mapping CH4 emissions, we
must be cautious in interpreting the results, as the expected
detection limit is 500 kgh−1 Guanter et al. (2021). Further
research is needed to ascertain whether these anomalies cor-
relate directly with increased CH4 concentrations or if they
stem from other features related to the herd’s presence or
grazing activities. Ultimately, the ability to identify poten-
tial emission plumes from hyperspectral data anomalies –
especially from relatively low-emission sources like those in
our study – represents a promising initial step toward map-
ping regional CH4 emissions in landscapes where the precise
source locations are unknown.
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4.2 Future applications

Future applications of the Bayesian framework for source
term estimation could extend to diverse natural and anthro-
pogenic sources, including CH4 emissions from wetlands,
thawing permafrost, landfills, and wastewater disposal sites.
Our ultimate aim is to leverage Bayesian inference to com-
prehensively map these areas, thereby improving our un-
derstanding of spatial variations in emissions across diverse
landscapes. While the framework is readily applicable to
point-like sources, such as thermokarst hotspots, future re-
search should focus on adapting this framework to infer
emissions from landscapes characterized by multiple sparse
sources that may vary in size and produce overlapping emis-
sion plumes. This adaptation may require not only precise
estimation of emission rates but also accurate localization of
these sources.

In regions where observational data are sparse, the
Bayesian inference method can be employed using a gas sen-
sor and an anemometer mounted on the drone or positioned
near the source. This approach could eliminate the need for
a nearby flux tower, making the observing framework suit-
able for remote sites. Conversely, in observation-rich envi-
ronments, the Bayesian inference method can integrate data
from multiple observation platforms. For example, data ob-
tained from laser spectrometry or observations from multiple
drones can be assimilated to improve the accuracy of emis-
sion estimates.

Overall, the insights gained from our study demonstrate
the potential of Bayesian inference methods, combined with
drone and flux tower observations, for enhancing our under-
standing of CH4 emissions at local scales, thereby contribut-
ing to the improvement of CH4 inventories and mitigation
studies.

Appendix A: MOST

Obukhov length L [m] is positive in stable atmospheric con-
ditions and negative in unstable atmospheric conditions. Dur-
ing all drone flights, the atmosphere was unstable. We use
Monin–Obukhov similarity theory (MOST; see Stull, 1989;
Hanna et al., 1982) to estimate the vertical profile of the mean
wind speed V (z) [ms−1] and mean eddy diffusivity K(z)
[m2 s−1], where z is the distance above the ground.

Under unstable atmospheric conditions, the mean wind
speed profile is estimated by
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where u∗ is the friction velocity, κ = 0.4 is the von Kármán
constant, and z0 [m] is the aerodynamic roughness length.
We use z0= 0.05 m, which corresponds to terrain with long

grass and few trees (Stull, 1989), and a displacement height
of d = 0.10 m. The dimensionless wind shear 8M is approx-
imated by
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The resulting mean wind speed at the height of the sonic
anemometer on the flux tower qualitatively matches the
mean wind speeds measured by the same sonic anemometer
(Fig. S3).

The eddy diffusivity for effectively passive tracers such as
CH4 is generally assumed to be equal to the eddy diffusivity
for heat. The mean eddy diffusivity profile is given by

K(z)= κu∗
z− d

8H
, (A3)

where 8H is the dimensionless potential temperature gradi-
ent. For unstable atmospheric conditions, it is assumed to be
given by
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Appendix B: Results table

Table B1. Overview of methane emission rate estimates obtained by the mass balance method, the Bayesian inference method, and the
IPCC Tier 2 workflow with a ± 20 % uncertainty range (Paustian et al., 2006). The cases are defined as follows: (a) using concentration
observations; (b) using concentration observations and mean wind speed data from the drone; and (c) using concentration observations and
mean wind speed, mean wind direction, and diffusivity data derived from Monin–Obukhov similarity theory. Emission rate estimates are
given in q [ghd−1 h−1], where hd is short for head, except for the last column, which presents estimates in Q [gh−1], i.e., for the entire
herd. One standard deviation uncertainty is reported. AM and PM indicate drone flights conducted in the morning before feeding and in
the afternoon after feeding, respectively. Wind speed (VEC [ms−1]) and wind direction (φEC [°]) data are from the flux tower during the
mass balance flight. Further notation: (�) unreliable drone flight results due to unfavorable wind conditions (following Yang et al., 2018);
(N) unreliable estimates due to a low signal-to-noise ratio caused by a weak emission source; (•) estimates using a narrower prior for wind
direction, i.e., U(30,135); and (») IPCC Tier 1 value with a ± 50 % uncertainty range (Paustian et al., 2006).

Date Herd Wind Mass balance Bayesian inference IPCC Tier 2 value

Animals Count VEC φEC q q, case (a) q, case (b) q, case (c) q Q

[DD/MM] [–] [–] [ms−1] [°] [ghd−1 h−1] [ghd−1 h−1] [ghd−1 h−1] [ghd−1 h−1] [ghd−1 h−1] [gh−1]

2 Mar AM cows 101 3.5± 0.9 27± 24 18.3± 2.5 18.7± 4.7 11.9± 1.7 13.0± 1.4 10.0± 2.0 1005± 201
2 Mar PM cows 101 5.2± 1.5 56± 16 10.6± 3.1 15.1± 2.8 13.0± 1.5 17.4± 1.5 10.0± 2.0 1005± 201
2 Mar AM heifers 208 3.7± 0.8 61± 21 5.2± 1.3 6.5± 1.7 4.4± 0.8 4.5± 0.6 6.9± 1.4 1438± 288
2 Mar PM heifers 208 5.7± 1.3 66± 11 5.9± 1.4 13.3± 3.0 12.0± 2.0 13.5± 1.3 6.9± 1.4 1438± 288
6 Mar AM heifers 206 3.9± 0.9 48± 13 5.1± 1.3 4.6± 1.3 3.1± 0.9 4.0± 0.5 6.9± 1.4 1425± 285
6 Mar PM heifers 206 5.8± 1.5 70± 14 8.2± 1.7 7.2± 1.4 5.4± 0.8 7.4± 0.7 6.9± 1.4 1425± 285
5 Mar AM steers 127 4.9± 1.1 61± 12 9.5± 2.1 6.1± 1.6 4.0± 0.8 5.7± 0.9 5.6± 1.1 710± 142
5 Mar PM steers 127 6.7± 1.6 53± 13 7.4± 2.5 8.1± 2.3 7.5± 1.3 8.5± 1.1 5.6± 1.1 710± 142
3 Mar AM slick herd 148 2.0± 0.9 354± 59 3.3± 2.2� 11.4± 3.8 6.9± 2.4 7.0± 1.1 10.4± 2.1 1539± 308
3 Mar PM slick herd 148 4.9± 1.4 55± 23 12.5± 2.1 12.5± 3.6 7.5± 1.2 11.9± 1.1 10.4± 2.1 1539± 308
4 Mar AM camels 42 1.7± 0.7 289± 47 −2.6± 7.4� 3.4± 2.3 2.8± 1.7 2.3± 1.2 5.3± 2.6» 231± 116»

4 Mar PM camels 42 4.3± 1.4 58± 28 8.4± 6.9 12.9± 4.5 8.8± 2.8 11.0± 2.3 5.3± 2.6» 231± 116»

7 Mar AM lactating ewes 173 3.1± 1.3 83± 26 0.2± 0.7N 0.9± 0.4 0.8± 0.3 0.9± 0.3 0.6± 0.1 112± 22
7 Mar PM lactating ewes 173 4.3± 1.4 90± 26 4.2± 1.4N 0.8± 0.4 0.7± 0.3 0.8± 0.3 0.6± 0.1 112± 22
1 Mar AM dry does 197 2.4± 0.7 60± 35 4.8± 1.3�,N 0.8± 0.5• 0.7± 0.4• 0.5± 0.3 0.7± 0.1 141± 28
1 Mar PM dry does 197 4.6± 1.3 46± 21 3.9± 1.5N 1.7± 0.7• 1.5± 0.6• 1.8± 0.5 0.7± 0.1 141± 28
29 Feb PM pregnant does 124 5.6± 1.3 51± 17 0.8± 2.7N 1.3± 0.8• 1.1± 0.6• 1.3± 0.7 0.6± 0.1 74± 15
7 Mar AM pregnant does 124 1.4± 0.6 12± 67 1.7± 1.5�,N 0.8± 0.6 0.6± 0.4 0.7± 0.3 0.6± 0.1 74± 15
7 Mar PM pregnant does 124 4.2± 1.3 62± 28 4.2± 1.9N 1.2± 1.2 1.2± 1.0 1.0± 0.5 0.6± 0.1 74± 15
1 Mar AM weaner kids 118 3.6± 1.1 58± 15 5.0± 1.9N 0.8± 0.6• 0.6± 0.4• 0.7± 0.5 0.7± 0.1 79± 16
1 Mar PM weaner kids 118 6.2± 1.4 49± 12 11.1± 2.3N 0.8± 0.6• 0.8± 0.6• 0.9± 0.6 0.7± 0.1 79± 16
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Code and data availability. The drone and flux tower dataset,
along with the digital elevation model of Kapiti, can be ac-
cessed from https://doi.org/10.5281/zenodo.14214699 (van Hove
et al., 2024a). The data processing scripts are available at https:
//github.com/AlouetteUiO/MIK (van Hove, 2024c). The prismaread
package for processing PRISMA satellite data is available at
https://doi.org/10.5281/zenodo.4019081 (Busetto, 2020).

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/bg-22-4163-2025-supplement.
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