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Abstract. As the global community intensifies efforts to
combat climate change, insights on the influence of man-
agement on forest carbon stocks and fluxes are becom-
ing invaluable for establishing sustainable forest manage-
ment practices. However, accurately and efficiently moni-
toring carbon stocks remains technologically challenging.
In this study, we aim to (1) assess the effect of forest
management on carbon stock by comparing unconfounded
pairs of managed and unmanaged forests in the National
Park Brabantse Wouden (Flanders, Belgium) and (2) lever-
age the complementary strengths of optical, light detec-
tion and ranging (lidar), and synthetic aperture radar (SAR)
remote sensing technologies to improve overall accuracy
and scalability in carbon stock estimation. Remote sens-
ing data from Sentinel-2, Sentinel-1, and a canopy height
product derived from the Global Ecosystem Dynamics In-
vestigation (GEDI) mission and Sentinel-2 were used as
predictors in a generalized additive model (GAM) to es-
timate carbon stock. The combination of Sentinel-1 and
Sentinel-2 significantly improved model accuracy (R? =
0.73, RMSE = 59.21 tha™', MAE = 50.29 tha~!) compared
to a model using only Sentinel-2 indices (R*=0.56,
RMSE = 99.44tha~!, MAE =91.40tha™!). The addition
of canopy height estimates did not affect the model fit. While
field assessment exhibited higher carbon stocks in unman-
aged stands compared to managed ones, this difference was
not detectable using a remote sensing model that incorpo-
rated Sentinel-2, Sentinel-1, and/or GEDI-derived variables.
Potential explanations for this discrepancy include signal sat-
uration and the need for more training data.

1 Introduction
1.1 Problem statement

Increasing forest carbon stocks to enhance the climate mit-
igation potential is a key component of many international
agreements aimed at combating climate change (e.g., Ky-
oto Protocol, Paris Agreement, European Green Deal). Ac-
curate quantification of forest carbon over time provides the
foundation for various initiatives targeting carbon manage-
ment, especially within ecosystem service frameworks like
carbon credit schemes and the development of climate-smart
forest management guidelines. Among different forest car-
bon pools, above-ground biomass has proven to be the most
susceptible to human activities, including forest management
practices (Gurung et al., 2015). Since above-ground carbon
stocks are easier to measure and can serve as a proxy for
below-ground carbon through modeling, they are increas-
ingly considered a valuable indicator of sustainable forest
management (Sabatini et al., 2019). However, while forest
management practices affect above-ground biomass carbon
stocks in different ways, the precise impact of these practices
remains poorly quantified. Evidence suggesting that unman-
aged forests continue to function as effective carbon sinks,
even into later stages of forest development, highlights the
need for better localization and protection of these ecosys-
tems (Kun et al., 2020; Luyssaert et al., 2008; Mikolas et al.,
2023). Nevertheless, accurately capturing carbon stocks over
large areas presents both technical and logistical challenges.
In this context, remote sensing provides cost-efficient means
for large-scale monitoring of above-ground carbon in forests.
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1.2 State of the art and research gaps
1.2.1 Managed versus unmanaged forests

Despite the growing need to understand how to optimize a
forest’s climate mitigation capacity, controversy persists re-
garding the influence of management on above-ground car-
bon stocks (Kalies et al., 2016). On the one hand, natu-
ral ecosystems, such as unmanaged forests, may store more
carbon due to a higher basal area, increased litter produc-
tion, and unrestricted biomass accumulation. These natu-
ral ecosystems are generally viewed as more stable and re-
silient compared to heavily modified forests, leading to a
more stable storage of carbon (Morel and Nogué, 2019). On
the other hand, optimizing species composition in managed
forests may enhance productivity and increase carbon stocks
(Vayreda et al., 2012). Management may also reduce the sus-
ceptibility of a stand to climate disturbances such as wild-
fires and windthrows, therefore avoiding big losses of carbon
stock and assuring carbon stability (Garcia-Gonzalo et al.,
2007; Jandl et al., 2007; Ruiz-Peinado et al., 2017; Vayreda
et al., 2012). Due to the presence of confounding factors at
study sites, such as climate, soil, slope, aspect, and stand his-
tory, drawing clear conclusions about the causes of observed
differences in carbon stock and the effects of forest manage-
ment has been challenging in previous research (Nadrowski
et al., 2010). Dugan et al. (2017), Melikov et al. (2023), and
Ruiz-Peinado et al. (2017) emphasize the need to clarify the
relationship between forest management and carbon stock by
accounting for or excluding these confounding variables.

1.2.2 Measuring carbon

Traditionally, above-ground carbon has been calculated for
individual trees from tree height and diameter at breast height
(DBH), wood density, and species-specific carbon concentra-
tion factors. This information can be extrapolated using ex-
pansion factors to a per-hectare basis (Zianis et al., 2005).
While such in situ methods achieve high accuracy at small
extents, it becomes costly and labor-intensive when scaling
to larger regions. Spaceborne remote sensing technologies
have been widely adopted to expand the reach and efficiency
of biomass estimation (Rodriguez-Veiga et al., 2017). Ad-
vances in remote sensing have led to a suite of techniques,
with each approach offering distinct advantages and disad-
vantages (Tian et al., 2023).

Passive optical remote sensing has become the predom-
inant method for large-scale biomass estimation, due to its
extensive data availability, high spatial and temporal resolu-
tion, and low cost (Tian et al., 2023; Xiao et al., 2019). Vege-
tation indices, such as the Normalized Difference Vegetation
Index (NDVI), indicate the photosynthetic activity and health
of trees and are often-used indicators of biomass (Askar et
al., 2018; Laurin et al., 2018). Additionally, light detection
and ranging (lidar) technology is an active remote sensing
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method that enables predictions of the canopy profile, and
from there biomass, within the sensor’s footprint. Synthetic
aperture radars (SARs) are also active remote sensors, which
use microwave signals to capture the vegetation structure, re-
lated to the plant’s biomass (Sinha et al., 2015). The used
signals are backscatter intensity, frequency, and polarization
to reflect the vegetation’s moisture content, surface rough-
ness, and dielectric properties (Goetz et al., 2009; Xiao et al.,
2019). Microwaves penetrate clouds, making it particularly
valuable in regions with persistent cloud cover (Xiao et al.,
2019).

While each remote sensing method offers unique advan-
tages, their individual limitations constrain the precision and
comprehensiveness of forest carbon assessments. Both pas-
sive optical sensors and SAR struggle with signal satura-
tion in dense forests with a complex vegetation structure,
where increasing biomass no longer affects the sensor sig-
nal (Rodriguez-Veiga et al., 2017). Passive optical sensors,
while effective for measuring photosynthetic activity, addi-
tionally fail to capture structural characteristics and are hin-
dered by cloud cover, which impairs the signal-to-noise ra-
tio. Lidar, on the other hand, only measures the structural
characteristics of the forest, missing photosynthetic informa-
tion on tree health and chlorophyll content. Spaceborne lidar
measurements moreover require interpolation, for example
with passive optical remote sensing, because they do not pro-
vide wall-to-wall data. This can introduce errors, especially
in variable forest structures (Lu et al., 2012). Additionally,
SAR faces issues with temporal decorrelation and signal in-
terference from environmental factors, further complicating
biomass monitoring (Koch, 2010; Xiao et al., 2019). Lastly,
all three sensor types may suffer from mixed pixels when a
single pixel captures multiple surface types and complicates
accurate biomass estimation.

In conclusion, each technique offers valuable insights but
also comes with limitations, which underscore the impor-
tance of integrating remote sensing technologies (Jiang et al.,
2022; Jiao et al., 2023; Sun et al., 2024). The integration of
several remote sensing sources has already proven successful
for biomass estimations, but most studies are limited to two
sensor types. For example, David et al. (2022) and Forkuor et
al. (2020) reported improved model predictions when using
SAR and passive optical remote sensing indicators in dry-
land forest. Hoscilo et al. (2018) reported a saturation effect
at 200tha™! biomass in temperate forests of Poland when
combining the same sensor types. In this study, we aim to
(1) assess the effect of forest management on carbon stock
by comparing unconfounded pairs of managed and unman-
aged temperate Atlantic forests in Flanders, Belgium, and
(2) leverage the complementary strengths of optical, lidar,
and SAR remote sensing technologies to improve overall ac-
curacy and scalability in above-ground forest carbon stock
modeling.
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2 Materials and methods
2.1 Study region: Brabantse Wouden National Park

Our study is located in the Brabantse Wouden National Park
(BW NP) in central Belgium and was selected by the IN-
FORMA Forest Management Platform (IFMP) to represent
the temperate Atlantic forest ecosystems in Europe (Fig. 1a)
(INFORMA, 2022). The BW NP encompasses a vast area in-
cluding 10000 ha of forest, composed of several large frag-
ments, including the Sonian Forest and Meerdael Forest
(Fig. 1a). Since October 2023 it has been one of the six na-
tional parks in Belgium, unique for its monumental beeches
and oaks, sunken lanes, and meandering rivers (Brabantse
Wouden, 2023).

2.2 The effect of forest management on carbon stock

Above-ground carbon stock as calculated from individual
tree height and DBH, measured in the field, is considered
as the ground truth. The effect of forest management on the
carbon stock can thus trustfully be deduced from such field
data, which will also serve as calibration data in the remote
sensing model.

The database has an orthogonal design, which ensures
the minimization of confounding effects (Nadrowski et al.,
2010). It consists of a collection of forest patches grouped
into clusters, with each cluster containing patches that dif-
fer only in management practices (Fig. 1b). Other factors af-
fecting the accumulated carbon stock — such as aspect, soil,
dominant species, elevation, slope, climate, and land use and
management legacy — are therefore controlled for. Each clus-
ter includes at least one managed and one unmanaged for-
est patch, with the unmanaged patch having remained undis-
turbed for at least 20 years (Fig. 1c). For each patch, basic
information is available, including forest management de-
tails, time since abandonment, and dominant tree species. A
random selection of clusters, considering different dominant
tree species, was made within the constraints of the IFMP
and the time and resources available for field data collection.
The resulting selection contained 13 clusters and 26 patches:
one managed and one unmanaged forest patch per cluster.
Next, three plots were randomly assigned within each patch
(Fig. 1c). The size of the patches was not considered, as ho-
mogeneity was ensured through the IFMP design. In total,
78 plots were identified across 26 forest patches, represent-
ing 13 clusters. Field measurements and remote sensing data
were collected from these plots (Fig. 2).

A nested plot design was used, following the thresholds in
DBH and tree height as used in the Flemish Forest Inven-
tory (FFI) (Table 1). The system boundaries were defined
as standing above-ground biomass, because below-ground
biomass or deadwood cannot be easily quantified by remote
sensing. The DBH and tree height were measured for each
tree, according to the nesting levels.
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Table 1. Characteristics of the trees per nesting level for Brabantse
Wouden National Park.

Nesting  Plotradius Tree DBH  Tree height
level (m) (cm) (m)
A 4.5 <17 >2
T B 9 7-39 /
C 18 > 39 /

With site- and species-specific allometric equations, ob-
tained from the FFI, the relationship between carbon stock,
tree height, and DBH is described, following Eq. (1):

carbon stock = » Vitem - VEF - WD - CF, (1)

species
where Viem 1s the stem volume (m3), VEF is the volume ex-
pansion factor (=), WD is the wood density (tm~—3), and CF
is the carbon factor (-).

The VEF was used to convert merchantable volume to
above-ground biomass and was available through the Na-
tional Inventory Report (Belgium, 2020). The WD is also
species-specific and described in the National Forestry Ac-
counting Plan of Belgium (Perin et al., 2019). For the CF,
a value of 0.5 was used for all species, as described in the
IPCC report (IPCC, 2003) and the National Inventory Report
(Belgium, 2020). The stem volume can be calculated using
species-specific double-entry volume equations with DBH
and height (H) measurements as specified in Eq. (2). The
coefficients a, b, ¢, d, and e were derived from Dagnélie et
al. (1985), Berben (1983), and Quataert et al. (2011):

Vsem =a +b - -DBH+ ¢ - ( - DBH)?
+d-(w-DBH)?+e¢-H+ f-(7-DBH)-H
+g- (7 -DBH)*- H. @)

The double-entry volume equations are designed for trees
with a DBH larger than 7 cm. For smaller trees, the volumes
were approximated with the volume of a cylinder. Still, for
some smaller trees with a DBH between 7 and 10 cm, the
double-entry volume equations resulted in a negative vol-
ume. In this case, the volume was recalculated as a truncated
cone with a capping diameter of 7cm (Eqgs. 3-5):

1 7 - DBH?

Veone = § -H 4 s (3)

v _ 1 =-DBH 022’ @
cone top = 3 —H~22 4.7

Viree = Veone — Veone top» (%)

with DBH and H in meters. These formulas were based on
the Flemish Forest Inventory.

After calculation of the carbon stock per tree and then per
plot, the mean carbon stock per patch was obtained from the
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Figure 1. The study site is situated in the Brabantse Wouden National Park (a). Adjacent forest patches were clustered (b), where
patches within a cluster only differed in management (c). Three plots were randomly attributed to each forest patch (c). (The high-
resolution forest map from the European Union’s Copernicus Land Monitoring Service was used for the creation of this map, available
at https://doi.org/10.2909/db1af59f-f01f-4bd4-830c-f0eb652500c1, European Environment Agency, 2020).
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Figure 2. Overview of the data collection process and pre-processing of all data. H = tree height, DBH = diameter at breast height, GRD
IW = Ground Range Detected, Interferometric Wide Swath mode, S2 = Sentinel-2.

three plots situated in each forest patch (Fig. 2). Finally, the
difference in carbon stock between unmanaged and managed
patches was calculated per cluster.

We used a generalized linear mixed model (GLMM) with a
gamma distribution to statistically test the difference between
carbon stocks of managed and unmanaged field-measured

2.3 Carbon stock modeling with remote sensing
2.3.1 Data collection and preprocessing

Once the field measurements were obtained, remote sens-
ing data were extracted and preprocessed for the same forest

plots (Wood, 2006). The mean carbon stock per patch was
the response variable, management was the fixed effect, and
the patch was nested in the cluster as a random effect.

Biogeosciences, 22, 4291-4307, 2025

plots (Fig. 2).

First, data from the Sentinel-2 mission (passive optical re-
mote sensing), launched by the ESA Copernicus program,
were obtained at level 2A via Google Earth Engine (https:
/learthengine.google.com/, last access: 27 December 2023).
Data were retrieved for all bands except B1, B9, and B10 be-
cause these bands are recorded at 60 m resolution, which is
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too coarse for analyses at stand level. Band 8A was also left
out given its close relation to B8, but with a lower resolu-
tion and narrower band width, to avoid data redundancy. A 3-
month period (1 July 2023 to 1 September 2023) was selected
to align with the time frame for field data collection. A cloud
masking was performed (filtered with a 60 % cloudy pixel
percentage, masked with a 40 % cloud probability threshold),
and all 20 m resolution bands were resampled to 10 m reso-
lution. The cloud probability layer of Sentinel-2 was used,
openly available in Google Earth Engine (Schwehr, 2020).
Weighted average band values were then calculated for each
selected plot, weighted by the percentage of plot overlap. A
lower limit of 90 % overlap between the pixel and the plot
area was used.

Vegetation indices, rather than raw band values, are partic-
ularly useful indicators of biomass. An explorative review of
relevant scientific literature led to a selection of vegetation in-
dices, derived from Sentinel-2, that have been proven useful
for above-ground biomass (AGB) modeling (Table 2) (Chen
etal., 2019; Forkuor et al., 2020; Mngadi et al., 2021; Moradi
et al., 2022). The mean of each vegetation index per plot was
calculated identically to the mean Sentinel band values, to be
used as explanatory variables for above-ground carbon stock.

Second, GEDI, or Global Ecosystem Dynamics Investi-
gation, is a spaceborne lidar mission launched in 2018 by
NASA to measure the vertical structure of the Earth’s forests
(Dubayah et al., 2020). A prediction of the canopy height
profile for the 25 m footprint area can be derived from the
GEDI observations, a morphological variable that is also
measured in the field with conventional methods. However,
the measurements are in discrete footprints and thus lack the
full coverage of passive optical remote sensing missions such
as Sentinel-2. Therefore, a high-resolution canopy height
model of the Earth (10m x 10m) was recently developed by
Lang et al. (2022, 2023) using a probabilistic deep learning
model to extrapolate height data from the GEDI mission via
spectral information from Sentinel-2. Even though the prod-
uct was developed at a global scale, lacking local calibration
and introducing significant uncertainty, it was already suc-
cessfully used for local carbon stock mapping in the context
of the high carbon stock approach (Lang et al., 2021). The
product was directly downloaded for the study regions, and
no preprocessing was needed.

Finally, the Sentinel-1 mission, part of the ESA Coperni-
cus program, is a C-band synthetic aperture radar (SAR) sys-
tem. The Sentinel-1 radar emits vertical waves and receives
both vertical and horizontal waves (VV and VH respec-
tively), yielding a SAR image. While VV backscatter indi-
cates surface roughness and water content, VH backscatter is
rather sensitive to volumetric scattering (Laurin et al., 2018).
The amount of backscatter is influenced by the structural at-
tributes of forest canopies and the interactions between sur-
face and volumetric scattering in vegetation, both of which
serve as indicators of above-ground biomass (AGB). Data
were acquired in Google Earth Engine at level-1 Ground
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Range Detected (GRD) in Interferometric Wide Swath mode
(10 m resolution) with dual polarization (VV and VH) for
both ascending and descending passes. Data were collected
during the same time period as the Sentinel-2 data. Orthorec-
tification, thermal noise removal, radiometric calibration, and
border noise removal were already conducted in this GRD
product. A refined Lee speckle filter was then applied to
the data for speckle reduction, and the temporal median was
taken for every pixel. Mean plot values for VV and VH were
finally calculated separately to serve as explanatory vari-
ables, similar to the Sentinel-2 processing.

2.3.2 Data analysis

In Fig. 3, the workflow of the modeling process is de-
picted, as can be followed throughout this section. First, only
Sentinel-2 imaging bands and vegetation indices were used
to predict above-ground carbon stock. After optimizing this
first model, data from Sentinel-1 and the GEDI/Sentinel-2
canopy height product were added to assess the added value
of multi-sensor remote sensing modeling.

— Feature selection. The number of field observations
(78), and thus the degrees of freedom, was limited, and
a selection of the predictive variables (vegetation in-
dices and Sentinel bands) was made by recursive fea-
ture elimination (RFE) to avoid overfitting (Kursa and
Rudnicki, 2010). RFE identifies the most relevant fea-
tures by systematically removing the least important
features. The outer resampling method was used, with
10-fold cross-validation repeated five times. Model per-
formance was evaluated by R%, RMSE, and MAE. Mul-
ticollinear variables resulting from the RFE feature se-
lection were identified and excluded from the selection.

— Modeling. A generalized additive model (GAM) was
chosen as a semi-parametric extension of generalized
linear models (GLMs) (Hastie and Tibshirani, 1986).
The smooth functions make GAMs flexible while main-
taining interpretability: a significant advantage com-
pared to the more often used random forest algorithms
(Wood, 2006). The response variable followed a gamma
distribution, and all variables were scaled. Neighbor-
hood cross-validation (NCV) was identified as the op-
timal method for estimating smoothing parameters. A
fixed value of 1.4 was assigned to the gamma param-
eter, and adjustments to the k values were deemed un-
necessary, following Wood (2006). A training dataset
of 90 % of all data points (70) was used in this pro-
cess, reserving 10 % (8) for the testing of the final model
(Fig. 3). Leave-one-out cross-validation (LOOCV) was
performed on this training set to tune the model at sev-
eral intermediate stages of the modeling, avoiding over-
fitting with the rather small field dataset. The root mean
square error (RMSE), the mean absolute error (MAE),
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Table 2. Vegetation indices, derived from Sentinel-2, which were used in this study with respective calculations and references.

Vegetation index  Explanation Formula based on Sentinel-2 spectral bands ~ Source reference
NDVI Normalized Difference Vegetation Index % Chen et al. (2019)
Forkuor et al. (2020)

EVI Enhanced Vegetation Index 25 (ertisirsm ) Mngadi et al. (2021)
LAI Leaf Area Index 3.618-EVI—-0.118 Chen et al. (2019)
GNDVI NDVI with green wavelengths E;I_E% Chen et al. (2019)
NDI45 Normalized Difference Index with B4 pipe Chen et al. (2019)

and B5
REDNDVI NDVI with red wavelengths o Forkuor et al. (2020)

Mngadi et al. (2021)

STVI1 Stress-related Vegetation Index 1 %8]34 Forkuor et al. (2020)
STVI2 Stress-related Vegetation Index 2 % Forkuor et al. (2020)
STVI3 Stress-related Vegetation Index 3 % Forkuor et al. (2020)
SAVI Soil-Adjusted Vegetation Index % -1.5 Moradi et al. (2022)
MCARI Modified Chlorophyll Absorption Ratio ((B5—B4)—-0.2-(B5—B3))- % Chen et al. (2019)

Index
PSSRa Pigment Specific Simple Ratio a % Chen et al. (2019)
IPVI Infrared Percentage Vegetation Index 0.5-(NDVI+1) Moradi et al. (2022)
ARVI Atmospherically Resistant Vegetation % Chen et al. (2019)

Index
IRECI Inverted Red-Edge Chlorophyll Index BB Chen et al. (2019)
MTCI MERIS Terrestrial chlorophyll Index Eg:gi Chen et al. (2019)

Sentinel-2
| 1. Feature selection W 2. Modeling 3. Model optimization
 —— .
RFE GAM a. Oversaturation?
Leave-one-out cross-validation b. Detection of small trees?
Leave-one-out cross-validation
90% - N=70

Field dataset

N=78 / Training data \

\ 10% - N=8

Test data

[ 5. Final model }1— ‘4. Multi-sensor modeling |

l ‘ Leave-one-out cross-validation |

! 1

[ 6. Extrapolation | | GEDI/Sentinel-2 [ Sentinel-1 |

Figure 3. Graphical overview of the data analysis process. The test dataset remained unseen until evaluation of the final model. Leave-one-out
cross-validation in intermediary stages (2, 3, 4) was performed with the training dataset only.

and the coefficient of determination (R?) were chosen forests with high complexity and biomass (Rodriguez-
as model test and validation metrics.

Veiga et al., 2017). This may lead to deviating spectral
values that are detected, which may negatively affect

— Model optimization. We employed LOOCV again on the model performance. To evaluate oversaturation, the
the same 90 % training dataset during model optimiza- model was run excluding plots where field data showed
tion, aiming for the best model performance by eval- a biomass greater than 450tha™!, which corresponds
uating different scenarios. First, a known limitation of to a carbon stock exceeding 225tha~!. The impact

passive optical remote sensing is signal saturation for

Biogeosciences, 22, 4291-4307, 2025
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of these underestimated high-biomass plots was eval-
uated by comparing model validation parameters. Sec-
ond, small trees are more difficult to detect by passive
optical remote sensing. The influence of the small trees
in nesting level A was assessed by comparing the model
including all diameter classes with a model containing
only trees from nesting levels B and C (Table 1). Then,
the diameter threshold of detection by remote sensing
was sought, based on improvement or impairment of the
validation metrics when iteratively disregarding trees in
different diameter percentiles.

— Multi-sensor modeling. Finally, the inclusion of height
estimates from the product derived from GEDI and
Sentinel-2, along with VV and VH polarization data
from the Sentinel-1 mission, was evaluated by incorpo-
rating these new explanatory variables into the GAM.

— Final model. The final model was constructed using the
full 90 % training data and evaluated on the remaining
10 % that was isolated in the test dataset (Fig. 3) and
remained unseen during model tuning and optimization.

— Model application. To compare the results of the field
measurements with the carbon stocks as predicted by
the remote sensing model, the carbon stock was pre-
dicted for every pixel of the patches from the IFMP, in-
cluding both the field-measured patches and the patches
that were not selected by the random sampling (Bolar,
2019). The mean predicted carbon stock and the stan-
dard error of the mean were then calculated for each
forest patch. The standard error of the mean indicates
the deviation of the estimated sample mean from the
real sample mean (Goos, 2017). Additionally, the over-
all bias was estimated at patch level by comparing the
field-measured carbon stocks with the model-estimated
values. Again, a GLMM was used to statistically com-
pare the carbon stock estimates between managed and
unmanaged forest patches. To assess the extrapolation
error caused by the reduced training dataset, the convex
hull methodology as described by Renaud et al. (2022)
was followed (Appendix B).

3 Results

3.1 The effect of forest management on above-ground
carbon stock

Results of the statistical analysis on the field measurements
show a clear difference between managed and unmanaged
forest plots. Unmanaged forest plots store a significantly
(o« = 0.05) higher amount of carbon (196.50 £+ 61.28 tha_l)
in their above-ground biomass than managed forest plots
(143.68 £48.90tha™!) (Fig. 4a). The unmanaged plots are
characterized by a higher variation in carbon stock than the

https://doi.org/10.5194/bg-22-4291-2025

Table 3. Overview of the plot characteristics in managed and un-
managed forests, measured in the field. The different levels (A, B,
C) refer to the nesting levels as defined in Table 1. Plot radius level
A=25m,level B=9m,level C = 18 m.

Managed Unmanaged
No. of plots 39 39
No. of trees 1348 884
Species richness 18 19
Mean DBH (cm)
level A (< 7) 2 3
level B (7-39) 16 21
level C (> 39) 58 59
Mean height (m)
level A 4 4
level B 14 18
level C 30 31
Mean density (stems ha_l)
level A 2717 580
level B 323 322
level C 89 104

managed plots, where the density curve is negatively skewed
(Fig. 4a). Within each cluster, the difference fluctuates be-
tween 10 and 180 tha™! (Fig. 4b). From the analysis at patch
level, managed patches have a lower carbon stock than un-
managed patches (p = 0.01, effect size —0.33).

The difference in tree count between managed and unman-
aged plots is noteworthy, a difference that is mostly reflected
in the trees from nesting level A (Table 1), corresponding to
the smallest trees (Table 3). Secondly, there is a higher tree
density of the largest diameter class (nesting level C) in the
unmanaged plots. In general, higher and larger trees are mea-
sured in unmanaged plots in BW NP.

3.2 Carbon stock modeling with remote sensing

— Feature selection. The Sentinel-2 variables selected
through recursive feature elimination for the gener-
alized additive model (GAM) capture various photo-
synthetic and structural characteristics of vegetation.
The first selection of features included several mul-
ticollinear features, such as B5 and B6, GNDVI and
NDI45, and STVI3 and STVI2. The first five features
that were not highly correlated were selected. These
included B5, B12, GNDVI, STVI3, and MCARI. The
inclusion of indices compared to only spectral bands
enhanced the interpretation. The red-edge wavelengths
were represented, which help detect vegetation density
and type. The short-wave infrared wavelengths, along
with GNDVI and MCARI, provide insights into pho-
tosynthetic capacity and chlorophyll absorption depth.

Biogeosciences, 22, 4291-4307, 2025
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Figure 4. Results of the carbon stock analysis comparing managed and unmanaged forests in the field plots, (a) comparing density distribu-
tions, and (b) by calculating the difference in mean carbon stock per forest patch (unmanaged minus managed) for each cluster as measured
in the field.

Lastly, near- and mid-infrared bands were included in
the stress-related vegetation index (STVI3).

Modeling. Before model optimization, the validation
parameters of the model, at this moment only con-
taining Sentinel-2 variables, were R%? =0.56, RMSE =
99.44tha~!, and MAE = 91.40tha™! (Table 4). These
validation parameters were not improved by disregard-
ing plots with a high biomass (> 450 tha™!) or by disre-
garding small trees. A more detailed result of the model
optimization can be found in Appendix A.

Multi-sensor modeling. Incorporating the canopy height
estimates derived from GEDI and Sentinel-2 enhanced
both the model fit and predictive capabilities slightly
(Table 4). Especially in the high DBH classes, the error
decreased (Fig. 5). The canopy height estimates of the
GEDI/Sentinel-2 product and the field measurements
follow approximately the same trend. However, a sys-
tematic underestimation was detected with a paired ¢
test(p=1x 10_5). No signal saturation was observed:
the underestimation did not increase for plots with a
higher biomass (Fig. 7). There was no clear explanation
found for this systematic bias, but this is a trend that has
been seen in other remote sensing models in the region
as well (e.g., CCI biomass product). The introduction of
both VV and VH also improved the model fit and pre-
dictive power. Again, oversaturation-induced underesti-
mation was significantly reduced, and predictions also
improved notably in the lower DBH classes. Adding
Sentinel-1 data or GEDI data thus improves model pre-
diction, but adding both did not improve the predic-
tive performance compared to only using Sentinel-2 and
Sentinel-1 indices. Only the RMSE and the underesti-
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mation at high biomasses slightly decrease, but the R>
decreases with 5 % (Table 4).

The model optimization resulted in a final model, used
for application (Eq. 6).

Carbon = f(MCARI, B5,STVI3,B12,

GNDVI, Species, VH, VV) 6)
Model application. The final model did not successfully
detect the carbon stock difference between managed
and unmanaged patches, as measured in the field. When
iteratively leaving out one of the test plots, a maximal
loss of 6.7 % RMSE was noted, showing that the test
metrics were not majorly influenced by one singular test
plot. The predicted mean carbon stock for the unman-
aged patches was 165.89 4 26.46tha~!; for managed
patches this was 166.80 = 32.28 tha~! (Fig. 8a). It iis re-
markable that unmanaged patches are overall underes-
timated, while the opposite is true for managed patches
(Fig. 6). This results in an almost-zero overall estima-
tion bias of —0.83 tha~'. On average, the standard error
of the mean was 1.27 tha~!, and the maximal standard
error of the mean was 5.94 for the smallest patch that
only contained 130 pixels. The managed patches have
a higher variability in predicted carbon stock compared
to the unmanaged patches (Fig. 8a), while again the op-
posite was true for the data as measured in the field. Ac-
cording to the remote-sensing-based model, there is no
significant difference between managed and unmanaged
patches (o« = 0.05, p = 0.61). For some clusters, almost
no difference in carbon stock between the unmanaged
and the managed patches was observed (Fig. 8b). For
other clusters, a difference up to 40tha~! was esti-
mated, however not in a consistent pattern. Compared to
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the field data, the estimated differences between man-
aged and unmanaged forests are substantially smaller.
However, falling below the mean absolute error of the
model, they indicate a high degree of uncertainty. No
abnormalities were detected in the images of the clus-
ters where a carbon stock difference of over 20 tha™!
was estimated.

4 Discussion

4.1 The effect of forest management on above-ground
carbon stock

The field data allowed us to assess the effect of forest man-
agement on above-ground carbon stock in a pairwise com-
parison analysis and were then used as calibration data for
a remote sensing model to predict the carbon stock at loca-
tions that were not measured in the field. The selection of for-
est patches, grouped into clusters, made it possible to extract
the effect of forest management without confounding factors
and included detailed information about the environmental
conditions in the field. From the measured carbon stocks in
the field, a significant difference between managed and un-
managed forest patches was detected in the BW NP. Tree
density was higher in managed plots, primarily due to the
predominance of smaller trees belonging to the lowest diam-
eter class (nesting level A). A few managed plots were situ-
ated in dense regeneration, and unmanaged plots on average
thus had fewer but larger trees (in height and diameter). In
unmanaged plots, older trees continue growing without har-
vest, leading to higher biomass and carbon stock. The results
align with Vanhellemont et al. (2024), who performed a sim-
ilar study to compare above-ground carbon pools in set-aside
forests and the average forest in Flanders. Even though our
measured carbon stocks are higher, due to the fertile soil con-
ditions in the NP BW, a similar trend was reported.

4.2 Carbon stock modeling with remote sensing

The prediction of forest above-ground carbon stock using
remote sensing remains technologically challenging. How-
ever, this study demonstrates significant potential by com-
bining multiple types of remote sensors, leading to improved
model predictions. The study also highlights the limitations
of remote sensing, as it was unable to effectively distinguish
carbon stock differences between managed and unmanaged
forests.

The model fit and predictive accuracy of the GAM did not
change markedly when adding the dominant tree height as
estimated from the GEDI/Sentinel-2 product. Even though
saturation effects were slightly reduced, no real improvement
in predictivity was noted. Even though the GEDI/Sentinel-
2 product could accurately detect the relative canopy height
differences between plots well, it appeared to systemati-
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cally underestimate canopy height values as measured in the
field, explaining the lack of additional explanatory power
of the product. Lidar proved useful for biomass prediction
at high forest AGB values in earlier research. Namely, the
GEDI/Sentinel-2 product was developed with a focus on
detecting tall canopies, which typically have large carbon
stocks. Our findings do not align with previous research com-
bining lidar and Sentinel-2 for above-ground biomass esti-
mation, which reported enhanced predictivity of the model
(Francini et al., 2022; Puliti et al., 2020).

The combination of optical remote sensing (for measur-
ing photosynthetic activity and vegetation health) and C-
band SAR (for measuring vegetation structure) on the other
hand did improve model performance compared to the use of
Sentinel-2 alone (R? increased by 17 %, RMSE decreased by
40.23 tha~!', MAE decreased by 41.20 tha™!). Especially in
dense forest structures, C-band (and X-band) microwave re-
mote sensing proved successful for AGB estimation, which is
also confirmed by our study (Chen et al., 2019; David et al.,
2022; Forkuor et al., 2020; Hoscilo et al., 2018; Nuthamma-
chot et al., 2022; Santoro et al., 2011; Thurner et al., 2014).

C-band radars are more sensitive to detecting leaves and
needles than trunks and branches, in contrast to P- and L-
band SAR (Riietschi et al., 2018). The shorter wavelength in-
teracts more strongly with smaller vegetation elements with
a higher water content. Possibilities to improve predictions
even more may lie in further integration of C-band with L-
band SAR, which can enhance the detection of texture fea-
tures, vegetation diversity, and density (Laurin et al., 2018).
For example, Santoro et al. (2021) successfully estimated
AGB at a global scale from the ALOS satellite (L-band) and
Envisat (C-band). They report the combination of different
sensors with varying spatial resolution as an important chal-
lenge and a source of systematic modeling errors at the re-
gional level. This has however been a popular approach in the
last years, with the CCI Biomass product as an important ex-
ample. L-band SAR is generally more suited in high-biomass
areas, as these longer wavelengths can penetrate deeper into
the canopy than C-band wavelengths. Santoro et al. (2021)
therefore implement a weighting scheme, where a different
sensitivity of backscatter data from both sensors is applied
depending on the growing stock volume. The successful im-
plementation of multifrequency SAR data in remote-sensing-
based analyses of AGB is also shown in other studies, such
as Huang et al. (2018) and Musthafa and Singh (2022).

Even though a significant improvement in model perfor-
mance was noted, the combination of sensors did not suc-
cessfully detect the difference in carbon stock between man-
aged and unmanaged forests. The understory, often insuf-
ficiently detected by remote sensing, did not appear prob-
lematic in our case study as the presence or absence of the
smallest trees (< 15cm DBH) did not affect the model fit.
Nevertheless, the mean absolute error was higher than the
estimated carbon stock difference, indicating a high uncer-
tainty. Moreover, the obtained estimated differences in mean
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Table 4. Evolution of the model validation parameters with the addition of multiple remote sensors. S-2 = Sentinel-2, S-1 = Sentinel-1.

S2 S2+GEDI/S2 S-2+S-1 S-2+GEDI/S-2 +S-1
R? 0.56 0.73 0.68
RMSE (tha=!)  99.44 98.06 59.21 56.35
MAE (tha=!)  91.40 90.21 50.29 50.07

Real vs. predicted carbon stock: training dataset

300

N
S
3

Predicted carbon stock (tons ha'1)

= Sentinel-2
= Sentinel-2 and GEDI

— Sentinel-2 and Sentinel-1
= Sentinel-2, GEDI, Sentinel-1

200 300

Measured carbon stock (tons ha’1)

Figure 5. Model prediction accuracy after the model training with different remote sensing components, compared to the bisector of perfect

prediction (measured = predicted carbon stock).

carbon per patch did not fully align with the differences
measured in the field. The unmanaged patches, which are
mostly in the higher biomass ranges, appear to be underesti-
mated by the GAM when considering the conventional field
method as the ground truth (Fig. 6). In contrast, the model
overestimates the biomass for managed patches. The under-
estimation of high biomass in unmanaged patches is likely
due to signal saturation, a common issue when passive op-
tical remote sensing and SAR struggle to detect complex
forest structures. Although excluding plots with a biomass
greater than 450tha™! did not improve the model, a sys-
tematic underestimation for plots above 400 tha~' biomass
(200tha~! carbon stock) was observed for BW NP. This is
most likely due to signal saturation, as noted in several pre-
vious studies (Hoscilo et al., 2018; Laurin et al., 2018). Sec-
ond, low biomasses (mostly managed patches) were overes-
timated; this corresponds with the research of Hoscilo et al.
(2018) and Zhang et al. (2023). A serious overestimation is
reported for biomasses lower than 125tha~! (Fig. 6). Fewer
plots were measured in these outer ranges, which may lead
to deviations, as well for low as for high biomasses. A solu-
tion could be to separately model managed and unmanaged
patches, but more observations are then needed. Past man-
agement intensity was defined as one of the major drivers
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for above-ground carbon stock in Atlantic forests by Pires
Coelho et al. (2022). Hence, management history may also
overrule the effect of current management practices in re-
mote sensing analyses.

The reduced training dataset (70 plots) may have limited
the model’s goodness of fit in general and adds an important
uncertainty to the model’s predictions. To assess this uncer-
tainty, an convex hull approach was followed (Appendix B).
A significant extrapolation error was identified due to the
large number of predictors, but this was not found to be prob-
lematic. Namely, the training dataset rightfully represented
the center of the feature space for each combination of two
features, hereby including the majority of the pixels used
for model application. Therefore, we assume the GAM is
able to rightfully estimate values slightly outside the train-
ing dataset’s feature space. Lastly, comparisons were made
at patch level, reducing the error of prediction by taking the
average of all pixels.

The time of non-management in our study design ranged
from 20 to 4045 years, corresponding to at least two thin-
ning cycles in the paired managed forests and relating to an
important time horizon in the context of international climate
goals (e.g., the Green Deal). In addition to the technical lim-
itations as described above, it is possible that the forest has

https://doi.org/10.5194/bg-22-4291-2025
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Figure 6. The final model fit with all plots in the training data set, compared to the bisector of perfect prediction.
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Figure 7. Comparison of the canopy height estimates by the GEDI/Sentinel-2 product and the field measurements.

not been left unmanaged for long enough to detect a differ-
ence through remote sensing, while it is already detectable
by field measurements. This may be completely different in
forests that have been set aside for much longer, but they
cannot be found in the study region. Therefore, the results of
this study are not to be generalized to all unmanaged forests,
including primary forests.

Investigating the effects of different management prac-
tices, rotation lengths, and thinning regimes on carbon stock
— along with the substitution effect of resulting wood prod-
ucts — was beyond the scope of this study. However, such
research could lead to more specific management guidelines
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and decision rules. Additionally, while maximizing carbon
stock is important, it should be noted that managed forests
provide various benefits, including wood and non-wood for-
est products, and regulating and cultural services. Future
studies should consider these ecosystem services, alongside
carbon stock, in local contexts and explore the trade-offs be-
tween them.

5 Conclusion

In this study, a deeper methodological understanding on the
potential and limitations of different remote sensing tech-
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nologies was obtained in a case study where the effect of
forest management on above-ground biomass carbon stock
was assessed. Research in this domain holds significance in
the context of international policy agreements to fight cli-
mate change, for example with carbon credit schemes, where
accurate assessment of carbon stocks is essential for incen-
tivizing forest conservation and restoration efforts. Unman-
aged forests were found to store more carbon in their above-
ground biomass than managed forests in the temperate At-
lantic region. The combination of passive optical remote
sensing and synthetic aperture radar improved the estima-
tion of above-ground carbon stock compared to the use of
passive optical remote sensing alone, while the addition of a
canopy height product derived from spaceborne lidar did not
further improve model performance. Nevertheless, observed
carbon stock differences in the field were not detected by the
multi-sensor remote sensing model due to saturation errors,
a rather limited training dataset, and a high mean absolute
model error.
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Appendix A: Model optimization results

First, disregarding all plots with a carbon stock > 450 tha™!
did not result in a better fit (Table Al): only the MAE
decreased remarkably. Even though oversaturation was de-
tected at a level of 200 tha™! carbon stock when plotting the
GNDVI and BS5 (the variables that are most prone to over-
saturation) for all plots, this did not have a significant influ-
ence on the overall model fit. Second, only modeling car-
bon stock in nesting levels B and C (Table 1) did not result
in a better fit either for all three validation parameters (Ta-
ble Al). In a more detailed analysis, we found that leaving
trees smaller than 15 cm DBH (50th percentile) out of the cal-
ibration dataset did not affect the model fit. While accounting
for 50 % of the number of trees, they overall only store 4 %
of the total carbon stock. Trees with a DBH > 15 cm contain
a substantial amount of carbon and were sufficiently detected
by the model. Leaving these trees out of the field dataset re-
sulted in a lower model fit.

4303

Table A1. Evolution of the model validation parameters during model optimization and the addition of multiple remote sensors.

Before  Without plots

Without nesting

With GEDI  With GEDI and

optimization > 450tha~! level A Sentinel-1
R? 0.56 0.36 0.54 0.58 0.68
RMSE (tha—1) 99.44 100.15 116.12 98.06 56.35
MAE (tha=!) 91.40 68.03 99.14 90.21 50.07
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Appendix B: Extrapolation issues

Extrapolation errors may arise as a consequence of the rather
small training dataset (N = 70) used for model training, in-
ducing unreliable predictions. To address this concern, the
feature space delineated by the training database is calcu-
lated as a convex hull, following the approach of Renaud et
al. (2022). By evaluating the share of pixels for model ap-
plication that is situated in this space, the percentage of ex-
trapolation can be assessed. However, due to the high num-
ber of features (7), and the resulting extremely narrow high-
dimensional convex hull, a very large proportion of extrap-
olated pixels (98 %) were identified. Nevertheless, the train-
ing dataset provided a comprehensive representation of the
total value range for each 2D combination of variables sep-
arately (Fig. B1). Values that only slightly differ from the
training data variable range fall strictly outside the hull,
though they are still believed to be in line with the training
data. Even though labeled as “extrapolated pixels”, underes-
timated biomasses are in this case probably due to signal sat-
uration rather than extrapolation errors. When allowing pixel
values to deviate 5 % of the hull range for each variable, the
percentage of extrapolated pixels decreases to 28 % (27 %
without extreme outliers), underpinning this statement.
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Figure B1. The 2-dimensional representations of the 7-dimensional convex hull (black) of the training data (red) are shown for all combina-
tions of predictors. A subset of 20 000 pixels used for model application are plotted in gray.
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