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Abstract. Given the severe land-use and land-cover change
pressure on tropical forests and the high demand for field
observations of ecosystem characteristics, it is crucial to col-
lect such data both in pristine tropical forests and in the con-
verted deforested land-cover classes. To gain insight into the
ecosystem characteristics of pristine tropical forests (EFs),
regrowth forests (RFs), and cashew plantations (CPs), we es-
tablished an ecosystem monitoring site in Phnom Kulen Na-
tional Park, Cambodia. Here, we present the first observed
datasets at this site of forest inventories, leaf area index
(LAI), leaf traits of woody species, a fraction of intercepted
photosynthetically active radiation (fPAR), and soil and me-
teorological conditions. Using these data, we aimed to as-
sess how land-cover change affects stand structure, species
diversity, leaf functional traits, and soil conditions among the
three land-cover classes and to evaluate the feasibility of lo-
cally calibrated diameters at breast height (DBHs) and tree
height (H) allometries for improving aboveground biomass
(AGB) estimation. We found significant differences in these
ecosystem characteristics, caused by the anthropogenic land-
cover conversion, which underlines land-cover change’s pro-
found impact on stand structure, species diversity, leaf func-
tional traits, and soil conditions in these tropical forest re-
gions. Our results further demonstrated the feasibility of lo-
cally updating aboveground biomass estimates using power-
law functions based on relationships between DBH and H.
These datasets and findings can contribute to enriching tropi-
cal forest research databanks and supporting sustainable for-
est management.

1 Introduction

Tropical forests cover approximately 14 % of the Earth’s sur-
face (Fichtner and Hirdtle, 2021) and contribute significantly
to global terrestrial biodiversity (Giam, 2017) and biogeo-
chemical cycles (Males et al., 2022). Tropical forests pro-
duce at least 30 % of the global terrestrial net primary pro-
duction (Townsend et al., 2011; Wright, 2013) and account
for approximately 70 % of the global gross carbon sink (Pan
et al., 2024). In addition, they play a critical role in regu-
lating hydrological cycles on a continental scale (Gloor et
al., 2013). Tropical forests have been under severe anthro-
pogenic pressures from agricultural land expansion, resource
exploitation (logging, mining), and urbanization (Gardner et
al., 2009; Laurance et al., 2014). Such disturbances have re-
sulted in significant structural and functional degradation in
tropical forests, highlighting the urgent need to assess how
land-cover change alters key ecosystem characteristics (Bar-
low et al., 2016).

Southeast Asia, though harbouring roughly 15 % of the
world’s tropical forests (Stibig et al., 2014), has suffered the
highest global deforestation rates over the past 15 years (Mi-
ettinen et al., 2011). This alarming trend threatens over 40 %
of the region’s biodiversity by 2100 (Sodhi et al., 2004). The
forests are mainly disturbed by timber harvesting (Pearson et
al., 2017), slash-and-burn agriculture, and agricultural plan-
tations as a consequence of fulfilling global demands for tim-
ber production and agricultural commodities, especially rub-
ber, cashew, oil palm, Eucalyptus, and Acacia (Phompila et
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al., 2014; Grogan et al., 2015; Chen et al., 2016; Johans-
son et al., 2020). In addition to primary forests, secondary
forests that regenerate after clear-cutting or other ecosystem
disturbances are also important for protecting biodiversity
and assuring the availability of ecosystem services and goods
(Tito et al., 2022). While the ecological consequences of for-
est conversion are broadly recognized, relatively few studies
have comprehensively examined how transitions from pri-
mary to secondary forests and plantations influence multi-
ple ecosystem characteristics, particularly through detailed
field-based observations that may inform our understanding
of ecosystem functioning.

Tropical forests demonstrate remarkable ecological com-
plexity, with high diversity in stand structure, species com-
position, and functional traits shaped by heterogeneous en-
vironments and varied disturbance histories (Manuel Villa et
al., 2020). This complexity leads to highly site-specific and
often inconsistent ecosystem characteristics and responses,
making it difficult to generalize the impacts of land-cover
change across regions (Wang et al., 2022). A parallel chal-
lenge in tropical forest research is the accurate estimation of
aboveground biomass (AGB), a key metric for assessing car-
bon stocks. Most studies rely on generalized allometric mod-
els developed under different ecological conditions, assum-
ing similarity in forest structure, composition, and wood den-
sity (WD), and these assumptions rarely hold in structurally
diverse tropical forests (Vieilledent et al., 2012). These limi-
tations introduce substantial uncertainty when models are ap-
plied across sites (Ketterings et al., 2001). The lack of locally
calibrated relationships between diameter at breast height
(DBH), tree height (H), and wood density and the scarcity
of direct destructive sampling further contribute to estima-
tion errors, highlighting the need for site-specific approaches
that reflect local variation in forest structure and composi-
tion.

In the context of tackling the current challenges of global
land-cover change, it is necessary to conduct field observa-
tions in order to investigate the responses of ecosystems to
changing environmental conditions on fine spatial and tem-
poral scales. Field observations of key ecosystem charac-
teristics, such as forest inventory, leaf functional traits, leaf
area index (LAI), fraction of photosynthetically active radia-
tion (fPAR), and soil conditions, provide crucial insights into
ecosystem functions and services, including vegetation pro-
ductivity, carbon sequestration, hydrological cycle, ecosys-
tem stability and resilience to disturbances, nutrient reservoir
capacity, and the abundance of habitats of organisms (Naeem
et al., 1994; Hector, 1998; Cardinale et al., 2012; Chen et
al., 2016; Liang et al., 2016; Parisi et al., 2018; Woodall et
al., 2020). In addition, the field data on leaf functional traits,
LAI and fPAR are important for the parameterization and
evaluation of remote sensing products and dynamic vegeta-
tion models, essential for modelling and upscaling ecosystem
responses to anthropogenic disturbances and climate change
(Feng et al., 2018; Fang et al., 2019; Pei et al., 2022). Rec-

Biogeosciences, 22, 4649-4677, 2025

C. Sovann et al.: Land-cover change in Cambodian tropical forests

ognizing the significant role and high demand for field ob-
servations of ecosystem characteristics, open data reposito-
ries, such as FLUXNET, ICOS Carbon Portal, SpecNet, and
the TRY database, have been established to facilitate data
sharing (Gamon et al., 2010; Kattge et al., 2020; Pastorello
et al., 2020). Despite those global initiatives, observed data
from tropical forests that support multi-class, pairwise com-
parisons for capturing ecosystem changes across gradients of
forest degradation and land-use conversion remain limited.
This gap is especially critical in Southeast Asia, where rapid
forest-to-agriculture transitions threaten key ecosystem func-
tions, and understanding these ecosystem changes is essen-
tial for informing evidence-based conservation and restora-
tion strategies (Fan et al., 2024).

Within this context, Phnom Kulen National Park (Kulen)
in Cambodia emerges as a critical landscape for investigating
ecosystem responses to land-cover change. Kulen is a hotspot
for ecosystem service provisioning in Cambodia, mainly for
water supply, potential carbon sink, and cultural services (Ja-
cobson et al., 2022; Kim et al., 2023). It is the origin of the
Khmer Empire and contains numerous archaeological sites.
The stream water from the mountain is not only used to sup-
port local livelihoods in water supply and irrigation down-
stream (Somaly et al., 2020), but it is also the primary water
source to recharge surface-water and groundwater aquifers
in Angkor Wat, a UNESCO World Heritage Site. Hence, the
area is of high importance to ensure that the temples’ foun-
dations remain stable and maintain their surrounding forest
ecosystem (Hang et al., 2016). However, previous studies re-
vealed that the forestland in and around Kulen has been dis-
turbed, largely driven by agricultural expansion, particularly
the spread of cashew plantations (CPs) (Chim et al., 2019;
Sovann et al., 2025).

Given increasing concerns about land-use and land-cover
change threatening the high-value ecosystem functions of
tropical forests such as those in Kulen, our study aims to
gain insight into the impact of land-cover conversion on key
ecosystem characteristics. Specifically, our first objective is
to assess the differences in stand structure, species diversity,
leaf functional traits, and soil conditions between pristine
tropical forests and the land cover into which the deforested
regions are converted (regrowth forests and cashew planta-
tions). We hypothesize that there will be a reduction in stand
structural complexity, species composition, and leaf func-
tional traits and a marked change in soil conditions. Addi-
tionally, our second objective is to evaluate the feasibility of
locally updating aboveground biomass estimates by applying
power-law functions derived from site-specific relationships
between diameter at breast height and tree height, with the
hypothesis that locally calibrated DBH—-H relationships will
have a substantial effect on estimated aboveground biomass
compared to regional or generalized allometric models. To
test these hypotheses, we will analyse a novel in situ dataset
collected from pristine tropical forests, regrowth forests, and
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cashew plantations at a newly established ecosystem moni-
toring site in Phnom Kulen National Park, Cambodia.

2 Materials and methods
2.1 Study area and selection of plots

The selected study area is the Phnom Kulen National Park
located in the Siem Reap Province in northwestern Cambo-
dia (Fig. 1). It covers 37 380 ha predominantly on Jurassic—
Cretaceous sandstone plateaus, and the highest peak is 496 m
(Matschullat, 2014; Geissler et al., 2019). In 2021, 72 %
of Phnom Kulen National Park was forested, dominated by
nearly intact tropical evergreen forests (EFs) (30 %) and
forests that regrow naturally after clear-cutting (RFs) (7 %).
The remaining 35 % of forest cover consisted of semi-
evergreen, deciduous, and bamboo stands. Non-forest ar-
eas were dominated by household-scale cashew plantations
(CPs) (15 %), with the remaining 13 % consisting of crop-
lands, paddy fields, settlements, and tree and rubber planta-
tions (Sovann et al., 2025).

Nine forest inventory plots were established in Kulen in
December 2020, three within each of the EF, RF, and CP
land-cover classes (Fig. 1, Table 1, Fig. S1), with a minimum
separation of 250 m to capture stand structure variation for
each land-cover class. The EF plots represented tropical ev-
ergreen forests with no clear-cut history. The RF plots were
dominated by at least 10-year-old natural regrowth forests,
and RF1 was clear-cut in 2009, while RF2 and RF3 expe-
rienced timber harvesting, burning, and fuelwood collection
from 2006 to 2013. The CP plots were permanent rainfed
cashew plantations, with cashew trees planted in 2013 in CP1
and in 2012 in CP2 and CP3.

2.2 Data collection
2.2.1 Forest inventory

The forest inventory was performed by following the stan-
dard method of the National Forest Inventory of Cam-
bodia (Than et al., 2018). Each plot was designed as
a rectangle with 50m x 30m long edges in the south—
north and west—east directions. The plots were further
subdivided into five subplots with the following dimen-
sions: 2mx2m,5m x5m, 10m x 10m, 30m x 15m, and
30m x 50m (Fig. S2). In the 2m x 2 m subplots, seedlings
with diameters at breast height (1.3 m above ground level,
a.g.l.) of less than 1cm were recorded. In the Sm x 5m,
10m x 10m, 30m x 15m, and 30m x 50 m subplots, trees
with DBH ranges of 1-5, 5-15, 15-30, and greater than
30 cm were measured, respectively.

For seedlings, we only recorded the total numbers of each
species. For the DBH range of 1-5cm, we noted the DBH,
tree height, species, local name (Khmer), and position of
each tree. For trees with a DBH greater than 5 cm, we col-
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lected the same data as for trees with a DBH of 1-5cm,
plus bole height (the height from the ground to the first main
lowest stem), health (healthy or infected), quality (straight,
bent, or crooked stem), origin (natural or planted), and stump
diameter and height (measured 15cma.g.l. for annual tree
growth monitoring).

Deadwood is a significant indicator of decomposition and
nutrient cycling processes in a forest ecosystem (Shannon et
al., 2021). Data on lying and standing deadwood with a DBH
greater than 10 cm in the 30 m x 15 m subplots were also col-
lected. The deadwood decomposition levels were classified
into five scales, based on harmonizing the scaling systems of
the National Forest Inventory of Sweden (Swedish Univer-
sity of Agricultural Sciences, 2021) and Cambodia (Than et
al., 2018) (Table S1). For standing deadwood, we recorded
the species, local name, location, height, and decomposition
level. For lying deadwood, we counted the number of pieces
and measured the lengths, base and tree diameters, and de-
composition levels.

2.2.2 Leaf sample collection and measurement

A total of 453 leaf samples from 30 woody species were col-
lected inside and 500 m around the forest inventory plots in
December 2019 and August 2022. Each species was rep-
resented by 5 to 47 leaf samples. Each leaf’s fresh mass,
chlorophyll content, and photo were taken in the field. A
chlorophyll meter (SPAD 502 Plus; Konica Minolta Sensing
Inc., Japan) was used in situ to measure chlorophyll content
five times on each leaf surface to retrieve a leaf mean value.
The given measurement unit was in Soil Plant Analysis De-
velopment (SPAD) value and later converted to chlorophyll
(Chl) a and b content in pug cm ™2 (Coste et al., 2010). We ob-
tained fresh leaf mass by weighting in the field and leaf dry
mass by oven-drying the leaves at 60 °C until the leaf mass
remained constant (oven-dried for at least 3 d) (Garnier et al.,
2001). The leaf photos were used for estimating leaf lengths
and areas using ImageJ (Schindelin et al., 2012; Schneider et
al., 2012).

2.2.3 Meteorological and photosynthetically active
radiation data

A meteorological station was installed in an open area
to continuously record meteorological conditions and in-
coming photosynthetically active radiation (PAR) for the
wider area (the Kulen National Park). Data were sampled
at 1 min intervals and stored as 15min averages (sum for
rainfall). The installation was done in November 2020 in
Khnang Phnom Commune, Svay Luer District, Siem Reap
Province, at an altitude of 314 m above mean sea level and
at 13°34'16.1148” N, 104°9'45.6768" E. The station has one
Atmos 41 meteorological station (Meter Group Inc. WA,
USA), installed 2.2 ma.g.l., measuring rainfall, wind speed,
wind direction, global radiation, atmospheric pressure, and
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Figure 1. The locations of the nine forest inventory plots and the meteorological station in the Phnom Kulen National Park, Cambodia. Note:

the background land cover 2021 was derived from Sovann et al. (2025).

air temperature. Additionally, four PAR sensors (SQ-110-
SS, Apogee Instruments, Inc., UT, USA) were positioned
2ma.g.l to record incoming PAR (PAR;,) (Fig. S3).

Six additional loggers with five PAR sensors (SQ-521-SS
and SQ-110-SS, Apogee Instruments, Inc., UT, USA) and
one TEROS 12 soil moisture sensor each (Meter Group Inc.
WA, USA), collecting data at a 15 min mean time step, were
installed in six of the forest inventory plots in April 2022. The
soil moisture sensors were installed at a depth of 20cm to
measure soil water content (SWC), soil temperature (Ts), and
soil electrical conductivity (ECs). Two loggers were placed
in each land-cover class (EF, RF, and CP). The selection of
plots in each land-cover class was based on previous mea-
surements of leaf area index, and the loggers were placed at
the plots with the highest and lowest LAI for each land cover,
respectively. Thus, the selected plots for installing PAR sen-
sors were EF1, EF3, RF1, RF3, CP2, and CP3 (Fig. 1). One
PAR sensor was placed in the centre of the plot, and the other
four were placed 15+ 1 m apart at 30, 150, 220, and 330°
from the north. In cases of unfavourable field conditions,
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such as high termite nests or being too close to a tree, the
locations were adjusted 0.5—1 m east or west of the planned
position. Each PAR sensor was mounted on 1.3 m poles to
record PAR below-canopy data. We calculated the fraction
of PAR intercepted by the stand canopy for each plot using
Eq. (1) (Olofsson and Eklundh, 2007). Each TEROS 12 soil
moisture sensor was installed at a depth of 20 cm in the mid-
dle of the six plots to measure SWC, Ts, and ECs. The data
of fPAR and soil conditions from two plots within the same
land-cover classes were averaged to represent those classes.

(PARinc - PARbelow)
PAR;nc ’

fPAR =

6]

where PAR;n. and PARyjow are photosynthetically active ra-
diation above and below canopy (umol m—2 s~!) and fPAR is
a percentage.

2.2.4 Leaf area index measurements

‘We measured each plot’s total one-sided leaf surface area per
unit ground area, LAI using an LAI-2000 Plant Canopy An-
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Table 1. Characteristics of the forest inventory plots in Phnom Kulen National Park. Note: EF = evergreen forest; RF = regrowth forest; and
CP = cashew plantation. Data source: soil type and geology data from Matschullat (2014). Disturbance history information is obtained from
field observation, from discussion with local people, and by combining the Global Forest Change dataset of Hansen et al. (2013) with the

LandTrendr Pixel Time Series Plotter tool of Kennedy et al. (2018).

PlotID  Latitude, longitude  Elevation (m)  Soil type Disturbance history
EF1 13°34/12.4680" N 331  Acid lithosols No clear-cut history; affected by wind disturbance and
104°7'18.6096" E human collection of wild honey, lychee, and other wild
fruits in 2006, 2012, and 2014. Fewer large tree stands
and lower vegetation cover density compared to EF2
and EF3.
EF2 13°34/25.3452" N 349  Acid lithosols No clear-cut history; past disturbances include cutting
104°7'20.2872" E one lychee tree for fruit harvesting in 2022.
EF3 13°34/35.0508” N 339  Acid lithosols No clear-cut history; a wind-driven disturbance oc-
104°7'20.6148” E curred in 2023.
RF1 13°33/42.6132" N 331 Red-yellow podzols  Evergreen forest clear-cut in 2009.
104°8"1.2408” E
RF2 13°36'15.6924” N 371  Acid lithosols Timber harvesting, burning, and fuelwood collection of
104°7'48.8928" E an evergreen forest from 2006 to 2013.
RF3 13°37'0.3612" N 401  Acid lithosols Timber harvesting, burning, and fuelwood collection of
104°7'41.358" E an evergreen forest from 2006 to 2013.
CP1 13°32/18.8988" N 429  Red-yellow podzols  Cashew plantation established in 2013.
104°12/12.5568" E
CP2 13°32/29.3100” N 422 Red-yellow podzols  Cashew plantation established in 2012.
104°12/13.0284" E
CP3 13°32/50.1864" N 430 Red-yellow podzols  Cashew plantation established in 2012.

104°12/13.1544" E

alyzer (LI-COR, NE, USA). The measurements were con-
ducted six times across two seasons: four times during the
dry season (November/December 2019, November 2020,
December 2020, and March 2021) and twice during the
rainy season (September 2020 and June 2021). The measure-
ments were taken both at ground level to capture the total
LAI (LAIT) and at breast height to specifically assess tree
canopy LAI (LAI¢) within two diagonal transects across the
50 m x 30 m rectangular plots. On each measurement occa-
sion, we collected between 32 and 75 samples, except for
the ground-level measurements of the RF3 plot in Decem-
ber 2020, where only 10 samples were collected due to tech-
nical issues.

2.3 Data analysis

2.3.1 Species diversity

We investigated the species diversity of various land cov-
ers by calculating species richness (Sr) and the Shannon—
Wiener index (Sg) (Shannon, 1948). The Sg was determined

by summing the number of tree species in each plot. The Sy
is commonly used to quantify species richness and evenness
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in a community by representing the number of species and
how equally individuals are distributed among them (Hill,
1973). The value of Sy increases as the number of species
and the degree of evenness increase. The Sy was calculated
as follows:

Su =—Y_ PiIn(P), 2)

i=1

where Sy is the Shannon—Wiener index (unitless), P; is a
proportion of i species in a community (unitless), and n is
the number of species in a plot (unitless). We calculated the
Sr and Sy at the plot level and then averaged the values for
each land-cover class.

2.3.2 Functional traits and diversity

We computed the specific leaf area (SLA) for each of the
453 leaf samples as the ratio of leaf area to leaf dry mass.
Likewise, leaf dry matter content (LDMC) was calculated
by the ratio of dry leaf mass to fresh leaf mass (Gar-
nier et al., 2001; Akram et al., 2023). We estimated the
trait community-weighted means and standard deviations of
SLAcwm, LDMCcywm, and Chleyn, to represent ecosystem
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functions and their diversity at the land-cover level (Garnier
et al., 2004; Leoni et al., 2009; Wang et al., 2020) as follows:

Z?:lWiTi
Z?:lwi ’

where Town is the trait community-weighted mean for SLA,
LDMC, or Chl; T; is the species-specific trait value tree i; n
is the total number of trees; and W; is the weight (volume-
based) value of the tree, assuming that larger trees have a
greater impact on the ecosystem function (Chave et al., 2005;
Feldpausch et al., 2011). Before computing 7Tcym for each
trait, we addressed missing species traits within each plot by
firstly taking values from a different plot with the same land-
cover class. If unavailable, we used values from the same
species across all nine plots, followed by values from the
genus and family levels. When multiple genera or families
were available, we averaged the values. If neither was avail-
able, we used the mean trait value of the plot.

3

Tewm =

2.3.3 Stand structural attributes

We examined the differences in DBH, H, basal area (BA),
aboveground biomass, and deadwood biomass (DWB) for
the various land-cover classes to characterize stand structure
attributes. Deadwood volumes (Vpw, m3 ) for each bole were
determined by Smalian’s equation:

(Dt%ase + Dl20p)

3 )
where Dyase and Dyop are diameters at base and top (m) and
Hy, is the length/height of the trunk (m).

Deadwood biomass was then received by multiplying Vpw
with a mean deadwood density of 0.45gcm™> (Kiyono et
al., 2007). Total DWB was computed plot-wise by taking the
sum of lying and standing DWB. DWB for each land-cover
class was calculated as the average of the total DWB across
the plots within that land-cover class.

Basal area was determined plot-wise by combining the
DBH of all living trees within a plot:

" DBH; \? [ 10*
BA — n< ) (—) 5)
l; 2 A;

where BA is the plot-wise total basal area of all living trees
(m?ha~"), n is the number of trees in a plot, DBH; is the
diameter at breast height of tree i in a sampling plot (m),

DBH;
7 (—2

Vow = (7 Hp) “

2 4
) is the circle basal area of tree i (m?), and (%) is

the scaling factors employed to convert the sampled subplot
area (A;) to 1 ha (unitless). The BA for each land-cover class
was represented by the mean BA of all plots within a class.
We calculated the mean and standard deviation of DBH
and H for each plot and land cover. We further used these for
establishing relationships between DBH and H, as such rela-
tionships serve as functional traits characterizing tree growth
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patterns and successional stages within forest communities
(Nyirambangutse et al., 2017; Howell et al., 2022). We used
natural logarithms and then converted them to power-law re-
lationships according to both plot- and land-cover class (West
and Brown, 2005). An ordinary least-squares (OLS) linear
regression was applied to investigate the DBH-H relation-
ship, followed by transforming the relationship into a power-
law relationship (Huxley, 1932).

H = K,DBHX2, (6)

where K1 and K are the power-law intercept and slope, re-
spectively. The K captures the overall scaling relationship
between H (m) relative to DBH (cm) within a forest com-
munity, while K, regulates the rate of H increase relative to
DBH growth.

The obtained K; and K, values were further used to esti-
mate AGB (AGBy,) Eq. (7) in Table 2. We also computed the
AGB using existing equations (Table 2, Eqs. 9—11) (AGBy)
adopted for the three different land-cover classes. These EF
and RF allometric equations were developed for tropical
multiple species, whereas the CP equation was a species-
specific allometric equation for the cashew tree (Malimbwi
et al., 2016). The wood density values required for the AGB
estimations were species-specific and obtained from The In-
ternational Council for Research in Agroforestry (ICRAF,
2022) and Zanne et al. (2009). When multiple WD values
for a tree species were available, the mean value was used,
whereas, when no species-specific WD values were avail-
able, the average of tropical Asia (0.57 gcm™>) was used
(Reyes et al., 1992). The applied WD values for this study
then ranged from 0.39-1.04 gcm™3. Specifically, the WD
values (mean =+ 1 standard deviation) for EFs, RFs, and CPs
were 0.74 £0.17,0.72£0.15,and 0.45 g cm_3, respectively.
We first estimated AGB at the plot level in kilograms, then
scaled these values to megagrams per hectare, and then aver-
aged per land-cover class.

2.3.4 Statistical analysis

Descriptive statistics were conducted to examine the differ-
ence in ecosystem characteristics between plots and land-
cover classes. One-way ANOVA tests (ANOVA) were used
to assess significant differences in mean values across land-
cover classes. Tukey’s honestly significant difference test
(Tukey HSD) was further employed for pairwise compar-
isons between land-cover classes. Pearson correlation and
ordinary least-squares regression analyses were used to ex-
plore relationships between variables. All analyses were per-
formed using R 4.2.3 (R Core Team, 2023).
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Table 2. Allometric equations used for estimating aboveground biomass (AGB; kg per tree) in the different land-cover classes.

No. Equation Landcover AGB allometric equation Regions n DBH WDs  References
(range, cm) (mean=£SD, g cm*3)
1 Eq.(7) Al AGBy, = WX K ppy2+K2 4 ¢ - - - —  This study
2 Eq.(8 Al AGByqg = % AGBg - - - —  This study
:
3 Eq. (9) EF AGB; = 0.1184 DBHZ53 Pantropical 170 5.0-148.0 0.58£0.02 Brown (1997)
4 Eq.(10) RF AGB¢ = 0.0829 DBHZ43 Sarawak, Malaysia 136 0.1-28.7 0.38+£0.07 Kenzo et al. (2009)
5  Eq(11) CP AGB; = 0.8450DBH!77 Pwani, Tanzania 45 6.0-89.9 0.18  Malimbwi
et al. (2016),
Mlagalila (2016)
Note: EF is evergreen forest, RF is regrowth forest, and CP is cashew plantation. In Egs. (9)-(11), DBH is the diameter at breast height (cm), and WDy is the reported mean wood density used in AGBg (kg m3). In Eq. (7), K1 and

K are derived power-law intercept and slope values between the DBH (cm) and tree height (H, m) relationship in Eq. (6), & is a statistical error term, WD is wood density for each tree species (g em™3), and DBH is in centimetres.
In this study, in Eq. (7), we employed a trunk shape factor of 1/8 for calculating the volume of frustum cones, as proposed by King et al. (2006). This factor falls within the range of 1/4 (cylinder volumes) to 1/12 (cone volumes).
In Eq. (8), AGByq is our examined aboveground biomass based on Egs. (9)~(11) with species-specific wood density updated for our woody tree species, and WD is the species-specific wood density of trees in each plot (gcm™3).

3 Results
3.1 Meteorological and soil conditions

The observed annual daily mean air temperature from
April 2022 to April 2023 at Kulen meteorological station was
242 +£2.0°C, varying between 17.8 and 28.6 °C (Fig. 2a).
The total annual rainfall was 2290 mm, significantly surpass-
ing nearby lowland stations: Banteay Srei station, located
22 km west, recorded 1160 mm, and Siem Reap City sta-
tion, situated 40 km southwest, recorded 1475 mm (Chim et
al., 2021). About 90 % of the annual precipitation fell dur-
ing the rainy season from May to November, with Septem-
ber being the wettest month (505 mm). The daily maximum
rainfall can reach up to 141 mm, but the daily mean dur-
ing the rainy season was 11.2+19.7 mm (Fig. 2b). The an-
nual daily mean of global radiation, relative humidity, vapour
pressure deficit, and wind speed were 172 +44Wm2,
88 +12%, 0.45+0.21kPa, and 0.68+£0.22ms!, respec-
tively (Fig. 2c—f).

Soil conditions varied significantly among land-cover
classes (ANOVA and Tukey HSD, p value < 0.001). Annual
daily mean soil temperature was highest in CPs (25.8 °C),
exceeding values in EFs (24.3 °C) and RFs (24.2 °C). In con-
trast, annual daily mean soil water content was lowest in
RFs (0.14 m® m~3) compared to EFs (0.23 m> m~3) and CPs
(0.21 m*m~3) (Table 3). Annual daily mean soil electrical
conductivity was highest in EFs (0.039dSm™"), followed
by RFs (0.032dSm~!) and CPs (0.025dSm™"'). Overall,
daily mean values across land-cover classes ranged between
0.14-0.23 m> m~3 for SWC, 24.2-25.8 °C for Ts, and 0.025-
0.039dS m~! for ECs (measured at 20 cm depth; Fig. 2g—i).

3.2 Species diversity

A total of 343 observations (292 trees and 51 seedlings)
from 47 woody species (including 13 seedling species) and
32 families (including 7 seedling families) were identified
from the nine plots (Table S3). No statistical test of signif-
icance of differences in species diversity among land-cover
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classes was possible due to too few sampled plots. However,
species diversity declined markedly from evergreen forests
to regrowth forests and was lowest in cashew plantations, as
reflected in both species richness and the Shannon—Wiener
index. The average Sr per plot was 17 in EFs, 13 in RFs,
and only 4 in CPs. Similarly, the Sy was highest in EFs
(2.48 +0.33), intermediate in RFs (1.97 +0.45), and low-
est in CPs (0.61 £ 0.46), with individual plot values ranging
from 0.31 (CP2) to 2.68 (EF1) (Table S4). Species compo-
sition was more evenly distributed in EFs and RFs but natu-
rally strongly dominated by a single species in CPs. In EFs,
the top five most abundant species, Mesua ferrea (n = 18),
Diospyros bejaudii (n = 12), Litchi chinensis (n = 11), Vat-
ica odorata (n = 11), and Hydnocarpus annamensis (n = 8),
accounted for 46 % of the individuals. In RFs, Vatica odor-
ata (n = 54), Nephelium hypoleucum (n = 14), Benkara fas-
ciculata (n = 12), Garcinia oliveri (n = 12), and Mesua fer-
rea (n =5) made up 61 %. In contrast, CPs were domi-
nated by Anacardium occidentale (n = 46), which was the
only tree species observed excluding seedlings. Additional
seedling species in CPs included Strychnos axillaris (n = 3),
Nephelium hypoleucum (n = 1), Melodorum fruticosum (n =
1), Maclura cochinchinensis (n = 1), and Catunaregam to-
mentosa (n = 1). Furthermore, fast-growth species, as de-
scribed by Ha (2015) (WD < 0.6 gcm’3), accounted for
40 % of EFs and 44 % of RFs of their total species composi-
tion.

3.3 Leaf functional traits

At the species level, the mean specific leaf area for all 30
species was 16.97 4 5.30m? kg~!, with Hydnocarpus anna-
mensis having the highest SLA (36.67 5.20m”*kg™")
and  Capparis  micracantha  having the lowest
(10.46+3.28m?>kg~!). For Chl, the mean value was
10.28 +4.17mg g~!, with Hydnocarpus annamensis having
the highest value (25.75+5.28mgg~!) and Anacardium
occidentale having the lowest (4.86 +4.93 mg g~ !). Finally,
for LDMC, the mean value was 378.96 £ 143.26 mg g’],

Biogeosciences, 22, 4649-4677, 2025
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Table 3. Mean values and statistics of ecosystem characteristics in the different land-cover classes.

Group Variables Land cover A Tukey HSD
N EF EF RF
(6] and and and
\% CP RF CP
A
EF n RF n CP n p value p value p value p value
(mean %+ SD) (mean % SD) (mean =+ SD)
Species SR (with seedling species, 174 3 13£2 3 4+3 3 - - - -
diversity count per plot)
SR (without seedling species, 13+£2 3 10+3 3 1+0 3 - - - -
count per plot)
Sy (with seedling species, 2.4840.33 3 1.974+0.45 3 0.61£046 3 - - - -
unitless)
Leaf Chlewm (mgg™1) 9.14+3.45 109 7.56+2.03 137 4.99+0.66 46 * * 0.39 0.08
functional traits
LDMCewm (mgg™h) 398.43+£72.24 109 370.13 £94.97 137 407.64 £21.68 46 0.51 0.50 0.94 0.69
SLAcwm (m?kg™h) 18.18 +2.86 109 14.87£2.06 137 11.99+1.45 46 w4 % * 0.06
Stand structure  DBH (cm) 18.0+20.1 109 58+43 137 13.0+3.9 46 ok 0.14 HHk Hork
H (m) 17.0+£13.3 109 74438 137 63+1.0 46 ok ok 0.93
Maximum H (m) 52.0 109 18.6 137 7.8 46 - - - -
Wood density (gcm™3)2 0.74+0.17 109 0.72£0.15 137 0.45+0.00 46 ek ok 0.56
Stem density DBH > 1 cm 6216 £2177 3 10859 +4999 3 1067 £440 3 - - - -
(ha=hP
Stem density DBH > 5 cm 1016 £533 3 2193 £895 3 1067 £440 3 - - - -
(ha=hP
Stem density DBH > 10 cm 550+ 505 3 293+6 3 600 £ 164 3 - - - -
(ha=h)®
BA (m*ha~!) 262+3.6 3 17.0+54 3 116+£35 3 - - - -
BA (m?ha~!, DBH > 5 cm) 237+44 3 11.6+24 3 116+£35 3 - - - -
BA (m?ha~!, DBH> 10cm) 21.1+4.4 3 44+0.7 3 92+1.8 3 - - - -
DWB (total) (Mg rm\_v 275+12.4 3 48+7.0 3 04+0.2 3 - - - -
AGB; Mgha™!) 239492 3 42+10 3 71+22 3 - - - -
AGByg (Mgha™1) 336+ 168 3 78 £25 3 182+57 3 - - - -
AGB;, Mgha™!) 312+ 184 3 54+ 14 3 17+5 3 - - - -
LAIc (m2m~—2) 4.62£0.50 21 4.66£0.70 21 252+042 21 ok Hkk 1.00
LAIT (m? m~2) 6.1640.67 21 5.57+0.76 21 3.07+0.61 21 ik otk 0.08 ok
Annual mean fPAR® 0.97+£0.01 364 0.96+£0.01 365 0.76+£0.06 359 ok Hokk * Hk
Soil conditions  Annual mean SWC (m® m—3) 0.23+£0.06 364 0.14£0.03 365 0.21+0.05 363 ek ok
Annual mean Ts¢ (°C) 243+1.2 364 242+1.3 365 258+1.5 363 ok ok ik
Annual mean ECs® (dSm™~!) 0.039+£0.015 268 0.032+£0.013 40 0.025+0.003 260 ek ok

Abbreviations used in the table: EF = evergreen forest; RF = regrowth forest; CP = cashew plantation; Sg = species richness (only woody seedling species); S7 = Shannon—Wiener index; Chlowm = y-
H =tree height; BA = stand basal area; AGB¢ = aboveground biomass computed by adopted functions; AGB}, = aboveground biomass

matter content; SLA¢wm = community-weighted mean of specific leaf area; DBH = tree’s diameter at breast heigl

ysis of variance; Tukey HSD = Tukey’s honestly signi

fference test. Stat

hted mean of

phyll a and b content; LDMCowm = community-weighted mean of leaf dry
Jaw relationshin:

p value < 0.001

by H and DBH ps

ity updated for our woody tree species; LAl = canopy leaf area index; LAIT = total leaf area index; fPAR = fraction of photosynthetically active radiation; SWC = soil water content; Ts = soil temperature; ECs = soil
i significant code for ANOVA and Tukey HSD test: *#*
available. @ The species-specific wood density was derived from the ICRAF (2022) and Zanne et al. (2009). ® Extrapolated values for 1 ha were obtained from sampling DBH class subplots. © Daily mean values were used to calculate the reported variables.

p value < 0.01, “*” p value < 0.05, and “=" not
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Figure 2. The meteorological conditions at Kulen meteorological station (a—f) and soil conditions at each land-cover class (g—i) from
10 April 2022 to 9 April 2023. (a) Daily mean air temperature (7;.; °C), (b) daily total precipitation (P; mm), (c) daily mean global
radiation (Rg; Wm_z), (d) daily mean relative humidity (RH; %), (e) daily mean vapour pressure deficit (VPD; kPa), (f) daily mean wind
speed (WS; ms_l), (g) daily mean soil water content (SWC; m3 m_3), (h) daily mean soil temperature (Ts; °C), and (i) daily mean soil
saturation extraction electrical conductivity (ECs; dS m~!). The vertical dashed lines in each plot highlight the rainy season in Cambodia
from May to October. The grey-shaded regions around the mean in panels (a), (d), (e), and (f) represent the 95 % confidence interval (using
1 standard deviation) from the daily mean, while the blue horizontal dashed line represents the yearly mean, the brown horizontal dashed
line represents the yearly median, and the black horizontal dotted line represents a yearly standard deviation (see Table S2 and Fig. S4,
which present Kulen meteorological station’s annual and monthly meteorological data. Figures S5—-S7 show monthly mean soil conditions
by land-cover class, and Fig. S8 depicts correlations between meteorological and soil conditions).

with Mesua ferrea and Hydnocarpus annamensis hav-
ing the highest (486.904+25.03mgg~!) and lowest
(139.924+20.19mg g~ ") values, respectively. For detailed
descriptions of leaf functional traits of all species and plots,
please refer to Tables S5-S7.

https://doi.org/10.5194/bg-22-4649-2025

Across land-cover classes, mean SLA.wm and Chleywm
decreased from EFs to RFs to CPs. SLA.ym and
Chleym were highest in EFs (18.18£2.86 m? kg_1
and 9.14+3.45mgg™"), followed by RFs
(14.87£2.06m?>kg~" and 7.56+2.03mgg~!) and CPs

Biogeosciences, 22, 4649-4677, 2025
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(11.99 £ 1.45m?kg~! and 4.9940.66mgg~"). Both traits
showed statistically significant differences across land covers
(ANOVA p value < 0.002 for SLAcwm, p value < 0.018 for
Chlcwm). In contrast, LDMC.ym did not differ substantially
among land-cover classes (p value =0.51), with CPs having
the highest value (407.64 +21.68 mg g~!), followed by EFs
(398.434+72.24mgg~") and RFs (370.13+£94.97 mgg™").
See Table S8 for data sources and shared percentages of
species trait values used to compute SLA.wm, Chlewm, and
LDMCcwm-

3.4 Stand structure attributes
3.4.1 DBH and tree height

Land-cover conversion reduces both the mean and variabil-
ity for tree diameter and height, indicating a loss of structural
complexity in human-disturbed ecosystems. Structural mea-
surements of 292 woody trees across three land-cover classes
showed that EFs had the highest structural complexity, with
the highest mean and variability in DBH (18.0 £20.1 cm)
and tree height (17.0 & 13.3 m), including the largest indi-
viduals (DBH =102.3cm, H = 52.0m; Fig. S9). However,
RFs and CPs had substantially lower means and variability
in these variables, suggesting reduced structural complexity
after forest conversion. While both RFs and CPs had similar
heights (RF: 7.4 £ 3.8 m; CP: 6.3 £ 1.0 m), CPs had a signif-
icantly greater DBH (CP: 13.0£3.9cm; RF: 5.8 =4.3 cm).
The results of the ANOVA and Tukey HSD tests confirmed
significant differences in DBH and height among land covers
(p value < 0.001), except for EFs and CPs for DBH and RFs
and CPs for height (Table 3).

3.4.2 Aboveground and deadwood biomass

Land-cover conversion from EFs to RFs and CPs resulted
in a substantial decline in both aboveground and deadwood
biomass. The mean AGBy estimated using the generic al-
lometric function dropped sharply from 239 +92Mgha™!
in EFs to 424+ 10Mgha~! in RFs and 71 +22Mgha™!
in CPs. Similarly, the mean total DWB declined from
27.54+12.4Mgha~! in EFs, 4.8 £7.0Mgha~! in RFs, and
0.440.2Mgha~! in CPs. See Table A1 for the contribution
of lying and standing DWB to total DWB.

3.4.3 Stem density and basal area

Changes in land cover strongly influenced stem density, basal
area, and the distribution of aboveground biomass across
DBH classes (Fig. 3). RFs exhibited twice the stem den-
sity (DBH > 5cm) per hectare compared to EFs and CPs,
driven largely by a high proportion of smaller trees in the
5-15cm DBH class. Despite having a lower mean DBH,
RFs had a higher basal area (17.0£5.4 m? ha—!) than CPs
(11.643.5m?ha™'). Interestingly, in EFs, only 5% of the
stems with a DBH > 30cm contributed to approximately
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65 % of the total AGBg¢. In contrast, the main DBH class con-
tributing to the AGBy¢ in RFs and CPs was 5—15 cm, account-
ing for 57 % and 76 % of the total AGB¢ in RFs and in CPs,
respectively. Refer to Table SO in the Supplement for shared
stem density percentages per hectare across DBH classes and
Table S10 for shared percentages of AGBy categorized by
DBH class.

344 LAIand fPAR

The mean total leaf area index values were
6.16£0.67m?>m~2 for EFs, 5.57+0.76m> m~2 for RFs,
and 3.07 £0.61 m>m~2 for CPs. The mean canopy LAI
values were 4.62 4 0.5 m? m~2 for EFs, 4.66 & 0.70 m? m—2
for RFs, and 2.52+0.42m?>m~2 for CPs. The ANOVA
analysis revealed a significant difference in mean LAlt
and mean LAIc among the three land-cover classes, while
the Tukey HSD test did not find a significant difference in
mean LAIT and mean LAI¢ between EFs and RFs (Table 3).
The phenology of both LAlt and LAlc revealed a similar
pattern in EFs and RFs, with peak and base values in June
and March, respectively (Fig. 4a-b, Table S11). The LAIt
and LAlc patterns for CPs resembled those of EFs and
RFs but also had a strong decrease in April. Furthermore,
the understorey LAI (LAly; the difference between LAIT
and LAIc) for the various land-cover classes indicates
that the ground vegetation greatly contributes to LAIt for
EFs and RFs, while the contribution was minor for CPs
(Fig. 4c). In particular, the LAIy mean values within 1 year
were approximately 1.5440.57m>m~2 for EFs (25 %),
0.91£0.36 m? m~ for RFs (16 %), and 0.55 +0.39 m*> m >
for CPs (18 %). A general trend of a high contribution of
LAlIy to LAl in June and a low contribution in April was
apparent for all land-cover classes.

The observed mean annual fPAR for EFs, RFs, and CPs
was high: 0.97 £0.01, 0.96 £ 0.01, and 0.76 £ 0.06, respec-
tively (Table 3). The values of EFs and RFs exhibited min-
imal fluctuations throughout the year, whereas the fPAR of
CPs ranged between 0.55 and 0.93 (Fig. 5). Like LAI the
annual mean fPAR among EFs, RFs, and CPs was statisti-
cally significantly different according to both the ANOVA
and Tukey HSD tests.

3.5 Estimated aboveground biomass based on DBH-H
relationship

3.5.1 DBH-H relationship

Land-cover change weakens tree allometry, reducing the
consistency of DBH—H relationships in human-impact for-
est and agricultural ecosystems. Strong positive relationships
between DBH and H were observed in both EFs and RFs.
For EFs, 92 % of the variation in H can be explained by the
variation in DBH, whereas, for RFs and CPs, it was 78 %
and 51 %, respectively (Fig. 6, Table S12). The power-law
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Figure 3. Estimations per land-cover class of a mean number of stems per hectare (a), basal area (BA; m?2 ha_l) (b), and mean aboveground
biomass separated by the different classes of diameter at breast height (DBH) (c). In panel (c), the contribution of different DBH classes to
the mean aboveground biomass estimated by the AGB¢ method was used in this calculation. The error bars in the figure represent 1 standard
deviation.
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Figure 4. Total leaf area index (LAIT; m? m_2), canopy leaf area index (LAIc; m? m_2), and understorey leaf area index (LAly; m? m_z)
and their variations across different months within 1 year for evergreen forests (EFs), regrowth forests (RFs), and cashew plantations (CPs).
The lines on the graph represent the connection between the mean LAI values from 1 month to another.

relationships between DBH and H further indicated that the 3.5.2 Comparison of AGB estimation methods
K and K> values for EFs and RFs were similar, whereas the
values for CPs were much lower. For a plot-level analysis of

relationships between In(DBH) and In(H), see Fig. S10 and Qur I’f.:SLlltS 1ndlcqte that .locally cahbrgted DBH_H rela-
Table S13 tionships and species-specific wood density substantially af-

fected aboveground biomass estimates compared to general-
ized models (Fig. 7). The AGBy,q method consistently pro-
duced higher values than AGBs across all land-cover classes,
reflecting the influence of wood density and the dominance
of high-density tree species at our study site. In EFs and
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Figure 5. Daily mean global radiation (Rg; W m_z) (a) and daily mean fPAR for evergreen forests (EFs) (b), regrowth forests (RFs) (c), and
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Figure 6. Relationship between diameter at breast height (DBH)
(cm) and tree height (H) (m) for evergreen forests (EFs), regrowth
forests (RFs), and cashew plantations (CPs) in Kulen. The figure
shows the derived power-law intercept (K) and slope (K») values
for EFs, RFs, and CPs.
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RFs, where DBH-H relationships were strong, AGBy, es-
timates were markedly higher than AGB¢ (EFs: 312+ 184
vs. 239+92Mgha~!; RF: 54+ 14 vs. 42+ 10Mgha™1),
consistent with plot-level regression results (Fig. S10, Ta-
ble S13). In contrast, in CPs, AGBy, yielded much lower
values than AGB¢ (17 £5 vs. 71 £22Mgha~!), highlight-
ing the limited reliability of this method under weak DBH-
H relationship conditions. The differences between AGBy
and AGBy estimates across land covers are illustrated in 1 : 1
comparison plots and plot-level summaries (Figs. S11-S13).

3.6 AGBy, relationships with LAIt, SLA.wm, and Sg

We observed positive relationships between aboveground
biomass and three pivotal ecosystem characteristics: LAIT,
Sr, and SLA.ym determining 76 %, 72 %, and 68 % of the
variability in AGB, respectively (see Fig. 8 and Table S14 for
statistical regression tables). LAIt exhibited strong positive
correlations with SLA wm, Sr, and AGB, with the Pearson
correlation coefficient in the range of 0.67-0.85. SLAcwm
had a positive correlation with Sg and AGB. Furthermore,
additional insights regarding the Pearson correlation matrix
depicting relationships among various ecosystem character-
istics are presented in Fig. S14.
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Figure 7. Power-law relationships between aboveground biomass (AGB) of AGByf, AGBy,, and AGB,,4 and diameter at breast height (DBH)
for each land-cover class (a), along with the corresponding results of AGB estimation (b). AGB¢ represents aboveground biomass estimated
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(a) &l (b)7 (c) 53
6- 6_
22 B EF2
D 6l bt D
EF1
EF2 1 EF
5 L oL 5 o
£ ik gl e -
@© 7 RE2 @ 51 - ® g &
= ~Rrs @ = ) 5 - RF2
= 4 7 o = RE2 - 2 " Res o
= A2 ° =4 < = 4 S e
Q s 2] /WBS/R'” aQ e °
O] 3 Pt~ [C) 7 L4 [C) 7
< 9 9 < < -
Sl T Sofg
QPZ/ // 053/
1 In P2 N N "
2+ y=-1.05+3.33x y=-8.38+4.63 x p y=272+0.86 x
R?=0.76, p-value = 0.002 21 R?=0.72, p-value = 0.004 24 R?=0.68, p-value = 0.006
1 L T T T T T T T T T T
1.00 1.25 1.50 1.75 25 2.7 2.9 0 1 2

In(LA/T) (m?m™2)

IN(SLA gam) (M kg™")

In(Sr)

Land cover ® EF @ RF © CP

Figure 8. Ordinary least-squares regression showing the effect of mean total LAI (LAIT; m? m_2), mean SLAcwm (m2 kg_l), and species
richness (SR; count per plot) on AGB. Mean LAIT is a mean ground LAI measurement; SR is a woody species count excluding seedlings in
a plot; and AGB is AGBy},, whose estimation was based on the DBH-H relationship.

4 Discussion
4.1 Soil conditions

The observations of soil temperature, soil water content, and
soil electrical conductivity all support our hypothesis that
land-cover conversion changes soil conditions in these trop-
ical forest ecosystems. The difference in soil temperature
between the forested land-cover classes (EFs and RFs) and
the cashew plantations (Table 3) aligns with prior studies
by van Haren et al. (2013) and Geng et al. (2022) and can
be explained by the substantial difference in interception of
incoming radiation between these ecosystems (Fig. 4). The
multi-layered canopies and the dense layer of deadwood and
litterfall, effectively prevent direct sunlight from reaching the
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ground. This natural shield reduces the impact of solar irra-
diance, thereby maintaining cooler soil surface temperatures
(Senior et al., 2018). Conversely, CPs have a simpler canopy
structure, predominantly featuring a single layer of cashew
trees of similar age. The understorey in these areas is sparser,
and the reduction in deadwood, due to management, facili-
tates greater penetration of solar irradiance and elevates soil
temperatures.

Our observed annual mean soil water content across the
three land-cover classes (0.14-0.23 m> m_3) is consistent
with earlier findings (Rodell et al., 2004; Wang et al., 2012;
Horel et al., 2022). Variations in SWC among these classes
may stem from differences in their stand structural complex-
ity (vegetation cover and root system) and soil properties
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(organic matter content and texture) (Pickering et al., 2021;
Tang et al., 2021). The higher SWC in evergreen forests
compared to regrowth forests is attributed to their dense
and multi-layered vegetation cover, which reduces penetra-
tion of solar irradiance and temperature at the forest floor,
thereby reducing evaporation and maintaining topsoil mois-
ture (Fig. 4). In addition, the complex root systems of pri-
mary forests enhance water retention by creating channels
and pores in the soil, while organic matter from deadwood
and litterfall further enhances soil water retention, particu-
larly during arid conditions (Luo et al., 2023). Another ex-
planation could be the soil texture, as our field investigation
observed that cashew plantations are all on sandier soils with
lower water-holding capacity, leading to decreased SWC
(Ibrahim and Alghamdi, 2021). Nevertheless, further exami-
nation of soil samples is necessary to accurately measure the
specific soil properties in each land-cover class.

The analysis of soil electrical conductivity categorized the
soils as non-saline across the land-cover classes. Evergreen
forests had higher ECs than cashew and regrowth forests, po-
tentially indicating larger nutrient availability (Omuto et al.,
2020). This higher nutrient availability in evergreen forests
may be linked to greater organic matter decomposition,
greater species richness, higher soil moisture content, and no
history of being clear-cut, which could lead to nutrient losses
via run-off during the phase without vegetation (Austin et al.,
2004; Vestin et al., 2020; Guo et al., 2023b).

4.2 Species diversity

Species richness and Shannon—Wiener index clearly declined
from evergreen forests to regrowth forests and were low-
est in cashew plantations, supporting our hypothesis that
land-cover conversion reduces species diversity. While EFs
and RFs showed similar mean values to other evergreen
forests in the mainland of Southeast Asia and India (Zin
and Mitlohner, 2020; Theilade et al., 2022; Tynsong et al.,
2022), Sr was lower compared to the most diverse rain-
forests in South America and equatorial Southeast Asia,
where >250 speciesha™! have often been reported (Surat-
man, 2012; ter Steege et al., 2023), and Sy was lower than
for some moist evergreen and humid lowland forests in the
region (Mohd Nazip, 2012; Zin and Mitl6hner, 2020). These
tropical rainforests may have more species because of their
larger forest patch sizes and higher rainfall, compared to
the relatively isolated monsoon forest at the top of Kulen,
surrounded by agricultural areas (Galanes and Thomlinson,
2009). The relatively low Sy may also be explained by the
high proportion of the top five dominant species in each land
cover, accounting for over 50 % of total stems in their com-
munities. Another possible reason could be the limited num-
ber of sample plots, which may not fully capture the overall
species composition and distribution in these forests. Tropi-
cal tree species composition is markedly influenced by bio-
geography and disturbance history, showing significant lo-
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cal variations even over short distances (Whitmore, 1998;
Van and Cochard, 2017). This emphasizes the necessity for
comprehensive field data sampling to accurately assess the
species richness and evenness of these highly diverse plant
communities. The comparison between Sg and Sy of EFs
and RFs in previous studies is presented in Tables S15-S16.

4.3 Leaf functional traits

Specific leaf area, leaf dry matter content, and chlorophyll
content are all key leaf traits in the leaf economic spec-
trum and carry diverse implications for understanding car-
bon sequestration, resource availability, successional stages,
and environmental responses (Wright et al., 2004; Gao et
al., 2022). Our results support the hypothesis that chang-
ing from pristine evergreen forests to regrowth forests and
cashew plantations leads to a substantial decline in key leaf
functional traits, particularly specific leaf area and chloro-
phyll content, indicating reduced ecosystem productivity and
resource-use efficiency.

Our observations emphasize the significant consequences
of transitioning from EFs to RFs or CPs, resulting in a sub-
stantial reduction in actual values and diversity in SLA¢wm,
reflecting a reduction in both ecosystem productivity and
resilience to disturbances (Liu et al., 2023). The higher
SLA.wm in EFs suggests higher photosynthetic capacity, es-
pecially in shaded environments, due to its dense canopy
cover and abundant resource availability (water and nutri-
ents) for plant growth (Green et al., 2020). High SLAcwm
values also link to faster turnover and promote nutrient cy-
cles, carbon sequestration, and nutrient use efficiency in for-
est ecosystems (Guerrieri et al., 2021). The lower SLAcwm
values of RFs and CPs may be attributed to limited water
and nutrient availability in the soil because of high competi-
tion in those ecosystems. The notable reduction in SLAcwm
caused by the shift from EFs to RFs or CPs underlines the
profound impact land-cover change has on ecosystem pro-
ductivity, resilience, and overall functioning. Our SLA y, of
EFs exceeded the mean values of tropical forests in Bolivia,
Brazil, Costa Rica, and China (Finegan et al., 2015; Wang et
al., 2016). The SLA.wm of RFs was somewhat higher than
the mean of neotropical regrowth forests but still within the
range (Poorter, 2021). SLAcwm in CPs was greater than the
range value in Parakou, Benin, but fell within the range re-
ported for 15 cashew varieties in Karnataka, India (Akossou
et al., 2016; Mog and Nayak, 2018).

Chlorophyll is essential for photosynthesis and serves as
a crucial indicator of a plant’s photosynthetic capacity, pro-
foundly influencing overall growth (Stirbet et al., 2020). The
elevated Chl.wm seen in EFs can be attributed to the well-
developed and dense canopy structure, which creates a light-
shaded environment. This prompts plants to invest more in
chlorophyll production, enhancing light harvesting efficiency
(Niinemets, 2010). Meanwhile, RFs, experiencing intense
competition for light in early successional stages, may ex-
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hibit lower chlorophyll levels as resources prioritize vertical
growth over chlorophyll production (Laurans et al., 2014).
Our CPs had lower Chlcyn, than EFs and RFs due to less light
competition and higher temperatures, which could lead to
photoinhibition and lowered leaf chlorophyll content (Rosa
et al., 2020). Our Chl.yy of EFs and RFs falls within the
range but surpasses the mean Chl.yy observed in Chinese
forest ecosystems (Li et al., 2018).

Leaf dry matter content is a measure of construction cost
per fresh weight mass unit, and it serves as a metric for a
plant’s resource use strategy and resilience to environmen-
tal stresses (Guo et al., 2023a). The higher LDMC¢yy, in
EFs compared to that of RFs indicates a conservative re-
source usage, longer leaf lifespan, and increased carbon se-
questration, implying higher ecosystem stability and func-
tion for EFs (Rawat et al., 2021). Conversely, the highest
LDMC.wm in CPs is attributed to cashew monoculture and
the species’ high resilience to environmental stress, espe-
cially in nutrient-poor soils and water-stressed conditions
(Bezerra et al., 2007). This study emphasizes the increased
stress tolerance, conservative resource utilization, and greater
carbon sequestration of EFs compared to RFs, while also em-
phasizing cashew as a highly proficient species in environ-
mental stress tolerance.

4.4 Stand structure attributes
4.4.1 DBH and tree height

Our findings confirm significant differences in mean DBH
and tree height resulting from the conversion of pristine ev-
ergreen forests to young regrowth forests and cashew plan-
tations following human disturbance. The observed reduc-
tion in large-diameter and tall trees in regrowth forests and
cashew plantations compared to the evergreen forests (Fig. 3)
provides clear evidence of structural degradation, which neg-
atively affects crucial key ecosystem functions such as car-
bon storage, nutrient cycling, and biodiversity (Diaz et al.,
2007; Lutz et al., 2018; Thiel et al., 2021). Observed species
in our evergreen forests, such as Dipterocarpus costatus,
Sandoricum indicum, Mesua ferrea, Nageia wallichiana, and
Litchi chinensis, reach heights of 40-52 m, similar to those
found in Cambodia’s central evergreen forests (Theilade et
al., 2022). Our mean DBH of evergreen forests is com-
parable to mature tropical forests in Vietnam and falls
within the pantropical range, while regrowth forests have a
slightly higher mean DBH than tropical secondary forests in
Sarawak, Malaysia (Brown, 1997; Kenzo et al., 2009; Yen
and Cochard, 2017). In contrast, cashew plantations show a
significantly lower mean DBH compared to older counter-
parts in Kampong Cham, Cambodia (Avtar et al., 2013).
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4.4.2 Aboveground and deadwood biomass

Our results support that land-cover conversion reduces in
aboveground and deadwood biomass in regrowth forests and
cashew plantations compared to in evergreen forests. The
substantial decline in aboveground biomass following con-
version from EFs to RFs or CPs is primarily driven by his-
torical human disturbance, particularly clear-cutting and the
removal of large trees, as evidenced by reduced DBH and
tree height in this study. Similarly, DWB decreased as EFs
were replaced by RFs and CPs, reflecting the impacts of land-
cover change on forest biodiversity and ecosystem health.
DWRB is a key indicator of biodiversity and ecosystem health,
supporting various species and ecosystem processes such as
carbon and nitrogen cycling, soil fertility enhancement, pol-
lination, and erosion control (Parisi et al., 2018; Santopuoli
et al., 2021; Tlaskal et al., 2021). Variations in total DWB
values could result from the degree of disturbances within
the studied forests (Baker et al., 2007). The higher DWB
in EFs is due to their old stand age, long-term accumula-
tion of DWB, and absence of slash-and-burn practice as ob-
served in RFs and CPs (van Galen et al., 2019). In CPs, some
farmers periodically cut and burn dead branches of cashew
trees to promote growth. Consistent with these trends, DWB
in our EFs and RFs was comparable to previous studies in
Cambodia and Malaysia (Saner et al., 2012; Kiyono et al.,
2018), whereas our CPs have less DWB than plantations in
Cameroon (Victor et al., 2021).

4.4.3 Stem density and basal area

The land-cover change alters stem density across EFs, RFs,
and CPs. Our mean stem density per hectare of evergreen
forests is consistent with previous studies in Cambodia, Viet-
nam, and Borneo, while regrowth forests show lower den-
sities compared to those in the Yucatan Peninsula, Mexico
(Slik et al., 2010; Con et al., 2013; Romén-Dafiobeytia et
al., 2014; Chheng et al., 2016; Theilade et al., 2022). Ad-
ditionally, our stem density in cashew plantations is similar
to that of Isuochi, Nigeria, but significantly greater than that
of Casamance, Senegal, due to their differences in planting
distance and management practices (Nzegbule et al., 2013;
Ndiaye et al., 2020). The variation in stem density between
evergreen forests and regrowth forests reflects distinctive
stages of succession. In the early succession stage follow-
ing clearance, open niches and resource abundance create
a favourable environment for fast-growing and highly re-
productive early-succession species, resulting in higher stem
density and heightened interspecies competition (Zhang et
al., 2020). As the forest matures, stem density naturally de-
creases as larger trees occupy more space and take more
of the light, water, and nutrient resources. This competition
ultimately leads to the mortality of smaller trees, aligning
with the power-law relationship between stem density and
biomass commonly observed in mature forests (Mrad et al.,
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2020). This natural process also alters species composition,
stand structure, habitat heterogeneity, and biomass of forests
(Forrester et al., 2021). In cashew plantations, stem density
is controlled by humans to enhance cashew yield. This al-
teration in stand structure complexity influences interspecies
competition. These modifications also affect stand structure
and interspecies competition, ultimately influencing the bio-
diversity and functioning of the ecosystem.

Basal area also decreases significantly when EFs are re-
placed with RFs or CPs, impacting biomass, productivity,
stand structure, and structural complexity (Gea-Izquierdo
and Sanchez-Gonzilez, 2022). RFs have a lower BA than
EFs, indicating early succession and disturbance (Ziegler,
2000). Despite the fact that tropical forests possess natural
regenerative capabilities, RFs may require several decades to
achieve BA levels comparable to EFs, highlighting the crit-
ical importance of conserving EFs to maintain their ecolog-
ical integrity and ecosystem services. In addition, the basal
area of evergreen forests in our study aligns with those in
northeastern Cambodia and Pahang National Park, Malaysia,
but falls below values reported for Laos, Cambodia’s central
plains, and Vietnam’s lowlands (Rundel, 1999; Sovu et al.,
2009; Suratman, 2012; Chheng et al., 2016; Theilade et al.,
2022). Our regrowth forest’s BA exceeds that of regrowth
forest in Laos, while the BA of our cashew plantations sur-
passes that of plantations in Tanzania (Sovu et al., 2009; Mal-
imbwi et al., 2016).

4.4.4 LAIand fPAR

LAI and fPAR differed markedly among the three land-cover
classes, reflecting structural changes in canopy structure as-
sociated with land-cover conversion consistent with our hy-
pothesis. In our study, the canopy leaf area index in evergreen
forests surpasses that of dry evergreen forests in Kampong
Thom, Cambodia, while regrowth forests lie between those
of 18-35-year tropical secondary forests in Costa Rica; how-
ever, cashew plantations exceed reported values in India (Ito
et al., 2007; Clark et al., 2021; Kumaresh et al., 2023). The
LAlc difference between the forests (EFs and RFs) and CPs
was significant due to CP management practices, resulting
in a thin canopy with low LAlc. In contrast, natural forests
with their densely developed canopy have a high LAlc. Ad-
ditionally, LAlc phenology followed the rainy and dry sea-
sons, with peak values during the rainy season and low val-
ues during the dry season (Ito et al., 2007). During the dry
season, reduced rainfall leads to less water availability for
plant growth, causing plants to adapt to water stress by shed-
ding their leaves, resulting in low LAlc in the ecosystem
(Maréchaux et al., 2018). The comparison between LAlc and
LAIr of EFs and RFs in previous studies is presented in Ta-
ble S17.

Our mean fraction of photosynthetically active radiation
for EFs and RFs marginally exceeded the global range for
broadleaf forests and the monthly range observed in the
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Amazon tropical forest in Santarém, Brazil (Senna et al.,
2005; Pastorello et al., 2020). The fPAR for CPs, on the other
hand, is within the range values reported for broadleaf crops
(Xiao et al., 2015). Despite annual variations in LAIc (24 %
for EFs, 32 % for RFs, 29 % for CPs) and incoming solar ir-
radiance, fPAR remained remarkably stable throughout the
year in the forest ecosystems (EFs and RFs; Fig. 5). This
stability can be attributed to the exponential relationship be-
tween fPAR and LAI, which typically saturates at LAI above
3 (Dawson et al., 2003). Our recorded lowest LAI for EFs
and RFs was 3.48, likely contributing to this saturation and
explaining the lack of phenology displayed in fPAR. The ex-
clusion of reflected PAR above the canopy in the fPAR es-
timation may also contribute to the stability; however, pre-
vious studies have shown that the difference between inter-
cepted (what we measured) and absorbed PAR (including
the reflected component) is minimal (Olofsson and Eklundh,
2007).

Despite an increased stem density in RFs compared to EFs
and a similar canopy LAI and fPAR, our observations of sig-
nificant differences in mean DBH, tree height, and basal area;
the reduction in aboveground and deadwood biomass; the al-
tered stem density; and the reduction in contribution of un-
derstorey LAI to total LAI support our hypothesis that the
land-cover change causes a decreased complexity in stand
structure.

4.5 Estimated aboveground biomass based on DBH-H
relationship

4.5.1 DBH-H relationship

Variation in the strength of DBH—H relationships reflects
different disturbance histories in EFs and RFs and the in-
fluence of management practices in CPs. The DBH-H rela-
tionship is crucial for understanding variations in tree growth
rates, successional stage, aboveground biomass, and forest
health (Kramer et al., 2023). Finding a strong positive DBH-
H relationship may indicate disturbances within the ecosys-
tem; by initiating gaps in the canopy, such disturbances pro-
vide opportunities for fast-growing species to establish and
utilize increased light availability and resources within the
ecosystem (Senf et al., 2020). Hence, the observed relation-
ships between EFs and RFs suggest a composition of fast-
growing species and indicate that EFs may have experienced
past disturbances. Indeed, a windthrow in EF1 is reflected in
its lowest LAIc among EF plots and a smaller mean DBH
(Table 1, Fig. S9a).

The lower DBH-H relationship in cashew plantations
results from the growth strategy of the single species
and management practices. In monocultures with uniformly
aged cashew plants, competition for light and resources is
comparable, resulting in a consistent resource distribution.
Cashew’s natural growth characteristics, with the species
reaching up to 15m in height and a DBH of 100 cm under
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favourable conditions (Avtar et al., 2014), indicate a pref-
erence for investing resources in branches and stems over
height, especially in low-light competition environments.
However, our observations indicate significant variation in
the DBH-H relationship among CP plots (low R? value in
Figs. 6, S10g-i), which may have been influenced by their
different management practices, such as spacing, pruning,
and thinning. These practices impact the DBH-H relation-
ship by minimizing light competition, resulting in a higher
DBH-H ratio which also affects the relationship (Deng et
al., 2019; Bhandari et al., 2021).

4.5.2 Comparison of AGB estimation methods

Our results suggest that locally calibrated DBH-H relation-
ships and wood density substantially affect AGB estimates
compared to generalized models, supporting the feasibil-
ity of site-specific calibration, particularly for natural forest
ecosystems. Recent studies have emphasized the significant
uncertainty in estimating plot-level aboveground biomass
when directly applying a generic AGB allometric equation
(AGBy) due to variations in species composition and stand
structure between the study site and the equation’s origin
(Feldpausch et al., 2011; Burt et al.,, 2020). To address
this challenge, our study proposes an allometric approach
(AGBy,) using local species-specific wood density and the
DBH-H relationship at the study site. This approach cap-
tures the unique characteristics of the site’s species compo-
sition and stand structure (Ketterings et al., 2001; Nyiram-
bangutse et al., 2017). Our locally adopted AGBy method
produced estimates ~ 30 % higher than the generic AGB¢
for both EFs and RFs (Table 3, Fig. 7b). This is likely due
to the combined effects of higher mean wood density and a
stronger DBH relationship, resulting in a more pronounced
exponential growth response in AGB (Fig. 7a). Still, these
~ 30 % higher values align with the range reported in pre-
vious studies (Tables A2—-A3). In contrast, in the CP case,
our AGBy, method produced estimates less than one-quarter
of the generic AGB¢ method. The reason is that the AGBy
method is less reliable when a weak DBH-H relationship
is detected because it fails to accurately capture the overall
tree size and volume. This is also reflected in the substan-
tially larger uncertainty as indicated by the standardized er-
rors of the parameters within the DBH-H relationship (Ta-
bles A4, S12). The substantial difference between AGByq
and AGBg is primarily due to the wood density values used,
0.45gcm™ from Zanne et al. (2009) in this study versus
0.18 gcm ™3 in the original AGB¢ equation (Mlagalila, 2016),
likely reflecting variation in cashew wood properties or wood
density measurement protocols among the two studies. De-
spite clear differences in Fig. 7b, formal statistical compar-
isons were not conducted due to the limited number of plots
per class (n = 3), which restricts statistical power. However,
to fully validate the AGB allometric equations, destructive
field-observed data would be necessary. Therefore, future re-

https://doi.org/10.5194/bg-22-4649-2025

search should include direct field measurements of AGB to
more accurately validate the methods for these land-cover
classes.

4.6 AGBy, relationships with LAIt, SLA.wm, and Sg

Exploring the relationship between aboveground biomass
and key ecosystem characteristics, such as leaf area index,
specific leaf area, and species richness, is vital for compre-
hending the complexity of ecosystem dynamics and inform-
ing ecosystem modelling. We observed a strong positive re-
lationship between LAIT and AGBy, supporting prior find-
ings (He et al., 2021; Zhao et al., 2021). Higher LAIt en-
hances light interception and results in higher biomass. El-
evated AGBy, levels stimulate LAIT expansion by providing
resources for robust leaf growth, leading to a denser canopy
and greater leaf coverage. Similarly, our findings support a
positive relationship between SLA wm and AGBy, (Finegan et
al., 2015; Ali et al., 2017; Gao et al., 2021). Higher SLAcwm
values indicate a plant community with improved photosyn-
thetic capacity, nutrient uptake, and leaf turnover, which is
essential for nutrient cycling (Reich et al., 1991). An increase
in AGBy, has a reinforced effect on SLAqywm values, suggest-
ing enrichment of the soil nutrient pool and providing struc-
tural support for plant growth. This influences light avail-
ability and competition dynamics, affecting leaf morphol-
ogy and SLA wm. Furthermore, the positive relationship be-
tween AGBy, and Sg is widely observed and explained by the
niche complementarity hypothesis (Waide et al., 1999; Jactel
et al., 2018; Steur et al., 2022). This concept suggests that
an ecosystem with high species diversity has a greater varia-
tion in functional traits and resource-use strategies, lowering
competition for scarce resources and thus promoting produc-
tivity (Tilman et al., 1997). In return, an increase in AGBy,
fosters the coexistence of diverse species by providing more
available resources and habitat complexity in an ecosystem,
thereby increasing species richness.

5 Conclusions

In response to growing concerns over the ecological impacts
of forest conversion in tropical Southeast Asia, we investi-
gated how land-cover change from pristine evergreen forests
to regrowth forests and cashew plantations alters stand struc-
ture, species diversity, leaf functional traits, and soil condi-
tions, and we evaluated the feasibility of locally calibrated
DBH-H allometries for improving aboveground biomass
estimation. Our findings confirm our hypotheses that land-
cover change reduces stand structural complexity, species
composition, and leaf functional traits and causes a sub-
stantial change in soil conditions. We further demonstrate
the utility of our novel dataset for improving aboveground
biomass estimation through the application of an allometric
function based on locally specific WD and the DBH-H rela-

Biogeosciences, 22, 4649-4677, 2025



4666 C. Sovann et al.: Land-cover change in Cambodian tropical forests

tionship. This approach has great potential for improving car-
bon stock estimations and promoting informed forest man-
agement practices. However, as we lack direct destructive
samples of aboveground biomass, we can neither reject nor
support our second hypothesis that locally calibrated DBH-
H relationships would substantially improve aboveground
biomass estimates compared to generalized models. More-
over, our analysis of relationships between leaf area index,
specific leaf area, species richness, and aboveground biomass
underlines the profound impact of land-cover change on
ecosystem productivity and functioning in these tropical for-
est regions. To strengthen and extend these findings, future
studies should incorporate destructive sampling to validate
our locally calibrated aboveground biomass allometric equa-
tions based on DBH-H relationships and WD. Expanding
field data collection by increasing the number and spatial dis-
tribution of plots across a broader range of land-use classes
in tropical Southeast Asia and promoting open data sharing
will be critical for improving our understanding of ecosys-
tem responses to forest conversion and supporting sustain-
able forest management under global change in the region.

Appendix A

Table Al. Estimated lying deadwood biomass (Mg ha—1), standing deadwood biomass (Mg ha—!), and total deadwood biomass Mg ha—1)
by different land-cover classes in Kulen. Mean & SD is the mean plus or minus 1 standard deviation.

Land cover Lying deadwood biomass (Mg ha—1) ‘ Standing deadwood biomass (Mg ha~1) ‘ Total deadwood biomass (Mg ha—1)

Mean + SD Range ‘ Mean + SD Range ‘ Mean + SD Range
EF(n=3) 17.74+£19.93 1.64-40.03 | 9.74+8.49 0-15.56 | 27.48 £12.37 15.31-40.03
RF (n =3) 3.65+5.32 0.48-9.79 | 1.16+1.66 0-3.06 4.81+£6.97 0.48-12.85
CP(n=3) 0.40+0.19 0.28-0.62 0 0 0.40+0.19 0.28-0.62
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Table A2. Comparing estimated aboveground biomass (AGB; Mg ha=1) in evergreen forests (EFs) using adopted allometric equations
(AGBy), the diameter at breast height (DBH) and tree height (H) power-law relationship (AGBy,), and previous AGB reported in previous
studies. Mean £ SD is the mean plus or minus 1 standard deviation.

No. Region Vegetation type AGB (Mgha™ ) References

Mean £ SD Range
1 Kulen, Cambodia Tropical evergreen forest 311.66+183.88  147.53-510.57  AGBy, in this study
2 Kulen, Cambodia Tropical evergreen forest 238.53+92.41 161.83-341.13  AGBy in this study
3 Global Tropical forest 379.024+187.40 230.58-589.58  Chave et al. (2014)
4 Gia Lai, Vietnam Tropical evergreen forest 273.24+112.22  189.53-400.76  Nam et al. (2016)
5 Mondulkiri, Cambodia Tropical moist evergreen forest 333.00 & 137.00 78.00-837.00  Sola et al. (2014)
6 Borneo (Brunei, Malaysia, Indonesia)  Tropical lowland evergreen forest 458.16 £123.62 196.30-778.50  Slik et al. (2010)
7 Thanh Hoa, Vietnam Tropical evergreen broadleaf forest  251.81 £ 125.43 40.88-543.88  Nguyen and Kappas (2020)
8 Africa Tropical evergreen forest 429.00 114.00-749.00 Lewis et al. (2013)
9 Cambodia Evergreen forest 243.00 £ 128.00 11.00-837.00  Solaet al. (2014)
10 Kampong Thom, Cambodia Evergreen forest 294.00+£65.00 176.00-398.00 Otaetal. (2015)
11 Vietnam Tropical evergreen broadleaf 230.10+8.60  199.00-320.20  Van Do et al. (2019)

forests in various ecoregions

Table A3. Comparing estimated aboveground biomass (AGB; Mg ha—1) in regrowth forests (RFs) using adopted allometric equations
(AGBy), the diameter at breast height (DBH) and tree height (H) power-law relationship (AGBy},), and previous AGB reported in previ-
ous studies. Mean =+ SD is the mean plus or minus 1 standard deviation.

No. Region Vegetation type AGB (Mg ha—1) References
Mean + SD Range
1 Kulen, Cambodia Natural regrowth evergreen forest  54.19 4 14.09 38.26-65.04  AGBy, in this study
2 Kulen, Cambodia Natural regrowth evergreen forest 41.66 £9.82 31.60-51.21  AGBy in this study
3 Sumatra, Indonesia Mixed secondary forest 59.04 +£17.15 39.26-69.79  Ketterings et al. (2001)
4 Kampong Thom, Cambodia  Regrowth forest 42.00+21.00 22.00-90.00 Otaetal. (2015)
5 Malaysia Young forests aged 8.5-17 years 63.60+34.93 34.00-118.00 Kho and Jepsen (2015)

Table A4. Comparing estimated aboveground biomass (AGB; Mg ha~!) in cashew plantations (CPs) using adopted allometric equations
(AGBy), the diameter at breast height (DBH) and tree height (H) power-law relationship (AGB},), and previous AGB reported in previous
studies. Mean £ SD is the mean plus or minus 1 standard deviation.

No. Region Vegetation type AGB (Mg ha—1) References
Mean + SD Range
1 Kulen, Cambodia Family-scale cashew plantation 16.70 +4.80 11.23-20.23  AGBjy, in this study
2 Kulen, Cambodia Family-scale cashew plantation 70.60 +22.01 46.16-88.87  AGBy in this study
3 Benin Cashew agroforestry farming 18.07 £2.14 — Biahetal. (2018)
4 Guinean, Cote d’Ivoire Cashew plantation 13.78 £0.98 — Kanmegne Tamga et al. (2022)
5 Kampong Cham, Cambodia  Large-scale and intensively managed 104.30+£19.65  72.00-143.00  Awvtar et al. (2013)

cashew plantation (10-16 years of age)
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Data availability. All the collected data used in this study are pub-
licly available as follows:

1. The datasets of the forest inventory, leaf area index, and leaf
functional traits across various land-cover classes are avail-
able at https://doi.org/10.5281/zenodo.10146582 (Sovann et
al., 2024a).

2. The daily data, including fPAR, soil conditions, and meteo-
rological conditions from 10 April 2022 to 9 April 2023, can
be downloaded from https://doi.org/10.5281/zenodo.10159726
(Sovann et al., 2024b).

3. Meteorological data from 10 April 2022 to 9
April 2024 in Kulen, Cambodia, are available at
https://doi.org/10.5281/zenodo.13756906 (Sovann et al.,
2024c).

4. Future data from the field site will be uploaded to https:
//zenodo.org/communities/cambodia_ecosystem_data (last ac-
cess: 10 September 2025) on a regular basis.

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/bg-22-4649-2025-supplement.
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