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Abstract. Spatial heterogeneity in terrestrial ecosystems
compromises the accuracy of eddy covariance measure-
ments. Examples of heterogeneous ecosystems are temper-
ate agroforestry systems, which have been poorly studied by
eddy covariance. Agroforestry systems have been getting in-
creasing attention due to their potential environmental ben-
efits, e.g. a higher carbon sequestration, improved microcli-
mate and erosion reduction compared to open-cropland agri-
cultural systems. Lower-cost eddy covariance setups might
offer an opportunity to better capture spatial heterogeneity
by allowing for more spatial replicates of flux towers. The
aim of this study was to quantify the spatial variability of
carbon dioxide (F C), latent heat (L E) and sensible heat (H)
fluxes above a heterogeneous agroforestry system in north-
ern Germany using a distributed network of three lower-
cost eddy covariance setups across the agroforestry system.
Fluxes from the three towers in the agroforestry were fur-
ther compared to fluxes from an adjacent open-cropland site.
The campaign took place from March 2023 until Septem-
ber 2024. The results indicated that the spatial variability
of fluxes was largest for FC, attributed to the effect of
different crops (rapeseed, corn and barley) within the flux
footprints contributing to the measured fluxes. Differences
between fluxes across towers were enhanced after harvest

events. However, the temporal variability due to the sea-
sonality and diurnal cycles during the campaign was larger
than the spatial variability across the three towers. When
comparing fluxes between the agroforestry and the open-
cropland systems, weekly sums of carbon and evapotranspi-
ration fluxes followed similar seasonality, with peak values
of =50 gC m~2 week ! and 40 mm week ! during the grow-
ing season, respectively. The variation of the magnitude de-
pended on the phenology of the different crops. The effect
size, which is an indicator of the representativeness of the
fluxes across the distributed network of three eddy covari-
ance towers compared to only one, showed, in conjunction
with the other results, that the spatial heterogeneity across
the agroforestry was better captured by the network of three
stations. This supports previous findings that spatial hetero-
geneity should be taken into account in eddy covariance stud-
ies and that lower-cost setups may offer the opportunity to
bridge this gap and improve the accuracy of eddy covariance
measurements above heterogeneous ecosystems.
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1 Introduction

The eddy covariance (EC) technique is the central ap-
proach to measuring the exchange of energy, trace gases
and momentum between terrestrial ecosystems and the at-
mosphere (Baldocchi, 2014). The EC technique was estab-
lished as a standard method within the scientific commu-
nity when rapid-response instruments, capable of measur-
ing wind speed, temperature and gas concentrations over
the major frequency ranges of the turbulent energy spec-
trum, became commercially available (Aubinet et al., 2012;
Wohlfahrt et al., 2009). These instruments provided the capa-
bility to measure the exchange of energy and matter between
the land surface and the atmosphere, driven by eddies of di-
verse sizes and frequencies (Kaimal and Finnigan, 1994).

At a majority of flux sites, a single EC station is installed
(Hill et al., 2017), and measurements are made based on the
ergodic hypothesis. The ergodic hypothesis states that covari-
ances (fluxes) calculated over the time domain are equivalent
to covariances calculated over the spatial domain (Higgins
et al., 2013). The measured turbulent fluxes and carbon and
water balances, when integrated over a defined time interval,
are representative of the tower footprint area corresponding
to the averaging interval (Vesala et al., 2008). This is true
for homogeneous sites where the spatial representativeness
of fluxes within the ecosystem of interest is guaranteed with
a high degree of confidence (Hurlbert, 1984). However, these
conditions of homogeneity are often not met in many ecolog-
ically and socioeconomically interesting sites, such as mixed
forests, wetlands, urban forest interfaces or small-scale farm-
lands (Finnigan et al., 2003; Hill et al., 2017).

Agroforestry (AF) systems are an example of heteroge-
neous agroecosystems. They combine trees and crops on
the same agricultural land in order to benefit from the pres-
ence of trees on the land (Veldkamp et al., 2023; Kay et al.,
2019). These systems offer several benefits, including the po-
tential to prevent wind erosion over crops (van Ramshorst
et al., 2022; Bohm et al., 2014), improve soil fertility (Kan-
zler et al., 2021) or reduce water loss through evaporation
in crops (Kanzler et al., 2019). Short-rotation alley-cropping
systems, a type of agroforestry, represent an alternative land
use practice with the potential to increase carbon sequestra-
tion and improve water use efficiency (WUE) in compari-
son to conventional open-cropland (OC) agriculture (Mark-
witz et al., 2020; Veldkamp et al., 2023). These AF systems
consist of alternating rows of trees and crops. The trees em-
ployed in these systems are typically fast-growing species,
such as poplar (Populus) or willow (Salix), and are harvested
in cycles of 5-6 years for biomass production. Crops are cul-
tivated in an annual rotation.

In general, heterogeneity poses a challenge for EC mea-
surements and, in a broader context, for any type of mea-
surement across the atmospheric boundary layer (Bou-Zeid
et al., 2020). Heterogeneity in surface properties induces hor-
izontal advection, secondary mesoscale circulations and non-
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equilibrium turbulence processes, which occur near to and
downstream of changes in the surface properties (Bou-Zeid
et al., 2020). As shown by previous studies over heteroge-
neous sites, such as pine forest (Katul et al., 1999; Oren
et al., 2006) or managed grassland (Peltola et al., 2015), spa-
tial heterogeneity induced relevant spatial variability in the
EC measured fluxes. According to the classification of Bou-
Zeid et al. (2020), the heterogeneity of these AF systems can
be classified as unstructured heterogeneity (see their Fig. 1)
because the site consists of a certain number of interleaved
trees and crop strips, but it is small enough that the AF site
might be affected by other elements in the surrounding land-
scape. Upon changes in surface properties (like roughness or
moisture), the mean wind field and the turbulence adjust to
the new surface, with more complex effects on the flow when
multiple changes in the surface properties co-occur, as is the
case with the AF (Bou-Zeid et al., 2020).

The location of the EC station within a land use system
has been demonstrated to potentially introduce a bias into
the measured fluxes (Chen et al., 2011), indicating that a
single EC station may not be sufficient to properly account
for the spatial variability of fluxes induced by landscape het-
erogeneity (Katul et al., 1999). The high cost and labour in-
tensity of deploying an EC station are the main reasons for
the lack of spatial replicates of EC measurements in many
studies (Hill et al., 2017). The infrared gas analyser (IRGA),
the crucial component to measure trace gases, typically ac-
counts for a large proportion of the total installation costs
associated with an EC station. Lower-cost EC (LC-EC) se-
tups represent a potential solution to the spatial replication
problem of EC measurements as several EC stations could be
deployed for the cost of a single conventional station. LC-EC
employs a more economical infrared gas analyser and a sonic
anemometer, though these instruments necessitate more rig-
orous post-processing corrections. Notably, previous studies
have demonstrated that LC-EC setups can yield comparable
results to those of conventional EC (CON-EC) setups. Hill
et al. (2017) compared a custom-built LC-EC setup for CO,
and H>O measurements with a CON-EC, with very good
agreement in terms of CO;, and H;O fluxes. In addition, a
different LC-EC setup for H,O flux measurements was com-
pared with a conventional setup (Markwitz and Siebicke,
2019), resulting in good agreement in terms of H,O fluxes.
Furthermore, another version of the LC-EC setup deployed
in Hill et al. (2017) was extensively validated in the stud-
ies of Callejas-Rodelas et al. (2024) and van Ramshorst et al.
(2024), with very good agreement in terms of CO, fluxes and
good agreement in terms of H,O fluxes.

The LC-EC setups can allow for a higher degree of spatial
replication of EC and support conventional EC setups. In ad-
dition, they provide a powerful tool for the verification of car-
bon and water balances in the agricultural and forestry sec-
tors in developing carbon credit markets (Trouwloon et al.,
2023) or for an improved water management. However, the
increased uncertainty associated with these setups must be
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taken into account when calculating balances of energy, car-
bon or other variables and when comparing different land
uses. One of the main differences between LC-EC and CON-
EC setups is the spectral response of the sensors. The LC-
EC setups used in the Callejas-Rodelas et al. (2024), Cun-
liffe et al. (2022), Hill et al. (2017) and van Ramshorst et al.
(2024) studies were characterized by a slower-frequency re-
sponse in CO, and H;O measurements, which induces a
higher spectral attenuation in the high-frequency range of
the turbulent energy spectrum, compared to CON-EC. The
higher attenuation introduces a greater degree of uncertainty
when applying spectral corrections, as observed by Ibrom
et al. (2007) and Mammarella et al. (2009), among others.

The impact of landscape heterogeneity within an AF sys-
tem on turbulence, latent heat flux (L E), sensible heat flux
(H) and carbon dioxide flux (FC) remains to be exam-
ined. Markwitz and Siebicke (2019) and Markwitz et al.
(2020) conducted evapotranspiration (ET) measurements
across multiple AF and OC systems in northern Germany;
however, their measurements were not replicated within a
single site. In contrast, in the study of Cunliffe et al. (2022), a
total of eight LC-EC setups were deployed at different loca-
tions across a landscape of ecological interest (Cunliffe et al.,
2022). The objective of this study was to capture the het-
erogeneity of F'C and ET across a semiarid ecosystem, with
low magnitudes of both FC and ET. Replicated EC mea-
surements in heterogeneous agroforestry systems are so far
lacking.

In the present study, a network of three LC-EC setups
was deployed, analogous to those utilized in the studies of
Callejas-Rodelas et al. (2024), Cunliffe et al. (2022) and van
Ramshorst et al. (2024), above an AF site, and one additional
LC-EC setup was deployed above an adjacent OC site in
northern Germany. To the best of our knowledge, this was
the first time a distributed network of EC towers has been
installed above a temperate agroforestry system. With 1 and
a half years of concomitant flux data from the four EC se-
tups, the objective was to quantify the spatial and temporal
variability of F'C and LE, as well as the statistical effect of
the increased spatial replication of EC measurements above
a heterogeneous site. According to Hill et al. (2017), it is
possible to estimate the sampling variability and total uncer-
tainty for an ecosystem with independent spatial replication
of EC measurements. This allows for the estimation of the
effect size (see Sect. 2). The present study tested the hy-
pothesis that the increased uncertainty inherent to the use of
slower-frequency response sensors in EC measurements can
be counteracted by the improvement of the spatial replication
of EC, which increases its statistical robustness. The objec-
tives of this study were threefold: (i) to quantify the spatial
and temporal variability of turbulent fluxes and parameters
above AF; (ii) to calculate the effect size of the experimental
site at the daily scale, following Hill et al. (2017); and (iii) to
compare the ecological functioning of the AF to that of the
OC in terms of FC and ET balances.
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2 Methods
2.1 Site description

The measurements were conducted from 1 March 2023 to
19 September 2024 at an agroforestry system located in
Wendhausen (Lehre), Lower Saxony, Germany (52.63°N,
10.63° E). The elevation above sea level is 80 m. The field is
divided into two distinct systems: an AF system (17.3 ha) in
the north and an OC system (8.5 ha) in the south (see Fig. 1).
The crops cultivated within both systems kept a similar dis-
tribution from west to east. In 2023, rapeseed was cultivated
on the western side, barley was cultivated on the eastern side,
and corn was cultivated in the centre (Fig. 1a). In 2024, rape-
seed was cultivated on the eastern side, barley was cultivated
in the centre, and corn was cultivated on the western side
(Fig. 1b). The management of the crops was similar at both
the AF and OC sites, and crops were fertilized. The mean
long-term annual precipitation is 617 mm, and the mean an-
nual air temperature is 9.9 °C for the reference period 1981—
2010 at Braunschweig Airport (DWD, 2024). The soil at both
the AF and OC sites was classified as a clay Cambisol, with
a soil organic carbon (SOC) content of 5.8kgCm™2 at the
OC site and 6.75kg Cm~2 at the AF site. Additionally, the
soil bulk density was determined to be 1.0 gcm™ at both the
AF and OC sites (Veldkamp et al., 2023). Soil characteristics
were last measured in 2019.

The harvest of rapeseed, barley and corn in the 2023 cam-
paign season occurred on 13 July, 22 August and 26 Septem-
ber, respectively. The harvest of rapeseed, barley and corn
in the campaign of 2024 took place on 15 July, 5 August
and 13 September, respectively. In 2024, rapeseed did not
grow well, and a mulch cut was carried out; therefore, the
eastern part of the field was covered by a combination of
grasses, bare soil and mulch. Canopy height was estimated
from pictures taken during field visits. The maximum height
attained by the crops at the peak of their development stage
was around 1.5 m for rapeseed, 2.5 m for corn and 1.3 m for
barley. The trees present at the AF system are fast-growing
poplar (Populus nigra and Populus maximowiczii) and are
typically harvested every 4 to 5 years. The most recent tree
harvest occurred in 2019. Trees grew from around 4.0 m till
5.5 m on average across the measurement period.

2.2 Experimental setup

Measurements were made at four EC stations, one located
at the OC site and three located at the AF site (Fig. 1). The
stations are designated as OC, AF1, AF2 and AF3. Each sta-
tion was equipped with a complete set of meteorological sen-
sors and an LC-EC setup (see Table 1 in Callejas-Rodelas
et al., 2024). The measured meteorological variables were
air temperature (TA), relative humidity (RH), atmospheric
pressure (PA), precipitation (P), global radiation (SW_IN),
outgoing shortwave (SW_OUT) and longwave (LW_OUT)
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Figure 1. Satellite view and land cover classification of the experimental site for 2023 (a) and 2024 (b), together with the location of the
EC stations (blue diamond for EC-AF1, orange diamond for EC-AF2, black diamond for EC-AF3 and black circle for EC-OC). The area
bordered by red corresponds to the AF system, and the area bordered by blue corresponds to the OC system. Figure created with QGIS v.

3.22; aerial map by Google Satellite Maps. © Google Earth 2024.

radiation, and net radiation (NETRAD). The EC measure-
ment heights were 10 m above ground for AF1, AF2 and AF3
and 3.5 m for OC. Only one photosynthetic active radiation
(PPFD_IN) sensor was installed at AF1, and two barome-
ters for atmospheric pressure measurements were installed at
AF1 and AF2. All the stations were equipped with two soil
heat flux plates to measure soil heat flux (G) at 5cm depth.
Only one soil heat flux plate was installed at AF3. Radiation
sensors were placed in a beam facing south at 9.5 m height
at AF1, AF2 and AF3 and at 3 m height at OC. TA and RH
measurements were taken at 2 m height at all stations. P was
measured at 1 (AF1, OC) or 1.5m (AF2, AF3) height. Me-
teorological data were recorded on CR1000X data loggers
(Campbell Scientific Inc., Logan, UT, USA).

The LC-EC setups consisted of a three-dimensional
sonic anemometer for wind measurements (uSonic3-Omni,
METEK GmbH, Elmshorn, Germany) and a gas analyser en-
closure. The enclosure consisted of an IRGA for CO; mo-
lar density measurements (GMP343, Vaisala Oyj, Helsinki,
Finland) and a RH capacitance cell for RH measurements
(HIH-4000, Honeywell International Inc., Charlotte, North
Carolina, USA) and was installed at the bottom of the tower.
Air was drawn through a 9 m tube at the AF stations and a
2.5 m tube at the OC station. Two temperature sensors were
installed, one inside the IRGA measuring cell and one inside
the enclosure, along with two pressure sensors, one to mea-
sure differential pressure inside the enclosure and another to
measure absolute pressure inside the IRGA measuring cell.
Measurements from all components were recorded at 2 Hz
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frequency on a CR6 data logger (Campbell Scientific Inc.,
Logan, UT, USA). A more detailed description of the setup
can be found in Callejas-Rodelas et al. (2024).

The GMP343 sensors were calibrated in February 2023
and February 2024. Frequent inspections were performed
to clean the tubing, replace filters, measure flow rate and
clean the lens of the GMP343. The nominal flow rate was
5.0Lmin~! at all AF stations, with some drops due to filter
clogging.

During the study period, there were generally large per-
centages of missing data. Missing data were either short gaps
(a few 30min periods or a few hours) caused by data fil-
tering during the quality control after flux processing (see
Sect. 2.3.3) or longer gaps (hours to a few days) due to power
outages during the winter, mostly at night, at all stations. Due
to other technical problems, there were few larger gaps at
some stations, particularly a gap of 3 months from mid-July
to early October 2023 at AF3, for FC and LE.

Although generally recommended in EC studies (Aubinet
et al., 2012), no storage terms were considered in the calcu-
lation of FC and L E because no concentration profiles were
installed at the stations.

2.3 Flux computation
2.3.1 Pre-processing

Data processing prior to flux calculation included (i) the cal-
culation of CO;, dry mole fraction measurements from the

https://doi.org/10.5194/bg-22-4507-2025
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CO; molar density provided by default by the instrument us-
ing some sensor-specific parameters and the observed values
of pressure and relative humidity in the measurement system
(Callejas-Rodelas et al., 2024) and (ii) the calculation of the
H;0 dry mole fraction from relative humidity, temperature
and pressure measurements inside the measurement cell us-
ing the derivation of Markwitz and Siebicke (2019). More
details on the pre-processing steps are given in Callejas-
Rodelas et al. (2024) and van Ramshorst et al. (2024).

2.3.2 Flux processing

H, LE, FC and momentum flux were calculated using the
EddyUH software (Mammarella et al., 2016) in its MATLAB
version (MATLAB®R2023a, The Mathworks, Inc., Natick,
MA, USA). Raw data were de-spiked using limits for ab-
solute differences between consecutive values. Detrending
was performed by block averaging. Wind coordinates were
binned into eight sectors of 45° each and rotated according to
the planar fit correction procedure of Wilczak et al. (2001),
following the default recommendation by ICOS (Sabbatini
et al., 2018). Time lag optimization was performed through
cross-covariance maximization, using predefined windows
of 2to 10 s for CO, and 2 to 20 s for H,O (Callejas-Rodelas
et al., 2024). Low-frequency losses were corrected following
Rannik and Vesala (1999), and high-frequency losses were
corrected following Mammarella et al. (2009). The latter is
based on determining the time response of CO; and H,O
separately, calculated from the measured co-spectra. In the
case of CO», the time response determined by the experi-
mental method was similar to the nominal time response of
1.36s calculated in Hill et al. (2017) for the GMP343. This
time response was used for all flux calculations for all four
of the towers. In the case of H,O, the time response was esti-
mated by a exponential fit as a function of relative humidity.
Data quality was flagged from 1 to 9 following Foken et al.
(2005).

2.3.3 Filtering and gap filling

Fluxes were filtered using data with quality flags <7 to
avoid periods with poorly developed turbulence (Foken et al.,
2005). Outliers were removed using a running median ab-
solute deviation (MAD) filter, based on the approach by
Mauder et al. (2013), with a window of 2 weeks. The g
parameter in Eq. (1) of the paper by Mauder et al. (2013)
was set as 7.5. The MAD filter was iterated three times
over each time series. Hard upper and lower limits were ap-
plied afterwards to remove additional outliers not detected
by the MAD filter. Values outside the ranges from —100 to
700 W m—2 for H, from —20 to 700 W m~2 for L E and from
—50 to 50 umol m~2 s~! for FC were discarded. Additional
hard limits were applied specifically to winter (November to
February) and transition periods (March and October) sep-
arately. The aim was to avoid outliers that went through
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the previous filters which might bias the application of the
gap-filling algorithms. For LE and H, these limits were
50 W m~2 during winter and 100 W m~2 in March and Oc-
tober. For the FC, these limits were (in absolute values)
+ 10umolm~2s~! during winter and & 15umolm=2s~!
in March and October. Finally, a friction velocity (USTAR,
ms~!) filter was applied to remove periods with non-existent
or weak turbulence. The filter of USTAR was applied us-
ing REddyProc (Wutzler et al., 2018), which removed values
based on a USTAR threshold calculated as the maximum of
the seasonally derived USTAR values. These seasonal values
were calculated based on Papale et al. (2006). The average
USTAR thresholds for the stations were 0.21, 0.21, 0.18 and
0.16ms™! for AF1, AF2, AF3 and OC, respectively.

Before filtering, the total available data accounted for
63.4 % (AF1), 80.0 % (AF2), 76.2 % (AF3) and 61.5 % (OC)
for FC and LE and 85.7% (AF1), 86.0% (AF2), 83.1%
(AF3) and 75.9% (OC) for H relative to the duration of
the entire measurement campaign. These gaps occurred due
to instrumental or power failure. After filtering, the avail-
able data accounted for 39.3 % (AF1), 49.2 % (AF2), 35.7 %
(AF3) and 33.8% (OC) for FC; 42.0% (AF1), 53.6%
(AF2), 36.4 % (AF3) and 38.7 % (OC) for LE; and 61.5 %
(AF1), 61.4 % (AF2), 56.7 % (AF3) and 52.8 % (OC) for H.

Meteorological data were gap-filled at the 30min
timescale to provide complete time series of the predictor
variables for flux gap-filling. The procedure differed slightly
for the different variables of interest. Short gaps of up to 1h
were filled using linear interpolation, except for P. Missing
data at the AF1 station, when available at the OC station,
were filled using linear regression models with the OC data
as predictors and vice versa. Missing data at AF2 and AF3
that were available at AF1 were filled using a similar proce-
dure, with AF1 as the reference. Finally, P, TA, RH, vapour
pressure deficit (VPD), SW_IN, wind speed (WS) and wind
direction (WD) were filled at the stations using ERAS-Land
re-analysis data (Mufoz-Sabater et al., 2021) as predictors,
following the approach implemented in Vuichard and Papale
(2015). Linearly reduced major axis regression models were
derived from the ERA5-Land data and the station data using
the library pylr2 in Python. The coefficients (slope and in-
tercept) from the linear models were then used to calculate
the missing values. PPFD_IN was filled based on global ra-
diation (SW_IN) by multiplying SW_IN by the average ratio
between PPFD_IN and SW_IN for the available periods at
the site. P was filled by multiplying the ERAS5-Land data by
the ratio between the station data and the re-analysis data, as
in Vuichard and Papale (2015). Any inaccuracies resulting
from this replacement did not introduce additional bias into
the gap-filled flux time series because precipitation was not
used for gap-filling. A quality flag was developed for the me-
teorological data: O indicates measured data, 1 indicates in-
terpolated data, 2 indicates data filled using a nearby station
as a reference, and 3 indicates data filled using ERA5-Land
as a reference.

Biogeosciences, 22, 4507-4529, 2025
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Table 1. Root mean squared error (RMSE) of modelled and mea-
sured data for FC, LE and H for the four stations used in this
study.

AF1 AF2 AF3 OC

FC umolm—2s~1) 31 32 34 32
LE (Wm™2) 242 250 202 265
H(Wm2) 147 135 132 144

Gaps in the flux time series were filled using a double-step
procedure, analogous to the approach applied in Winck et al.
(2023). Short gaps were filled using the marginal distribu-
tion sampling method (Reichstein et al., 2005) with the on-
line version of the REddyProc package (Wutzler et al., 2018).
Short gaps were considered by taking the filled data with
quality flags of 0 (original measured data) or 1 (highly re-
liable filled data). Subsequently, the remaining gaps (flagged
with 2 or 3 in REddyProc) were filled using a machine learn-
ing (ML) tool based on the Extreme Gradient Boosting (XG-
Boost) algorithm (Chen and Guestrin, 2016). The code was
adapted from Vekuri et al. (2023) to include H, LE and
F C. The predictor variables of the model were the previously
filled TA, VPD, SW_IN, WS and WD. The inclusion of WD
followed the recommendation of Richardson et al. (2006) to
account for site heterogeneity as different land covers de-
pending on wind sectors can contribute to flux variability. A
quality flag was developed for the flux variables: 0 for mea-
sured data, 1 for data filled with REddyProc, and 2 for data
filled with XGBoost. There were two very long gaps, one
for AF3 during summer 2023 (mid-July until beginning of
October) and another for AF1 during winter 2023-2024 (be-
ginning of December 2023 until beginning of March 2024),
besides gaps with durations of a few days. Such long gaps
would introduce significant uncertainty into any gap-filling
method, and so the analysis only considered measured and
gap-filled data for gaps not exceeding durations of 2 weeks.

The evaluation of the gap-filled fluxes with XGBoost was
performed by splitting the initial dataset into 80 % training
data and 20 % test data. The root mean squared error (RMSE)
between modelled and measured data, for the test dataset,
was taken as the error in the individual 30 min flux value (Ta-
ble 1).

2.3.4 Footprint calculation

A footprint climatology was calculated for all stations for five
different periods considered in the study: (i) growing season
2023, from March to 13 July 2023, with the latter being the
harvest date of rapeseed; (ii) harvest period 2023, from 13
July to 22 September 2023, with the latter being the har-
vest date of corn; (iii) winter 2023-2024, from 22 Septem-
ber 2023 to 1 March 2024; (iv) growing season 2024, from
1 March to 15 July 2024, with the latter being the harvest
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date of the rapeseed; and (v) harvest period 2024, from 15
July to 19 September 2024. The footprint climatology was
calculated using the Python version of the model by Kljun
et al. (2015).

The input data for the footprint model included non gap-
filled wind data (WS, m s~ WD, ©), roughness length (zo,
m), USTAR, Obukhov length (L, m), the standard deviation
of lateral wind speed (V_SIGMA, ms_l), boundary layer
height (BLH, obtained from ERAS, Hersbach et al., 2023),
measurement height (zm, m) and displacement height (dy,
m). Daytime and nighttime values were used for the footprint
modelling. zo and d were estimated from the aerodynamic
canopy height (h,, m), which was calculated under near-
neutral conditions (stability parameter |(z —d)/L| < 0.1) us-
ing the procedure described by Chu et al. (2018). Complete
time series of h, were estimated by calculating the running
mean of &, for eight different wind sectors of 45° each using
a running mean of 100 30 min intervals. This procedure is
described in more detail in van Ramshorst et al. (2025). This
procedure allowed for a more comprehensive representation
of the effects of a varying canopy roughness and is therefore
more precise than using a single value to represent the av-
erage canopy height for the entire site at each time step. dy
and zp were calculated as 0.6 and 0.1 times the aerodynamic
canopy height, respectively, following Chu et al. (2018). The
mean values of dy, were 3.1 m at the AF site and 0.6 m at the
OC site, while the mean values of zg were 0.5 at the AF site
and 0.1 m at the OC site. A thorough discussion about the
footprint model uncertainties can be found in Sect. 4.4.

2.4 Spatial and temporal variability of fluxes and
turbulence parameters and effect size

To disentangle the spatial and temporal variability of fluxes
and turbulence parameters across the site, the data were clas-
sified in two ways. First, the data were aggregated into wind
sectors of 45° each, similarly to the sectors used for the pla-
nar fit division (see Sect. 2.3), and separated into five time
periods as described in the previous paragraph. Second, the
data were grouped into 1-week periods throughout the entire
measurement campaign without division into wind sectors.
For each classification, coefficients of spatial variation (CVs)
were calculated, and the variance was partitioned into tem-
poral and spatial components. In this analysis, we used only
measured data filtered according to the previously described
criteria and not gap-filled data.

The CVs were defined as
_ 203
v, — [< [x (1) — X (1)] >z] W
X(1)

based on Katul et al. (1999) and Oren et al. (2006). X is the
spatial average of variable x across the three towers at the
AF site for the respective averaging time interval. Angular
brackets (<>) denote the spatial averaging operator, and the
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overbar denotes the temporal average across all of the in-
dividual time steps ¢. This formula was applied to H, LE
and FC and to the standard deviation of the vertical wind
velocity (W_SIGMA, ms~!), USTAR and WS. The coef-
ficients of variation are dimensionless, normalized by the
spatial average of variable x, such that they can be com-
pared between different variables. Lower limits were set for
some of the variables in order to avoid biasing the coeffi-
cients of variation by some very low fluxes in the denomina-
tor of Eq. (1). These limits were 10Wm~2 for H and LE,
42 pmol m~2s~! for FC, and 0.5ms~! for WS.

The partitioning of the variance into temporal and spatial
components was done as presented in Peltola et al. (2015)
(Eq. 2 therein) based on Sun et al. (2010):

5 m(n—l)—2 n(m —

b 2 2 2
ot =" 1% m.n_lfft(«f)=ds+0t, 2

with m being the number of temporal data points, # being the
number of measurement locations, o2 being the time average
of the spatial variance, and 0t2 (&) being the temporal variance
of the time series of spatial averages &. Consequently, the
first term on the right-hand side of the equation is equivalent
to the spatial variance (crsz), which also includes the instru-
mental variance, while the second term is equivalent to the
temporal variance (o*tz) (Peltola et al., 2015).

Furthermore, the effect size (d) was calculated in order to
assess the statistical robustness of our distributed network,
in accordance with the hypothesis of Hill et al. (2017) that
the enhanced error observed in LC-EC setups can be coun-
teracted by an improved statistical representativeness of the
measurements, provided that the effect size is sufficiently
large. In our case, with the three-tower network, we calcu-
lated d across the three towers inside the AF site and be-
tween the AF and the OC sites. d was calculated, following
Hill et al. (2017), as

d=|¥|, 3)

where f] is the flux from ecosystem 1, f> is the flux from
ecosystem 2, and o is the pooled standard deviation of data
from both ecosystems. We used daily cumulative sums of
gap-filled F'C and LE. The value f; in Eq. (3) refers to the
daily cumulative sums of FC (ng’2) or LE (Wm™2) at
the AF, as an average across the three stations, while f> corre-
sponds to the daily cumulative sum of FC or LE for AF1 or
for OC, depending on the case under study. We calculated d
for two different cases: (i) to test whether fluxes over the AF
site (averaged across the three towers) differed significantly
from fluxes over the OC site to compare both ecosystems
and (ii) to test whether fluxes over the AF site differed sig-
nificantly from those of the reference tower AF1 in order to
compare the increase in the statistical robustness of the dis-
tributed network in relation to the hypothetical case in which
only one station was installed at the AF. AF1 was selected as
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the reference tower because it was the longest-running tower
on site, having been in operation since 2016. o was calcu-
lated as in Hill et al. (2017):

) “)

o _ [t =Dof+ (2 —Do3
- ny+ny—2

where o1 and o, are the standard deviations of both datasets
being compared, and n| and n, are the number of data points
in each of the datasets. o7 and o, were calculated as the errors
of the daily cumulative sums from the individual 30 min er-
rors in the fluxes (see next section). Afterwards Eq. (4) was
applied to get the error for the ensemble of stations being
compared.

2.5 Uncertainty of the LC-EC setups

The uncertainty in F'C and LE was considered by assign-
ing an error to each 30 min flux value. This error was then
propagated when aggregating data to daily cumulative sums
for the effect size calculations. The error was considered
differently for measured and gap-filled data. For measured
data, the error in the 30 min F'C and L E was obtained from
the inter-comparison of LC-EC and conventional EC se-
tups in the studies of Callejas-Rodelas et al. (2024) and van
Ramshorst et al. (2024). The error was taken as the worst-
case RMSE of all of the comparisons between LC-EC and
conventional EC setups separately for F'C and LE. The val-
ues were 3.1 umol m~2 s~ ! and 44.1 W m~2, respectively, for
FC and LE. This error was considered to be a systematic
deviation from the conventional EC setup and not a random
erTor.

For gap-filled data, the error was addressed differently for
the two gap-filling steps. For the data filled with REddyProc,
the error was defined as the standard deviation of the data
points used for gap-filling (Wutzler et al., 2018), provided as
an output from the REddyProc processing. In contrast, for the
data filled with XGBoost, the individual error in the fluxes
was assigned as the RMSE of the modelled data (Table 1).
The uncertainty in a cumulative sum was then calculated us-
ing error propagation from the single 30 min uncertainties to
the daily sums.

3 Results
3.1 Meteorological conditions

SW_IN followed a seasonal cycle. The maximum magni-
tude was observed at the end of June 2023, with daily means
above 300 W m~2, followed by a decrease in radiation inten-
sity. Minimum values close to 0 W m~2 were reached in win-
ter, and then the intensity increased again until reaching sim-
ilar maximum values in June 2024 (Fig. 2a). Total monthly
values of P were large, especially from June to December
2023, and, in July 2024, they reached up to 125 mm (Fig. 2d).

Biogeosciences, 22, 4507-4529, 2025
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There were some very dry months, with P sums lower than
20 mm, especially from March to June in 2024. Compared to
the climatological averages (Table 2), all seasons during the
measurement period were more rainy than the period 1981—
2010, especially during summer and autumn of 2023, when
the recorded precipitation was more than 3 times the refer-
ence value (272 mm vs. a reference value of 65 mm for sum-
mer 2023 and 218 mm vs. a reference value of 52 mm for au-
tumn 2023). Spring 2024 was the only season slightly drier
than the climatological reference, with a record of 30 mm of
rain instead of 49 mm.

TA followed a seasonal cycle, with the lowest values in
winter (daily means between 0 and 10 °C, with occasional
lower values) and the highest values in July and August of
both 2023 and 2024 (daily means around 20 °C). TA was
slightly larger at the OC tower than at the other three AF
towers during most of the campaign, with enhanced differ-
ences in summer and very small differences in winter. The
mean TA during the campaign was 12.86 °C at the OC site,
while it was 12.49 °C at the AF site. The three AF sta-
tions showed very similar TA values. TA was higher in all
seasons compared to the climatological averages (Table 2),
except in spring 2023, for which both values were simi-
lar (9.1 °C). Summer 2023 and summer 2024 were slightly
warmer (18.7 and 18.64 °C, respectively) than the reference
value (17.4 °C). Autumn 2023, winter 2023-2024 and spring
2024 were clearly warmer than the climatological averages,
with 11.9, 4.3 and 11.8 °C vs. the reference values of 9.8,
1.7 and 9.1 °C, respectively. The absolute difference between
measured and historical data was largest in winter.

VPD values also showed a marked seasonality (Fig. 2c).
Values were very low in winter, between 0 and 0.2 kPa, and
increased towards summer in both 2023 and 2024, reaching
daily means between 1 and 1.5 kPa, while, in the autumn of
2023, VPD was lower, with values of around 0.5 kPa. Com-
paring the four stations, the OC site experienced a larger
VPD from July to October 2023, while, during the rest of the
campaign, no significant differences were observed across
the stations. The mean VPD was 0.41 kPa at the OC site and
0.4 kPa at the AF site as an average of the three stations. The
differences between the three AF stations were very small.

3.2 Footprint climatology

All footprints exhibited larger contributions from the west-
ern side of the towers in all periods (growing season of 2023,
harvest period of 2023, winter 2023-2024, growing season
of 2024 and harvest period of 2024), corresponding to the
dominant wind direction at the site (Fig. 3). For all periods
under consideration and for both 50 % and 80 % footprint ar-
eas, the footprint of the OC tower was smaller than for the
three AF towers due to the lower measurement height. At the
AF site, footprints decreased from 2023 (Fig. 3a and b) to
2024 (Fig. 3d and e), likely due to the increase in the canopy
height of the trees. In the case of the OC site, footprints were
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similar during the growing season of 2023 compared to the
growing season of 2024 (Fig. 3a and d) and smaller during
the harvest period of 2023 compared to the harvest period of
2024 (Fig. 3b and e). The 50 % footprint climatology contri-
bution was concentrated in a small area around the stations,
covering only the two crop fields at both sides of the sta-
tions, plus one or two tree rows in the case of the AF site.
There were small variations from season to season and a par-
tial overlap between towers AF1 and AF2 and towers AF2
and AF3.

The 80 % footprint climatology contribution was larger,
covering a larger portion of both the AF and OC sites and,
therefore, a surface with a larger heterogeneity due to the
presence of more diverse crops and/or trees. The three sta-
tions at the AF site exhibited partially overlapping footprints
for the 80 % footprint climatology, with different sizes and
degrees of similarity depending on the evaluated period. The
most intense overlap occurred during the growing season of
2023 (Fig. 3a). The 80 % footprint of the three towers cov-
ered approximately four tree rows and four crop rows each.
The three towers at the AF presented different footprint sizes,
with the largest areas being covered by AF3, followed by
AF2 and finally by AF1. This rank of magnitude was the
same in all seasons. The footprint from the OC tower covered
both the western and eastern fields around the tower, but the
contribution was larger from the western part in all seasons.
For all stations, there were some contributions to the 80 %
footprints from the areas beyond the AF or the OC fields,
especially remarkable in the case of AF3. However, the con-
tributions of the areas outside the AF site were expected to
be negligible with regard to the interpretation of the results.

The analysis of the differences in land cover measured by
the different stations revealed seasonal variations. Because
all of the AF stations covered some of the tree rows, specif-
ically three or four in the case of AF1 and four to six in the
case of AF2 and AF3, the description of the differences will
focus on the different crops covered by the 80 % footprints.
During the growing season of 2023 (Fig. 3a), the three sta-
tions at the AF site covered all crops, whereby AF3 only cov-
ered a small portion of the barley field and the nettle fibre.
During the harvest period in 2023 (Fig. 3b), AF2 covered
all crops, including harvested rapeseed, while AF1 covered
corn, barley (harvested at the end of August 2023) and net-
tle fibre, and AF3 covered rapeseed (harvested) and corn. In
winter 2023-2024 (Fig. 3c), all towers covered most of the
crop fields, but these were mostly bare soil at this stage. Dur-
ing the growing season of 2024 (Fig. 3e), AF1 covered nettle
fibre, rapeseed and barley; AF2 covered all crops; and AF3
covered corn, barley and only a small portion of rapeseed
and nettle fibre. Finally, during the harvest period of 2024,
AF1 covered nettle fibre, rapeseed (already harvested) and
barley (harvested 3 weeks after the beginning of this period);
AF2 covered all crops; and AF3 covered corn and barley. In
all seasons, the OC tower covered mostly the western field
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Table 2. Measured and reference climatological averages of TA and P by seasons. Measured seasonal values were calculated as averages
across all four stations at the site. Reference values were taken as the seasonal 1981-2010 climatological average from the German Weather
Service (https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/, last access: 25 September 2024) for the nearby
station at Braunschweig Airport (ID no. 662).

Season Measured TA Measured P TA reference P reference

°C) (mm) O (mm)
Spring 2023 9.1 102.5 9.1 48.7
Summer 2023 18.7 272.3 17.4 65.0
Autumn 2023 119 218.5 9.8 52.0
Winter 2023/24 4.3 198.0 1.7 46.7
Spring 2024 11.8 30.1 9.1 48.7
Summer 2024 18.6 165.8 17.4 65.0
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Figure 2. Time series of daily mean meteorological parameter and the cumulative sum of precipitation across the measurement campaign:
(a) global radiation (SW_IN), (b) air temperature (VPD), (¢) vapour pressure deficit (VPD) and (d) monthly sums of precipitation (P).
SW_IN and P were considered to be common to all of the stations because the size of the site is small enough to assume homogeneity in
these parameters, whereas TA and VPD were plotted separately for all four stations. Data were filtered for outliers using lower and upper
limits; gap-filled as detailed in Sect. 2.3.3; and then aggregated to daily values by taking the daily mean for SW_IN, TA and VPD and the
daily sum for P.

(corn in 2023 and barley in 2024) and partially covered the
eastern field (barley in 2023 and rapeseed in 2024).

3.3 Weekly sums of carbon and evapotranspiration

The weekly cumulative sums of FC (Fig. 4a) exhibited a
marked seasonal behaviour and similar variability across the
four towers. The seasonal cycle was characterized by car-
bon uptake (negative values) during the growing season and
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carbon loss (positive values) during winter. The differences
were smaller across the three AF towers, with AF1 and AF2
exhibiting more similar behaviour. During the 2023 grow-
ing season, there was a strong uptake of around —30 to
—40 gCm~2 per week at all stations from April to Septem-
ber 2023. This was interrupted by a short, 3-week dry pe-
riod at the end of May and the beginning of June of 2023
(DWD, 2024), during which the AF site turned into a weak
carbon source (as measured by AF2) or a weak carbon sink

Biogeosciences, 22, 4507-4529, 2025
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Figure 3. Footprint climatologies, calculated from the model of Kljun et al. (2015), as detailed in Sect. 2.3.4, for the three towers at the
AF site (AF1, blue; AF2, orange; AF3, black) and the tower at the OC site (green), divided into five different periods: growing season of
2023 (a), harvest period of 2023 (b), winter period of 20232024 (c), growing season of 2024 (d) and harvest period of 2024 (e). The lines
plotted in the map represent the 80 % (solid line) and 50 % (dashed line) contribution areas of the footprint. The station locations are marked
with diamonds for the AF stations and a circle for the OC station. Figure created with QGIS v. 3.22; aerial map by Google Satellite Maps.

© Google Earth 2024.

(as measured by AF1 and AF3). AF3 showed stronger up-
take until mid-June. After that, OC showed the strongest up-
take (—40 to —60 g C m~2 per week) for the rest of the grow-
ing season. After the rapeseed harvest on 13 July 2023, the
weekly sums decreased in magnitude but remained substan-
tial at AF1, AF2 and OC (AF3 was missing during this pe-
riod). Around the barley harvest on 22 August 2023, the sums
decreased notably. From October 2023 to March 2024, the
values were positive and comparable across all stations, in-
dicating a carbon release from the ecosystems. During the
2024 growing season, carbon uptake diminished compared
to the 2023 growing season. The strongest uptake of around
—25gCm~2 per week occurred in July 2024. AF2 and OC
showed the strongest uptake in June and July. However, after

Biogeosciences, 22, 4507-4529, 2025

the rapeseed harvest on 15 July, the uptake decreased, and
AF2 and OC changed to a carbon source. Meanwhile, AF1
and AF3 still showed negative values. After the barley har-
vest on 5 August 2024, the uptake at AF1 and AF3 decreased
further, with AF1 changing to a carbon source. AF3 exhibited
a COy sequestration behaviour until the end of the measure-
ment period.

The weekly cumulative sums of ET (Fig. 4b) also exhib-
ited a strong seasonality and similar variability across all
stations. During the 2023 growing season, the weekly ET
sums increased from April (around 10 mm per week) until
the maximum values were reached in July, with a magnitude
of 30 mm at AF2, AF3 and OC and 40 mm at AF1. After-
wards, there was a progressive reduction in ET, especially
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Figure 4. Weekly sums of the net ecosystem carbon exchange as a carbon (C) flux (a) and evapotranspiration (b, ET) measured at the four
stations across the measurement campaign. Sums were calculated from the gap-filled time series. Missing values correspond to gaps longer
than 2 weeks, which were not considered in the analysis. The horizontal line in sub-plot (a) highlights the zero line, separating the uptake
(negative fluxes) from the emission (positive fluxes). Vertical dashed lines represent, from left to right, the harvest dates of rapeseed (13
July 2023), barley (22 August 2023) and corn (26 September 2023) in 2023 and rapeseed (15 July 2024), barley (5 August 2024) and corn
(13 September 2024) in 2024. Due to the requirement of taking only gap-filled data for gaps of up to 2 weeks in duration, there were some
missing weeks for all stations and two very long gaps, in summer 2023 for AF3 and in winter 2023-2024 for AF1.

enhanced after the rapeseed harvest on 13 July 2023 and the
corn harvest on 26 September 2023. AF1 showed the highest
values until October 2023. After that, all stations showed low
values of around 5 mm per week, coinciding with the winter
period, until March 2024. During the 2024 growing season,
ET increased progressively at all the stations until reaching
the maximum values of 30 and 40 mm. This increase was in-
terrupted only by a reduction in ET in June, more pronounced
at the AF towers. After the peak in the growing season, ET
was reduced, especially after the rapeseed harvest on 15 July
2024 and the barley harvest on 5 August 2024. The highest
values during the 2024 growing season and harvest period
were found for the OC site. AF3 exhibited lower values at
the beginning of the growing season, but the three towers at
the AF site showed good agreement from July onwards.

3.4 Coefficients of variation and spatial and temporal
variance

3.4.1 Classification into wind direction bins

The CVs calculated at the half-hourly scale (Eq. 1) were the
largest for FC in the eastern and southeastern wind sectors
(60-180°) and all of the evaluated periods, followed by the
CVs of LE and H (Fig. 5). The largest values of the CVs of
F C were reached during the 2023 growing season, reaching
up to 8.4. The magnitude of the CVs of F'C was comparable
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to the magnitude of the CVs of LE and H in the other wind
sectors and periods, with values of between 0.25 and 0.4.
Notably, the CVs of F'C were larger during the harvest period
of 2024 than during the 2024 growing season. The CVs of
WS, USTAR and W_SIGMA were low compared to the CVs
of FC, LE and H. The lowest variability across wind sectors
in all periods was found for W_SIGMA, followed by USTAR
and WS, with CV values below 0.15 in most of the cases.

For both FC and LE, both variance values were larger
during the growing season and the harvest period in both
years than during winter due to the larger magnitude of
fluxes. Due to the scope of this analysis, it is important to
remark in which wind sectors o was larger than oy. Looking
first at LE (Fig. S, middle row) o5 was larger than o; only
in the sectors of 225-270 and 315-360° during the winter of
2023-2024. For all other wind sectors and periods, og was
lower than oy.

Regarding FC (Fig. 5, bottom row), the picture was dif-
ferent compared to L E, with a higher relevance of the spatial
component of the variance. During the 2023 growing season,
o was larger than oy in the northeastern sector (0—45°) and
the southern half (90-270°). During winter 2023-2024, oy
was larger than oy in all wind sectors. During the 2024 grow-
ing season, og was larger than oy in the eastern and south-
ern sectors (0-270°). Finally, during the 2024 harvest period,
o was larger than oy in all sectors, except in the northwest
(315-360°).

Biogeosciences, 22, 4507-4529, 2025
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Figure 5. Top row: coefficients of variation (CVs), calculated following Oren et al. (2006), for FC, LE and H, WS, USTAR, and W_SIGMA.
Middle row: spatial (o5 LE) and temporal (oy L E) variance for L E. Bottom row: spatial (o5 FC) and temporal (o F'C) variance for FC.
Data were grouped in all cases by wind direction bins of 30° each and separated into the five analysis periods (growing season of 2023,
harvest period of 2023, winter 2023-2024, growing season of 2024 and harvest period of 2024), detailed in Sect. 2.3.4. Due to the two very
long gaps in AF1 and AF3 (see Fig. 4), as well as some shorter gaps, there were no data corresponding to the harvest period in 2023 for
FC or LE. Therefore, the sectorial plots for the variance partitioning are missing. Note that, in the first row, due to the large magnitude of
some of the CVs of FC, the variability in the lines corresponding to the other variables is more difficult to visualize. Note that the y axis is
in a logarithmic scale in the CV plots to facilitate visualization. Note also that the scale is different in the circular plots, depending on the
magnitude of what is represented in each season. No gap-filled data were used to create this plot.

3.4.2 C(lassification into weekly intervals

The weekly CVs across the measurement campaign were
largest for F'C, with a large difference compared to the other
evaluated variables (Fig. 6a). The difference was especially
remarkable during winter and from March to May in both
2023 and 2024. During most weeks, the CVs of FC ranged
between 0.2 and 4.0 but reached high values of around 30
at some specific times of the growing season in both years
and during winter. The CVs of FC were much larger than
the CVs of LE and H, while in the summer months (after
June) and during the harvest period in both 2023 and 2024
the CVs of FC and LE were similar, with values between
0.2 and 0.5, closely followed by the CVs of H. Through-
out the entire campaign, the CVs of USTAR and W_SIGMA
were much lower than for H, LE and F C, similarly to what
is shown in Fig. 5, with values below 0.2 across the entire
period. However, the CVs of WS were similar to those of
H during the growing season and the 2023 harvest period.
After summer 2023, the magnitude of the CVs of WS were
reduced. The CVs of USTAR and W_SIGMA were the low-
est and did not change much during the campaign. In general,
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the harvest events did not clearly affect the variation in CVs
for all variables.

With regards to partitioning the variance into its tempo-
ral and spatial components, oy was higher than o for both
LE and FC (Fig. 6b and c) during the summer months in
both year. During winter and the months of March and April,
both variance components were of similar magnitude for L E
and FC. The highest variance (for both components) was
observed during the end of the growing season in both years
and during the harvest period in 2024, while the lowest oc-
curred in winter time. The effect of harvest events in 2024
was shown by a reduction in the difference between oy and
o compared to previous summer months and a reduction in
the variance magnitude (Fig. 6b).

3.5 Effect size and statistical representativeness of the
three-tower network

The effect size (d) values were larger in the case of the com-
parison of LE sums than for the comparison of F'C sums
(Fig. 7). The values calculated using only the random error
as the error in the measured data (Fig. 7a) were larger than the
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Figure 6. (a) Coefficients of variation (CVs), calculated following Oren et al. (2006), for FC, LE and H, u, USTAR, and W_SIGMA
(logarithmic scale); (b) spatial (o5 L E) and temporal (oy LE) variance for LE; (c) spatial (o5 F'C) and temporal (oy F C) variance for FC.
The plotted values are weekly means calculated at 30 min temporal resolution from the flux time series. Vertical dashed lines represent, from
left to right, the harvest dates of the crops in 2023 for rapeseed (13 July 2023), barley (22 August 2023) and corn (26 September 2023) and
in 2024 for rapeseed (15 July 2024), barley (5 August 2024) and corn (13 September 2024). Dashed areas correspond to the 2023 harvest
period (dull blue), the winter period (dull yellow) and the 2024 harvest period (dull brown) for a better comparison with Fig. 5. Due to the
two very long gaps in AF1 and AF3 (see Fig. 4), as well as some shorter gaps, there were no data corresponding to the harvest period in 2023
for FC or LE, and there were only a few weeks of data in the winter period. Note the logarithmic scale in panel (a), introduced due to the
large magnitude of some of the CVs of FC for visualization purposes. No gap-filled data were used to create this plot.

values calculated using the sum of the random and system-
atic errors as the error in the measured data (Fig. 7b). This is
a direct consequence of the inclusion of a larger denominator
in Eq. (3).

With regard to effect size, d values were lower in 2023
than in 2024 for FC and LE and in both error cases be-
ing considered. For F'C, the values of dap-mc, Fc were larger
than the values of dar, rc in both years and increased at the
end of the growing season and during the harvest period in
2024. In the case of L E, the values of dap.mc. g were lower
than the values of dar,rg in 2023 but were larger in 2024.
The largest values of d were attained during July, August and
September of 2024 for L E (magnitudes up to 28), while, in
the case of F'C, values were largest at the end of the growing
season in 2023 (magnitudes up to 12). If only random error
was considered, the values of d for L E were larger than those
for FC in all periods except for the end of the growing sea-
son in 2023 (Fig. 7a). In the case of considering random and
systematic errors (Fig. 7b), d values were larger for FC in
2023 and for LE in 2024.

https://doi.org/10.5194/bg-22-4507-2025

4 Discussion

4.1 Spatial and temporal variability of FC and LE
above the AF system

Using three distributed EC stations over the same AF system,
a small spatial variability in meteorological parameters was
found, but the spatial variability in CO, and energy fluxes
was larger. Several rows of trees perpendicular to the main
wind direction may potentially influence microclimatic con-
ditions across the AF compared to open croplands (Kanzler
et al., 2019), but this AF site (17.3ha) is smaller than the
median farm size (29.4 ha) in Lower Saxony (Jénicke et al.,
2022), and the meteorological variables were measured at the
AF stations located within the tree strips. These two factors
can explain the low variability in meteorological parameters.
Therefore, the observed variability in F'C and L E should not
be attributed to the meteorological drivers but rather to differ-
ences in the footprint areas of the three stations. The footprint
climatology of the stations partially overlapped (Fig. 3), but
the most intense flux contributions originated from a small
area around the towers. Differences in crop development and
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Figure 7. Time series of the effect size (d) for FC and LE, using as the error in the measured data the random error (a) or the sum of the
random and systematic errors (b). d was calculated according to Eq. (3), based on the daily sums of FC and LE. Time series of F'C and
LE had been filtered and gap-filled as described in Sect. 2.3.3, and gaps with a duration over two weeks were excluded from the analysis.
Dark blue circles represent the comparison between AF1 and the average of the three stations at the AF (AF1, AF2 and AF3) for the FC.
Dark blue squares represent the comparison between the average of the three stations at the AF (AF1, AF2 and AF3) and the OC station for
FC. Beige diamonds represent the comparison between AF1 and the average of the three stations at the AF (AF1, AF2 and AF3) for LE.
Beige triangles represent the comparison between the average of the three stations at the AF (AF1, AF2 and AF3) and the OC station for LE.
Vertical dashed lines represent, from left to right, the harvest dates of the crops in 2023, for rapeseed (13 July 2023), barley (22 August 2023)
and corn (26 September 2023); and in 2024, for rapeseed (15 July 2024), barley (5 August 2024) and corn (13 September 2024). Dashed
areas correspond to the 2023 harvest period (dull blue), the winter period (dull yellow) and the 2024 harvest period (dull brown), as in Fig. 6.

management practices could explain most of the variability
in the observed fluxes across the three towers throughout the
campaign because of the different crops sown between the
tree strips (spatial variability) and the different crop distribu-
tion from 2023 to 2024 (temporal variability) (Fig. 1).

The higher spatial variability in turbulent fluxes compared
to other turbulence and wind parameters (Fig. 5), especially
for FC and LE, was also found in the studies of Katul et al.
(1999) and Oren et al. (2006). This can be explained by the
complex nature of sources and sinks for CO, and H,O fluxes
(Katul et al., 1999) and the effects of landscape heterogene-
ity (Bou-Zeid et al., 2020). The explanation for the spatial
variability in the fluxes is the land cover attribution thanks to
the footprint modelling; however, other effects of the hetero-
geneity were not studied.

The larger CVs of FC at the eastern wind sectors (Fig. 5)
during all evaluated periods relate directly to differences in
footprint climatology because the footprints differed most at
the eastern side of the three AF stations, especially for the
50 % footprint climatology (Sect. 3.2). The harvest events in
2024 did not seem to have a big impact on the CVs (Figs. 5
and 6a), but they reduced the variance magnitude slightly
(Fig. 6b and c).

The larger temporal variance, compared to spatial vari-
ance, for both FC and LE could be explained by the sea-
sonal and diurnal flux variability, which was more relevant
than spatial variability (see Sect. 3.4.1 and 3.5). Nevertheless,
oy was similar to oy in winter for both L E and F C, which can
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be attributed to the dormant state of the ecosystem, leading
to small diurnal variations and, consequently, small tempo-
ral variations. In summer 2024, for LE, oy was similar to oy
due to the lower area overlap caused by smaller footprints
(Fig. 3) compared to the 2023 growing season. This was also
due to the absence of a fully developed crop in the eastern
part of the field because of the poor rapeseed growth during
this season. This resulted in weaker L E, especially at tower
AF]1, and led to a lower spatial variation.

In comparison to similar approaches in the literature, Pel-
tola et al. (2015) found a paired temporal and spatial variabil-
ity in CHy fluxes measured at three different heights on a tall
EC tower and two additional EC stations over an agricultural
landscape. Hollinger et al. (2004) measured fluxes using two
towers with non-overlapping footprints in a forest and found
that the temporal variability was larger; however, the spatial
disagreement in F'C was not negligible despite the apparent
homogeneity of the studied ecosystem. Rannik et al. (2006)
also compared the F'C measured from two nearby towers
over the same ecosystem, with partially overlapping foot-
prints, and found relevant systematic errors in the daytime
fluxes, attributed to the variability in the turbulent flow field
caused by the complexity of the terrain. These systematic
differences were important for attributing long-term uncer-
tainties in ecosystem carbon uptake, as would be the case in
the complex AF site of the present study. Davis et al. (2010)
investigated the heterogeneity in F'C above arable land and
demonstrated the significant impact of spatial heterogene-
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ity on annual carbon balances. Furthermore, Soegaard et al.
(2003) quantified the annual carbon budget of an agricultural
landscape by combining footprint-weighted fluxes and spa-
tial variability in different crops, demonstrating the large po-
tential of spatial heterogeneity to bias annual flux estimates.
In the present study, the influence of different land covers
around the towers was detectable for both FC and LE, ex-
cept during the winter period. However, the differences were
smaller than expected for crops with clearly different season-
ality. As other effects of heterogeneity on flux measurements
cannot be captured with this setup, a first explanation could
be the partially overlapping footprints and the buffering ef-
fect caused by the presence of the trees. As trees were as-
sumed to behave similarly across the AF site, their similar
CO3 and water fluxes attenuated the potentially larger differ-
ences in turbulent fluxes that would be expected among the
crops without trees.

The observed variations in the weekly cumulative sums of
FC and ET across the campaign (Fig. 4) can be attributed
to the developmental and management differences among
the crops cultivated around the stations, provided that the
trees were growing similarly across the entire AF site. These
differences can be directly connected to the previously ex-
plained behaviour of the CVs and partitioning of the vari-
ance. Spatially replicated experiments demonstrated the po-
tential to more accurately estimate the uncertainty in tur-
bulent fluxes, e.g. by using non-overlapping paired towers,
as in Hollinger and Richardson (2005), but this could not
be applied in the present study due to the overlapping foot-
prints. Conversely, the deployment of three towers provided
a more comprehensive dataset compared to the single-tower
approach. However, the choice of the towers location in the
present study might not have been optimal (Chen et al., 2011)
since footprints were partially overlapping (Figs. 1 and 3).
This was due to logistical constraints that precluded the se-
lection of any other location within the AF site, such as in the
southernmost part of the field. On the other hand, the purpose
of the study was to investigate small-scale variability in the
highly heterogeneous AF, a goal that was generally accom-
plished.

Specifically, the earlier development of rapeseed in 2023
led to an initial carbon uptake at AF3 because the main foot-
print covered rapeseed (Fig. 3a). This matched the larger CVs
of FC on the eastern side of the field (Fig. 5) and during
March and April 2023 (Fig. 6a). However, the earlier growth
of rapeseed did not increase ET in AF3 (Fig. 4b), leading to
comparable CVs of LE for all wind sectors (Fig. 5). This
is because rapeseed can maintain a relatively large carbon
uptake while using limited water resources (Najibnia et al.,
2014). The subsequent development of corn and barley led
to similar weekly uptakes of carbon at AF1 and AF2 but a
larger ET at AF1, leading to a decrease in the CVs of FC
and a modest increase in the CVs of LE. Besides the par-
tially overlapping footprint (Fig. 3), another reason is a dif-
ferent water use efficiency among barley and corn, with this
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being lower for barley and therefore explaining the similar
carbon uptake compared to corn at a higher ET (see, for ex-
ample, Pohankova et al., 2018). After the short drought in
May-June, which affected all three stations by reducing both
carbon uptake and ET, weekly carbon uptakes of AF1 and
AF2 and weekly ET sums were larger than for AF3 until the
harvest period. This can be attributed to corn and barley be-
ing less present in the footprint area of AF3 (Fig. 3a). Corn
and barley exhibited a more intense physiological activity,
immersed in the growing season, while rapeseed was likely
to be at its maturity stage.

The rapeseed harvest in 2023 had a negligible effect on
the carbon uptake of AF1 and AF2 but seemed to have an
effect on ET, which was reduced for both stations. This can
be attributed to a period of several precipitation events, low
TA and VPD (Fig. 2), which reduced both physiological ac-
tivity and atmospheric water demand. The barley and corn
harvests reduced the carbon uptake and ET. In particular, the
corn harvest had a large impact because it was the main crop
in the footprints of AF1 and AF2 (Fig. 3b). After the har-
vest period, the slightly larger difference between the three
stations may have been an effect of the larger gap-filling un-
certainty due to the longer gaps, agreeing with an enhanced
spatial variance compared to the temporal variance (Fig. 6b
and ¢).

In 2024, the very dry spring (Table 2) did not affect weekly
sums of ET but reduced the magnitude of the weekly sums
of FC compared to 2023. In 2024, there was no earlier de-
velopment of the rapeseed as this occurred in 2023 due to the
very wet winter conditions. The variability in ET was larger
than in 2023 due to less overlapping footprints and due to
the difference in rapeseed growth (Fig. 3d). The larger car-
bon uptake at AF2, as well as the larger ET (Fig. 4), during
the whole growing season of 2024 can be explained by the
influence of barley and, partially, corn, while, at AF1, only
parts of the barley field and the non-well developed rapeseed
were detected (Fig. 3c). Carbon uptake and ET were smaller
at AF3 because corn developed later, but these reached sim-
ilar values as AF1 once corn started to grow. After the rape-
seed harvest, AF1 and AF2 saw both their carbon uptake and
ET release being reduced, with AF2 turning into a carbon
source. This was explained not by the footprint of AF2 in
the rapeseed field (Fig. 3e) but rather by the mature barley
and the strong ecosystem respiration under wet conditions.
Carbon uptake and ET release at AF3, on the other hand,
did not show the effect of the rapeseed harvest because AF3
did not have the corresponding portion of the field measured
(Fig. 3e). AF3 maintained a large weekly carbon uptake and
similar ET due to the presence of the corn in its footprint
area (Fig. 3). Afterwards, the barley harvest reduced the up-
take of AF1, turning it into a carbon source, and of AF3; this
was also the case for ET due to the footprint covered by both
stations (Fig. 3e). Carbon uptake was progressively reduced
until it eventually turned into emissions around the corn har-
vest, which was the main crop in the footprint area of AF3.
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4.2 Differences in FC and ET between AF and OC
systems

The AF site typically had lower air temperature and higher
RH than the OC site (Fig. 2) because the trees at the AF act as
a buffer to maintain cooler air temperatures and cooler soil,
resulting in a larger RH. This is pointed out in a review by
Quandt et al. (2023). The authors stated that, during drought
events and under drier and warmer climatic conditions, as
projected in future climate scenarios, trees might potentially
help in sustaining cooler temperatures and in keeping the air
more humid.

Carbon uptake and ET release were enhanced at the AF
site at the beginning of the 2023 growing season because of
the earlier development of the trees and the rapeseed, both
present in the footprint of all three AF stations (Figs. 1 and
3a), while the OC station measured mostly corn (Fig. 3a).
Corn is a crop with a later development compared to barley
or rapeseed (Lokupitiya et al., 2009; Soegaard et al., 2003),
but it is typically very productive (Hollinger et al., 2005;
Lokupitiya et al., 2016). Therefore, carbon uptake was larger
at the OC site during most of the 2023 growing season after
corn started to grow, which occurred later than for rapeseed
and barley. A similar ET between OC and AF2 (Fig. 4b) in-
dicated a larger water use efficiency at the OC site. In our
study, the short dry period in May—June 2023 took place be-
fore corn reached its peak growth stage, while rapeseed and
barley were in a more advanced stage and were more affected
by the dry conditions. In general, the whole campaign took
place during very wet conditions. This might have increased
the ecosystem respiration because it led to more soil organic
matter decomposition driven by larger litter amounts at the
AF site. This, together with a larger respiration from the
trees, can explain why AF2, even though it was surrounded
by corn, did not take up as much carbon as the other towers
in the AF system.

During the 2023 harvest period, the footprint of the OC
station was limited to corn and not rapeseed (Fig. 3b). Corn
continued to grow in July and August 2023 at the OC site,
which explains why, at the OC site, a very large carbon up-
take and ET release were observed, while AF2 and AF1
showed reduced fluxes. In winter, the ecosystems were dor-
mant, which explains the small differences between the AF
and OC sites. However, fluxes were very small in magnitude,
and it was difficult to observe differences between sites.

During the 2024 growing season, carbon uptake at the OC
site was similar to that at the AF site, but ET was larger at
the OC site, opposite to what occurred in 2023. This could
be explained by barley grown in the main footprint area of
the OC (Fig. 3d), as well as in a portion of the rapeseed field,
which did not grow well in 2024. Barley is a crop with less
intense physiological activity and lower water use efficiency
than corn (Pohankova et al., 2018). This explains the smaller
differences compared to the AF stations in terms of C up-
take and the much larger ET. Also, the meteorological con-
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ditions were very wet in winter, with a dry spring. During
the harvest period in 2024, the carbon uptake and ET were
reduced more sharply at the OC site than at the AF site af-
ter the rapeseed harvest because of its partially contributing
footprint (Fig. 3e). The reduction was more pronounced after
the barley harvest, which contributed the most to the footprint
covered by the station.

4.3 Effect size and spatial representativeness of the
distributed network

The effect size d is a measure of the relative difference of
two variables for two different populations (in this case, two
ecosystems or towers within an ecosystem) with respect to
the pooled standard deviation of the two populations. The in-
terpretation of the calculated values was done according to
Fig. 3 in the paper by Hill et al. (2017), where the num-
ber of EC replicates over an ecosystem or for comparing
two ecosystems was estimated based on the desired statis-
tical power (from O to 1) and the effect size value. The sta-
tistical power related to the confidence in the accuracy of the
measurements, such that a value of 1 means we can be 100 %
certain about the measured differences.

In the case of comparing the AF stations, similar values
for both LE and FC were attained, mostly between 0 and 5.
Values of 5 meant that, with three towers, a statistical power
between 0.7 and 0.95 was achieved; however, with values
close to 0, the statistical power dropped dramatically so that
no confidence in the accuracy of the differences could be
drawn. In the case of comparing AF-MC setups, d values
were larger than for the comparison of the AF stations, which
meant that a larger statistical power was achieved because
the daily sums were larger than the pooled uncertainty. Val-
ues larger than 2 or 3 — in many cases, reaching up to 15 or
20 — denoted a statistical power above 0.975 and, therefore,
a very large confidence in the daily sums. Furthermore, d; g
was larger than dpc, meaning that the statistical confidence
was larger for LE. When using random and systematic er-
rors as the errors attributed to measured data (Fig. 7b), d val-
ues were much lower. This matches the interpretation of Hill
etal. (2017): if the EC systems are too uncertain, the number
of systems needed to achieve a large statistical power (above
0.9) increases exponentially. If the LC-EC setups used in this
study were to be a lot less accurate, e.g. with 2 times more
systematic error compared to conventional EC, the effect size
values would be too low so that no certainty about the data
could be ensured, unless the number of towers were to in-
crease in order to counteract the loss of accuracy.

Several studies addressed the spatial representativeness of
fluxes and footprint climatology. These studies focused on
studying RE (Hollinger and Richardson, 2005), separating
ecosystem structure and sampling errors in the spatial vari-
ability of fluxes (Oren et al., 2006), disentangling the tempo-
ral and spatial variability of fluxes using a single-tower ap-
proach and footprint modelling (Levy et al., 2020; Soegaard
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et al., 2003), the representativeness of single-point measure-
ments at the pixel scale for regional- to global-scale models
(Chasmer et al., 2009; Chen et al., 2009; Wang et al., 2016;
Ran et al., 2016), or studying the effect of diverse meteoro-
logical conditions in the footprint climatology and canopy
structure (Abdaki et al., 2024). To the best of our knowl-
edge, the study of Cunliffe et al. (2022) was the only one
that deployed several LC-EC setups similar to those used
in our study and one additional conventional EC setup to
quantify the impact of landscape heterogeneity on turbulent
fluxes. They studied a dryland site with very low flux magni-
tudes, which is different from our site. They obtained a useful
agreement between different LC-EC setups and conventional
EC setups and attributed the differences between setups to
the ecosystem heterogeneity, covered by different bushes and
grass species. However, a less detailed analysis of the spatial
and temporal variability of the fluxes was performed.

In the EC community, EC replicates are uncommon (Hill
et al., 2017; Stoy et al., 2023). Therefore, the effect size of
either the means or sums of fluxes is typically not estimated.
Hill et al. (2017), as the first paper showing the potential of
LC-EC setups in increasing spatial replication in EC stud-
ies, estimated the effect size by comparing the average car-
bon sequestration and the standard deviation of the cumula-
tive sums for ideal and non-ideal FLUXNET sites (Baldoc-
chi, 2014). In the present study, the effect size was calculated
similarly but based on daily sums and pooled standard devi-
ations (errors) of the 30 min time series. The concept in Hill
et al. (2017) was different since measurement errors tend to
decrease relative to the aggregation period when cumulative
sums are calculated (Moncrieff et al., 1996). Their calculated
standard deviation was based on the uncertainty in the cumu-
lative sums of the half-hourly carbon fluxes rather than on
time series with a higher temporal resolution (30 min). These
time series are commonly characterized by higher variability
and a potentially lower effect size.

In general, there is still an ongoing discussion on how
much the landscape heterogeneity affects balances of carbon
and H,O measured by single EC towers. The LC-EC setups
could help to bridge the gap of low spatial replication across
such heterogeneous sites by allowing the installation of mul-
tiple setups due to their reduced cost. This could be comple-
mentary to other methodologies developed to understand the
effect of spatial heterogeneity on fluxes measured from sin-
gle towers, such as in Levy et al. (2020) or Griebel et al.
(2016), or measured with several conventional EC setups
(Soegaard et al., 2003; Hollinger et al., 2004; Katul et al.,
1999; Oren et al., 2006).

4.4 Heterogeneity as a challenge to EC measurements
and footprint modelling

As mentioned in the Introduction, the heterogeneity in the

surface properties of a certain ecosystem induces horizon-
tal advection, secondary mesoscale circulations and non-
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equilibrium turbulence processes (Bou-Zeid et al., 2020).
Horizontal advection at different spatial scales can distort
flux measurements (Cuxart et al., 2016). Furthermore, the
dynamics of the roughness sublayer (RSL), defined as the
atmospheric layer influenced by the roughness elements and
located below the inertial sublayer (Katul et al., 1999), can
be modified by the wind barrier of trees at the AF site (van
Ramshorst et al., 2022). Upon a change in the underlying
surface, an internal equilibrium layer (IEL, Brutsaert, 1998)
and an internal boundary layer (IBL, Garratt, 1990) develop.
Multiple IELs and IBLs can develop if there are multiple
transitions in the surface, such as at the AF site (Bou-Zeid
et al., 2020). At the AF site, the major change in the surface
is represented by the tree rows (Markwitz, 2021). These rows
create persistent waves that enhance the differences in the
turbulence-related parameters WS, USTAR and W_SIGMA,
though these changes are less pronounced than flux varia-
tions. Furthermore, the classical tests of stationarity and equi-
librium may fail if the EC station is placed above the IEL
(Mabhrt and Bou-Zeid, 2020) due to a disequilibrium between
the mean flow, turbulence and the new surface (Bou-Zeid
et al., 2020). Additionally, the complex canopy structure at
the AF site could lead to significant carbon and energy stor-
age, particularly at the crop-tree interfaces and within the
dense tree rows. These storage terms may influence advec-
tion in the horizontal and vertical directions (Mammarella
et al., 2007; Aubinet et al., 2010; Feigenwinter et al., 2008).
These effects may affect the turbulence and flux measure-
ments; however, they could not be quantified with the current
setup.

The footprint size and the overlap between footprints de-
creased between 2023 and 2024 due to tree growth (Fig. 3).
Combined with changes in crop development and meteoro-
logical conditions, this increased the spatial components of
the variance for FC and LE (Fig. 5). While the three tow-
ers at the AF site had partially overlapping 80 % footprint
climatology areas (Fig. 3), the main footprint contributions
were concentrated in the immediate areas around each tower
(Kljun et al., 2002). Therefore, most of the flux variability
can be attributed to land cover differences around the sta-
tions. The three-tower network helped disentangle the ef-
fects of management activities (e.g. crop harvest) and pro-
vided insights into small-scale features caused by the alter-
nating structure of the AF site. The division of the data into
wind direction bins, as done in, for example, Kutsch et al.
(2005), to address spatial variability in fluxes and turbulence
parameters, as well as the spatial and temporal components
of the variance, complemented the information provided by
the footprint maps.

The footprint model used in the present study (Kljun et al.,
2015) allowed us to understand, at a basic level, where the
source and sink areas of CO, and H>,O were located. Nev-
ertheless, the parameterization of the footprint model does
not consider the effects of spatial heterogeneity on the basic
parameters of roughness length and USTAR or how canopy

Biogeosciences, 22, 4507-4529, 2025



4524 J.A. Callejas-Rodelas et al.: Increased spatial replication of EC over agroforestry

heterogeneity influences wind speed and turbulence dynam-
ics within the AF site (Markwitz, 2021). Due to the structure
of the AF site, the footprint model likely overestimated the
footprint area by attributing sources and sinks to areas that
do not actually contribute to the flux. Additionally, footprint
estimates are sensitive to the vertical distribution of sources
and sinks within the canopy and to the time that air parcels
spend within it (Launiainen et al., 2007; Prabha et al., 2008).
This is likely to be happening at this AF site due to the struc-
ture of the tree rows. Implementing the aerodynamic canopy
height following Chu et al. (2018) helped to partially ac-
count for the heterogeneity of the AF site in the footprint
modelling, but this procedure was also limited. More accu-
rate footprint estimates could be obtained by combining flow
dynamics and spatial structure information using large-eddy
simulations (Markwitz, 2021; van Ramshorst et al., 2022),
with a more advanced footprint modelling, as described in,
for example, Gockede et al. (2006) to account for the spa-
tial heterogeneity in roughness length and USTAR. Addition-
ally, aggregating the footprint climatology based on weighted
footprints, as in Chen et al. (2009), would allow for a more
detailed characterization of the sources and sinks of carbon
and water vapour.

Furthermore, the sensor location bias, defined as the un-
certainty caused by measuring at only one point above a het-
erogeneous site, depends on the stability conditions (Chen
et al., 2011). Under more unstable conditions, the footprint
size decreases, and the location bias of each tower increases.
This justifies the use of multiple EC towers to sample an en-
tire ecosystem more effectively. A more detailed study of sta-
bility regimes, footprint size and spatial variability of fluxes
would inform us about this feature. However, this was not
performed in this study due to the limited data availability
and the difficulty in gap-filling turbulence parameters needed
to classify stability regimes, such as Obukhov length. With
longer time series and more complete turbulence and foot-
print information, some of the previously detailed shortness
of this study could be addressed.

4.5 Errorsin FC, LE and H

Errors affecting flux calculations are difficult to disentan-
gle because they propagate throughout the entire process-
ing routine, from raw data measurements to final flux cor-
rections. Therefore, the uncertainty in the measured fluxes
from the LC-EC setups was assigned based on the random
error and the previous inter-comparison studies of Callejas-
Rodelas et al. (2024) and van Ramshorst et al. (2024), as
detailed in Sect. 2.5. This procedure is similar to the ap-
proach applied in Peltola et al. (2015), where they used a pre-
vious instrument cross-comparison campaign (Peltola et al.,
2014) to assign instrumental uncertainty to the setups they
deployed. However, the uncertainty in the use of LC-EC se-
tups, defined in relation to conventional EC, was obtained
during a specific campaign and under specific site condi-
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tions with the same footprint area; therefore, there might be
a bias in the LC-EC error attribution. Additionally, as ex-
plained in Sect. 2.5, the uncertainty in the gap-filled fluxes
was calculated by assigning individual errors to the 30 min
fluxes, which can then be propagated when performing the
daily cumulative sums. This was detailed as an initial method
for easily evaluating and propagating errors through cumula-
tive sums when comparing new EC setups to conventional
EC setups and calculating carbon or ET balances using gap-
filled data. Other approaches, as described in, for example,
Richardson and Hollinger (2007), could potentially be appli-
cable to this dataset as well.

Including all gap-filled data, with some very long gaps,
particularly affecting AF3, would have made the analysis
more uncertain (Lucas-Moffat et al., 2022). Therefore, only
measured data and gaps shorter than 2 weeks were used, al-
though this did not permit a more complete spatial hetero-
geneity study throughout the campaign. The optimal solu-
tion for this study was to use a combination of REddyProc
for short gaps and the XGBoost model for long gaps, sim-
ilarly to what was done in Winck et al. (2023). This solu-
tion allowed us to assign individual errors to each 30 min
flux, as explained in Sect. 2.5. Additionally, applying more
strict filtering criteria, such as a higher USTAR threshold or
a lower quality flag, would provide higher-quality data but
would also increase uncertainty due to the filling of more
gaps.

We used TA, SW_IN and VPD as predictors for gap-
filling, which are generally recognized to be the main drivers
of CO; and H,O fluxes (Vekuri et al., 2023; Wutzler et al.,
2018). WS was used because of its influence on turbulence
development and the spatial information carried by eddies,
especially above a very rough surface, such as at the AF site.
Wind direction was selected to account for the spatial het-
erogeneity across the different measurement locations of the
towers (Richardson et al., 2006). Other meteorological vari-
ables were either less relevant for the analysis, such as at-
mospheric pressure, or more complex to gap fill, such as net
radiation.

5 Conclusions

This study presents, for the first time, 1.5 years of measure-
ments from a distributed network of three eddy covariance
towers above a temperate heterogeneous agroforestry sys-
tem, as well as a comparison to an adjacent, open-cropland
agricultural system. Using three eddy covariance stations al-
lowed us to capture the spatial and temporal variability across
the site, which particularly affected carbon flux. The main
differences were attributed to the different developmental
stages of the crops across seasons, with larger disturbances
in carbon flux and latent heat flux after harvest events. Due to
the high degree of spatial heterogeneity, a broader footprint
coverage was necessary to capture small-scale differences at
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the agroforestry site. Furthermore, binning the data by wind
direction sectors and weeks provided a detailed picture of the
temporal and spatial components of the variance and the co-
efficients of spatial variation. This was important because the
differences between stations were small enough to be masked
by a less resolved analysis.

Secondly, this study incorporated a complex gap-filling
procedure that complemented previously published recom-
mendations on working with lower-cost eddy covariance
data. The datasets gathered during the campaign and the pro-
cessing scheme added value to the data collection of the
project from previous years from several agroforestry and
open-cropland sites. Future research will address the con-
trast between different agroforestry and open-cropland sites
in more detail, using more years of data under a broader
range of meteorological conditions.

Finally, the footprint coverage required to capture the spa-
tial heterogeneity across the agroforestry site and within the
agroforestry and open-cropland sites was improved by using
lower-cost eddy covariance setups. We satisfactorily proved
the hypothesis that the degree of uncertainty introduced by
using slower-response gas analysers for CO, and H,O was
counteracted by the better representation of all processes oc-
curring within the agroforestry system. Therefore, we rec-
ommend installing multiple eddy covariance setups, includ-
ing lower-cost setups, whenever the degree of heterogeneity
of an ecosystem is large. Future studies could benefit from
comparing overlapping and non-overlapping measurements
in terms of footprints.

Code and data availability. Data corresponding to this publica-
tion, as well as the codes used to analyse results and to pre-
pare the figures for this publication, are available at Zenodo,
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2025).
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