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Abstract. The gravitational pump plays a key role in the
ocean carbon cycle by exporting sinking organic carbon from
the surface to the deep ocean. Deep sediment trap time se-
ries provide unique measurements of this sequestered car-
bon flux. Sinking particles are influenced by physical short-
term spatio-temporal variability, which inhibits the establish-
ment of a direct link to their surface origin. In this study,
we present a novel machine learning tool, designated as
U-NetSST−SSH, which is capable of predicting the catchment
area of particles captured by sediment traps moored at a
depth of 3000 m above the Porcupine Abyssal Plain (PAP)
based solely on surface data. The machine learning tool was
trained and evaluated using Lagrangian experiments in a re-
alistic CROCO numerical simulation. The conventional ap-
proach of assuming a static 100–200 km box over the sed-
iment trap location only yields an average prediction for
∼ 25 % of the source region, whilst U-NetSST−SSH predicts
∼ 50 %. U-NetSST−SSH was then applied to satellite obser-
vations to create a 20-year catchment area dataset, which
demonstrates a stronger correlation between the PAP site
deep particle fluxes and surface chlorophyll-a concentration
compared with the conventional approach. However, pre-
dictions remain highly sensitive to the local deep dynamics
which are not observed in surface ocean dynamics. The im-
proved identification of the particle source region for deep-
ocean sediment traps can facilitate a more comprehensive un-
derstanding of the mechanisms driving the export of particles
from the surface to the deep ocean, a key component of the
biological carbon pump.

1 Introduction

The biological carbon pump (BCP) is one mechanism that
sequesters carbon from the atmosphere into the deep ocean.
The BCP plays a key role in the climate system as, without
it, the atmospheric CO2 concentrations would be about twice
those observed today (Parekh et al., 2006; Kwon et al., 2009).
Furthermore, the BCP is a crucial source of food resources
in the deep ocean (Grabowski et al., 2019). However, despite
the considerable importance of the BCP, its driving mecha-
nisms are poorly understood (Le Moigne, 2019). Given that
climate-change-driven perturbations may have widescale im-
plications for the BCP, it is of utmost importance to improve
our understanding of this topic (Kwon et al., 2009; Passow
and Carlson, 2012; Palevsky and Nicholson, 2018; Henson
et al., 2022; Wilson et al., 2022).

One of the main processes contributing to the export of the
BCP is the export of organic particles from the surface to the
deep ocean, which sink due to their excess density (Siegel
et al., 2016; Durkin et al., 2016; Le Moigne, 2019). This is
known as the gravitational pump (Boyd et al., 2019; Siegel
et al., 2023). This is a complex process modulated, on the
one hand, by phytoplankton net primary production (NPP),
which uses carbon dioxide, solar energy, and available nu-
trients for photosynthesis in the lighted upper layer of the
ocean, also known as the euphotic zone (∼ 0–200 m), and,
on the other hand, by zooplankton faecal pellets (Lampitt
et al., 1990). To assess the magnitude and composition of
particle sinking via the gravitational pump, long-term obser-
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vations of the downward particle flux have been made using
moored sediment traps (STs). These have been widely used
to measure deep particle fluxes below 2000 m (Honjo et al.,
2008; McDonnell et al., 2015). At this depth, the carbon can
be sequestered for decades or centuries (Guidi et al., 2021;
Burd et al., 2016; Siegel et al., 2021; Baker et al., 2022).
However, while the time series data from the STs are crucial
for estimating the amount of long-term carbon sequestration
and for understanding the evolution of the global carbon cy-
cle, fluxes from STs are often generalised over a wide spatial
area despite being located in only a single data location. This
spatial limitation hinders the ability of these instruments to
capture the inherent variability of deep-ocean particle fluxes.
Indeed, medium and small local dynamics affect the sinking-
particle pathways and can have a significant impact on the
ST measurements, especially over short time periods (Siegel
et al., 1990; Deuser et al., 1990; Burd et al., 2010; Liu et al.,
2018; Dever et al., 2021; Wang et al., 2022a). This means
that particles originate over a large area of the surface ocean,
called the catchment area (Deuser et al., 1988; Waniek et al.,
2000), highly dependent on the local currents throughout the
water column. It therefore remains a challenge to establish a
clear link between observed NPP at the surface and deep car-
bon fluxes (Lampitt et al., 2010, 2023). This is particularly
true for 10–30 d time periods, during which time the drivers
of carbon “pulses” observed in the STs remain unexplained
(Smith et al., 2018).

This study focuses on the contribution of the local physics
to the gravitational sinking flux. Traditionally, the sinking-
particle catchment area is typically represented as a 100 or
200 km box around the ST (Armstrong et al., 2001; Lampitt
et al., 2010, 2023). This simplified catchment area is based on
several studies that have used Lagrangian particle backtrack-
ing with physical model fields over several years (Waniek
et al., 2000; Siegel et al., 2008; Wekerle et al., 2018; Wang
et al., 2022a) to define a so-called “statistical funnel”. The
statistical funnel may allow for the annual surface area
that influences sediment trap measurements to be captured,
but it does not capture the mesoscale spatial variability on
timescales of weeks to months. So far, the only method ca-
pable of capturing this variability is that of Lagrangian back-
tracking experiments in reanalyses, i.e. the release of La-
grangian particles in a numerical simulation forced with ob-
servations that are supposed to represent the full 3D dynam-
ics of the ocean (Frigstad et al., 2015; Liu et al., 2018; Ruhl
et al., 2020; Ma et al., 2021). However, the practice of La-
grangian backtracking in reanalyses has a number of caveats:

– Reconstruction of mesoscale and submesoscale sea sur-
face dynamics in numerical models, especially be-
low 150 km resolution, remains a challenge for oper-
ational systems with data assimilation schemes (Lel-
louche et al., 2021; Cutolo et al., 2022; Febvre et al.,
2023), which can lead to significant biases in the La-
grangian transport, usually unquantified.

– The deep dynamics (below 1000 m) are typically not
validated due to a lack of observational data and/or un-
derstanding and are almost completely absent in some
data assimilation models (Lellouche et al., 2021). Our
understanding of the influence of this phenomenon and
how well it is represented in models is very limited.

– The process of reanalysis is typically complicated and
computationally demanding, especially when used in
conjunction with backtracking Lagrangian studies. This
inherent complexity leads to certain constraints, such as
the use of only a single particle’s sinking velocity or a
limited time frame for the experiments.

To address the aforementioned problems, we have devel-
oped a new tool based on machine learning to predict the
catchment area of particles reaching deep-ocean STs directly
from the model output surface data (Picard et al., 2024). This
approach was motivated by two main advances from the lit-
erature. Firstly, Wang et al. (2022a) showed that the monthly
catchment area is closely related to the surface mesoscale
dynamics and, in particular, to local eddies observed with
satellite altimetry (Chelton et al., 2011). In addition, recent
studies have demonstrated the benefits of machine learning
in predicting ocean interior currents from surface observa-
tions (Chapman and Charantonis, 2017; Bolton and Zanna,
2019; Manucharyan et al., 2021), as well as its high per-
formance in reconstructing Lagrangian particle trajectories
(Jenkins et al., 2022). Picard et al. (2024) trained a neural
network with a numerical simulation dataset at the Porcu-
pine Abyssal Plain sustained observatory (PAP-SO) station,
situated in the northeastern Atlantic Ocean (49°N, 16.5°W).
The PAP-SO site has collected more than 30 years of deep-
ocean particulate organic carbon flux time series (Hartman
et al., 2021; Lampitt et al., 2023). Picard et al. (2024) demon-
strated the ability to predict the catchment area for particles
with a sinking rate of w = 50 md−1, collected in a PAP-SO
ST at 1000 m, using only surface numerical simulation out-
puts. Furthermore, a framework was presented to evaluate the
prediction efficiency depending on the local physical condi-
tions, with the best predictions being associated with low ki-
netic energy and the presence of mesoscale eddies above the
ST.

Therefore, this study has two main objectives. The first
one is to improve the methodology presented in Picard et al.
(2024) by proposing an enhanced version of the machine
learning model that is capable of predicting the catchment
area of particles collected at 3000 m by the PAP-SO station
ST, taking into account a wider range of particle sinking ve-
locities (Sect. 2). Indeed, as previously stated by Wekerle
et al. (2018), the provenance of particles can vary consider-
ably depending on their sinking velocity. Consequently, it is
imperative to consider the entire particle velocity spectrum in
order to accurately represent all of the possible source areas.
We also chose to focus on a 3000 m ST because the PAP-
SO deep particle flux dataset is the most complete. Indeed,
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STs at 1000 m at the PAP-SO station do not give reliable re-
sults, likely due to hydrodynamic biases for conical traps in
the upper ocean (Buesseler et al., 2007), whilst fluxes col-
lected at 3000 m are much more reliable. Similarly to Picard
et al. (2024), we will evaluate the network performance and
identify the physical factors that influence the accuracy of the
catchment area prediction (Sect. 3). Considering the fact that
the dynamics below 1000 m at PAP-SO are weak compared
to in the upper layer (Wang et al., 2022a), we expect similar
results to Picard et al. (2024), with the particle sinking veloc-
ity being the primary factor influencing the prediction score.
The second objective is to investigate whether the connec-
tion between satellite-derived surface chlorophyll-a concen-
tration, as a proxy for phytoplankton biomass, and the deep-
ocean ST fluxes can be improved with the application of the
trained machine learning tool (Sect. 4).

2 Methods

In this study, we follow the methodology presented in Picard
et al. (2024), where we use a series of Lagrangian experi-
ments in a numerical simulation at the PAP-SO station to
train convolutional neural networks (CNNs) to predict the
origin of particles collected in a deep-ocean ST. We have
adapted the learning strategy to train a model that can be ap-
plied to satellite data. This section presents the experiments
carried out and the characteristics of the CNNs used.

2.1 Numerical simulation and Lagrangian experiments

The North Atlantic Subpolar Gyre simulation (POLGYR),
designed and validated by Le Corre et al. (2020), is used in
this study. This simulation is run using the Coastal and Re-
gional Ocean COmmunity (CROCO) model, based on the
Regional Ocean Modeling System (ROMS) (Shchepetkin
and McWilliams, 2005). The grid has a horizontal resolu-
tion of 2 km and 80 vertical levels, allowing the simulation
to fully resolve the mesoscale processes and partly resolve
those of the submesoscale. The focus of this study is the PAP-
SO, represented by the black 1020 km square centred at the
PAP-SO station (49° N, 16.5° W) (see Fig. 1a).

A series of Lagrangian backtracking experiments were
performed to represent the sinking-particle pathways from
the surface ocean to the PAP-SO sediment trap at 3000 m.
In order to account for the wide range of particle sink-
ing velocities observed in the region, as reported in Villa-
Alfageme et al. (2016), the experiments were performed with
five different sinking velocities w, namely 80, 100, 150,
200, and 300 md−1. Although slower-sinking particles (w <
80 md−1) have been observed at PAP-SO (Baker et al., 2017;
Villa-Alfageme et al., 2016), they are not considered in this
study due to computational constraints. Slower-sinking par-
ticles present a significant challenge in terms of time taken
to sink to 3000 m and dispersion in the spatial dimension,

which, in turn, increases the size of our model domain and
output considerably.

The Lagrangian experiment is carried out according to the
general methodology presented in Picard et al. (2024) con-
sidering a deeper ST depth and several particle sinking ve-
locities. Over a period of 10 d, representing the ST collection
period, 720 particles (36 particles every 12 h) are released
at the PAP-SO sediment trap, which is moored at a depth
of 3000 m. During the experiment, all particles have a con-
stant sinking velocity w. Once the particles have ascended to
a depth of 200 m, which defines the depth of effective par-
ticle export (Wang et al., 2022a), their position is recorded
(Fig. 1b), and the probability density function (PDF) associ-
ated with this position is computed. The PDF represents the
catchment area of the particles captured by the sediment trap
during the 10 d collection period. This is also the variable
predicted by the convolutional neural networks (CNNs). For
each w considered in this study, a total of 10 260 indepen-
dent Lagrangian experiments were performed, each provid-
ing a PDF associated with a different dynamical condition.
Further details on the methodology used can be found in Pi-
card et al. (2024).

2.2 Convolutional neural network architecture and
training scheme

We have trained different CNNs to predict the catch-
ment area, depending on the sinking velocities (w) consid-
ered here. The training methodology follows a state-of-the-
art scheme with independent training, validation, and test
datasets (Lecun et al., 2015). We used U-Net schemes as
described in Ronneberger et al. (2015). These schemes are
among the state-of-the-art neural architectures for mapping
problems with n-dimensional tensors, with numerous appli-
cations in imaging science (Falk et al., 2019), as well as
recent applications in ocean science (Lguensat et al., 2018;
Beauchamp et al., 2023; Jenkins et al., 2022). For each train-
ing run, we use 8604 Lagrangian experiments for training,
1224 for validation, and 6800 for testing. Further details of
the methodology can be found in Picard et al. (2024). To eval-
uate our predictions, we consider the Bhattacharyya coeffi-
cient (Bhattacharyya, 1943) to assess the similarity between
the true PDF and the predicted one:

BCz =6i∈D
√
Pi,zQi,z, (1)

whereD represents the PAP domain, Pi is the predicted PDF
value, andQi is the true PDF computed from the Lagrangian
experiment at point i and at depth z. The Bhattacharyya co-
efficient is used to evaluate the similarity between two PDFs
and serves as the loss function. In the following section, we
refer to this loss function as the Bhattacharyya training loss
(BL).
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Figure 1. (a) Surface snapshot of relative vorticity in the numerical simulation. The black star represents the location of the PAP-SO station.
The dashed square outlines the domain considered in this study. (b) A closer examination of the solid black square, with a focus on the
vertical dimension. Relative vorticity at 200, 1000, 2000, and 3000 m depth. The location of the sediment trap is indicated by the black star.
A group of particles from a single Lagrangian experiment is shown. The colours of the particles represent the time in days after the release
at the ST trap. When the particles reach a depth of 200 m, their position is saved (black dots) to compute the two-dimensional probability
density function (PDF). The green diamond indicates the northeast of the sub-domain, with the PAP station location as the reference point.

BL200 m = 1−BC200 m = 1−6
√
Pi,200 mQi,200 m (2)

BL200 m ranges from 1 to 0, with 0 representing a per-
fect prediction. We implement our machine learning scheme
using PyTorch (Paszke et al., 2019). The training phase re-
lies on the Adam optimiser (Kingma and Ba, 2015) with
the following hyperparameters: β = (0.5,0.999), no weight
decay, and a learning rate of 0.001. The training process
is performed using mini-batches of size 32. After 50 train-
ing epochs, the best model is selected based on its perfor-
mance based on the validation dataset. We further improve
the performance and robustness of the model by using a
bootstrapping method with 10 replicates (Breiman, 1996).
The final prediction is a set of PDFs computed as the me-
dian of the predictions from the 10 models, followed by a
re-normalisation step.

The inputs of the U-Nets are geophysical fields for a
800 km wide square box around the sediment trap, with a
50 d time window and a 10 d time step. Three different U-Net
models were used to evaluate the impact of the input type and
resolution:

– U-Netw5V−4L. This configuration uses five variables as
inputs, namely temperature, sea surface height (SSH),

horizontal velocities U and V , and vorticity at a hori-
zontal resolution of 8 km and at four vertical levels (ex-
cept for SSH) (0, 750, 1500, 2250 m).

– U-Netw5V−1L. This configuration uses sea surface only
fields as inputs, namely sea surface temperature (SST),
SSH, and sea surface velocities at a horizontal resolu-
tion of 8 km.

– U-NetwSST−SSH . This configuration uses only SST and
SSH as inputs. Its training involves spatially averaged
fields to account for the effective resolution of satellite-
derived products in the region (80 km for SSH (Chelton
et al., 2011) and 28 km for SST level-4 product).

Of these three models, we expect U-NetwSST−SSH to be
more applicable to reanalysis and satellite-derived products
as it has been trained under conditions consistent with ob-
servational data inputs. The other two models will allow us
to explore the key drivers of Lagrangian particle trajectories
from the surface to the deep ocean. In addition to these U-
Net models, prediction baselines are considered in the form
of 100 and 200 km boxes centred at the PAP-SO station, de-
noted as box100 km and box200 km (i.e. a PDF with uniform
values within the box). These baselines represent the conven-
tional approach that has traditionally been used in previous
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studies to represent the particles’ surface origins (Frigstad
et al., 2015; Lampitt et al., 2023) and are used here as a ref-
erence point to assess the added value of the CNNs.

2.3 Test dataset and evaluation metrics

The considered test dataset consists of 6800 independent La-
grangian experiments that are used for testing the CNNs.
Based on the BL200 m score introduced in Picard et al. (2024),
we define a binary classification score as an evaluation met-
ric:

– If BL200 m < 0.3, the prediction is valid.

– If BL200 m ≥ 0.3, the prediction is invalid.

As shown in Picard et al. (2024), the BL200 m score is di-
rectly linked to the overlap between the two distributions de-
fined as follows:

F200 m =6
i∈Dmin(Pi,200 m,Qi,200 m). (3)

The criterion of BL200 m < 0.3 is arbitrarily chosen to rep-
resent a valuable prediction, such that the prediction accounts
for F200 m = 45% or more of the particles. The prediction
made by U-NetwSST−SSH for the simulation test dataset will
be referred to asDwsimu in the following. Figure 2 shows three
samples from this dataset. The predictions are compared with
the PDF of the true particle origins from the Lagrangian ex-
periments (see Sect. 2.1). In this example, predictions (a) and
(b) are considered to be valid, while prediction (c) is consid-
ered invalid.

3 Sensitivity analysis on simulation datasets

In this section, we evaluate the performance of the differ-
ent U-Net schemes. We test the robustness of the predictions
while varying the horizontal resolution of the inputs, the par-
ticle sinking velocity, and the type of inputs. Our aim is to
gain a deeper understanding of the key influences on sinking-
particle trajectories.

3.1 Impact of input drivers and associated spatial
resolutions

We first focus on a sinking velocity ofw = 100 md−1, which
has been assumed to be the mean velocity of particles sinking
to the deep ocean as observed at the PAP-SO station (Lampitt
et al., 2001; Villa-Alfageme et al., 2014, 2016). To evaluate
the robustness of the predictions with respect to the horizon-
tal resolution of the input variables, we examine the evolution
of the prediction score given by U-Net100

SST−SSH (Fig. 3) by
progressively degrading the effective resolution of the inputs
of SST (dashed black line) and SSH (dashed red line) fields
from 8 km (effective resolution of the numerical simulation)
to 200 km. The downscaling is conducted using an under-
sampling method. To isolate the impact for each dataset, the

SST resolution is fixed at 24 km when the SSH resolution
is downscaled and vice versa, whereby, when the SST res-
olution is degraded, the SSH resolution is fixed at 80 km.
The evaluation is performed by computing the percentage
of valid predictions from the entire test dataset. The score
does not change significantly with SST resolution, whereas
the score decreases significantly with a coarser SSH reso-
lution. We conclude that the information from SSH, which
includes geostrophic-current information, is the main driver
for particle trajectory predictions. Conversely, the informa-
tion derived from SST, which provides smaller-scale features
such as fronts, seems to play a secondary role. Regarding the
resolution of SSH, the prediction score is not significantly
affected at a resolution of 80 km compared to at a finer res-
olution (a loss of about 3 % of valid predictions). This re-
sult supports the potential application of the trained models
with real satellite-derived products. However, it is important
to note that, for SSH resolutions greater than 100 km, the net-
work prediction score can be seriously degraded.

3.2 Impact of sinking velocities and type of inputs

In Fig. 4, we compare the prediction metrics in terms of
BL200 m, F200 m and the percentage of valid predictions pro-
vided by the three CNNs: (i) U-Netw5V−4L, (ii) U-Netw5V−1L,
and (iii) U-NetwSST−SSH. Additionally, the scores obtained
with the standard catchment areas, i.e. box200 km and
box100 km, were computed. Overall, the scores improved with
larger sinking velocitiesw. This is probably because particles
with highw are less sensitive to subsurface dynamics and are
likely to be much closer to the sediment trap location, mak-
ing it easier to predict the location. Conversely, with a lower
sinking velocity, the particle path is typically more complex,
with a longer transit resulting in a catchment area that is typi-
cally further from the sediment trap location and spread over
a larger area, as shown by Wang et al. (2022a).

A comparison of U-NetwSST−SSH predictions with tra-
ditional 100–200 km area baselines (Fig. 4) reveals a
clear added value of the neural network scheme. The
box200 km/100 km gives, on average, between 1 %–20 % of
valid predictions, with the percentage of predicted sur-
face particles averaging about 20 %. In contrast, the
U-NetwSST−SSH outperforms this score, with a percentage of
valid predictions ranging from 50 % (w = 80 md−1) to 80 %
(w = 300 md−1). The average percentage of predicted par-
ticles F200 m increases to 50 % with U-NetwSST−SSH (+30 %
compared to the boxes).

To gain a deeper understanding of the limitations of
the U-NetwSST−SSH score, we have increased the dynami-
cal information in the region provided by the inputs us-
ing U-Netw5V−1L and U-Netw5V−4L. Unlike U-NetwSST−SSH,
U-Netw5V−1L includes explicit surface velocity and vorticity
information at a fine resolution of 8 km. This additional infor-
mation has led to a∼ 5%–10 % increase in valid predictions.
As explained in Fig. 3, part of this improvement is due to the
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Figure 2. Examples of predictions of the probability density function (PDF) of particle origins from theDwsimu simulation-based dataset. The
PDFs are represented by two contours: the solid contour represents 25 % of the integrated PDF, while the dashed contour represents 75 %.
The black PDFs are the true PDFs derived from the Lagrangian experiment, and the red PDFs are the predictions using U-Net100

SST−SSH. We
report the corresponding Bhattacharyya scores. The background represents the relative vorticity 20 d after the initial particle release, which
coincides with the particles reaching the euphotic layer (z= 200 m) with a sinking velocity of 100 md−1. Be advised that, in (c), the true
PDF is split into two patches. This is likely to be due to divergent dynamics at the source point located at the junction of several eddies,
which makes the prediction more challenging.

Figure 3. Evaluation of U-Net100
SST−SSH score as a percentage of

the valid predictions computed with the numerical simulation test
dataset. The axis represents the horizontal resolution of the inputs
downscaled using an under-sampling method. When the SSH res-
olution is downscaled, the SST resolution is fixed at 24 km. Con-
versely, when the SST resolution is downscaled, the SSH resolution
is fixed at 80 km.

finer resolution. Thus, the addition of velocity and vorticity
does not seem to significantly improve the score prediction at
this resolution. We assume that U-NetwSST−SSH can correctly
extract the relevant features of the geostrophic velocities di-
rectly from the SSH.

The main limitation of the predictions seems to be the lack
of information at deep levels. Indeed, U-Netw5V−4L outper-
forms all other U-Net models with a range of 78 %–99 % ac-
curacy in predicting particle path dynamics (F200 m = 60%–
80 %), suggesting that deep dynamics are a crucial factor to
consider in reconstructing the particle path. In the following
section, the role of deep dynamics in particles’ pathways is

elucidated, showing a direct correlation between the predic-
tion score and the intensity of deep currents.

3.3 Impact of deep dynamics

The aim of this investigation is to examine the role of the
deep dynamics on particle pathways and their potential im-
pact on the Dwsimu predictions. Based on the model aver-
age kinetic energy profile (KE= 1

2 (u
2
+ v2)) in the region

(Fig. B1), it seems that the dynamics below 1000 m could
be considered to be negligible compared to those in the
mesopelagic zone (z < 1000 m). Despite the low intensity
of the deep currents, the particle pathways are still signif-
icantly influenced by deep structures such as deep jets or
mesoscale eddies, which can originate from the surface or
at depth through local bathymetric interactions (Smilenova
et al., 2020). The deep currents induced by the continental
shelf clearly affect the movement of the particles as soon
as they are released, as shown in Fig. 5a–d by the PDF of
particles (w = 100 md−1) when they reach the mesopelagic
layer (1000 m depth). In this example, the particles are al-
ready ∼ 100 km away from the source before entering the
area driven by surface conditions. Moreover, based on a com-
parison between the two KE maps (b and d), the local cur-
rents around the PAP-SO station (see inside the black box) in
the upper layer (0–1000 m) are typically not well correlated
with the dynamics at depth (1000–3000 m). This leads to an
incorrect prediction area (red contours vs. black contours).
However, some surface eddies can have very deep coherence.
If they are close to the PAP-SO station, they can lead to a co-
herent connection as they ensure a better correlation between
surface and deep dynamics (Fig. 5f and h). They also tend
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to trap the particles together. These effects seem to reinforce
the predictive power, as exemplified in Fig. 5e.

To corroborate these observations, we analyse the link be-
tween the score of the U-Net100

SST−SSH model and (i) the shape
of the “true” particle catchment area (i.e. the catchment area
from Lagrangian experiments) when reaching the base of the
mesopelagic zone (z= 1000 m) (Fig. 6a) and (ii) the local
deep dynamics (KE and ζ below 1000 m) (Fig. 6b).

For (i), we computed the averaged bin statistics of the pre-
diction score BL200 m conditioned on the mass centre and
the entropy of the true PDFs at 1000 m. The mass centre
is defined as the average distance of the particles from the
ST location. The entropy, defined as −6pi log(pi), where
pi is the PDF value at point i, describes the spread of the
PDF. A high entropy is associated with a large particle spread
over the domain Picard et al. (2024). This demonstrates that
the final prediction score BL200 m is directly related to the
PDF state at deep depths. It can be observed that valid scores
(BL200 m < 0.3) are associated with a low value of mass cen-
tre and a high value of entropy. This suggests that particles
whose centre of mass remains close to the sediment trap
location, even when dispersed over a large area at depth,
are competently predicted. Conversely, the particles signifi-
cantly affected by the deep currents reaching the mesopelagic
zone too far away from the PAP-SO ST (mass centre > 75–
100 km) are unlikely to be competently predicted.

For (ii), the averaged bin statistics of the prediction score
BL200 m were conditioned with the local KE and relative
vorticity averaged vertically between 1000–3000 m, horizon-
tally in an 80 km box (black box in Fig. 5), and temporally
during the crossing of the particle in the layer. A clear indi-
cation of a favourable prediction score (BL200 m < 0.3) can
be observed when either the horizontal velocity is weak (i.e.
low KE) or the absolute value of the vorticity is high (i.e.
presence of a mesoscale eddy). These results corroborate the
finding that the deep currents are the primary driver of the
final prediction score.

4 Connection between surface- and deep-flux
observations at the PAP-SO station

This section presents the application of U-NetSST−SSH with
real satellite-derived observations around the PAP-SO station
and examines whether the predicted catchment areas improve
the correlation between deep sediment trap fluxes and the
surface chlorophyll-a concentration.

4.1 Predictions with satellite data

We focus on a 20-year period from 1 January 2000 to
1 June 2019. The data used in this study were obtained
from the Global Ocean Gridded L4 Sea Surface Heights
And Derived Variables Reprocessed from the Coperni-
cus Climate Service, with a resolution of 0.25°× 0.25°

(https://doi.org/10.48670/moi-00148, CMEMS, 2024a), and
the Global Ocean OSTIA Sea Surface Temperature and
Sea Ice Reprocessed with a resolution of 0.05°× 0.05°
(https://doi.org/10.48670/moi-00168, CMEMS, 2024b). For
SST and SSH, we sampled a daily dataset once every 10 d
and interpolated the maps over the original CROCO grid
in an 800 km box centred at the PAP-SO station using a
bicubic interpolation method. To ensure coherence between
the satellite dataset and the simulation dataset used to train
U-NetwSST−SSH, we compared the SSH and SST distributions
between the two datasets, and no significant differences were
observed (Fig. A1 in the Appendix). The satellite-derived
SSH and SST datasets are used as inputs to generate predic-
tions with U-NetwSST−SSH. Over the 20-year period (2000–
2019), a total of 815 predictions were generated for each
sinking velocity w, with one PDF prediction generated every
10 d. We denote the resulting dataset of predicted PDFs as
Dwsat. To ensure that the predictions produced with satellites
are consistent with the predictions observed with the simula-
tion data in Sect. 3, we compare the respective shape char-
acteristics in Dwsat and Dwsimu (mass centre and entropy distri-
bution, Fig. A2). No significant differences were found, pro-
viding further confidence in the predictions made with real
satellite-derived data.

Figure 7 shows examples of catchment area predictions
from D100

sat between June–October 2016. The PDFs are as-
sociated with the corresponding chlorophyll-a images as
background and the geostrophic sea surface velocities (av-
eraged over the period). The surface chlorophyll-a images
are derived from Global Ocean Colour Plankton and Re-
flectances MY L3 daily observations at 4 km resolution
(https://doi.org/10.48670/moi-00282, CMEMS, 2024c). The
PDFs from Dwsat are associated with a date representing the
mean time of particle arrival at the surface. The images illus-
trate a discernible coherent time continuity between theD100

sat
catchment area locations. The D100

sat PDFs are often outside
the box200 m and show narrower locations that can change
rapidly, usually in less than a month.

4.2 Particle flux data at the PAP-SO station

All particle flux data used in this study are from PAP-SO
STs (Lampitt and Pebody, 2023) deployed between 3000–
3200 m, which is approximately 1800 m above the seabed
(see Lampitt et al., 2010, for a detailed methodology). The
collection period varies between 7–42 d, depending on the
time of the year and the expected fluxes. Fluxes are in-
tegrated over the collection period and are expressed in
mgm−2 d−1. They are further separated into different vari-
ables: dry weight, particulate organic carbon (POC), and par-
ticulate inorganic carbon (PIC). Dry weight is the dry mass
of the material collected in the sediment trap, POC is the
organic carbon retained on a 0.7 µm GF/F filter after acid-
ification, and PIC content was calculated as the difference
between total carbon and POC content (Lampitt et al., 2023).
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Figure 4. Evaluation of three types of U-Net depending on the sinking speed w. U-NetSST−SSH is in light blue, U-Net1L-5var is in beige,
and U-Net4L-5var is in red. Additionally, the scores of box100 m (dark blue) and box200 m (blue) have been computed. We evaluate the score
using (a) BL200 m, (b) F200 m, and (c) the percentage of valid predictions.

Figure 5. Example of predictions from the numerical simulation between 29 February–30 March 2004 (a–d) and 6 September–6 October
2004 (e–h). (a, b, e, f) Relative vorticity (ζ/f ), currents, and kinetic energy (KE) vertically averaged between 1000–3000 m and temporally
averaged during the particle crossing. The “true” particle catchment area at 1000 m is indicated by the black contours, which contain 25 %
and 75 % of the PDF, respectively. (c, d, g, h) Relative vorticity, currents, and kinetic energy vertically averaged between 0–1000 m and
temporally averaged during the particle crossing. The “true” particle catchment area at 200 m is shown by the black contours, and the
associated U-Net100

SST−SSH prediction is shown by the red contours.
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Figure 6. Averaged bin statistics of the U-Net100
SST−SSH prediction score BL200 m in the (a) particle PDF1000 m mass centre and entropy

and (b) kinetic energy (KE) and relative vorticity (ζ/f ) averaged between 1000–3000 m and in an 80 km box centred on the sediment trap
location and temporally during the particle crossing.

Figure 8 shows the 20-year time series of fluxes mea-
sured at PAP-SO ST, with chlorophyll-a concentration be-
ing time-averaged for each 10 d period and spatially aver-
aged over a 200 km box centred at the PAP. Irrespective of
the flux type, a clear signature is observed during the spring
bloom for almost every year. This is characterised by a peak
in chlorophyll-a concentration, which is followed later by a
peak in deep-ocean carbon fluxes. The time lag between the
chlorophyll a and the carbon fluxes depends mainly on the
time it takes for particles to travel from the euphotic layer to
the ST (Stange et al., 2017). Due to the large range of sinking
velocities w, this time lag δt can vary significantly from days
to months.

4.3 Assessing connections between the surface ocean
properties and deep-ocean particle fluxes

To assess the link between the surface ocean and ST car-
bon fluxes, we apply a methodology similar to that intro-
duced by Frigstad et al. (2015). This strategy is based on the
cross-correlation (CC) between the particle fluxes measured
at PAP-SO and the surface net primary production (NPP) av-
eraged over the catchment area. The CC score obtained with
the predicted catchment area Dwsat can be compared with the
CC references (box100 km and box200 km) to confirm – or not
– an improved relationship between sea surface tracers and
deep measurements. In this study, we have chosen to use
chlorophyll-a concentration derived from ocean colour im-
ages instead of NPP to work directly with satellite-derived
observations due to the large variability in derived NPP prod-
ucts, which depends on the choice of the algorithm used
(Saba et al., 2011).

The detailed methodology used to compute the CC is
described in Appendix B. In summary, the CC is calcu-
lated by determining the correlation coefficient between
PAP-SO fluxes (dry weight, POC, and PIC) and the sur-
face chlorophyll-a concentration within the catchment areas.
We associate each particle flux measurement of PAP-SO ST
taken at a given time t with the averaged chlorophyll-a con-
centration in the catchment area depending on the time lag
δt . We compute the CC with three types of catchment area,
which are box200 km and box100 km (baseline reference) and
predictions from Dwsat. The sinking velocity considered for
the prediction Dwsat depends on δt as defined in Table 1 to ac-
count for the variability of the duration of the particle path-
ways with respect to the sinking velocity. For example, for
a time lag of less than 12 d, i.e. δt < 12 d, we consider the
predictions with the largest sinking velocity w = 300 md−1

and use the catchment area predictions provided by the D300
sat

dataset.
To test the robustness of the results, the CC was also com-

puted using random catchment area predictions from theDwsat
dataset. This random process was repeated 100 times to com-
pute the 10th and 90th score percentiles for each δt , repre-
senting the range of uncertainty.

As a considerable number of ST data points were miss-
ing prior to 2009 (Fig. 8), we only compute the CC between
2009–2019 (white area in Fig. 8), which is the period where
the time series is continuous and considered to be valid by
Lampitt et al. (2023). A second period between 2009–2019
but excluding the years 2011 and 2013 is also examined.
The years 2011 and 2013 are associated with the deep fluxes
that occur before the chlorophyll-a bloom. This pronounced
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Figure 7. Visual results of theDwsat predictions (predictions with U-Net100
SST−SSH based on real satellite data) represented by the red contours

(25 % and 75 % of the PDF). The plots show the evolution of the PDF from June to October 2016. The 200 km box is with dashed black
lines. Also shown are the corresponding chlorophyll-a images from Atlantic Ocean Colour Global Ocean Colour Plankton and Reflectances
MY L3 daily observations at 4 km resolution (OCEANCOLOUR GLO BGC L3 MY 009 107) (averaged over a 10 d window). The black
arrows represent the geostrophic current from Global Ocean Gridded L4 Sea Surface Heights And Derived Variables Reprocessed from the
Copernicus Climate Service. White areas in the chlorophyll-a data are due to cloud cover.

Table 1. w(δt ) predictions as a function of time lag in days. The time lag represents the time for a particle at w velocity to travel from the
euphotic layer to the ST.

Time lag [d] δt > 34 25≥ δt > 34 18≥ δt > 25 12≥ δt < 18 δt < 12

w(δt ) w = 80 md−1 w = 100 md−1 w = 150 md−1 w = 200 md−1 w = 300 md−1
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Figure 8. Time series of carbon fluxes (dry weight, particulate organic carbon (POC), particulate inorganic carbon (PIC)) measured at
the PAP-SO 3000 m sediment trap between 2000–2019. The green background is the chlorophyll a from Atlantic Ocean Colour Global
Ocean Colour Plankton and Reflectances MY L3 daily observations (OCEANCOLOUR GLO BGC L3 MY 009 107). The time series are
temporally averaged over a 10 d period and spatially averaged in a 200 km box around the PAP. The white area represents the data used for
the cross-correlation calculation.

anomaly has been observed before, and a possible explana-
tion is that rapid re-stratification and/or intense events such
as storms isolate pre-bloom particles at depth, leading to an
intense carbon export that is not associated with surface data
(Giering et al., 2016). Therefore, these years should be fil-
tered out as they are not consistent with the hypothesis of
biological processes at the sea surface as the main drivers of
deep-ocean particle fluxes.

4.4 Results

The cross-correlation (CC) was computed at 3 d intervals be-
tween δt = 0 d and δt = 110 d, which is the range in which
a non-zero correlation signal can be observed (Fig. 9). For
both periods, the signal generally peaks at δt ∼ 30–20 d (w =
100–150 md−1) for dry weight and PIC, whereas POC shows
a maximum at δt ∼ 70 d (w = 45 md−1). The correlations
are generally weak for the three particle flux variables, and
the reasons for this are discussed in the next section. Over-
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all, the CC with the three catchment areas considered has
a higher score than the random catchment area zone (blue
area), confirming its relevance. However, the score appears
to be generally higher for U-NetwSST−SSH predictions, par-
ticularly for time lag values of 15< δt < 50, which is as-
sociated with the particle velocities considered in this study.
Note that, for δt > 50, we choose to continue using U-Net80

sat.
However, the associated particle sinking velocity should be
slower than the values considered here (w ≤ 80 md−1). Con-
sequently, the U-Net80

sat may not be optimally suited to this
context, which may partly explain why the correlation im-
provement is less pronounced here compared to box100 km
and box200 km. The period without 2011 and 2013 leads to a
higher global correlation score for all variables. Interestingly,
a significantly higher score with U-NetwSST−SSH is observed
for PIC at about δt = 30 d (w = 100 md−1), corresponding to
the average particle sinking velocity observed in the region.
This seems to confirm that the model improves our ability to
link surface data with deep carbon fluxes, especially for PIC
fluxes.

5 Discussion

5.1 Comparison with previous studies

There are still significant gaps in the understanding of the
PAP-SO ST fluxes, and no discernible link with the surface
ocean data (i.e. NPP) has been established (Lampitt et al.,
2023). A crucial missing piece of information that may limit
such a link is the source location of the particles, which
can vary rapidly and be located hundreds of kilometres from
the trap, depending on the local surface mesoscale dynam-
ics (Wang et al., 2022a). Conventionally, this dynamic ef-
fect has been addressed by considering a fixed zone of in-
fluence, typically represented by a 100 or 200 km box sur-
rounding the sediment trap (Lampitt et al., 2023). However,
this approach is limited in its ability to handle the spatial and
temporal variability of the source area, which can vary on a
weekly basis due to local mesoscale dynamics. The objec-
tive of this study is to examine the potential of using ma-
chine learning and surface ocean mesoscale dynamics data
to establish a more robust relationship between the deep-
ocean carbon fluxes from the PAP-SO ST and surface ocean
dynamics. This approach has the capacity to make effective
predictions, thereby improving the source area location com-
pared to a simple box. The strategy is based on a machine
learning framework described in Picard et al. (2024), where
convolutional neural networks were trained with a series of
Lagrangian experiments in a numerical simulation to pre-
dict the catchment area of a PAP-SO ST. This approach sug-
gested effective predictions using only surface data. Conse-
quently, we developed an extended version of the network,
called U-NetwSST−SSH, to identify catchment areas at PAP-
SO with remote sensing observations. The cross-correlation

methodology, based on Frigstad et al. (2015), was used to
determine the relationship between surface and deep fluxes.
Despite notable differences in methodology compared to the
Frigstad et al. (2015) study, which obtained catchment ar-
eas by using particle backtracking in a reanalysis model with
a constant sinking rate of w = 100 md−1 and computed the
cross-correlation score with the NPP during the period 2006–
2016, we found some coherence with our results. Indeed,
the observation of a correlation peak for dry weight and
PIC at δt ∼−20/30 d is in line with Frigstad et al. (2015),
who also identified a maximum correlation at PAP-SO for
dry weight at δt = 1 month. Furthermore, the POC correla-
tion peak occurred at a greater time lag (δt = 70 d), which
is also supported by Frigstad et al. (2015), who observed a
δt = 2–3 months. Nevertheless, while the results of this study
demonstrate the advantages of U-NetwSST−SSH, the correlation
signal remains weak (R2 < 0.3). This can be partly explained
by the fact that not all biological surface drivers have been
fully captured by the methodology employed. Additionally,
the U-NetwSST−SSH prediction presents limitations due to the
absence of information at depth.

5.2 Other biological surface drivers of deep-ocean
particle fluxes

A notable constraint of the study lies in the simplified repre-
sentation of the organic particles within the numerical sim-
ulation. As mentioned in Picard et al. (2024), the size of
the particles and their sinking rate vary during their descent
through the water column due to aggregation and/or disag-
gregation, grazing, and remineralisation by bacterial activ-
ity (Alldredge and Gotschalk, 1988; Berelson, 2001; Fischer
and Karakaå"u, 2009; Villa-Alfageme et al., 2016). These
processes have not been taken into account in the presented
Lagrangian experiments, and it is clear that they must be
considered in future experiments. One potential approach to
achieve this would be to use a Lagrangian framework that in-
corporates the parameters of particle biological interactions,
as proposed by Jokulsdottir and Archer (2016).

Another major limitation of this study, particularly with
respect to the cross-correlation method, is the simplified as-
sumption that the sinking particles captured by the STs are
directly derived from the chlorophyll a observed at the sur-
face. First, sinking particles do not systematically originate
from chlorophyll-a concentration footprints, a proxy for phy-
toplankton biomass. According to Nowicki (2022) and Siegel
et al. (2023), zooplankton contributes a significant fraction
of the sinking export in the region (> 50 %). In particu-
lar Lampitt et al. (2009, 2023) also propose that deep car-
bon sequestration at the PAP-SO site could be controlled
by Rhizaria, which includes two main classes, namely Ra-
diolaria (mixotrophs) and Foraminifera (heterotrophs). Fol-
lowing the occurrence of phytoplankton blooms, zooplank-
ton converts phytoplankton biomass and detritus into fae-
cal pellets, which facilitate the export and rapid sinking of
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Figure 9. Cross-correlations (CCs) computed with dry weight, particulate organic carbon (POC), and particulate inorganic carbon (PIC)
considering the period 2009–2019 (a) and the period 2009–2019 excluding the years 2011 and 2013 (b). CC is computed considering
catchment areas from box200 km (green), box100 km (black), and Dwsat (red). The Dwsat catchment areas depend on the time lag δt as delimited
by the dashed lines. The blue area represents the zone between the 90–10th-percentile CC score computed with 100 random catchment areas
from Dwsat.

POC (Steinberg and Landry, 2017). However, zooplankton
dynamics were not explicitly addressed in this study. The
CC methodology focuses on the linkage between surface
chlorophyll-a concentration and deep-ocean particle fluxes
and does not account for the contribution of the zooplankton-
mediated particle transformation of deep-ocean particle flux
(Briggs et al., 2020). Zooplankton dynamics likely introduce
an additional time lag into carbon export, which may account
for the delayed correlation peak observed for POC. Con-
versely, PIC may be more directly driven by the sinking of
phytoplankton-derived calcite incorporated into aggregates
or zooplankton-derived calcium carbonate shells which can
sink rapidly (up to 700 md−1) from the surface and may ex-
plain why the Dwsat CC score is the most optimal with this
flux (Schmidt et al., 2014). To more accurately explain the
drivers of POC pulses to the deep ocean, it would be benefi-
cial in the future to have a more comprehensive representa-
tion of zooplankton dynamics in the upper ocean. While be-

ing challenging, this topic has been addressed by recent stud-
ies in the California Current System, where the zooplankton
growth evolution and their surface 2D advection have been
accurately depicted (Messié and Chavez, 2017; Messié et al.,
2022).

A further limitation of focusing only on chlorophyll-a con-
centration is that it represents the production of phytoplank-
ton organic matter without any species information. How-
ever, numerous studies have indicated that the carbon ex-
port efficiency is linked to particle characteristics such as
the size, density, and sinking velocity, which are primarily
determined by phytoplankton communities (Henson et al.,
2012, 2015). In the future, it would be necessary to refine
our analysis by taking into account the local plankton com-
munities observed in the catchment areas to include further
information such as the sinking rate and the export ratio.
For instance, the use of OC-CCI micro-, nano-, and/or pico-
phytoplankton data (Copernicus Marine Service, daily, 4 km

https://doi.org/10.5194/bg-22-4309-2025 Biogeosciences, 22, 4309–4331, 2025



4322 T. Picard et al.: Estimating sediment trap flux using machine learning

resolution) could facilitate a more comprehensive assessment
of the impact of community composition on fluxes, thereby
improving our interpretation of the ST data. Moreover, pig-
ment signatures (anomalies in the sea colour signal) are now
beginning to be used to map the distributions of dominant
phytoplankton groups (Alvain et al., 2005, 2006; Cetinić
et al., 2024). More recently, machine learning products used
a data-driven approach to extrapolate surface plankton com-
munities (El Hourany et al., 2019) and biological properties
(Sauzède et al., 2017) in the water column from surface con-
ditions and in situ profiles (BioGeoChemical-Argo; Claustre
et al., 2020). Products now available globally and at a high
resolution (e.g. 8 d product and 4 km for El Hourany et al.,
2019, products) may support the expansion of the variables
considered in future work.

A final limitation lies in the limits of the satellite prod-
uct itself, which only provides an estimate of phytoplank-
ton chlorophyll-a concentration to a maximum depth of 10 m
(Wang et al., 2022b). However, the deep chlorophyll-a max-
imum (DCM) can differ significantly from the surface state,
particularly in oligotrophic conditions with a shallow mixed
layer, where the DCM is typically observed down to a max-
imum depth of 200 m (Mignot et al., 2014). However, this
can also be a challenge during the pre-bloom phase. The
rapid deepening of the mixed-layer depth, followed by a
rapid re-stratification (typically during a storm event), can
result in the isolation of a significant amount of carbon from
the surface (Giering et al., 2016), a phenomenon known as
the mixed-layer pump (Dall’Olmo et al., 2016). This phe-
nomenon may explain the anomalies observed in 2011 and
2013, where the peak of ST fluxes occurred before the on-
set of the chlorophyll-a bloom, resulting in a disruption in
the global CC score. Further research is therefore required to
gain a deeper understanding of the impact of these mecha-
nisms. Emerging technologies, especially BGC-Argo in situ
observations and machine-learning-based products that can
be used to estimate the carbon vertical distribution of or-
ganic carbon from satellites (Sauzède et al., 2016), are likely
to be of key interest. Some of these products (i.e. 3D fields
of particulate organic carbon, particulate backscattering co-
efficient and chlorophyll-a concentration) are already avail-
able (https://doi.org/10.48670/moi-00046, CMEMS, 2024d).
They could also provide a more comprehensive assessment
of the missing NPP obtained from a surface-only perspec-
tive.

In the future, it would be beneficial to extend the catch-
ment area reconstruction to other long-term ST observation
sites which cover different regions and systems in the global
ocean, e.g. BATS (Bates and Johnson, 2023), Station M
(Smith et al., 2018), DYFAMED (Miquel et al., 2011), and
ALOHA (Howe et al., 2011). Hence, the integration of the
aforementioned processes into the proposed machine learn-
ing methodology seems to be a relevant research avenue
to generalise beyond station-specific characteristics and to

provide a more comprehensive record of deep-ocean carbon
fluxes.

5.3 The importance of representing deep-ocean
dynamics

It is important to consider this analysis in the context of
the previous study by Picard et al. (2024), which considered
PAP-SO ST at a depth of 1000 m, with a particle sinking ve-
locity of w = 50 md−1. Despite the relatively low particle
velocities, the scores of U-Net5V−1L obtained in the afore-
mentioned study were considerably higher (85 % of valid
predictions, i.e. BL200 m > 0.3) than those observed in the
present study. It was originally hypothesised that the weak
deep-ocean dynamics at the PAP would result in the particle
sinking velocity being the primary factor influencing the pre-
diction score. However, we can hypothesise that the use of
a comparable sinking speed of 50 md−1 in this study would
result in less than 50 % of valid predictions (considering the
fact that the score decreases with lower w and that, at the
slowest sinking rate of 80 md−1, we only reached ∼ 50 % of
valid predictions with U-Net5V−1L). Hence, this study seems
to indicate that the vertical distance from the upper ocean
and the resulting influence of local deep dynamics may be
more important than initially hypothesised. Indeed, our re-
sults show that the prediction score is significantly driven by
the local deep dynamics below 1000 m (Fig. 6). As noted by
Bolton and Zanna (2019), machine learning faces challenges
in reconstructing currents below a certain depth, even in the
absence of topography, largely due to the influence of bottom
drag. These difficulties are exacerbated when topography is
present as geostrophic currents interacting with the seafloor
generate strong bottom-intensified currents that can extend
thousands of metres into the water column without leaving
a detectable surface signature (e.g. Carli et al., 2024). In ad-
dition, submesoscale coherent vortices generated on nearby
seamounts, ridges, and continental slopes (Smilenova et al.,
2020) can generate anomalous mid-water column currents,
contributing to the complexity of current structures that can-
not be captured without local measurements. As a result, the
primary limitations of U-NetwSST−SSH can be attributed to the
lack of comprehensive data on deep currents: the compari-
son between U-Net5V−1L and U-Net5V−4L outlines a poten-
tial F200 m score increase of ∼+20 % with the addition of
information at depth (Fig. 4).

Hence, the predictive capabilities of U-NetwSST−SSH could
be improved by incorporating in situ observational data into
the inputs. To achieve this, data on deep currents will need to
be provided, for example, by incorporating data from cur-
rent meters deployed at the PAP-SO ST mooring. An al-
ternative approach would be to focus on the specific sam-
pling period of the recent PAP observation campaigns, dur-
ing which in situ drifting-sediment traps were released into
the mesopelagic (i.e. during the APERO campaign, where
10 drifters were released between the surface and 1000 m
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for 5 d; the data are presented in Baker et al., 2020). How-
ever, the limited spatial resolution of the data in the region
may prove to be insufficient to achieve the desired improve-
ment in prediction score. It would be beneficial to conduct
a prior study to evaluate the sensitivity score with deep data
to determine if such data could improve U-NetwSST−SSH. If
this approach proves to be ineffective, an alternative idea
would be to consider deploying sediment traps at shallower
water depths but deeper than 1000 m. Previously, STs have
been deployed at the PAP-SO site at 1000 m, but the mea-
surements are more susceptible to under-collection due to
hydrodynamic biases associated with conical STs, as high-
lighted in previous studies (Buesseler et al., 2007; Baker
et al., 2020). It is also possible to consider the deployment of
sediment traps in a region where the deep dynamics are even
weaker and unaffected by the nearby topography, which is
typically the source of deep eddies and instabilities (Smilen-
ova et al., 2020). A numerical simulation such as the one used
here can be used to identify the weakest dynamical regions,
where particle pathways below the mesopelagic layer are un-
likely to be affected. Nevertheless, 3D numerical simulation
remains one of the most effective methods for studying deep-
ocean dynamics, and further efforts are required to validate
the accuracy of simulations of deep-ocean currents. In addi-
tion, given that SSH is the main driver of the network score
(see Fig. 3), we hypothesise that the network relies predomi-
nantly on geostrophic currents to perform its prediction. Con-
sequently, it would be worthwhile to compare the efficiency
of the model in regions with varying degrees of geostrophic-
current dominance.

Finally, questions remain about the uncertainties associ-
ated with the Lagrangian method. It is clear that the uncer-
tainty associated with the Lagrangian method has a direct
impact on the predictions since the network is trained di-
rectly with the backtracked particles. Although sensitivity
tests have been carried out (changing the number of parti-
cles and the size of the released patch) to ensure that the
particle sources are not affected, some diffusion processes
are not represented in the numerical simulation and, conse-
quently, in the propagation of the particles. To evaluate po-
tential biases, it would be necessary in the future to adopt
a stochastic approach (Mínguez et al., 2012), where random
noise is introduced into the particle trajectories to account for
subgrid-scale diffusion processes. These processes have the
potential to influence the results of the Lagrangian analysis
(see Appendix D for an example). Consequently, the diffu-
sion parameterisation should be carefully defined, taking into
account local dynamics. This approach would facilitate the
establishment of a confidence interval for the source areas.

6 Conclusions

This study presents a novel machine learning tool, named
U-NetSST−SSH, which is capable of predicting the catchment
area of particles trapped at the PAP-SO station ST moored at
3000 m depth, based solely on remote sensing data, namely
SST and SSH. The study considers five sinking velocities,
ranging from 80 to 300 md−1. The results of our method are
compared with the direct use of a 100–200 km box around the
trap location, representing the conventional approach of us-
ing catchment area. The results show that the prediction score
increases with w, and, while the 100–200 km boxes predict
only 20 %–30 % of the particle catchment area (w = 80–
300 md−1), the U-NetSST−SSH predictions enhance this score
to 40 %–60 %. We applied U-NetSST−SSH to real satellite ob-
servations at PAP-SO, resulting in the generation of a 20-year
catchment area dataset available at a 10 d resolution. The
dataset demonstrated a stronger correlation – and, therefore,
connection – between the deep-ocean particle fluxes mea-
sured at PAP-SO and surface chlorophyll-a concentration
compared to the traditional catchment area method. The pres-
ence of deep-ocean energetic dynamics that are uncorrelated
with the surface appears to be the main reason for the in-
valid predictions. Future improvements to the U-NetSST−SSH
method would entail a more comprehensive consideration of
these deep currents. Ultimately, the improved identification
of the surface catchment area of particles collected in deep-
ocean sediment traps would facilitate the identification of the
surface drivers of deep-ocean carbon sequestration, thereby
improving our understanding of the biological carbon pump.
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Appendix A: Statistical comparison between predictions
with satellite and simulation database

Figure A1. Comparison of U-NetSST−SSH inputs (SST and SSH distribution) from the satellite data (in black) and from the training dataset
from the CROCO numerical simulation (in red).

Figure A2. Statistical comparison of the catchment area PDF’s mass centre and entropy between predictions with numerical simulation
inputs Dwsimu (red) and predictions with satellite inputs Dwsat (blue) for different vertical sinking velocities w. The boxplot represents the first
and the third quartiles.
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Appendix B: Dynamics profile at the PAP-SO station

Figure B1. Profiles of the average kinetic energy KE, absolute verti-
cal velocities |w|, and vorticity standard deviation (SD) (ζ ) between
the surface and 3000 m depth. The profiles are spatially averaged in
an 80 km box around the PAP-SO station and temporally averaged
during the 8 years in the POLGYR numerical simulation.

Appendix C: Methodology for the cross-correlation
calculation

We associate each measurement taken at the PAP-SO ST at
a middle time t (in days) and between tstart and tend with a
corresponding surface chlorophyll-a product depending on
(i) the collection period cp= tend− tstart and (ii) a time lag
δt which represents the time of the particle’s travelling from
the euphotic zone to the ST depth. Since this travelling time
depends on particle sinking speed, we decide to assign a time
lag range corresponding to each of the velocities considered
in this study (Table 1). As a result, the final PDF prediction

area for the time tl= t−δt , calledDw(tl)sat (tl), will also depend
on tstart and tend:

D
w(δt )
sat (tl)=

〈
D
w(δt )
sat

〉tlstart

tlend
, (C1)

where 〈.〉tlstart
tlend

is the average of all of the predicted catch-
ment areas between the time tlstart = tstart− δt and the time
tlend = tend− δt .

Similarly, we compute a chlorophyll-a background based
on a level-3 daily product from Atlantic Ocean Colour Global
Ocean Colour Plankton and Reflectances MY L3 daily ob-
servations (OCEANCOLOUR GLO BGC L3 MY 009 107).
The ocean colour images have been also interpolated over
the CROCO grid using linear interpolation. The associated
weighted averaged surface chlorophyll-a background Chl(tl)
is computed such as follows:

Chl(tl)= 〈Chl〉tlstart−5
tlend+5 . (C2)

To avoid important cloud coverage, particularly during
short collection times, we consider 10 additional days during
the averaging process (5 d before tlstart and 5 d after tlend). Fi-
nally, we compute the average chlorophyll a inside the catch-
ment area PDF predicted for time tl:

ChlD(tl)= Chl(tl)×Dw(δt )sat (tl). (C3)

The comparison is made by computing the average chloro-
phyll a inside the reference catchment area boxes box100 km
and box200 km as follows:

Chlbox200(tl)= Chl(tl) · box200 km, (C4)

Chlbox100(tl)= Chl(tl) · box100 km. (C5)

Appendix D: The impact of the diffusion process on
Lagrangian experiments

To illustrate the effects of subgrid-scale diffusion processes
on particle trajectories, we have implemented a simplified
Markov model (Berloff and McWilliams, 2003) of order 0.
The computation of the particle trajectory xn can thus be de-
scribed as follows:

xn+1 = xn+1t · u(xn, tn)+R
√
(2 ·Kdiff ·1t). (D1)

Here, the u function is employed to compute the advection
of the particles. The final term is related to the stochastic im-
plementation, where R=N (0,1) denotes a random number
selected according to a normal distribution, Kdiff represents
the diffusivity coefficient, and1t is the online step time set to
120 s. The following illustrative examples demonstrate how
the catchment area can be affected by adding a constant dif-
fusivity term. The examples present a period of unfavourable
conditions in winter, characterised by chaotic flows. We fo-
cus on the catchment area PDF observed for two distinct
values of Kdiff = 0.1 m2 s−1 (Fig. D1) and Kdiff = 1 m2 s−1

(Fig. D2), which correspond roughly to horizontal diffusiv-
ities associated with internal waves and submesoscale pro-
cesses at scales of 0.1–10 km (Garrett, 1983; Ledwell et al.,
1998; Nencioli et al., 2013). For each value of Kdiff, 10 La-
grangian experiments have been conducted, and an averaged
PDF of these experiments has been computed and compared
with the Gaussian-filtered PDF that has been used in this
study.
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Figure D1. First row: four examples of PDF with Kdiff = 0.1 m2 s−1. Second row, from left to right: PDF for the same period with Kdiff =
0 m2 s−1, PDF with Kdiff = 0 m2 s−1 after Gaussian filter, average of 10 PDFs with Kdiff = 0.1 m2 s−1, and absolute error between the two
previous PDFs.

Figure D2. First row: four examples of PDF with Kdiff = 1 m2 s−1. Second row, from left to right: PDF for the same period with Kdiff =
0 m2 s−1, PDF with Kdiff = 0 m2 s−1 after Gaussian filter, average of 10 PDFs with Kdiff = 1 m2 s−1, and absolute error between the two
previous PDFs.
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As demonstrated by the example, when Kdiff is set to 0.1,
the high-density areas of the averaged PDF appear to be
included in the Gaussian-filtered PDF (Fig. D1). However,
when increasing the Kdiff to 1, the averaged PDF is dis-
tributed over a larger domain, and new potential source areas
outside the Gaussian-filtered PDF can be revealed (see the
new particle patch in the top right of Fig. D2).
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